
The Singular Value Decomposition

We are interested in more than just sym+def matrices. But the
eigenvalue decompositions discussed in the last section of notes will
play a major role in solving general systems of equations

y = Ax, y ∈ RM , A is M ×N , x ∈ RN .

We have seen that a symmetric positive definite matrix can be decom-
posed as A = V ΛV T, where V is an orthogonal matrix (V TV =
V V T = I) whose columns are the eigenvectors of A, and Λ is
a diagonal matrix containing the eigenvalues of A. Because both
orthogonal and diagonal matrices are trivial to invert, this eigen-
value decomposition makes it very easy to solve systems of equations
y = Ax and analyze the stability of these solutions.

The singular value decomposition (SVD) takes apart an arbi-
trary M ×N matrix A in a similar manner. The SVD of a M ×N
matrix A with rank1 R is

A = UΣV T

where

1. U is a M ×R matrix

U =
[
u1 | u2 | · · · | uR

]
,

whose columns um ∈ RM are orthogonal. Note that while
UTU = I, in general UUT 6= I when R < M . The columns
of U are an orthobasis for the range space of A.

1Recall that the rank of a matrix is the number of linearly independent
columns of a matrix (which is always equal to the number of linearly
independent rows).
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2. V is a N ×R matrix

V =
[
v1 | v2 | · · · | vR

]
,

whose columns vn ∈ RN are orthonormal. Again, whileV TV =
I, in general V V T 6= I when R < N . The columns of V are
an orthobasis for the range space ofAT (recall that Range(AT)
consists of everything which is orthogonal to the nullspace of
A).

3. Σ is a R×R diagonal matrix with positive entries:

Σ =


σ1 0 0 · · ·
0 σ2 0 · · ·
... . . .
0 · · · · · · σR

 .
We call the σr the singular values of A. By convention, we
will order them such that σ1 ≥ σ2 ≥ · · · ≥ σR.

4. The v1, . . . ,vR are eigenvectors of the positive semi-definite
matrix ATA. Note that

ATA = V ΣUTUΣV T = V Σ2V T,

and so the singular values σ1, . . . , σR are the square roots of
the non-zero eigenvalues of ATA.

5. Similarly,
AAT = UΣ2UT,

and so the u1, . . . ,uR are eigenvectors of the positive semi-
definite matrix AAT. Since the non-zero eigenvalues of ATA
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and AAT are the same, the σr are also square roots of the
eigenvalues of AAT.

The rank R is the dimension of the space spanned by the columns of
A, this is the same as the dimension of the space spanned by the rows.
Thus R ≤ min(M,N). We say A is full rank if R = min(M,N).

As before, we will often times find it useful to write the SVD as the
sum of R rank-1 matrices:

A = UΣV T =
R∑
r=1

σr urv
T
r .

When A is overdetermined (M > N), the decomposition looks
like this  A

 =

 U


σ1

. . .
σR

 V T



When A is underdetermined (M < N), the SVD looks like this A

 =

 U

σ1
. . .

σR

 V T


When A is square and full rank (M = N = R), the SVD looks
like  A

 =

 U

σ1
. . .

σN

 V T
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Technical Details: Existence of the SVD

In this section we will prove that anyM×N matrixAwith rank(A) =
R can be written as

A = UΣV T

where U ,Σ,V have the five properties listed at the beginning of the
last section.

Since ATA is symmetric positive semi-definite, we can write:

ATA =
N∑
n=1

λnvnv
T
n ,

where the vn are orthonormal and the λn are real and non-negative.
Since rank(A) = R, we also have rank(ATA) = R, and so λ1, . . . , λR

are all strictly positive above, and λR+1 = · · · = λN = 0.

Set

um =
1√
λm

Avm, for m = 1, . . . , R, U =
[
u1 · · · uR

]
.

Notice that these um are orthonormal, as

〈um,u`〉 =
1√
λmλ`

vT
`A

TAvm =

√
λm

λ`

vT
` vm =

{
1, m = `,

0, m 6= `.

These um also happen to be eigenvectors of AAT, as

AATum =
1√
λm

AATAvm =
√
λmAvm = λmum.

Now let uR+1, . . . ,uM be an orthobasis for the null space of UT —
concatenating these two sets into u1, . . . ,uM forms an orthobasis for
all of RM .
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Let

V =
[
v1 v2 · · · vR

]
, V 0 =

[
vR+1 vR+2 · · · vN

]
, V full =

[
V V 0

]
and

U 0 =
[
uR+1 uR+2 · · · uM

]
, U full =

[
U U 0

]
.

It should be clear that V full is an N × N orthonormal matrix and
U full is a M ×M orthonormal matrix. Consider the M ×N matrix
UT

fullAV full — the entry in the mth rows and nth column of this
matrix is

(UT
fullAV full)[m,n] = uT

mAvn =

{√
λnu

T
mun n = 1, . . . , R

0, n = R + 1, . . . , N.

=

{√
λn, m = n = 1, . . . , R

0, otherwise.

Thus
UT

fullAV full = Σfull

where

Σfull[m,n] =

{√
λn, m = n = 1, . . . , R

0, otherwise.

Since U fullU
T
full = I and V fullV

T
full = I, we have

A = U fullΣfullV
T
full.

Since Σfull is non-zero only in the first R locations along its main
diagonal, the above reduces to

A = UΣV T, Σ =


√
λ1 √

λ2
. . . √

λR

 .
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The Least-Squares Problem

We can use the SVD to “solve” the general system of linear equations

y = Ax

where y ∈ RM , x ∈ RN , and A is an M ×N matrix.

Given y, we want to find x in such a way that

1. when there is a unique solution, we return it;

2. when there is no solution, we return something reasonable;

3. when there are an infinite number of solutions, we choose one
to return in a “smart” way.

The least-squares framework revolves around finding an x that
minimizes the length of the residual

r = y −Ax.

That is, we want to solve the optimization problem

minimize
x∈RN

‖y −Ax‖22, (1)

where ‖ · ‖2 is the standard Euclidean norm. We will see that the
SVD of A:

A = UΣV T, (2)

plays a pivotal role in solving this problem.

To start, note that we can write any x ∈ RN as

x = V α + V 0α0. (3)
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Here, V is the N × R matrix appearing in the SVD decomposition
(2), and V 0 is a N × (N −R) matrix whose columns are orthogonal
to one another and to the columns in V . We have the relations

V TV = I, V T
0V 0 = I, V TV 0 = 0.

You can think of V 0 as an orthobasis for the null space of A. Of
course, V 0 is not unique, as there are many orthobases for Null(A),
but any such set of vectors will serve our purposes here. The decom-
position (3) is possible since Range(AT) and Null(A) partition RN

for any M ×N matrix A. Taking

α = V Tx, α0 = V T
0x,

we see that (3) holds since

x = V V Tx + V 0V
T
0x = (V V T + V 0V

T
0 )x = x,

where we have made use of the fact that V V T + V 0V
T
0 = I, be-

cause V V T and V 0V
T
0 are ortho-projectors onto complementary

subspaces2 of RN . So we can solve for x ∈ RN by solving for the pair
α ∈ RR, α0 ∈ RN−R.

Similarly, we can decompose y as

y = Uβ +U 0β0, (4)

where U is the M × R matrix from the SVD decomposition, and
U 0 is a M × (M −R) complementary orthogonal basis. Again,

UTU = I, UT
0U 0 = I, UTU 0 = 0,

2Subspaces S1 and S2 are complementary in RN if S1 ⊥ S2 (everything in
S1 is orthogonal to everything in S2) and S1⊕S2 = RN . You can think of
S1,S2 as a partition of RN into two orthogonal subspaces.
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and we can think of U 0 as an orthogonal basis for everything in
RM that is not in the range of A. As before, we can calculate the
decomposition above using

β = UTy, β0 = UT
0y.

Using the decompositions (2), (3), and (4) for A, x, and y, we can
write the residual r = y −Ax as

r = Uβ +U 0β0 −UΣV T(V α + V 0α0)

= Uβ +U 0β0 −UΣα (since V TV = I and V TV 0 = 0)

= U 0β0 +U (β −Σα).

We want to choose α that minimizes the energy of r:

‖r‖22 = 〈U 0β0 +U (β −Σα), U 0β0 +U (β −Σα)〉
= 〈U 0β0,U 0β0〉 + 2〈U 0β0,U (β −Σα)〉

+ 〈U (β −Σα),U (β −Σα)〉
= ‖β0‖22 + ‖β −Σα‖22

where the last equality comes from the facts thatUT
0U 0 = I,UTU =

I, and UTU 0 = 0. We have no control over ‖β0‖22, since it deter-
mined entirely by our observations y. Therefore, our problem has
been reduced to findingα that minimizes the second term ‖β−Σα‖22
above, which is non-negative. We can make it zero (i.e. as small as
possible) by taking

α̂ = Σ−1β.

Finally, the x which minimizes the residual (solves (1)) is

x̂ = V α̂ = V Σ−1β = V Σ−1UTy. (5)
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Thus we can calculate the solution to (1) simply by applying the lin-
ear operator V Σ−1UT to the input data y. There are two interesting
facts about the solution x̂ in (5):

1. When y ∈ span({u1, . . . ,uM}), we have β0 = UT
0y = 0, and

so the residual r = 0. In this case, there is at least one exact
solution, and the one we choose satisfies Ax̂ = y.

2. Note that if R < N , then the solution is not unique. In this
case, V 0 has at least one column, and any part of a vector x
in the range of V 0 is not seen by A, since

AV 0α0 = UΣV TV 0α0 = 0 (since V TV 0 = 0).

As such,
x′ = x̂ + V 0α0

for any α0 ∈ RN−R will have exactly the same residual, since
Ax′ = Ax̂. In this case, our solution x̂ is the solution with
smallest norm, since

‖x′‖22 = 〈x̂ + V 0α0, x̂ + V 0α0〉
= 〈x̂, x̂〉 + 2〈x̂,V 0α0〉 + 〈V 0α,V 0α〉
= ‖x̂‖22 + 2〈V Σ−1UTy,V 0α0〉 + ‖α0‖22 (since V T

0V 0 = I)

= ‖x̂‖22 + ‖α0‖22 (since V TV 0 = 0)

which is minimized by taking α0 = 0.

To summarize, x̂ = V Σ−1UTy has the desired properties stated at
the beginning of this module, since

1. when y = Ax has a unique exact solution, it must be x̂,

2. when an exact solution is not available, x̂ is the solution to (1),
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3. when there are an infinite number of minimizers to (1), x̂ is
the one with smallest norm.

Because the matrix V Σ−1UT gives us such an elegant solution to
this problem, we give it a special name: the pseudo-inverse.

The Pseudo-Inverse

The pseudo-inverse of a matrix A with singular value decompo-
sition (SVD) A = UΣV T is

A† = V Σ−1UT. (6)

Other names for A† include natural inverse, Lanczos inverse,
and Moore-Penrose inverse.

Given an observation y, taking x̂ = A†y gives us the least squares
solution to y = Ax. The pseudo-inverse A† always exists, since
every matrix (with rank R) has an SVD decompositionA = UΣV T

with Σ as an R×R diagonal matrix with Σ[r, r] > 0.

When A is full rank (R = min(M,N)), then we can calculate the
pseudo-inverse without using the SVD. There are three cases:

• When A is square and invertible (R = M = N), then

A† = A−1.

This is easy to check, as here

A = UΣV T where both U ,V are N ×N,
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and since in this case V V T = V TV = I andUUT = UTU =
I,

A†A = V Σ−1UTUΣV T

= V Σ−1ΣV T

= V V T

= I.

Similarly, AA† = I, and so A† is both a left and right inverse
of A, and thus A† = A−1.

• When A more rows than columns and has full column rank
(R = N ≤M), then ATA is invertible, and

A† = (ATA)−1AT. (7)

This type of A is “tall and skinny” A

 ,
and its columns are linearly independent. To verify equation
(7), recall that

ATA = V ΣUTUΣV T = V Σ2V T,

and so

(ATA)−1AT = V Σ−2V TV ΣUT = V Σ−1UT,

which is exactly the content of (6).
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• When A has more columns than rows and has full row rank
(R = M ≤ N), then AAT is invertible, and

A† = AT(AAT)−1. (8)

This occurs when A is “short and fat” A

 ,
and its rows are linearly independent. To verify equation (8),
recall that

AAT = UΣV TV ΣUT = UΣ2UT,

and so

AT(AAT)−1 = V ΣUTUΣ−2UT = V Σ−1UT,

which again is exactly (6).

A† is as close to an inverse of A as possible

As discussed in the last section, when A is square and invertible, A†

is exactly the inverse of A. When A is not square, we can ask if
there is a better right or left inverse. We will argue that there is not.

Left inverse Given y = Ax, we would like A†y = A†Ax = x
for any x. That is, we would like A† to be a left inverse of
A: A†A = I. Of course, this is not always possible, especially
when A has more columns than rows, M < N . But we can
ask if any other matrix H comes closer to being a left inverse
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thanA†. To find the “best” left-inverse, we look for the matrix
which minimizes

min
H∈RN×M

‖HA− I‖2F . (9)

Here, ‖ · ‖F is the Frobenius norm, defined for an N × M
matrix Q as the sum of the squares of the entires:

‖Q‖2F =
M∑
n=1

N∑
n=1

|Q[m,n]|2

(It is also true, and you can and should prove this at home,
that ‖Q‖2F is the sum of the squares of the singular values
of Q: ‖Q‖2F = λ2

1 + · · · + λ2
p.) With (9), we are finding H

such that HA is as close to the identity as possible in the
least-squares sense.

The pseudo-inverse A† minimizes (9). To see this, recognize

(see the exercise below) that the solution Ĥ to (9) must obey

AATĤ
T

= A. (10)

We can see that this is indeed true for Ĥ = A†:

AATA†
T

= UΣV TV ΣUTUΣ−1V T = UΣV T = A.

So there is no N × M matrix that is closer to being a left
inverse than A†.

Right inverse If we re-applyA to our solution x̂ = A†y, we would
like it to be as close as possible to our observations y. That is,
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we would like AA† to be as close to the identity as possible.
Again, achieving this goal exactly is not always possible, espe-
cially if A has more rows that columns. But we can attempt
to find the “best” right inverse, in the least-squares sense, by
solving

minimize
H∈RN×M

‖AH − I‖2F . (11)

The solution Ĥ to (11) (see the exercise below) must obey

ATAĤ = AT. (12)

Again, we show thatA† satisfies (12), and hence is a minimizer
to (11):

ATAA† = V Σ2V TV Σ−1UT = V ΣUT = AT.

Moral:
A† = V Σ−1UT is as close (in the least-squares sense)
to an inverse of A as you could possibly have.

Exercise:

1. Show that the minimizer Ĥ to (9) must obey (10). Do this by
using the fact that the derivative of the functional ‖HA−I‖2F
with respect to an entry H [k, `] in H must obey

∂‖HA− I‖2F
∂H [k, `]

= 0, for all 1 ≤ k ≤ N, 1 ≤ ` ≤M,

to be a solution to (9). Do the same for (11) and (12).
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Stability Analysis of the Pseudo-Inverse

We have seen that if we make indirect observations y ∈ RM of an
unknown vector x0 ∈ RN through a M × N matrix A, y = Ax0,
then applying the pseudo-inverse of A gives us the least squares
estimate of x0:

x̂ls = A†y = V Σ−1UTy,

whereA = UΣV T is the singular value decomposition (SVD) ofA.

We will now discuss what happens if our measurements contain noise
— the analysis here will be very similar to when we looked at the
stability of solving square sym+def systems, and in fact this is one
of the main reasons we introduced the SVD.

Suppose we observe
y = Ax0 + e,

where e ∈ RM is an unknown perturbation. Say that we again apply
the pseudo-inverse to y in an attempt to recover x:

x̂ls = A†y = A†Ax0 +A†e

What effect does the presence of the noise vector e had on our es-
timate of x0? We answer this question by comparing x̂ls to the
reconstruction we would obtain if we used standard least-squares on
perfectly noise-free observations yclean = Ax0. This noise-free recon-
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struction can be written as

xpinv = A†yclean = A†Ax0

= V Σ−1UTUΣV Tx0

= V V Tx0

=
R∑
r=1

〈x0,vr〉vr.

The vector xpinv is the orthogonal projection of x0 onto the row space
(everything orthogonal to the null space) of A. If A has full column
rank (R = N), then xpinv = x0. If not, then the application of A
destroys the part of x0 that is not in xpinv, and so we only attempt
to recover the “visible” components. In some sense, xpinv contains
all of the components of x0 that A does not completely remove, and
has them preserved perfectly.

The reconstruction error (relative to xpinv is)

‖x̂ls − xpinv‖22 = ‖A†e‖22 = ‖V Σ−1UTe‖22. (13)

Now suppose for a moment that the error has unit norm, ‖e‖22 = 1.
Then the worst case for (13) is given by

maximize
e∈RM

‖V Σ−1UTe‖22 subject to ‖e‖2 = 1.

Since the columns of U are orthonormal, ‖UTe‖22 ≤ ‖e‖22, and the
above is equivalent to

max
β∈RR:‖β‖2=1

‖V Σ−1β‖22. (14)
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Also, for any vector z ∈ RR, we have

‖V z‖22 = 〈V z,V z〉 = 〈z,V TV z〉 = 〈z, z〉 = ‖z‖22,

since the columns of V are orthonormal. So we can simplify (14) to

maximize
β∈RR

‖Σ−1β‖22 subject to ‖β‖2 = 1.

The worst case β (you should verify this at home) will have a 1 in
the entry corresponding to the largest entry in Σ−1, and will be zero
everywhere else. Thus

max
β∈RR:‖β‖2=1

‖Σ−1β‖22 = max
r=1,...,R

σ−2r =
1

σ2
R

.

(Recall that by convention, we order the singular values so that σ1 ≥
σ2 ≥ · · · ≥ σR.)

Returning to the reconstruction error (13), we now see that

‖x̂ls − xpinv‖22 = ‖V Σ−1UTe‖22 ≤
1

σ2
R

‖e‖22.

Since U is an M × R matrix, it is possible when R < M that the
reconstruction error is zero. This happens when e is orthogonal to
every column of U , i.e. UTe = 0. Putting this together with the
work above means

0 ≤ 1

σ2
1

‖UTe‖22 ≤ ‖x̂ls − xpinv‖22 ≤
1

σ2
R

‖UTe‖22 ≤
1

σ2
R

‖e‖22.

Notice that if σR is small, the worst case reconstruction error can be
very bad.
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We can also relate the “average case” error to the singular values. Say
that e is additive Gaussian white noise, that is each entry e[m] is a
random variable independent of all the other entries, and distributed

e[m] ∼ Normal(0, ν2).

Then, as we have argued before, the average measurement error is

E[‖e‖22] = Mν2,

and the average reconstruction error3 is

E
[
‖A†e‖22

]
= ν2 · trace(A†

T
A†) = ν2 ·

(
1

σ2
1

+
1

σ2
2

+ · · · + 1

σ2
R

)
=

1

M

(
1

σ2
1

+
1

σ2
2

+ · · · + 1

σ2
R

)
· E[‖e‖22].

Again, if σR is tiny, 1/σ2
R will dominate the sum above, and the

average reconstruction error will be quite large.

Exercise: Let D be a diagonal R × R matrix whose diagonal
elements are positive. Show that the maximizer β̂ to

maximize
β∈RR

‖Dβ‖22 subject to ‖β‖2 = 1

has a 1 in the entry corresponding to the largest diagonal element of
D, and is 0 elsewhere.

3We are using the fact that if e is vector of iid Gaussian random vari-
ables, e ∼ Normal(0, ν2 I), then for any matrix M , E[‖Me‖22] =
ν2 trace(MTM ). We will argue this carefully as part of the next home-
work.
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