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Abstract— Before the rapid growth of wind power, most bulk 
power system uncertainties came from system contingencies and 
load fluctuation. However, when large numbers of wind farms are 
introduced, the stochastic nature of the wind farm output under 
system normal state calls for a new probabilistic framework for 
system operation and evaluation, which captures the uncertainty 
of wind and corresponding transfer constraints of the system. 
Total transfer capability (TTC) is a measurement of the system's 
maximum power transfer capacity from a set of source buses to a 
set of sink buses. In this paper, we propose a fast probabilistic TTC 
evaluation method that incorporates the less predictable nature of 
wind farms. The proposed method returns the probabilistic TTC 
as a random variable that follows a certain distribution derived 
from wind farm output distributions using power transfer 
distribution factors. Our proposed method solves the probabilistic 
TTC in an analytic way. Results from the IEEE 118-bus test case 
demonstrate the efficiency and accuracy of the proposed method. 

Keywords—total transfer capability, wind power; probabilistic 
model;  

I. INTRODUCTION  
The modern electric grid is experiencing a rapid 

transformation as an effort to meet new sustainability 
requirements while a large portion of the infrastructure is ageing 
at the same time. Part of this transformation is driven by the 
growing number of wind farms all over the world. Wind is an 
attractive and effective renewable energy resource, but its 
production is difficult to predict with high levels of accuracy. As 
a result, both the asset management and control strategies of the 
future grid must be able to accommodate the uncertainty 
introduced by the integration of large-scale wind power 
generation. 

As deregulation continues, the number of entities such as 
power suppliers, power distributors and power aggregators 
involved in electricity markets will continue to grow. All of 
these entities must interface with each other through the grid and 
all transactions have the potential to impact all entities. 
Therefore, there is a rapidly growing demand for better tools that 
will allow for the calculation of power transactions from one 
node to another node or from a group of nodes to another group 
of nodes to access the state of the grid. Available transfer 
capability (ATC) is used to ensure the feasibility of such power 
transactions. The North American Electric Reliability Council 
(NERC) defines ATC as a measure of the remaining physical 
electricity network capability for further power transfers over 

already committed transactions. [1] Mathematically, the ATC 
equals to the total transfer capability (TTC) minus existing 
power transfer commitments and margins. This paper focuses on 
developing a fast and accurate probabilistic TTC evaluation 
method which considers the wind farm output uncertainty. 

Since the introduction of the TTC concept, researchers and 
engineers have done significant study on how to evaluate TTC. 
Based on the system constraints enforced during the TTC 
computation, most TTC evaluation methods can be categorized 
into DC power flow methods [2-3] and AC power flow methods 
[4-6]. DC power flow methods are based on sensitivity analysis 
which is then used to evaluate TTC considering line thermal 
limits. Compared with DC power flow methods, AC power flow 
methods are slower but consider system voltage limits. Based on 
the TTC evaluation result, most TTC computation methods can 
also be categorized into deterministic TTC [2-6] and 
probabilistic TTC [7-11]. Compared with deterministic TTC 
evaluation, which returns a single TTC value, probabilistic TTC 
returns the TTC value as a random variable which follows a 
probability distribution. 

Before large numbers of wind farms were integrated into the 
electric grid, most uncertainty in the power system came from 
system contingencies such as transmission line failures and 
generator failures. Using contingency screening techniques, 
researchers developed N-1 or robust TTC evaluation algorithms 
which simulate all critical system failures to cover the 
uncertainties brought by system contingencies. Since the 
deterministic TTC only considers the worst case scenario, 
researchers found that a deterministic TTC is too conservative 
and cannot evaluate the risk of carrying a specific power 
transaction [12]. This is especially true when large numbers of 
wind farms are present [8]. Given the difficulty of accurately 
predicting wind farm output, it is hard to determine what the 
worst case scenario is and the possibility for the worst case 
scenario to happen through deterministic TTC evaluation. 
Instead of returning a single TTC value, probabilistic TTC treats 
the TTC value as a random variable that follows a specific 
distribution. Probabilistic TTC can naturally integrate the 
uncertainty produced by wind farms into the probability 
distribution of the TTC value. As a result, probabilistic TTC can 
quantify the risk of allowing a certain power transaction when 
wind farms are present.  

In this paper, we show that our proposed probabilistic TTC 
evaluation method is faster and more accurate than existing 



probabilistic TTC evaluation methods. Current probabilistic 
TTC evaluation methods derive their result from prolonged 
Monte-Carlo simulations and bootstrap sampling algorithms. 
The simulation process follows a two-step structure: select a 
system state and compute the TTC for the elected system state 
[7]. Monte-Carlo methods is a simulation based method that is 
widely used in power system economic and reliability analysis 
[13]. The system state space of the Monte-Carlo based method 
increases exponentially with the system complexity. Therefore, 
the Monte-Carlo based TTC evaluation process requires 
extensive length of simulation in order to capture enough system 
states. Instead of running time consuming simulations, we derive 
the results analytically by linking the wind farm output 
distributions with the TTC probability distribution of a power 
transfer through power transfer distribution factors (PTDFs). As 
a result, the probability distribution of TTC is solved analytically 
with better efficiency and accuracy. 

In Section II, we introduce a novel fast probabilistic TTC 
evaluation method based on sensitivity analysis. In Section III, 
we first introduce a data-driven modeling method to generate 
forecasted wind farm output distributions. Then, we pass the 
wind farm output uncertainties to the system TTC using PTDFs. 
In Section IV, we compare the proposed fast probabilistic TTC 
evaluation method with non-sequential Monte-Carlo simulation 
method through the IEEE 118-bus test case. We demonstrate 
that the proposed method is more accurate and more efficient. 
Section V concludes the paper and discusses possible future 
research directions. 

II. FAST PROBABILISTIC ATC EVALUATION  
In this section, we derive the fast probabilistic TTC 

evaluation method from power system sensitivity analysis under 
linear power flow assumption, applicable to either DC power 
flow or linearized methods. 

A. Deterministic ATC Evaluation Based on PTDFs 
Sensitivity analysis method based on PTDFs is one of most 

widely used methods to calculate deterministic TTC. Under the 
DC approximation, the active power flow change on each 
transmission line 𝑙𝑙 is linearly related to the scale of the power 
transaction 𝑻𝑻, which is defined as a vector in (1). 

𝑻𝑻 = 𝑻𝑻source + 𝑻𝑻sink, (1) 

where ∑𝑻𝑻source = 1, and ∑𝑻𝑻source = −1. 

PTDF reflects the influences of a specific power transaction 
on transmission lines, as shown in equation (2).  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙,𝑻𝑻 = 𝜕𝜕𝑝𝑝𝑙𝑙
𝜕𝜕𝑝𝑝𝑻𝑻

, (2) 

where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙,𝑻𝑻  is the power transfer distribution factor of 
transmission line 𝑙𝑙 for a given power transaction 𝑻𝑻;  𝑝𝑝𝑙𝑙  stands 
for the real power flow on line 𝑙𝑙; and 𝑝𝑝𝑻𝑻 is the scale of the power 
transfer 𝑻𝑻. 

The TTC of line 𝑙𝑙 , denoted as 𝑇𝑇𝑇𝑇𝑇𝑇𝑙𝑙,𝑻𝑻 , can be computed 
through (3) 

𝑇𝑇𝑇𝑇𝑇𝑇𝑙𝑙,𝑻𝑻 = �

𝑝𝑝𝑙𝑙���−𝑝𝑝𝑙𝑙
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙,𝑻𝑻

                     𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙,𝑻𝑻 > 0 
−𝑝𝑝𝑙𝑙���−𝑝𝑝𝑙𝑙
𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑙𝑙,𝑻𝑻

                    𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙,𝑻𝑻 < 0 
, (3) 

where 𝑝𝑝𝑙𝑙�  stands for the thermal limit of line 𝑙𝑙. The deterministic 
TTC for the whole system is settled by the smallest line TTC 
value. 

B. Power System Uncertainties  
TTC is not only a market tool in electricity economics but 

also a very important reliability index that considering various 
system uncertainties. These uncertainties may result from line 
and generator failures, load forecast errors, or output fluctuation 
of large scale renewables. The logic behind the probabilistic 
TTC is to capture these power system uncertainties by reflecting 
them through a probability density distribution (𝑝𝑝𝑝𝑝𝑝𝑝). In this 
paper, we model the system uncertainties as various 𝑝𝑝𝑝𝑝𝑝𝑝 s, 
where the probability distribution of the TTC is derived from. 

C. Fast Probabilistic TTC Evaluation Considering Wind 
Farm Uncertainties 
In this paper, we assume the fluctuations of wind farm output 

is always balanced by the system slack bus. Without loss of 
generality, this may correspond to a participation factor 
generation dispatch modeling distributed slack generation. 
Under the DC assumption, the proposed fast probabilistic TTC 
evaluation method can be decomposed into five steps: 

Step 1: Compute the base case PTDF for each transmission 
line 𝑙𝑙 under a given power transaction 𝑻𝑻 that is of interest. In the 
base case scenario, we remove all wind farms from the system 
and compute PTDFs as shown in equation (2). 

Step 2: Compute the wind power PTDFs of a specific power 
transaction 𝑻𝑻𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 where the source bus is the wind farm location 
and the sink bus is the system slack bus. We denote the wind 
power PTDF for line 𝑙𝑙 as 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙,𝑻𝑻𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤. 

Step 3: Compute the probabilistic power flow correcting 
term 𝑝𝑝𝑙𝑙�  for each transmission line based on the wind farm output 
𝑝̂𝑝𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 and the wind power PTDF 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙,𝑻𝑻𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤, as shown in (4).  

𝑝̂𝑝𝑙𝑙 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙,𝑻𝑻𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑝̂𝑝𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 , (4) 

where 𝑝̂𝑝𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  is a random variable of wind farm output that 
follows a 𝑝𝑝𝑝𝑝𝑝𝑝 denoted as 𝑝𝑝𝑝𝑝�𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑥𝑥), 𝑝̂𝑝𝑙𝑙 is a random variable of 
power flow correcting term that follows a 𝑝𝑝𝑝𝑝𝑝𝑝 denoted as 𝑝𝑝𝑝𝑝�𝑙𝑙 . 

However, the probabilistic correcting term 𝑝̂𝑝𝑙𝑙 can be difficult 
to solve if multiple wind farms are presented. In Section III, we 
illustrate how to derive 𝑝̂𝑝𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 and 𝑝̂𝑝𝑙𝑙 in those scenarios. 

Step 4: Correct the deterministic line TTC by adding the 
probabilistic correcting term 𝑝̂𝑝𝑙𝑙 computed in step 3 using (5). 

TTC� 𝑙𝑙,𝑻𝑻 = �

𝑝𝑝𝑙𝑙���−𝑝𝑝𝑙𝑙−𝑝𝑝�𝑙𝑙
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙,𝑻𝑻

                  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙,𝑻𝑻 > 0 
−𝑝𝑝𝑙𝑙���−𝑝𝑝𝑙𝑙−𝑝𝑝�𝑙𝑙
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙,𝑻𝑻

                 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙,𝑻𝑻 < 0 
, (5) 

where TTC� 𝑙𝑙,𝑻𝑻 is a random variable of line 𝑙𝑙 TTC that follows a  
𝑝𝑝𝑝𝑝𝑝𝑝 denoted as 𝑝𝑝TTC�𝑙𝑙,𝑻𝑻.  

Step 5: Determine the system TTC for transaction 𝑻𝑻 using 
the minimum line TTC throughout the system. 

III. PROBABILISTIC MODEL OF WIND FARM OUTPUT 
In this section, we first develop a data-driven model for the 

random variable of a single wind farm output 𝑝̂𝑝𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤. Then we 
discuss how to combine the influences of multiple wind farms 
and compute the 𝑝𝑝𝑝𝑝𝑝𝑝 of the probabilistic correcting term 𝑝̂𝑝𝑙𝑙. 

A. A Data-Driven Model for A Single Wind Farm Output  
Wind farm output modeling or wind farm output forecast is 

a conventional task that has been heavily studied by many 



engineers and mathematicians in the last few years. However, 
due to the limited accuracy of the wind forecast, the 
predictability of any particular wind farm is still very low for 
short term operation [14]. In order to dispatch the wind power, 
system operators require a constantly updated forecast of the 
wind farm output throughout time as shown in Fig. 1. 
Sometimes, apart from providing a constant value, the forecast 
provides a distribution or confidence interval for the wind farm 
output in the future.  

 
Fig. 1. Hourly wind farm output forecast. 

In many cases, the 𝑝𝑝𝑝𝑝𝑓𝑓 of the future wind farm output is not 
available. Therefore, we develop a data-driven method to 
generate a pseudo forecasted distribution of the wind farm 
output condition on forecasted value using historical data. In 
order to illustrate the modeling process, we take sample data 
from NREL renewable data center [15], which contains the 
hourly data of forecasted output and observed output of a 20 
MW inland wind farm from year 2004 to 2007.  

 
Fig. 2. Histogram of observed output condition on forecast output (MW).  

We first group the data according to the forecasted output. In 
each group, the histogram of the observed output condition on 
the forecasted output is drawn as in Fig. 2. The histograms 
shown in Fig. 2 can be used to generate 𝑓𝑓�𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�, which 
is the empirical probability density function of the actual wind 
farm output 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  condition on the forecasted value 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . In 

other words, for every wind farm output forecast 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑝𝑝𝑡𝑡  at 
time 𝑡𝑡, we can solve 𝑝̂𝑝𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 with equation (6). 

𝑝̂𝑝𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑓𝑓�𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑝𝑝𝑡𝑡� (6) 

B. Calculation of the Probabilistic Correcting Term 𝑝̂𝑝𝑙𝑙  
The key of the proposed method is the calculation of the 

probabilistic correcting term 𝑝̂𝑝𝑙𝑙 . In this section, we further 
explain the 𝑝̂𝑝𝑙𝑙  calculation on different scenarios with a simple 
test system as shown in Fig. 3. The test system consists of 5 
buses, 7 lines and two generators [16]. Bus 5 is the system slack 
bus. 

Bus 1

Bus 2 Bus 3Bus 4 Bus 5

Line 1 Line 2

Line3Line 4

Line 5

Line 6

Line 7

Wind Farm 1

 
Fig. 3. 5-bus test system with one wind farm 

1) Scenario 1: One Wind Farm Case 
In scenario 1, we locate a 200MW wind farm on bus 2, as 

shown in Fig. 3. The wind farm output for the future time 𝑡𝑡 is 
100MW. We are interested in the power transfer capability from 
bus 5 to bus 2.  

According to equation (4), the calculation of 𝑝̂𝑝𝑙𝑙 involves 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙,𝑻𝑻𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  and 𝑝̂𝑝𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 . We first compute 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙,𝑻𝑻𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 , the 
PTDF for transaction 𝑻𝑻𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  from wind farm location bus 2 to 
the system slack bus 5. Next, we generate the distribution of the 
forecasted output at time 𝑡𝑡  according to our empirical 
distribution using equation (6). In Scenario 1, we can interpret 
the probabilistic correcting term 𝑝̂𝑝𝑙𝑙  as the wind farm output 
𝑝̂𝑝𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 scaled by 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙,𝑻𝑻𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤. 

 
Fig. 4. 𝑝𝑝𝑝𝑝𝑝𝑝s of the probabilistic line TTC. 

For simplicity, let’s assume that line 4 and 5 have infinite 
capacity and line 6 and line 7 are identical. As a result, the 
system TTC is determined by line 1, 2, 3 and 6. The base case 
line TTC values for line 1, 2, 3, and 6 are 1228MW, 465MW, 
553MW and 471MW respectively. Fig. 4 shows the 
probabilistic line TTC for these lines using the proposed method. 
The system TTC is derived by choosing the smallest line TTC 
value for each wind farm output scenario, as shown in Fig. 5. 
For example, when the wind farm output is between 40 MW and 
60 MW (with probability 0.09), the line TTCs for line 1, 2, 3, 6 
are 1180MW, 481MW, 586MW and 496MW as shown by the 
red bars in Fig. 4. As a result, the system TTC of this scenarios 
is 481MW (the minimum of the four values) with probability 
0.09, shown as the red bar in Fig. 5. 



 
Fig. 5. 𝑝𝑝𝑑𝑑𝑑𝑑 of the system probabilistic TTC. 

2) Scenario 2: Multiple Wind Farms Case 
In scenario 2, we add an additional 100MW wind farm on 

bus 1 as shown in Fig. 6. The wind farm output forecast for wind 
farm 1 and 2 are 100MW and 80 MW respectively. We are still 
interested in the power transfer from bus 5 to bus 2. For 
simplicity, it is assumed that we are only interested in the line 
TTC for line 6. The rest line TTCs can be derived similarly. 

Bus 1

Bus 2 Bus 3Bus 4 Bus 5

Line 1 Line 2

Line3Line 4

Line 5

Line 6

Line 7

Wind Farm 1

Wind Farm 2

 
Fig. 6. 5-bus test system with multiple wind farms. 

When multiple wind farms are present, we first compute the 
probabilistic correcting term for each wind farm independently 
as in scenario 1. Let 𝑝̂𝑝𝑙𝑙,𝑖𝑖 denote the probabilistic correcting term 
for wind farm 𝑖𝑖. Then, the total correcting term for line 𝑙𝑙 can be 
computed by the sum of all wind farm correcting terms using 
equations (7-8). Fig. 7 shows the 𝑝𝑝𝑝𝑝𝑓𝑓 s of random variable 
𝑝̂𝑝𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤,𝑖𝑖 for wind farm 1 and 2 and the 𝑝𝑝𝑝𝑝𝑝𝑝s of random variable 
𝑝̂𝑝𝑙𝑙,𝑖𝑖 for line 6. 

𝑝̂𝑝𝑙𝑙 = ∑ 𝑝̂𝑝𝑙𝑙,𝑖𝑖𝑖𝑖 , (7) 

𝑝̂𝑝𝑙𝑙,𝑖𝑖 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙,𝑻𝑻𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤,𝑖𝑖 × 𝑝̂𝑝𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤,𝑖𝑖, (8) 

where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙,𝑻𝑻𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤,𝑖𝑖 is the wind farm transaction PTDF for wind 
farm 𝑖𝑖 and 𝑝̂𝑝𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤,𝑖𝑖 is the random variable for wind farm 𝑖𝑖 output.  

 
Fig. 7. 𝑝𝑝𝑝𝑝𝑝𝑝s of wind farm output and correcting term for line 6. 

From equation (7-8), solving 𝑝̂𝑝𝑙𝑙  is equivalent of solving the 
sum of two random variables 𝑝̂𝑝𝑙𝑙,1  and 𝑝̂𝑝𝑙𝑙,2 . According to the 
dependency of different wind farm outputs, we present three 
ways to solve 𝑝̂𝑝𝑙𝑙: numerating method, convolution method and 
fast Fourier method. Convolution method and fast Fourier 
method is much faster than the numerating method but they 
assume the outputs of different wind farms are independent. This 

may apply when the transfer of interest is large and the locations 
of different wind farms are relatively far away. The numerating 
method, on the other hand, can be applied when outputs of wind 
farms are strongly correlated.  

a) Numerating Method 
Numerating method solves the sum of two random variables 

by the definition as shown in equation (9), where every 
combination of the two random variables is numerated. 

𝑝𝑝𝑝𝑝�𝑙𝑙(𝑝̂𝑝𝑙𝑙) = 𝑝𝑝𝑝𝑝�𝑙𝑙,1,𝑝𝑝�𝑙𝑙,2�𝑝̂𝑝𝑙𝑙,1 + 𝑝̂𝑝𝑙𝑙,2�, (9) 

where 𝑝𝑝𝑝𝑝�𝑙𝑙,1,𝑝𝑝�𝑙𝑙,2 is the joint distribution of two wind farm outputs. 

b) Convolution Method 
One of the most important properties of convolution is that 

the convolution of the distributions of two or more independent 
random variables equals to the distribution of the sum of these 
random variables [17]. As a result, when the number of wind 
farms is limited, compared with the numerating method, 
convolution is the most efficient way to solve 𝑝̂𝑝𝑙𝑙 . 

c) Fast Fourier Transform Method 
Fourier transform and its inverse are developed to transform 

signal between time domain and frequency domain. A fast 
Fourier transform (FFT) is an algorithm to compute the discrete 
Fourier transform (DFT) and its inverse [18]. According to the 
property of Fourier transform, the convolution in one domain 
equals to the point-wise multiplication in the other domain. As a 
result, we can avoid convolution operation in the convolution 
method by performing FFT and inverse FFT. Compared with the 
convolution method, the computational speed improvement of 
using FFT is significant when large numbers of wind farms are 
presented.  

In the 5-bus case, if we assume the outputs of the two wind 
farms are independent, all three methods will generate the same 
𝑝̂𝑝𝑙𝑙  as shown in Fig. 8. The line TTC of line 6 can be computed 
using equation (5). 

 
Fig. 8. 𝑝𝑝𝑝𝑝𝑝𝑝 of 𝑝̂𝑝𝑙𝑙 on line 6 using FFT. 

IV. CASE STUDY  
In this section, we compare our proposed method with the 

non-sequential Monte-Carlo simulation method using the IEEE 
118-bus test case. The IEEE 118-bus test case consists of 118 
buses, 186 lines, 91 loads and 54 thermal units. Bus 69 is chosen 
as the system slack bus. We are interested in the power transfer 
from bus 100 to bus 2. In order to see the influences of multiple 
wind farms, two wind farms are introduced with the same 
capacity (both 200MW). For a specific time of interest 𝑡𝑡, the 
output forecast of the two wind farms are 180 MW and 50 MW 
respectively. The wind farm data comes from NREL renewable 
data center [15].  

In deterministic ATC evaluation, the limiting element of the 
power transfer is line 60. As a result, it is critical to see how wind 



farms influence the power flow on line 60. Fig. 9 shows the 
distribution of the probabilistic correcting term 𝑝̂𝑝𝑙𝑙  on line 60.  

 
Fig. 9. 𝑝𝑝𝑝𝑝𝑝𝑝 of 𝑝̂𝑝𝑙𝑙 on line 60 using the proposed method. 

A. Accuracy Comparison 
Compared with the existing probabilistic TTC evaluation 

methods, the proposed method is more efficient and more 
accurate. Fig. 10 shows the probabilistic ATC result using non-
sequential Monte-Carlo simulation. From Fig. 10, we can see 
that the accuracy of the simulation based method increases as 
the length of the simulation grows. However, even when the 
simulation length is as large as 10000, the accuracy at the tails is 
still not as good as the analytical solution. 

 
Fig. 10. 𝑝𝑝𝑝𝑝𝑝𝑝 of 𝑝̂𝑝𝑙𝑙 on line 60 using the simulation based method. 

B. Computational Speed Comparison 
TABLE I compares the computation time between the 

proposed method and the simulation based method. From 
TABLE I, the proposed probabilistic ATC evaluation method is 
very computational efficient.  

TABLE I.  COMPUTATIONAL TIME COMPARISON 

 Proposed 
method 

Non-sequential Monte-Carlo Simulation 
Simulation = 5000 Simulation = 10000 

Time (s) 0.0066 32.2407 63.0414 

V. CONCLUSION  
In this paper, we propose a fast probabilistic TTC evaluation 

method that considers multiple wind farms. The proposed 
algorithm takes the probabilistic models of different wind farm 
output as inputs and returns a probabilistic TTC as a random 
variable that follows a specific distribution. The proposed 
method is an analytic solver for probabilistic TTC with better 

computational efficiency and accuracy, compared with the 
common probabilistic TTC evaluation method based on 
prolonged simulation analysis. Future research opportunities 
may include how to incorporate other system uncertainties such 
as load fluctuations and system contingencies into the fast 
probabilistic TTC evaluation method. 
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