The Analysis of Spoken Language: Past, Present, Future

Steven Greenberg
The Speech Institute

[Diagram showing spectrogram and waveform]
Acknowledgements and Thanks

Research Funding
 U.S. Department of Defense
 U.S. National Science Foundation

Scientific Collaborators
 Takayuki Arai
 Hannah Carvey
 Shuangyu Chang
 Ken Grant
 Leah Hitchcock
Structure of the Presentation

A Vision of the Future

Multi-tier, entropy-based analysis
Unification of linguistic tiers into an overarching, coherent representation
Incorporating acoustics, phonetics, phonology, prosody, visemes, lexemes, pragmatics, grammar and (ultimately) understanding

Key Questions –
What are the relevant units of analysis?
What are their physical signatures (in time, frequency and space)?
How can they be automatically and reliably extracted from the speech signal?
How can these units be combined for an accurate, detailed characterization of spoken language?
How can such information be exploited to enhance speech recognition and synthesis performance?

The Path to Utopia
Where are we now, and how did we get here?
Where should we head?
Speech Analysis – The Traditional Perspective

Traditionally, spoken language has been analyzed as a sequence of words, each containing a set of phonemes, organized like “beads on a string”

Such a “linear” structure provides a transparent means with which to analyze and characterize the speech signal, as shown below
The Serial Frame Analysis Perspective

Within this serial framework, the signal is spectrally analyzed in an “egalitarian” manner.

All time frames are created equal (usually 25 ms long, with 10-ms slide intervals).

This method of analysis is relatively transparent to perform, as it requires no a priori knowledge of the signal.
The Serial Frame Analysis Perspective

Within the framework of automatic speech recognition, each frame is associated with a symbol, representing either a phone or non-speech class (e.g., “silence,” cough, filled pause, etc.)

Within the HMM framework, each interval of speech MUST be labeled (as something)
Challenge # 1 – Environmental Variability

As seductive as the serial-frame, egalitarian framework may be, there are three principal problems with this approach.

First, the spectro-temporal properties of speech are highly variable.

This variability reflects the specific nature of the acoustic environment, an example of which is shown below for a speech signal recorded at two different microphone positions in the same room.
Challenge #2 – Pronunciation Variation

Second, the pronunciation of words varies a lot, with many canonical phones (a.k.a. phonemes) “deleted,” as in the word “that” (Switchboard).

<table>
<thead>
<tr>
<th>N</th>
<th>Pronunciation</th>
<th>N</th>
<th>Pronunciation</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>dh ae t</td>
<td>2</td>
<td>t aw</td>
</tr>
<tr>
<td>31</td>
<td>dh ae</td>
<td>2</td>
<td>n ah t</td>
</tr>
<tr>
<td>13</td>
<td>dh ae dx</td>
<td>2</td>
<td>d ae</td>
</tr>
<tr>
<td>10</td>
<td>dh eh t</td>
<td>2</td>
<td>dh ih</td>
</tr>
<tr>
<td>9</td>
<td>dh ax</td>
<td>2</td>
<td>dh ah dx</td>
</tr>
<tr>
<td>9</td>
<td>dh aw</td>
<td>2</td>
<td>ah dx</td>
</tr>
<tr>
<td>8</td>
<td>n ae t</td>
<td>1</td>
<td>z d ae</td>
</tr>
<tr>
<td>7</td>
<td>n ae</td>
<td>1</td>
<td>z ah p</td>
</tr>
<tr>
<td>7</td>
<td>dh ax t</td>
<td>1</td>
<td>t dh ae</td>
</tr>
<tr>
<td>5</td>
<td>dh eh</td>
<td>1</td>
<td>t b ae</td>
</tr>
<tr>
<td>5</td>
<td>dh ah t</td>
<td>1</td>
<td>t ax</td>
</tr>
<tr>
<td>4</td>
<td>dh lh t</td>
<td>1</td>
<td>t ae</td>
</tr>
<tr>
<td>3</td>
<td>th ae t</td>
<td>1</td>
<td>th eh t</td>
</tr>
<tr>
<td>3</td>
<td>d ae t</td>
<td>1</td>
<td>th eh</td>
</tr>
<tr>
<td>3</td>
<td>dh ax dx</td>
<td>1</td>
<td>th ax t</td>
</tr>
<tr>
<td>3</td>
<td>ae</td>
<td>1</td>
<td>th ax</td>
</tr>
</tbody>
</table>
Pronunciation Variation is Common

The variability observed occurs in most words spoken, and is not confined to just a few variants, as shown in this table pertaining to Switchboard material.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Word</th>
<th>N</th>
<th>#Pron</th>
<th>MCP</th>
<th>%Total</th>
<th>Most Common Pronunciation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td>649</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>ay</td>
</tr>
<tr>
<td>2</td>
<td>and</td>
<td>521</td>
<td>87</td>
<td>16</td>
<td>16</td>
<td>ae n</td>
</tr>
<tr>
<td>3</td>
<td>the</td>
<td>475</td>
<td>76</td>
<td>27</td>
<td>27</td>
<td>dh ax</td>
</tr>
<tr>
<td>4</td>
<td>you</td>
<td>406</td>
<td>68</td>
<td>20</td>
<td>20</td>
<td>y ix</td>
</tr>
<tr>
<td>5</td>
<td>that</td>
<td>328</td>
<td>117</td>
<td>11</td>
<td>11</td>
<td>dh ae</td>
</tr>
<tr>
<td>6</td>
<td>a</td>
<td>319</td>
<td>28</td>
<td>64</td>
<td>64</td>
<td>ax</td>
</tr>
<tr>
<td>7</td>
<td>to</td>
<td>288</td>
<td>66</td>
<td>14</td>
<td>14</td>
<td>tcl t uw</td>
</tr>
<tr>
<td>8</td>
<td>know</td>
<td>249</td>
<td>34</td>
<td>56</td>
<td>56</td>
<td>n ow</td>
</tr>
<tr>
<td>9</td>
<td>of</td>
<td>242</td>
<td>44</td>
<td>21</td>
<td>21</td>
<td>ax v</td>
</tr>
<tr>
<td>10</td>
<td>it</td>
<td>240</td>
<td>49</td>
<td>22</td>
<td>22</td>
<td>ih</td>
</tr>
<tr>
<td>11</td>
<td>yeah</td>
<td>203</td>
<td>48</td>
<td>43</td>
<td>43</td>
<td>y ae</td>
</tr>
<tr>
<td>12</td>
<td>in</td>
<td>178</td>
<td>22</td>
<td>45</td>
<td>45</td>
<td>ih n</td>
</tr>
<tr>
<td>13</td>
<td>they</td>
<td>152</td>
<td>28</td>
<td>60</td>
<td>60</td>
<td>dh ey</td>
</tr>
<tr>
<td>14</td>
<td>do</td>
<td>131</td>
<td>30</td>
<td>54</td>
<td>54</td>
<td>dcl d uw</td>
</tr>
<tr>
<td>15</td>
<td>so</td>
<td>130</td>
<td>14</td>
<td>74</td>
<td>74</td>
<td>s ow</td>
</tr>
<tr>
<td>16</td>
<td>but</td>
<td>123</td>
<td>45</td>
<td>12</td>
<td>12</td>
<td>bcl b ah tcl t</td>
</tr>
<tr>
<td>17</td>
<td>is</td>
<td>120</td>
<td>24</td>
<td>50</td>
<td>50</td>
<td>ih z</td>
</tr>
<tr>
<td>18</td>
<td>like</td>
<td>119</td>
<td>19</td>
<td>46</td>
<td>46</td>
<td>l ay k cl k</td>
</tr>
<tr>
<td>19</td>
<td>have</td>
<td>116</td>
<td>22</td>
<td>54</td>
<td>54</td>
<td>hh ae v</td>
</tr>
<tr>
<td>20</td>
<td>was</td>
<td>111</td>
<td>24</td>
<td>23</td>
<td>23</td>
<td>w ah z</td>
</tr>
</tbody>
</table>

The 20 most frequency words account for 35% of the lexical occurrences.
Challenge #3 – Variation in Time and Spectrum

Third, the “units” of spoken language vary with respect to duration, frequency and space, thus

Certain properties are inherently SHORT in duration, or require FINE TEMPORAL RESOLUTION to adequately characterize – e.g., VOICING

Others are inherently of LONGER duration, such as PROSODIC elements

While others are INTERMEDIATE in length, such as PHONETIC SEGMENTS

Hence, THERE IS NO SINGLE TIME INTERVAL that adequately captures all of the important acoustic and linguistic properties of spoken language.
Challenge #3 – Variation in Time and Spectrum

Moreover, the manner in which linguistic information is distributed across (spectral) frequency and time is non-uniform.

Some of the acoustic properties associated with a phone “bleed” into adjacent segments – e.g., note the frication of the second [s] below, which intrudes into the following vowel.
Further complicating the picture is the importance of visual information derived from movement of the lips, jaw and tongue, as well as other facial features – such information serves to constrain and enhance the interpretation of the acoustic signal.

Amplitude Fluctuation in Different Spectral Regions

Lip Aperture Variation

Data courtesy of Ken Grant
What to Do?

In the remainder of this talk, I shall focus on three specific topics germane to the issues described in the introduction.

First, I will discuss the feasibility of automatically segmenting the acoustic signal into time intervals useful for speech analysis and recognition.

Then, I will discuss how such segmentation methods could be utilized within the framework of an articulatory-acoustic feature classifier that could be useful for automatic speech recognition.

Finally, I will describe some recent work on automatically labeling prosodic prominence that directly ties in with articulatory-feature and phonetic analysis, and that also has implications for automatic segmentation.
The Unstructured Acoustic Approach

Nick Campbell and Parham Mokhtari of ATR (Japan) are using an acoustically driven approach to annotate corpora for concatenative synthesis.

Juergen Schroeter will discuss synthesis in detail in the next talk.

Here, I briefly mention the ATR approach as one alternative for analyzing the speech signal.
Automatic acoustic analysis of spontaneous speech for concatenative synthesis

TRADITIONAL METHOD: Discrete Phonetic Units

NEW METHOD: Dynamics of Acoustic Units (Quasi-Syllables)

Material provided courtesy of Parham Mokhtari and Nick Campbell (ATR, Japan)
Quasi-Articulatory-Gestural Units from Continuous Speech: Acoustics ∴ VT Area-Functions ∴ SSs & Transitions

Contours of **formants** F1, F2, F3 and F4 estimated by linear transformation of the cepstrum as proposed by **Broad & Clermont (1989)**.

lips (13.1cm)

glottis (0cm)

Material provided courtesy of Parham Mokhtari and Nick Campbell (ATR, Japan)
Formant-Tracking Approach

A related, but somewhat different approach is taken by Deng and colleagues. Formant patterns in the speech signal are automatically tracked as a means of restricting the acoustic model space, as shown below.

In this first example, no explicit targets are provided, which results in certain errors in tracking, particularly during intervals of spectral transition and low amplitude.

Deng et al. (2003)
Formant Tracking Approach

In the second example, explicit targets are provided

These targets improve the performance of the tracking algorithm considerably

Deng et al. (2003)
Drawbacks of the Acoustic Approach for ASR

The acoustics-driven approach does not attempt to relate the details of the acoustic signal to a more abstract representation.

For this reason, it may be of limited utility for recognition (by itself).

Some form of linguistic structure would be useful for integrating the lower acoustic-phonetic tiers and the higher levels associated with words (and meaning).

Lack of explicit structure makes detailed error analysis difficult (see final section of this presentation) and therefore is not amenable to a scientific study of recognition systems.
Currently, the lexical units in ASR systems are typically composed of phonemic elements.

It would be useful to partition the speech signal automatically at this level WITHOUT RE COURSE TO A WORD TRANSCRIPT.

Is this possible? Yes, for limited vocabulary tasks, such as OGI Numbers, as shown below for the ALPS system (using neural networks).

Average disparity between manual & automatic phone boundaries is 11 ms and the phonetic segment concordance is 83%.
Automatic Segmentation – Manner

For more casual speech and larger-vocabulary tasks (e.g., Switchboard) a somewhat different approach may be warranted.

In such instances, we may wish to perform an initial manner-of-articulation classification on the raw speech signal, using neural networks, as shown below.
The manner segmentation (fricative, vocalic, nasal, etc.) is temporally isomorphic with phonetic segments, as shown below.
One can exploit this observation using neural networks (MLPs) to implicitly segment the speech signal at the phone level by utilizing the network confidence level as an indirect indicator of the phone boundaries.
Automatic Phone Segmentation with Manner

To obtain the implicit phone segmentation shown below using manner of articulation boundaries as exemplified on the previous slide.

We shall return to the issue of articulatory feature classification later in this presentation.
Words are, of course, composed of more than phones

Syllables are an important linguistic unit, and can be characterized in terms of three basic constituents – ONSET, NUCLEUS and CODA, as shown below

Syllables are more closely tied to the production process than phones and reflect articulatory gestures in a more transparent manner

For example, notice that the first [n] in “Nine” is longer than the second
It is possible to automatically segment the speech signal into syllable units using neural networks (in this instance, Temporal Flow Model networks), as shown below (the diamond lines indicate the estimated boundaries).
It is also possible to automatically segment the speech signal into syllables using signal-processing methods. This has been done both by Michael Shire (while at ICSI) and by Hema Murthy and colleagues at ITT Madras, an example of which is shown below.

Syllable Segmentation – Signal Processing Based

- **Group Delay**
 - Derived from

- **All Pass**

- **LPF < 0.5 kHz**

- **BPF 0.5 – 1.5 kHz**

- **Hi Res, All Pass**

![Acoustic Waveform](image)
The syllable serves as a potentially useful unit with which to perform phonetic-segment and articulatory-acoustic feature classification. This is because many phonetic properties are organized at the level of the syllable. This is particularly the case for articulatory-acoustic features (AFs), which form the essential building blocks of the syllable’s micro-structure. AFs can be used to delineate various constituents of the syllable, as well as characterize the nature of their interaction within a syllabic framework.
A singular advantage of AFs relative to phones is the small number of classes per dimension – instead of 40-60 phones, there are four to six articulatory dimensions, most with between 2 and 4 classes.

Multilayer Perceptron (MLP) Neural Network Classifiers:
- Critical-band, log-compressed spectral representation
- Single hidden layer of 200-400 units, trained with back-propagation
- Nine frames of context used in the input
Using such classifiers it is possible to obtain good to excellent performance for all articulatory feature dimensions except place of articulation.
Cross-Linguistic Transfer of Articulatory Features

Articulatory feature classifiers trained on one language (or speaking style) may be transferable to other languages and speaking styles, as has been demonstrated for English and Dutch by Wester et al. (2001).

In that study, voicing and manner of articulation features trained on English transferred well to an independent Dutch corpus, as did other AF dimensions, such as Front/Back (vowels) and Rounding, – only the place-of-articulation dimension did not transfer well.
Although there are 10 distinct places of articulation in English, there are typically only three per manner class.
Manner-Specific Place of Articulation

This observation can be used to improve place classification

Using manner-specific place classifiers improves performance for all manner classes

Chang et al., 2001
Articulatory Features and Syllables

The SYLLABLE, rather than the PHONE, is the basic organizational unit of spoken language (certainly with respect to pronunciation variation)

The syllable carries prosodic weight (a.k.a. “accent” or “prominence”) that affects the manner in which its constituents are phonetically realized (more about this shortly)

The behavior of these syllabic constituents (a.k.a. “ONSET,” “NUCLEUS” and “CODA”) differ dramatically from each other, and influence the phonetic character of the syllable – thus, syllable position may be as important as segmental identity for characterizing pronunciation

The MICROSTRUCTURE of the syllable can be delineated in terms of articulatory-acoustic features (e.g., voicing, articulatory manner and place)

MANNER of articulation most closely parallels (in time and behavior) the classical concept of the phonetic segment and sets the basic intensity mode for the sequence of syllabic constituents (a.k.a. the “ENERGY ARC”)

The ENERGY ARC reflects cortical processing constraints on the acoustic (and visual) signal associated with the MODULATION SPECTRUM (more about this shortly)
Syllables rise and fall in energy over the course of their duration.

Vocalic nuclei are highest in amplitude.

Onset consonants gradually rise in energy arching towards the peak.

Coda consonants decline in amplitude more abruptly than onsets.

The energy arc can account for the sequential order of segments within a syllable (organized by manner of articulation).

And also pertains to the low-frequency (2-20 Hz) modulation spectrum.

Spectrogram + Waveform

Spectro-temporal profile (STeP)
PLACE of articulation is an inherently TRANS-SEGMENTAL feature that binds vocalic nuclei with preceding and following consonants.

VOICING spreads from the nucleic core of the syllable and spreads both forward (towards the coda) and backward (towards the onset), the degree of temporal spreading reflecting prosodic prominence magnitude – in this sense, VOICING is a SYLLABIC rather than a phonetic-segment feature, in that it is sensitive to the prominence of the syllable.

It is the PATTERN of INTERACTION among articulatory-feature dimensions across time that imparts to the syllable its specific phonetic identity.

The prosodic pattern of an utterance reflects the information contained within the utterance.

Therefore, it is ultimately INFORMATION (and lexical discriminability) that governs the detailed phonetic properties observed in an utterance.
As mentioned earlier, manner of articulation is temporally isomorphic with phonetic segments.

Manner classifiers are particularly adept at spotting vocalic segments with high precision.

For this reason, it is possible to delineate syllable nuclei with a high degree of accuracy – we shall return to this topic via prosody shortly.
The nucleus contains much of a syllable’s energy and also conveys important information about the syllable’s prominence or “accent” (for languages such as English, a.k.a. “stress”).

As shown below for the word “seven”:

From Syllable Nucleus to Prosody

Spectro-Temporal Profile (STeP)
Prosody’s Importance – Duration

The prominence of the syllabic nucleus affects many phonetic properties of the syllable, including:

The duration of nucleic and onset segments:

[Bar charts showing the duration of nucleic and onset segments with different syllable forms and accentuation levels.]
Prosody’s Importance – Vocalic Identity

As well as the specific identity and articulatory configuration of vocalic segments

There is a relatively even distribution of vowels across the articulatory space in heavily stressed syllables (in English)

However, in unstressed syllables vowels consist mostly of [ih], [iy] and [ax]

In this sense, the vowel system appears inextricably linked to stress-accent

Vowels may not function in the same way as consonants, a potentially important observation for ASR systems
Prosody’s Importance – Coda Deletions

The probability of coda consonant deletion is much higher in unstressed syllables relative to heavily stressed ones.
Most of the deletions are concentrated among three segments: [t], [d], [n] (where the disparity between white (Canonical) and orange (Transcribed) yields the number of deletions).

<table>
<thead>
<tr>
<th>Accent</th>
<th>Heavy Can</th>
<th>Heavy Trans</th>
<th>Light Can</th>
<th>Light Trans</th>
<th>None Can</th>
<th>None Trans</th>
<th>Total Can</th>
<th>Total Trans</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>322</td>
<td>126</td>
<td>575</td>
<td>191</td>
<td>562</td>
<td>172</td>
<td>1459</td>
<td>489</td>
</tr>
<tr>
<td>d</td>
<td>200</td>
<td>119</td>
<td>295</td>
<td>127</td>
<td>370</td>
<td>96</td>
<td>865</td>
<td>342</td>
</tr>
<tr>
<td>n</td>
<td>311</td>
<td>237</td>
<td>498</td>
<td>381</td>
<td>773</td>
<td>542</td>
<td>1582</td>
<td>1160</td>
</tr>
<tr>
<td>s</td>
<td>142</td>
<td>135</td>
<td>202</td>
<td>214</td>
<td>151</td>
<td>155</td>
<td>495</td>
<td>504</td>
</tr>
<tr>
<td>z</td>
<td>179</td>
<td>149</td>
<td>258</td>
<td>208</td>
<td>271</td>
<td>221</td>
<td>708</td>
<td>578</td>
</tr>
</tbody>
</table>
And where three quarters of the consonant codas are coronals (central articulation)

With a place-of-articulation distribution quite different from the onsets

Hence, the entropy associated with syllable constituents appears to interact with the stress-accent system and exert a profound impact on the phonetic realization of the speech signal
Automatic Annotation of Stress Accent

Given the importance of stress accent for characterizing the phonetic properties of the speech, is it feasible to automatically label a corpus in this way?

An automatic stress accent labeling system (AutoSAL) is capable of labeling the Switchboard corpus using 5 levels of stress:

- Heavy (1)
- Moderate (0.75)
- Light (0.5)
- Very Light (0.25)
- None (0)

An example of the annotation (attached to the vocalic nucleus) is shown below. In this example most of the syllables are unaccented, with two labeled as lightly accented (0.5) (and one other labeled as very lightly accented (0.25))
How Good is AutoSAL?

There is an 79% concordance between human and machine accent labels when the tolerance level is a quarter-step.

There is 97.5% concordance when the tolerance level is half a step.

This degree of concordance is as high as that exhibited by two highly trained (human) transcribers.
What are the most important features for simulating stress-accent labeling using AutoSAL?

Duration, (normalized) energy, vocalic identity (and its acoustic correlates)

Pitch-related features are (relatively) unimportant for stress-accent labeling
Multi-Tier Representations

It is essential that we understand the relationship among linguistic levels in order to characterize the speech signal with parsimony and accuracy.

One attempt at embedding such an integrated, multi-tier approach into ASR has been performed by Shawn Chang as part of his thesis at ICSI.
In this work, the speech signal is modeled as a sequence of syllables each with a variable amount of prominence.

Each syllable consists of a vocalic nucleus, and optionally contains onset and coda elements.

Each syllabic constituent is specified in terms of articulatory-acoustic features, most of which are inherently trans-segmental.
Structure of the Multi-Tier System

See Shawn Chang’s thesis for additional details:
ICSI Technical Report 2000-007
www.icsi.berkeley.edu/publications
The SYLLABLE, rather than the PHONE, is the basic organizational unit of spoken language – hence the difficulty for any phonetic orthography to accurately delineate pronunciation patterns in fine detail.

The syllable carries prosodic weight (a.k.a. “accent” or “prominence”) that affects the manner in which its constituents are phonetically realized.

The behavior of these syllabic constituents (a.k.a. “onset,” “nucleus” and “coda”) differ dramatically from each other, and influence the phonetic character of the syllable – thus, syllable position may be as important as segmental identity for characterizing pronunciation.

The MICROSTRUCTURE of the syllable can be delineated in terms of articulatory-acoustic features (e.g., voicing, articulatory manner and place).

MANNER of articulation most closely parallels (in time and behavior) the classical concept of the phone (and phonetic segment) and sets the basic intensity mode for the sequence of syllabic constituents (“ENERGY ARC”).

The ENERGY ARC reflects cortical processing constraints on the acoustic (and visual) signal associated with the MODULATION SPECTRUM.

PLACE of articulation is an inherently TRANS-SEGMENTAL feature that binds vocalic nuclei with preceeding and following consonants.

Take Home Messages

- The SYLLABLE, rather than the PHONE, is the basic organizational unit of spoken language – hence the difficulty for any phonetic orthography to accurately delineate pronunciation patterns in fine detail.
- The syllable carries prosodic weight (a.k.a. “accent” or “prominence”) that affects the manner in which its constituents are phonetically realized.
- The behavior of these syllabic constituents (a.k.a. “onset,” “nucleus” and “coda”) differ dramatically from each other, and influence the phonetic character of the syllable – thus, syllable position may be as important as segmental identity for characterizing pronunciation.
- The MICROSTRUCTURE of the syllable can be delineated in terms of articulatory-acoustic features (e.g., voicing, articulatory manner and place).
- MANNER of articulation most closely parallels (in time and behavior) the classical concept of the phone (and phonetic segment) and sets the basic intensity mode for the sequence of syllabic constituents (“ENERGY ARC”).
- The ENERGY ARC reflects cortical processing constraints on the acoustic (and visual) signal associated with the MODULATION SPECTRUM.
- PLACE of articulation is an inherently TRANS-SEGMENTAL feature that binds vocalic nuclei with preceeding and following consonants.
Articulatory PLACE provides the discriminative (entropic) basis for lexical identity, and is therefore important to model accurately.

VOICING spreads from the nuclei core of the syllable and spreads both forward (towards the coda) and backward (towards the onset), the degree of temporal spreading reflecting prosodic prominence magnitude – in this sense, VOICING is a SYLLABIC rather than a phonetic-segment feature, in that it is sensitive to the prominence of the syllable.

It is the pattern of interaction among articulatory-feature dimensions across time that imparts to the syllable its specific phonetic identity.

The specific realization of articulatory features is governed by their position within the syllable, as well as prosodic prominence.

The prosodic pattern of an utterance reflects the information contained within the utterance.

Therefore, it is ultimately INFORMATION (and lexical discriminability) that governs the detailed phonetic properties of spoken language, and hence pronunciation variation largely reflects information contained in spoken language.
Language - A Syllable-Centric Perspective

An empirically grounded perspective of spoken language focuses on the SYLLABLE and STRESS ACCENT as the interface between “sound” and “meaning” (or at least lexical form).

Modes of Analysis

- Energy
- Stress Accent
- Time–Frequency
- Manner Segmentation
- Phonetic Interpretation
- Word

“Seven”

Linguistic Tiers

Understanding
- Syntax
- Morphology
- Prosody
- Lexicon
- Syllables
- Segments
- Features
- Acoustics

Time (in)constants
- 1000 ms Stress-Accent Intonation
- Range
- 200 ms 40 - 400 ms
- 80 ms 40 - 400 ms
- Acoustics
- Modulation Spectrum

Interface between Sound and Meaning

Phonetic Segments "Articulation"

Place of Articulation (200 ms)
Manner of Articulation (60 ms)
Voicing, Rounding (40 ms)
Conclusions

The speech signal needs to be characterized on a variety of linguistic levels in order to be most useful for automatic recognition.

How these representations interact with each other and can be combined for optimum recognition forms the frontier of speech research.
Many Thanks for Your Time and Attention