The Singular Value Decomposition

We are interested in more than just sym+def matrices. But the eigenvalue decompositions discussed in the last section of notes will play a major role in solving general systems of equations

 $\boldsymbol{y} = \boldsymbol{A}\boldsymbol{x}, \qquad \boldsymbol{y} \in \mathbb{R}^{M}, \ \boldsymbol{A} \text{ is } M \times N, \ \boldsymbol{x} \in \mathbb{R}^{N}.$

We have seen that a symmetric positive definite matrix can be decomposed as $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$, where \mathbf{V} is an orthogonal matrix ($\mathbf{V}^{\mathrm{T}} \mathbf{V} = \mathbf{V} \mathbf{V}^{\mathrm{T}} = \mathbf{I}$) whose columns are the eigenvectors of \mathbf{A} , and $\mathbf{\Lambda}$ is a diagonal matrix containing the eigenvalues of \mathbf{A} . Because both orthogonal and diagonal matrices are trivial to invert, this eigenvalue decomposition makes it very easy to solve systems of equations $\mathbf{y} = \mathbf{A}\mathbf{x}$ and analyze the stability of these solutions.

The **singular value decomposition** (SVD) takes apart an arbitrary $M \times N$ matrix \boldsymbol{A} in a similar manner. The SVD of a $M \times N$ matrix \boldsymbol{A} with rank¹ R is

$$oldsymbol{A} = oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^{ ext{T}}$$

where

1. \boldsymbol{U} is a $M \times R$ matrix

$$\boldsymbol{U} = \begin{bmatrix} \boldsymbol{u}_1 & | & \boldsymbol{u}_2 & | & \cdots & | & \boldsymbol{u}_R \end{bmatrix},$$

whose columns $\boldsymbol{u}_m \in \mathbb{R}^M$ are orthogonal. Note that while $\boldsymbol{U}^{\mathrm{T}}\boldsymbol{U} = \mathbf{I}$, in general $\boldsymbol{U}\boldsymbol{U}^{\mathrm{T}} \neq \mathbf{I}$ when R < M. The columns of \boldsymbol{U} are an orthobasis for the range space of \boldsymbol{A} .

¹Recall that the rank of a matrix is the number of linearly independent columns of a matrix (which is always equal to the number of linearly independent rows).

2. \boldsymbol{V} is a $N \times R$ matrix

$$oldsymbol{V} = egin{bmatrix} oldsymbol{v}_1 & \mid oldsymbol{v}_2 & \mid \cdots \mid oldsymbol{v}_R \end{bmatrix},$$

whose columns $\boldsymbol{v}_n \in R^N$ are orthonormal. Again, while $\boldsymbol{V}^T \boldsymbol{V} = \mathbf{I}$, in general $\boldsymbol{V} \boldsymbol{V}^T \neq \mathbf{I}$ when R < N. The columns of \boldsymbol{V} are an orthobasis for the range space of \boldsymbol{A}^T (recall that $\text{Range}(\boldsymbol{A}^T)$) consists of everything which is orthogonal to the nullspace of \boldsymbol{A}).

3. Σ is a $R \times R$ diagonal matrix with positive entries:

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1 & 0 & 0 & \cdots \\ 0 & \sigma_2 & 0 & \cdots \\ \vdots & & \ddots & \\ 0 & \cdots & \cdots & \sigma_R \end{bmatrix}$$

We call the σ_r the **singular values** of A. By convention, we will order them such that $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_R$.

4. The $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_R$ are eigenvectors of the positive semi-definite matrix $\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A}$. Note that

$$A^{\mathrm{T}}A = V\Sigma U^{\mathrm{T}}U\Sigma V^{\mathrm{T}} = V\Sigma^{2}V^{\mathrm{T}},$$

and so the singular values $\sigma_1, \ldots, \sigma_R$ are the square roots of the non-zero eigenvalues of $\mathbf{A}^{\mathrm{T}}\mathbf{A}$.

5. Similarly,

$$\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}}=\boldsymbol{U}\boldsymbol{\Sigma}^{2}\boldsymbol{U}^{\mathrm{T}},$$

and so the $\boldsymbol{u}_1, \ldots, \boldsymbol{u}_R$ are eigenvectors of the positive semidefinite matrix $\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}}$. Since the non-zero eigenvalues of $\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A}$ and AA^{T} are the same, the σ_r are also square roots of the eigenvalues of AA^{T} .

The rank R is the dimension of the space spanned by the columns of A, this is the same as the dimension of the space spanned by the rows. Thus $R \leq \min(M, N)$. We say A is **full rank** if $R = \min(M, N)$.

As before, we will often times find it useful to write the SVD as the sum of R rank-1 matrices:

$$oldsymbol{A} = oldsymbol{U} \Sigma oldsymbol{V}^{\mathrm{T}} = \sum_{r=1}^{R} \, \sigma_r \, oldsymbol{u}_r oldsymbol{v}_r^{\mathrm{T}}.$$

When \boldsymbol{A} is **overdetermined** (M > N), the decomposition looks like this

$$egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} \sigma_1 & & & \ & \ddots & & \ & & \sigma_R \end{bmatrix} \begin{bmatrix} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} \sigma_1 & & & \ & \ddots & & \ & & \sigma_R \end{bmatrix} \begin{bmatrix} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} \sigma_1 & & & \ & \ddots & & \ & & \sigma_R \end{bmatrix} \begin{bmatrix} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} \sigma_1 & & & \ & \ddots & & \ & & \sigma_R \end{bmatrix} \end{bmatrix} \begin{bmatrix} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} \sigma_1 & & & \ & \ddots & & \ & & \sigma_R \end{bmatrix} \end{bmatrix} \begin{bmatrix} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} \sigma_1 & & & \ & \ddots & & \ & & \sigma_R \end{bmatrix} \end{bmatrix} \begin{bmatrix} egin{array}{c} egin{arra$$

When \boldsymbol{A} is **underdetermined** (M < N), the SVD looks like this

$$egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} \sigma_1 & & & \ & & \ddots & \ & & & \sigma_R \end{bmatrix} \begin{bmatrix} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} \sigma_1 & & & \ & & \ddots & \ & & & \sigma_R \end{bmatrix} \begin{bmatrix} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} \sigma_1 & & & \ & \ddots & & \ & & \sigma_R \end{bmatrix} \end{bmatrix} \begin{bmatrix} egin{array}{ccc} \sigma_1 & & & \ & \ddots & & \ & & \sigma_R \end{bmatrix} \end{bmatrix} \begin{bmatrix} egin{array}{ccc} egin{array}{cccc} egin{array}{ccc} egin{array}{cccc} egin{array}{ccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{ccccc} egin{arra}$$

When **A** is **square** and full rank (M = N = R), the SVD looks like

$$\left[egin{array}{cc} egin{array}{cc} egin{array}{cc} egin{array}{cc} egin{array}{cc} egin{array}{cc} egin{array}{cc} egin{array}{cc} \sigma_1 & & & \ & \ddots & \ & & \ddots & \ & & \sigma_N \end{array}
ight] \left[egin{array}{cc} egin{array}{cc} egin{array}{cc} \sigma_1 & & & \ & \ddots & \ & & \sigma_N \end{array}
ight] \left[egin{array}{cc} egin{array}{cc} egin{array}{cc} \sigma_1 & & & \ & \ddots & \ & & \sigma_N \end{array}
ight] \left[egin{array}{cc} egin{array}{cc} egin{array}{cc} \sigma_1 & & & \ & \ddots & \ & & \sigma_N \end{array}
ight] \left[egin{array}{cc} egin{array}{cc} egin{array}{cc} \sigma_1 & & & \ & \ddots & \ & & \sigma_N \end{array}
ight] \left[egin{array}{cc} egin{array}{cc} egin{array}{cc} \sigma_1 & & & \ & \ddots & \ & & \sigma_N \end{array}
ight] \left[egin{array}{cc} egin{array}{cc} egin{array}{cc} \sigma_1 & & & \ & \ddots & \ & & \sigma_N \end{array}
ight] \left[egin{array}{cc} egin{array}{cc} egin{array}{cc} \sigma_1 & & & \ & \ddots & \ & \sigma_N \end{array}
ight] \left[egin{array}{cc} egin{array}{cc} egin{array}{cc} \sigma_1 & & & \ & \ddots & \ & \sigma_N \end{array}
ight] \left[egin{array}{cc} egin{array}{cc} egin{array}{cc} \sigma_1 & & & \ & \ddots & \ & \sigma_N \end{array}
ight] \left[egin{array}{cc} egin{array}{cc} \sigma_1 & & & \ & \ddots & \ & \sigma_N \end{array}
ight] \left[egin{array}{cc} egin{array}{cc} \sigma_1 & & & \ & \ddots & \ & \sigma_N \end{array}
ight] \left[egin{array}{cc} egin{array}{cc} \sigma_1 & & & \ & \ddots & \ & \sigma_N \end{array}
ight] \left[egin{array}{cc} egin{array}{cc} \sigma_1 & & & \ & \ddots & \ & \sigma_N \end{array}
ight] \left[egin{array}{cc} egin{array}{cc} \sigma_1 & & & \ & \ddots & \ & \sigma_N \end{array}
ight] \left[egin{array}{cc} \sigma_1 & & & \ & \ddots & \ & \sigma_N \end{array}
ight] \left[egin{array}{cc} \sigma_1 & & & \ & \ddots & \ & \sigma_N \end{array}
ight] \left[egin{array}{cc} \sigma_1 & & & \ & \ddots & \ & \sigma_N \end{array}
ight] \left[egin{array}{cc} \sigma_1 & & & \ & \ddots & \ & \sigma_N \end{array}
ight] \left[egin{array}{cc} \sigma_1 & & & \ & \sigma_N \end{array}
ight] \left[egin{array}{cc} \sigma_1 & & & \ & \sigma_N \end{array}
ight] \left[egin{array}{cc} \sigma_1 & & & \ & \sigma_N \end{array}
ight] \left[egin{array}{cc} \sigma_1 & & & \ & \sigma_N \end{array}
ight] \left[egin{array}{cc} \sigma_1 & & & \ & \sigma_N \end{array}
ight] \left[egin{array}{cc} \sigma_1 & & & \ & \sigma_N \end{array}
ight] \left[egin{array}{cc} \sigma_1 & & & \ & \sigma_N \end{array}
ight] \left[egin{array}{cc} \sigma_1 & & & \ & \sigma_N \end{array}
ight] \left[egin{array}{cc} \sigma_1 & & & \ & \sigma_N \end{array}
ight] \left[egin{array}{cc} \sigma_1 & & & \ & \sigma_N \end{array}
i$$

Technical Details: Existence of the SVD

In this section we will prove that any $M \times N$ matrix A with rank(A) = R can be written as

$$oldsymbol{A} = oldsymbol{U} \Sigma oldsymbol{V}^{ ext{T}}$$

where $\boldsymbol{U}, \boldsymbol{\Sigma}, \boldsymbol{V}$ have the five properties listed at the beginning of the last section.

Since $A^{T}A$ is symmetric positive semi-definite, we can write:

$$oldsymbol{A}^{\mathrm{T}}oldsymbol{A} = \sum_{n=1}^{N} \lambda_n oldsymbol{v}_n oldsymbol{v}_n^{\mathrm{T}},$$

where the \boldsymbol{v}_n are orthonormal and the λ_n are real and non-negative. Since rank $(\boldsymbol{A}) = R$, we also have rank $(\boldsymbol{A}^T \boldsymbol{A}) = R$, and so $\lambda_1, \ldots, \lambda_R$ are all strictly positive above, and $\lambda_{R+1} = \cdots = \lambda_N = 0$.

Set

$$\boldsymbol{u}_m = rac{1}{\sqrt{\lambda_m}} \boldsymbol{A} \boldsymbol{v}_m, \quad ext{for } m = 1, \dots, R, \qquad \boldsymbol{U} = \begin{bmatrix} \boldsymbol{u}_1 & \cdots & \boldsymbol{u}_R \end{bmatrix}.$$

Notice that these \boldsymbol{u}_m are orthonormal, as

$$\langle \boldsymbol{u}_m, \boldsymbol{u}_\ell \rangle = rac{1}{\sqrt{\lambda_m \lambda_\ell}} \boldsymbol{v}_\ell^{\mathrm{T}} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{v}_m = \sqrt{rac{\lambda_m}{\lambda_\ell}} \boldsymbol{v}_\ell^{\mathrm{T}} \boldsymbol{v}_m = \begin{cases} 1, & m = \ell, \\ 0, & m \neq \ell. \end{cases}$$

These \boldsymbol{u}_m also happen to be eigenvectors of $\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}}$, as

$$oldsymbol{A}oldsymbol{A}^{\mathrm{T}}oldsymbol{u}_m = rac{1}{\sqrt{\lambda_m}}oldsymbol{A}oldsymbol{A}^{\mathrm{T}}oldsymbol{A}oldsymbol{v}_m = \sqrt{\lambda_m}oldsymbol{A}oldsymbol{v}_m = \lambda_moldsymbol{u}_m.$$

Now let $\boldsymbol{u}_{R+1}, \ldots, \boldsymbol{u}_M$ be an orthobasis for the null space of $\boldsymbol{U}^{\mathrm{T}}$ — concatenating these two sets into $\boldsymbol{u}_1, \ldots, \boldsymbol{u}_M$ forms an orthobasis for all of \mathbb{R}^M .

Let

$$\boldsymbol{V} = \begin{bmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 & \cdots & \boldsymbol{v}_R \end{bmatrix}, \quad \boldsymbol{V}_0 = \begin{bmatrix} \boldsymbol{v}_{R+1} & \boldsymbol{v}_{R+2} & \cdots & \boldsymbol{v}_N \end{bmatrix}, \quad \boldsymbol{V}_{\text{full}} = \begin{bmatrix} \boldsymbol{V} & \boldsymbol{V}_0 \end{bmatrix}$$

and

$$oldsymbol{U}_0 = egin{bmatrix} oldsymbol{u}_{R+1} & oldsymbol{u}_{R+2} & \cdots & oldsymbol{u}_M \end{bmatrix}, \quad oldsymbol{U}_{ ext{full}} = egin{bmatrix} oldsymbol{U} & oldsymbol{U}_0 \end{bmatrix}.$$

It should be clear that $\boldsymbol{V}_{\text{full}}$ is an $N \times N$ orthonormal matrix and $\boldsymbol{U}_{\text{full}}$ is a $M \times M$ orthonormal matrix. Consider the $M \times N$ matrix $\boldsymbol{U}_{\text{full}}^{\text{T}} \boldsymbol{A} \boldsymbol{V}_{\text{full}}$ — the entry in the *m*th rows and *n*th column of this matrix is

$$(\boldsymbol{U}_{\text{full}}^{\text{T}}\boldsymbol{A}\boldsymbol{V}_{\text{full}})[m,n] = \boldsymbol{u}_{m}^{\text{T}}\boldsymbol{A}\boldsymbol{v}_{n} = \begin{cases} \sqrt{\lambda_{n}} \,\boldsymbol{u}_{m}^{\text{T}}\boldsymbol{u}_{n} & n = 1, \dots, R\\ 0, & n = R+1, \dots, N \end{cases}$$
$$= \begin{cases} \sqrt{\lambda_{n}}, & m = n = 1, \dots, R\\ 0, & \text{otherwise.} \end{cases}$$

Thus

$$oldsymbol{U}_{ ext{full}}^{ ext{T}}oldsymbol{A}oldsymbol{V}_{ ext{full}} = oldsymbol{\Sigma}_{ ext{full}}$$

where

$$\Sigma_{\text{full}}[m,n] = \begin{cases} \sqrt{\lambda_n}, & m = n = 1, \dots, R \\ 0, & \text{otherwise.} \end{cases}$$

Since $\boldsymbol{U}_{\text{full}} \boldsymbol{U}_{\text{full}}^{\text{T}} = \mathbf{I}$ and $\boldsymbol{V}_{\text{full}} \boldsymbol{V}_{\text{full}}^{\text{T}} = \mathbf{I}$, we have

$$oldsymbol{A} = oldsymbol{U}_{ ext{full}} oldsymbol{\Sigma}_{ ext{full}} oldsymbol{V}_{ ext{full}}^{ ext{T}}.$$

Since Σ_{full} is non-zero only in the first R locations along its main diagonal, the above reduces to

$$oldsymbol{A} = oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^{\mathrm{T}}, \quad oldsymbol{\Sigma} = egin{bmatrix} \sqrt{\lambda_1} & & & \ & \sqrt{\lambda_2} & & \ & & \ddots & \ & & & \sqrt{\lambda_R} \end{bmatrix}$$

40

The Least-Squares Problem

We can use the SVD to "solve" the general system of linear equations

y = Ax

where $\boldsymbol{y} \in \mathbb{R}^{M}$, $\boldsymbol{x} \in \mathbb{R}^{N}$, and \boldsymbol{A} is an $M \times N$ matrix.

Given \boldsymbol{y} , we want to find \boldsymbol{x} in such a way that

- 1. when there is a unique solution, we return it;
- 2. when there is no solution, we return something reasonable;
- 3. when there are an infinite number of solutions, we choose one to return in a "smart" way.

The **least-squares** framework revolves around finding an \boldsymbol{x} that minimizes the length of the residual

$$r = y - Ax$$
.

That is, we want to solve the optimization problem

$$\min_{\boldsymbol{x} \in \mathbb{R}^N} \| \boldsymbol{y} - \boldsymbol{A} \boldsymbol{x} \|_2^2, \tag{1}$$

where $\|\cdot\|_2$ is the standard Euclidean norm. We will see that the SVD of A:

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathrm{T}},\tag{2}$$

plays a pivotal role in solving this problem.

To start, note that we can write any $\boldsymbol{x} \in \mathbb{R}^N$ as

$$\boldsymbol{x} = \boldsymbol{V}\boldsymbol{\alpha} + \boldsymbol{V}_0\boldsymbol{\alpha}_0. \tag{3}$$

Here, V is the $N \times R$ matrix appearing in the SVD decomposition (2), and V_0 is a $N \times (N - R)$ matrix whose columns are orthogonal to one another and to the columns in V. We have the relations

$$\boldsymbol{V}^{\mathrm{T}}\boldsymbol{V} = \mathbf{I}, \quad \boldsymbol{V}_{0}^{\mathrm{T}}\boldsymbol{V}_{0} = \mathbf{I}, \quad \boldsymbol{V}^{\mathrm{T}}\boldsymbol{V}_{0} = \mathbf{0}.$$

You can think of V_0 as an orthobasis for the null space of A. Of course, V_0 is not unique, as there are many orthobases for Null(A), but any such set of vectors will serve our purposes here. The decomposition (3) is possible since Range(A^{T}) and Null(A) partition \mathbb{R}^N for any $M \times N$ matrix A. Taking

$$\boldsymbol{\alpha} = \boldsymbol{V}^{\mathrm{T}} \boldsymbol{x}, \quad \boldsymbol{\alpha}_{0} = \boldsymbol{V}_{0}^{\mathrm{T}} \boldsymbol{x},$$

we see that (3) holds since

$$\boldsymbol{x} = \boldsymbol{V} \boldsymbol{V}^{\mathrm{T}} \boldsymbol{x} + \boldsymbol{V}_{0} \boldsymbol{V}_{0}^{\mathrm{T}} \boldsymbol{x} = (\boldsymbol{V} \boldsymbol{V}^{\mathrm{T}} + \boldsymbol{V}_{0} \boldsymbol{V}_{0}^{\mathrm{T}}) \boldsymbol{x} = \boldsymbol{x},$$

where we have made use of the fact that $\boldsymbol{V}\boldsymbol{V}^{\mathrm{T}} + \boldsymbol{V}_{0}\boldsymbol{V}_{0}^{\mathrm{T}} = \mathbf{I}$, because $\boldsymbol{V}\boldsymbol{V}^{\mathrm{T}}$ and $\boldsymbol{V}_{0}\boldsymbol{V}_{0}^{\mathrm{T}}$ are ortho-projectors onto complementary subspaces² of \mathbb{R}^{N} . So we can solve for $\boldsymbol{x} \in \mathbb{R}^{N}$ by solving for the pair $\boldsymbol{\alpha} \in \mathbb{R}^{R}, \ \boldsymbol{\alpha}_{0} \in \mathbb{R}^{N-R}$.

Similarly, we can decompose \boldsymbol{y} as

$$\boldsymbol{y} = \boldsymbol{U}\boldsymbol{\beta} + \boldsymbol{U}_0\boldsymbol{\beta}_0, \qquad (4)$$

where \boldsymbol{U} is the $M \times R$ matrix from the SVD decomposition, and \boldsymbol{U}_0 is a $M \times (M - R)$ complementary orthogonal basis. Again,

$$\boldsymbol{U}^{\mathrm{T}}\boldsymbol{U} = \mathbf{I}, \quad \boldsymbol{U}_{0}^{\mathrm{T}}\boldsymbol{U}_{0} = \mathbf{I}, \quad \boldsymbol{U}^{\mathrm{T}}\boldsymbol{U}_{0} = \mathbf{0},$$

²Subspaces S_1 and S_2 are **complementary** in \mathbb{R}^N if $S_1 \perp S_2$ (everything in S_1 is orthogonal to everything in S_2) and $S_1 \oplus S_2 = \mathbb{R}^N$. You can think of S_1, S_2 as a partition of \mathbb{R}^N into two orthogonal subspaces.

and we can think of U_0 as an orthogonal basis for everything in \mathbb{R}^M that is not in the range of A. As before, we can calculate the decomposition above using

$$\boldsymbol{\beta} = \boldsymbol{U}^{\mathrm{T}} \boldsymbol{y}, \quad \boldsymbol{\beta}_{0} = \boldsymbol{U}_{0}^{\mathrm{T}} \boldsymbol{y}.$$

Using the decompositions (2), (3), and (4) for \boldsymbol{A} , \boldsymbol{x} , and \boldsymbol{y} , we can write the residual $\boldsymbol{r} = \boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}$ as

$$\begin{aligned} \boldsymbol{r} &= \boldsymbol{U}\boldsymbol{\beta} + \boldsymbol{U}_{0}\boldsymbol{\beta}_{0} - \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathrm{T}}(\boldsymbol{V}\boldsymbol{\alpha} + \boldsymbol{V}_{0}\boldsymbol{\alpha}_{0}) \\ &= \boldsymbol{U}\boldsymbol{\beta} + \boldsymbol{U}_{0}\boldsymbol{\beta}_{0} - \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{\alpha} \quad (\text{since } \boldsymbol{V}^{\mathrm{T}}\boldsymbol{V} = \mathbf{I} \text{ and } \boldsymbol{V}^{\mathrm{T}}\boldsymbol{V}_{0} = \mathbf{0}) \\ &= \boldsymbol{U}_{0}\boldsymbol{\beta}_{0} + \boldsymbol{U}(\boldsymbol{\beta} - \boldsymbol{\Sigma}\boldsymbol{\alpha}). \end{aligned}$$

We want to choose $\boldsymbol{\alpha}$ that minimizes the energy of \boldsymbol{r} :

$$\begin{split} \|\boldsymbol{r}\|_{2}^{2} &= \langle \boldsymbol{U}_{0}\boldsymbol{\beta}_{0} + \boldsymbol{U}(\boldsymbol{\beta} - \boldsymbol{\Sigma}\boldsymbol{\alpha}), \ \boldsymbol{U}_{0}\boldsymbol{\beta}_{0} + \boldsymbol{U}(\boldsymbol{\beta} - \boldsymbol{\Sigma}\boldsymbol{\alpha}) \rangle \\ &= \langle \boldsymbol{U}_{0}\boldsymbol{\beta}_{0}, \boldsymbol{U}_{0}\boldsymbol{\beta}_{0} \rangle \ + \ 2 \langle \boldsymbol{U}_{0}\boldsymbol{\beta}_{0}, \boldsymbol{U}(\boldsymbol{\beta} - \boldsymbol{\Sigma}\boldsymbol{\alpha}) \rangle \\ &+ \langle \boldsymbol{U}(\boldsymbol{\beta} - \boldsymbol{\Sigma}\boldsymbol{\alpha}), \boldsymbol{U}(\boldsymbol{\beta} - \boldsymbol{\Sigma}\boldsymbol{\alpha}) \rangle \\ &= \|\boldsymbol{\beta}_{0}\|_{2}^{2} + \|\boldsymbol{\beta} - \boldsymbol{\Sigma}\boldsymbol{\alpha}\|_{2}^{2} \end{split}$$

where the last equality comes from the facts that $\boldsymbol{U}_0^{\mathrm{T}}\boldsymbol{U}_0 = \mathbf{I}, \boldsymbol{U}^{\mathrm{T}}\boldsymbol{U} = \mathbf{I}$, and $\boldsymbol{U}^{\mathrm{T}}\boldsymbol{U}_0 = \mathbf{0}$. We have no control over $\|\boldsymbol{\beta}_0\|_2^2$, since it determined entirely by our observations \boldsymbol{y} . Therefore, our problem has been reduced to finding $\boldsymbol{\alpha}$ that minimizes the second term $\|\boldsymbol{\beta} - \boldsymbol{\Sigma}\boldsymbol{\alpha}\|_2^2$ above, which is non-negative. We can make it zero (i.e. as small as possible) by taking

$$\hat{oldsymbol{lpha}} = oldsymbol{\Sigma}^{-1} oldsymbol{eta}$$

Finally, the \boldsymbol{x} which minimizes the residual (solves (1)) is

$$\hat{\boldsymbol{x}} = \boldsymbol{V}\hat{\boldsymbol{\alpha}} = \boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{\beta} = \boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{U}^{\mathrm{T}}\boldsymbol{y}.$$
(5)

Thus we can calculate the solution to (1) simply by applying the linear operator $V\Sigma^{-1}U^{T}$ to the input data \boldsymbol{y} . There are two interesting facts about the solution $\hat{\boldsymbol{x}}$ in (5):

- 1. When $\boldsymbol{y} \in \text{span}(\{\boldsymbol{u}_1, \ldots, \boldsymbol{u}_M\})$, we have $\boldsymbol{\beta}_0 = \boldsymbol{U}_0^{\mathrm{T}} \boldsymbol{y} = \boldsymbol{0}$, and so the residual $\boldsymbol{r} = \boldsymbol{0}$. In this case, there is at least one exact solution, and the one we choose satisfies $\boldsymbol{A}\hat{\boldsymbol{x}} = \boldsymbol{y}$.
- 2. Note that if R < N, then the solution is not unique. In this case, V_0 has at least one column, and any part of a vector \boldsymbol{x} in the range of V_0 is not seen by \boldsymbol{A} , since

$$AV_0 \alpha_0 = U\Sigma V^{\mathrm{T}} V_0 \alpha_0 = 0$$
 (since $V^{\mathrm{T}} V_0 = 0$).

As such,

$$oldsymbol{x}' = \hat{oldsymbol{x}} + oldsymbol{V}_0 oldsymbol{lpha}_0$$

for any $\boldsymbol{\alpha}_0 \in \mathbb{R}^{N-R}$ will have exactly the same residual, since $\boldsymbol{A}\boldsymbol{x}' = \boldsymbol{A}\hat{\boldsymbol{x}}$. In this case, our solution $\hat{\boldsymbol{x}}$ is the solution with smallest norm, since

$$\begin{split} \|\boldsymbol{x}'\|_{2}^{2} &= \langle \hat{\boldsymbol{x}} + \boldsymbol{V}_{0}\boldsymbol{\alpha}_{0}, \ \hat{\boldsymbol{x}} + \boldsymbol{V}_{0}\boldsymbol{\alpha}_{0} \rangle \\ &= \langle \hat{\boldsymbol{x}}, \hat{\boldsymbol{x}} \rangle + 2 \langle \hat{\boldsymbol{x}}, \boldsymbol{V}_{0}\boldsymbol{\alpha}_{0} \rangle + \langle \boldsymbol{V}_{0}\boldsymbol{\alpha}, \boldsymbol{V}_{0}\boldsymbol{\alpha} \rangle \\ &= \|\hat{\boldsymbol{x}}\|_{2}^{2} + 2 \langle \boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{U}^{\mathrm{T}}\boldsymbol{y}, \boldsymbol{V}_{0}\boldsymbol{\alpha}_{0} \rangle + \|\boldsymbol{\alpha}_{0}\|_{2}^{2} \quad (\text{since } \boldsymbol{V}_{0}^{\mathrm{T}}\boldsymbol{V}_{0} = \mathbf{I}) \\ &= \|\hat{\boldsymbol{x}}\|_{2}^{2} + \|\boldsymbol{\alpha}_{0}\|_{2}^{2} \quad (\text{since } \boldsymbol{V}^{\mathrm{T}}\boldsymbol{V}_{0} = \mathbf{0}) \end{split}$$

which is minimized by taking $\boldsymbol{\alpha}_0 = \mathbf{0}$.

To summarize, $\hat{\boldsymbol{x}} = \boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{U}^{\mathrm{T}} \boldsymbol{y}$ has the desired properties stated at the beginning of this module, since

- 1. when $\boldsymbol{y} = \boldsymbol{A}\boldsymbol{x}$ has a unique exact solution, it must be $\hat{\boldsymbol{x}}$,
- 2. when an exact solution is not available, $\hat{\boldsymbol{x}}$ is the solution to (1),

3. when there are an infinite number of minimizers to (1), $\hat{\boldsymbol{x}}$ is the one with smallest norm.

Because the matrix $V\Sigma^{-1}U^{T}$ gives us such an elegant solution to this problem, we give it a special name: the **pseudo-inverse**.

The Pseudo-Inverse

The **pseudo-inverse** of a matrix \boldsymbol{A} with singular value decomposition (SVD) $\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathrm{T}}$ is

$$\boldsymbol{A}^{\dagger} = \boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{U}^{\mathrm{T}}.$$
 (6)

Other names for A^{\dagger} include **natural inverse**, **Lanczos inverse**, and **Moore-Penrose inverse**.

Given an observation \boldsymbol{y} , taking $\hat{\boldsymbol{x}} = \boldsymbol{A}^{\dagger} \boldsymbol{y}$ gives us the **least squares** solution to $\boldsymbol{y} = \boldsymbol{A}\boldsymbol{x}$. The pseudo-inverse \boldsymbol{A}^{\dagger} always exists, since every matrix (with rank R) has an SVD decomposition $\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathrm{T}}$ with $\boldsymbol{\Sigma}$ as an $R \times R$ diagonal matrix with $\boldsymbol{\Sigma}[r, r] > 0$.

When A is full rank $(R = \min(M, N))$, then we can calculate the pseudo-inverse without using the SVD. There are three cases:

• When \boldsymbol{A} is square and invertible (R = M = N), then

$$oldsymbol{A}^{\dagger}=oldsymbol{A}^{-1}.$$

This is easy to check, as here

$$\boldsymbol{A} = \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathrm{T}}$$
 where both $\boldsymbol{U}, \boldsymbol{V}$ are $N \times N$,

and since in this case $VV^{\mathrm{T}} = V^{\mathrm{T}}V = \mathbf{I}$ and $UU^{\mathrm{T}} = U^{\mathrm{T}}U = \mathbf{I}$,

$$egin{aligned} oldsymbol{A}^{\dagger}oldsymbol{A} &= oldsymbol{V} \Sigma^{-1} oldsymbol{U}^{\mathrm{T}} oldsymbol{U} \Sigma oldsymbol{V}^{\mathrm{T}} \ &= oldsymbol{V} \Sigma^{-1} \Sigma oldsymbol{V}^{\mathrm{T}} \ &= oldsymbol{V} oldsymbol{V}^{\mathrm{T}} \ &= oldsymbol{I}. \end{aligned}$$

Similarly, $AA^{\dagger} = I$, and so A^{\dagger} is both a left and right inverse of A, and thus $A^{\dagger} = A^{-1}$.

• When \boldsymbol{A} more rows than columns and has full column rank $(R = N \leq M)$, then $\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A}$ is invertible, and

$$\boldsymbol{A}^{\dagger} = (\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A})^{-1}\boldsymbol{A}^{\mathrm{T}}.$$
 (7)

This type of \boldsymbol{A} is "tall and skinny"

$$\left[\begin{array}{c} \boldsymbol{A} \\ \end{array}\right],$$

and its columns are linearly independent. To verify equation (7), recall that

$$\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A} = \boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^{\mathrm{T}}\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathrm{T}} = \boldsymbol{V}\boldsymbol{\Sigma}^{2}\boldsymbol{V}^{\mathrm{T}},$$

and so

$$(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A})^{-1}\boldsymbol{A}^{\mathrm{T}} = \boldsymbol{V}\boldsymbol{\Sigma}^{-2}\boldsymbol{V}^{\mathrm{T}}\boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^{\mathrm{T}} = \boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{U}^{\mathrm{T}},$$

which is exactly the content of (6).

• When \boldsymbol{A} has more columns than rows and has full row rank $(R = M \leq N)$, then $\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}}$ is invertible, and

$$\boldsymbol{A}^{\dagger} = \boldsymbol{A}^{\mathrm{T}} (\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}})^{-1}.$$
 (8)

This occurs when \boldsymbol{A} is "short and fat"

$$egin{array}{c} egin{array}{c} egin{array}$$

and its rows are linearly independent. To verify equation (8), recall that

$$\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathrm{T}}\boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^{\mathrm{T}} = \boldsymbol{U}\boldsymbol{\Sigma}^{2}\boldsymbol{U}^{\mathrm{T}},$$

and so

$$\boldsymbol{A}^{\mathrm{T}}(\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}})^{-1} = \boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^{\mathrm{T}}\boldsymbol{U}\boldsymbol{\Sigma}^{-2}\boldsymbol{U}^{\mathrm{T}} = \boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{U}^{\mathrm{T}},$$

which again is exactly (6).

A^{\dagger} is as close to an inverse of A as possible

As discussed in the last section, when A is square and invertible, A^{\dagger} is exactly the inverse of A. When A is not square, we can ask if there is a better right or left inverse. We will argue that there is not.

Left inverse Given y = Ax, we would like $A^{\dagger}y = A^{\dagger}Ax = x$ for any x. That is, we would like A^{\dagger} to be a *left inverse* of $A: A^{\dagger}A = I$. Of course, this is not always possible, especially when A has more columns than rows, M < N. But we can ask if any other matrix H comes closer to being a left inverse than \mathbf{A}^{\dagger} . To find the "best" left-inverse, we look for the matrix which minimizes

$$\min_{\boldsymbol{H}\in\mathbb{R}^{N\times M}} \|\boldsymbol{H}\boldsymbol{A}-\mathbf{I}\|_{F}^{2}.$$
(9)

Here, $\|\cdot\|_F$ is the *Frobenius norm*, defined for an $N \times M$ matrix \boldsymbol{Q} as the sum of the squares of the entires:

$$\|\boldsymbol{Q}\|_{F}^{2} = \sum_{n=1}^{M} \sum_{n=1}^{N} |Q[m,n]|^{2}$$

(It is also true, and you can and should prove this at home, that $\|\boldsymbol{Q}\|_F^2$ is the sum of the squares of the singular values of \boldsymbol{Q} : $\|\boldsymbol{Q}\|_F^2 = \lambda_1^2 + \cdots + \lambda_p^2$.) With (9), we are finding \boldsymbol{H} such that $\boldsymbol{H}\boldsymbol{A}$ is as close to the identity as possible in the least-squares sense.

The pseudo-inverse \mathbf{A}^{\dagger} minimizes (9). To see this, recognize (see the exercise below) that the solution $\hat{\mathbf{H}}$ to (9) must obey

$$\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}}\hat{\boldsymbol{H}}^{\mathrm{T}} = \boldsymbol{A}.$$
 (10)

We can see that this is indeed true for $\hat{H} = A^{\dagger}$:

$$AA^{\mathrm{T}}A^{\dagger^{\mathrm{T}}} = U\Sigma V^{\mathrm{T}}V\Sigma U^{\mathrm{T}}U\Sigma^{-1}V^{\mathrm{T}} = U\Sigma V^{\mathrm{T}} = A.$$

So there is no $N \times M$ matrix that is closer to being a left inverse than A^{\dagger} .

Right inverse If we re-apply \boldsymbol{A} to our solution $\hat{\boldsymbol{x}} = \boldsymbol{A}^{\dagger} \boldsymbol{y}$, we would like it to be as close as possible to our observations \boldsymbol{y} . That is,

we would like AA^{\dagger} to be as close to the identity as possible. Again, achieving this goal exactly is not always possible, especially if A has more rows that columns. But we can attempt to find the "best" right inverse, in the least-squares sense, by solving

$$\min_{\boldsymbol{H} \in \mathbb{R}^{N \times M}} \|\boldsymbol{A}\boldsymbol{H} - \mathbf{I}\|_{F}^{2}.$$
 (11)

The solution \hat{H} to (11) (see the exercise below) must obey

$$\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A}\hat{\boldsymbol{H}} = \boldsymbol{A}^{\mathrm{T}}.$$
 (12)

Again, we show that A^{\dagger} satisfies (12), and hence is a minimizer to (11):

$$\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{A}^{\dagger} = \boldsymbol{V}\boldsymbol{\Sigma}^{2}\boldsymbol{V}^{\mathrm{T}}\boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{U}^{\mathrm{T}} = \boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^{\mathrm{T}} = \boldsymbol{A}^{\mathrm{T}}.$$

Moral: $A^{\dagger} = V \Sigma^{-1} U^{T}$ is as close (in the least-squares sense) to an inverse of A as you could possibly have.

Exercise:

1. Show that the minimizer \hat{H} to (9) must obey (10). Do this by using the fact that the derivative of the functional $\|\boldsymbol{H}\boldsymbol{A} - \mathbf{I}\|_F^2$ with respect to an entry $H[k, \ell]$ in \boldsymbol{H} must obey

$$\frac{\partial \|\boldsymbol{H}\boldsymbol{A} - \mathbf{I}\|_F^2}{\partial H[k,\ell]} = 0, \quad \text{for all } 1 \le k \le N, \ 1 \le \ell \le M,$$

to be a solution to (9). Do the same for (11) and (12).

Stability Analysis of the Pseudo-Inverse

We have seen that if we make indirect observations $\boldsymbol{y} \in \mathbb{R}^{M}$ of an unknown vector $\boldsymbol{x}_{0} \in \mathbb{R}^{N}$ through a $M \times N$ matrix $\boldsymbol{A}, \boldsymbol{y} = \boldsymbol{A}\boldsymbol{x}_{0}$, then applying the pseudo-inverse of \boldsymbol{A} gives us the least squares estimate of \boldsymbol{x}_{0} :

$$\hat{\boldsymbol{x}}_{ ext{ls}} = \boldsymbol{A}^{\dagger} \boldsymbol{y} = \boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{U}^{ ext{T}} \boldsymbol{y},$$

where $\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathrm{T}}$ is the singular value decomposition (SVD) of \boldsymbol{A} .

We will now discuss what happens if our measurements contain *noise* — the analysis here will be very similar to when we looked at the stability of solving square sym+def systems, and in fact this is one of the main reasons we introduced the SVD.

Suppose we observe

$$\boldsymbol{y} = \boldsymbol{A}\boldsymbol{x}_0 + \boldsymbol{e},$$

where $\boldsymbol{e} \in \mathbb{R}^{M}$ is an unknown perturbation. Say that we again apply the pseudo-inverse to \boldsymbol{y} in an attempt to recover \boldsymbol{x} :

$$\hat{oldsymbol{x}}_{ ext{ls}} = oldsymbol{A}^{\dagger}oldsymbol{y} = oldsymbol{A}^{\dagger}oldsymbol{A} x_0 + oldsymbol{A}^{\dagger}oldsymbol{e}$$

What effect does the presence of the noise vector \boldsymbol{e} had on our estimate of \boldsymbol{x}_0 ? We answer this question by comparing $\hat{\boldsymbol{x}}_{ls}$ to the reconstruction we would obtain if we used standard least-squares on perfectly noise-free observations $\boldsymbol{y}_{clean} = \boldsymbol{A}\boldsymbol{x}_0$. This noise-free recon-

struction can be written as

$$egin{aligned} oldsymbol{x}_{ ext{pinv}} &= oldsymbol{A}^\dagger oldsymbol{y}_{ ext{clean}} &= oldsymbol{A}^\dagger oldsymbol{A} oldsymbol{x}_0 \ &= oldsymbol{V} oldsymbol{\Sigma}^{-1} oldsymbol{U}^ op oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^ op oldsymbol{x}_0 \ &= oldsymbol{V} oldsymbol{V}^ op oldsymbol{x}_0 \ &= oldsymbol{V} oldsymbol{V}^ op oldsymbol{x}_0 \ &= oldsymbol{\Sigma} oldsymbol{V}^ op oldsymbol{v}_r \ &= oldsymbol{E} oldsymbol{A} oldsymbol{x}_0, oldsymbol{v}_r oldsymbol{v}_r. \end{aligned}$$

The vector $\boldsymbol{x}_{\text{pinv}}$ is the orthogonal projection of \boldsymbol{x}_0 onto the row space (everything orthogonal to the null space) of \boldsymbol{A} . If \boldsymbol{A} has full column rank (R = N), then $\boldsymbol{x}_{\text{pinv}} = \boldsymbol{x}_0$. If not, then the application of \boldsymbol{A} destroys the part of \boldsymbol{x}_0 that is not in $\boldsymbol{x}_{\text{pinv}}$, and so we only attempt to recover the "visible" components. In some sense, $\boldsymbol{x}_{\text{pinv}}$ contains all of the components of \boldsymbol{x}_0 that \boldsymbol{A} does not completely remove, and has them preserved perfectly.

The reconstruction error (relative to $\boldsymbol{x}_{\text{pinv}}$ is)

$$\|\hat{\boldsymbol{x}}_{ls} - \boldsymbol{x}_{pinv}\|_{2}^{2} = \|\boldsymbol{A}^{\dagger}\boldsymbol{e}\|_{2}^{2} = \|\boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{U}^{T}\boldsymbol{e}\|_{2}^{2}.$$
 (13)

Now suppose for a moment that the error has unit norm, $\|\boldsymbol{e}\|_2^2 = 1$. Then the worst case for (13) is given by

$$\underset{\boldsymbol{e} \in \mathbb{R}^{M}}{\text{maximize}} \|\boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{U}^{\mathrm{T}}\boldsymbol{e}\|_{2}^{2} \text{ subject to } \|\boldsymbol{e}\|_{2} = 1.$$

Since the columns of U are orthonormal, $\|U^{\mathrm{T}}e\|_{2}^{2} \leq \|e\|_{2}^{2}$, and the above is equivalent to

$$\max_{\boldsymbol{\beta} \in \mathbb{R}^{R}: \|\boldsymbol{\beta}\|_{2}=1} \|\boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{\beta}\|_{2}^{2}.$$
 (14)

Also, for any vector $\boldsymbol{z} \in \mathbb{R}^{R}$, we have

$$\| oldsymbol{V} oldsymbol{z} \|_2^2 = \langle oldsymbol{V} oldsymbol{z}, oldsymbol{V} oldsymbol{z}
angle = \langle oldsymbol{z}, oldsymbol{V}^{ ext{T}} oldsymbol{V} oldsymbol{z}
angle = \langle oldsymbol{z}, oldsymbol{z}
angle = \| oldsymbol{z} \|_2^2,$$

since the columns of V are orthonormal. So we can simplify (14) to

maximize
$$\|\boldsymbol{\Sigma}^{-1}\boldsymbol{\beta}\|_2^2$$
 subject to $\|\boldsymbol{\beta}\|_2 = 1$.

The worst case β (you should verify this at home) will have a 1 in the entry corresponding to the largest entry in Σ^{-1} , and will be zero everywhere else. Thus

$$\max_{\boldsymbol{\beta} \in \mathbb{R}^R: \|\boldsymbol{\beta}\|_2 = 1} \|\boldsymbol{\Sigma}^{-1} \boldsymbol{\beta}\|_2^2 = \max_{r=1, \dots, R} \sigma_r^{-2} = \frac{1}{\sigma_R^2}$$

(Recall that by convention, we order the singular values so that $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_R$.)

Returning to the reconstruction error (13), we now see that

$$\|\hat{m{x}}_{ ext{ls}} - m{x}_{ ext{pinv}}\|_2^2 = \|m{V}m{\Sigma}^{-1}m{U}^{ ext{T}}m{e}\|_2^2 \leq rac{1}{\sigma_R^2}\|m{e}\|_2^2.$$

Since U is an $M \times R$ matrix, it is possible when R < M that the reconstruction error is zero. This happens when e is orthogonal to every column of U, i.e. $U^{T}e = 0$. Putting this together with the work above means

$$0 \leq \frac{1}{\sigma_1^2} \| \boldsymbol{U}^{\mathrm{T}} \boldsymbol{e} \|_2^2 \leq \| \hat{\boldsymbol{x}}_{\mathrm{ls}} - \boldsymbol{x}_{\mathrm{pinv}} \|_2^2 \leq \frac{1}{\sigma_R^2} \| \boldsymbol{U}^{\mathrm{T}} \boldsymbol{e} \|_2^2 \leq \frac{1}{\sigma_R^2} \| \boldsymbol{e} \|_2^2$$

Notice that if σ_R is small, the worst case reconstruction error can be **very bad**.

We can also relate the "average case" error to the singular values. Say that e is additive Gaussian white noise, that is each entry e[m] is a random variable independent of all the other entries, and distributed

$$e[m] \sim \text{Normal}(0, \nu^2).$$

Then, as we have argued before, the average measurement error is

$$\mathbf{E}[\|\boldsymbol{e}\|_2^2] = M\nu^2,$$

and the average reconstruction error^3 is

$$\mathbb{E}\left[\|\boldsymbol{A}^{\dagger}\boldsymbol{e}\|_{2}^{2}\right] = \nu^{2} \cdot \operatorname{trace}(\boldsymbol{A}^{\dagger^{\mathrm{T}}}\boldsymbol{A}^{\dagger}) = \nu^{2} \cdot \left(\frac{1}{\sigma_{1}^{2}} + \frac{1}{\sigma_{2}^{2}} + \dots + \frac{1}{\sigma_{R}^{2}}\right)$$
$$= \frac{1}{M}\left(\frac{1}{\sigma_{1}^{2}} + \frac{1}{\sigma_{2}^{2}} + \dots + \frac{1}{\sigma_{R}^{2}}\right) \cdot \mathbb{E}[\|\boldsymbol{e}\|_{2}^{2}].$$

Again, if σ_R is tiny, $1/\sigma_R^2$ will dominate the sum above, and the average reconstruction error will be quite large.

Exercise: Let D be a diagonal $R \times R$ matrix whose diagonal elements are positive. Show that the maximizer $\hat{\beta}$ to

$$\underset{\boldsymbol{\beta} \in \mathbb{R}^{R}}{\text{maximize}} \|\boldsymbol{D}\boldsymbol{\beta}\|_{2}^{2} \text{ subject to } \|\boldsymbol{\beta}\|_{2} = 1$$

has a 1 in the entry corresponding to the largest diagonal element of D, and is 0 elsewhere.

³We are using the fact that if \boldsymbol{e} is vector of iid Gaussian random variables, $\boldsymbol{e} \sim \operatorname{Normal}(\mathbf{0}, \nu^2 \mathbf{I})$, then for any matrix \boldsymbol{M} , $\operatorname{E}[\|\boldsymbol{M}\boldsymbol{e}\|_2^2] = \nu^2 \operatorname{trace}(\boldsymbol{M}^{\mathrm{T}}\boldsymbol{M})$. We will argue this carefully as part of the next homework.