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In this paper we study relations between the minimax, risk averse and nested formulations of multistage
stochastic programming problems. In particular, we discuss conditions for time consistency of such for-
mulations of stochastic problems. We also describe a connection between law invariant coherent risk
measures and the corresponding sets of probability measures in their dual representation. Finally, we dis-
cuss a minimax approach with moment constraints to the classical inventory model.
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1. Introduction

One of the criticisms of the stochastic programming approach to
optimization under uncertainty is that the assumption of knowing
the probability distribution of the uncertain parameters could be
quite unrealistic. On the other hand, the worst case approach of ro-
bust optimization could be too conservative (for a thorough discus-
sion of robust optimization we refer to Ben-Tal, El Ghaoui and
Nemirovski [3]). A possible compromise between these two ex-
tremes could be a minimax approach to stochastic programming
where the worst case expected value optimization is performed
with respect to a specified family of probability distributions. This
approach has a long history and was already discussed in Žáčková
[22] more than 40 years ago.

Another criticism of stochastic programming is that the optimi-
zation on average does not take into account the involved risk of
possible deviations from the expected value. A risk averse ap-
proach to stochastic optimization was initiated by Markowitz [9]
in the context of portfolio selection. These two approaches – the
minimax and risk averse – to stochastic optimization were sepa-
rate entities for a long time. In a pioneering paper by Artzner et
al. [1] an axiomatic approach to risk averse optimization was sug-
gested and among other things it was shown that the minimax and
risk averse approaches in a sense are dual to each other.

As of today the minimax and risk averse approaches to stochas-
tic optimization are reasonably well understood for static models.
The situation is considerably more delicate in dynamic settings.
Multistage robust optimization, under the name ‘‘adjustable robust
optimization’’, was initiated in Ben-Tal, Goryashko, Guslitzer and

Nemirovski [2], robust dynamic programming and robust control
of Markov decision processes were discussed in Iyengar [7] and
Nilim and El Ghaoui [8]. Dynamic programming equations for risk
averse optimization were derived in Ruszczyński and Shapiro
[16]. It turns out that some suggested approaches to dynamic risk
averse optimization are not time consistent (cf., [19]). For a discus-
sion of time consistency concepts we may refer to [5,17] and refer-
ences therein. As far as we know time consistency was not
discussed in the context of minimax multistage stochastic
programming.

This paper is organized as follows. In the next section we give a
quick introduction to risk neutral multistage stochastic program-
ming. For a detail discussion of this topic we may refer, e.g., to
[20]. In Section 3 we discuss static and dynamic coherent risk mea-
sures. In particular we describe a connection between law invari-
ant coherent risk measures and the corresponding sets of
probability measures in their dual representation (Theorem 3.2).
The main development is presented in Section 4. In that section
we study connections between the minimax, risk averse and
nested formulations of multistage stochastic programming prob-
lems. Finally, in Section 5 we give examples and applications of
the general theory. In particular, we discuss a minimax approach
to the classical inventory model.

We use the following notation throughout the paper. For ran-
dom variables X and Y we denote by E½XjY � or EjY ½X� the conditional
expectation of X given Y. We use the same notation n for a random
vector and its particular realization, which of these two meanings
will be used in a specific situation will be clear from the context.
For a process n1,n2, . . . , and positive integers s 6 t we denote by
n[s,t] :¼ (ns, . . . ,nt) history of the process from time s to time t. In par-
ticular, n[t] :¼ n[1,t] = (n1, . . . ,nt) denotes history of the process up to
time t. By D(n) we denote measure of mass one concentrated at
point n.
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2. Risk neutral formulation

In a generic form a T-stage stochastic programming problem
can be written as

Min
x1 ;x2ð�Þ;...;xT ð�Þ

E½F1ðx1Þ þ F2ðx2ðn½2�Þ; n2Þ þ � � � þ FTðxTðn½T�Þ; nTÞ�
s:t: x1 2 X1; xtðn½t�Þ 2 X tðxt�1ðn½t�1�Þ; ntÞ; t ¼ 2; . . . ; T:

ð2:1Þ
Here n1,n2, . . . ,nT is a random data process, xt 2 Rnt ; t ¼ 1; . . . ; T , are
decision variables, Ft : R

nt � Rdt ! R are measurable functions and
X t : R

nt�1 � Rdt�Rnt ; t ¼ 2; . . . ; T , are measurable closed valued mul-
tifunctions (point-to-set mappings). The first stage data, i.e., the
vector n1, the function F1 : Rn1 ! R, and the set X1 � Rn1 are deter-
ministic. In particular, the multistage problem is linear if the objec-
tive functions and the constraint functions are linear, that is

Ftðxt; ntÞ :¼ cTt xt ;X1 :¼ fx1 : A1x1 ¼ b1; x1 P 0g;
X tðxt�1; ntÞ :¼ fxt : Btxt�1 þ Atxt ¼ bt ; xt P 0g; t ¼ 2; . . . ; T;

ð2:2Þ
where n1 :¼ (c1,A1,b1) and nt :¼ ðct;Bt;At; btÞ 2 Rdt ; t ¼ 2; . . . ; T , are
data vectors some/all elements of which can be random.

Optimization in (2.1) is performed over feasible policies. A policy
is a sequence of (measurable) functions xt = xt(n[t]), t = 1, . . . ,T. Each
xt(n[t]) is a function of the data process n[t] up to time t, this ensures
the nonanticipativity property of a considered policy. A policy1

xtð�Þ : Rd1 � � � � � Rdt ! Rnt ; t ¼ 1; . . . ; T , is said to be feasible if it sat-
isfies the feasibility constraints for almost every realization of the
random data process. It could be noted that since policies are ele-
ments of appropriate functional spaces, formulation (2.1) leads to
an infinite dimensional optimization problem, unless the data pro-
cess n1, . . . ,nT has a finite number of realizations (called scenarios).

Recall that if X and Y are two random variables, then
E½X� ¼ EfE½XjY�g, i.e., average of averages is the total average.
Therefore we can write the expectation in (2.1) as

E½F1ðx1ÞþF2ðx2ðn½2�Þ;n2Þþ � � �þFT�1ðxT�1ðn½T�1�Þ;nT�1ÞþFT ðxTðn½T�Þ;nTÞ�
¼ Ejn1 ½� � �Ejn½T�2� ½Ejn½T�1� ½F1ðx1ÞþF2ðx2ðn½2�Þ;n2Þþ �� �þFT�1ðxT�1ðn½T�1�Þ;nT�1Þ

þFTðxT ðn½T�Þ;nTÞ���
¼ F1ðx1ÞþEjn1 ½F2ðx2ðn½2�Þ;n2Þþ �� �þEjn½T�2� ½FT�1ðxT�1ðn½T�1�Þ;nT�1Þ�

þEjn½T�1� ½FT ðxTðn½T�Þ;nTÞ��:
ð2:3Þ

This, together with an interchangeability property of the expecta-
tion and minimization operators (e.g., [13, Theorem 14.60]), leads
to the following nested formulation of the multistage problem (2.1)

Min
x12X1

F1ðx1Þ þ Ejn1 inf
x22X2ðx1 ;n2Þ

F2ðx2; n2Þ þ Ejn½2�

�
� � �

�

þEjn½T�1� inf
xT2XT ðxT�1 ;nT Þ

FTðxT ; nTÞ
� ���

: ð2:4Þ

Of course, since n1 is deterministic, Ejn1 ½�� ¼ E½��. We write it here in
the conditional form for the uniformity of notation.

This decomposition property of the expectation operator is a
basis for deriving the dynamic programming equations. That is,
going backward in time the so-called cost-to-go (also called value)
functions are defined recursively for t = T, . . . ,2, as follows

Vtðxt�1; n½t�Þ ¼ inf
xt2X t ðxt�1 ;ntÞ

fFtðxt ; ntÞ þ Vtþ1ðxt; n½t�Þg; ð2:5Þ

where

Vtþ1ðxt ; n½t�Þ ¼ EfVtþ1ðxt ; n½tþ1�Þjn½t�g; ð2:6Þ

with VTþ1ð�; �Þ � 0 by definition. At the first stage the following
problem should be solved

Min
x12X1

F1ðx1Þ þ E½V2ðx1; n2Þ�: ð2:7Þ

The optimal value of the first stage problem (2.7) gives the optimal
value of the corresponding multistage problem formulated in the
form (2.1), or equivalently in the form (2.4).

A policy �xtðn½t�Þ; t ¼ 1; . . . ; T , is optimal if �x1 is an optimal solution
of the first stage problem (2.7) and for t = 2, . . . ,T,
�xtðn½t�Þ 2 arg min

xt2X tð�xt�1ðn½t�1�Þ;ntÞ
fFtðxt ; ntÞ þ Vtþ1ðxt ; n½t�Þg;w:p:1: ð2:8Þ

In the dynamic programming formulation the problem is reduced to
solving a family of finite dimensional problems (2.5) and (2.6).

It is said that the random process n1, . . . ,nT is stagewise indepen-
dent if random vector nt+1 is independent of n[t], t = 1, . . . ,T � 1. In
case of stagewise independence the (expected value) cost-to-go
function

VTðxT�1; n½T�1�Þ ¼ E½VTðxT�1; nTÞjn½T�1�� ð2:9Þ
does not depend on n[T � 1]. By induction in t going backward in
time, it can be shown that:

� If the data process is stagewise independent, then the (expected
value) cost-to-go functions VtðxtÞ; t ¼ 2; . . . ; T , do not depend on
the data process and Eq. (2.5) take the form

Vtðxt�1; ntÞ ¼ inf
xt2X tðxt�1 ;ntÞ

fFtðxt; ntÞ þ Vtþ1ðxtÞg: ð2:10Þ

In formulation (2.1) the expectations are taken with respect to a
specified probability distribution of the random process n1, . . . ,nT.
The optimization is performed on average and does not take into
account risk of a possible deviation from the average for a particu-
lar realization of the data process. Therefore formulation (2.1) is re-
ferred to as risk neutral.

3. Risk measures

In order to proceed to a risk averse formulation of multistage pro-
gramsweneed to discuss the following concept of so-called coherent
risk measures. Consider a probability space ðX;F ; PÞ. To measurable
functions Z : X ! Rwe refer as random variables.With every random
variable Z = Z(x) we associate a number, denotedq(Z), indicating our
preference between possible realizations of random variables. That
is,q(�) is a real valued functiondefinedona space ofmeasurable func-
tions Z : X ! R. We refer to q(�) as a risk measure. For example, we
can employ the expected value qðZÞ :¼ EP½Z� as a risk measure. The
term ‘‘risk measure’’ is somewhat unfortunate since it could be con-
fused with the concept of probability measures. However, it became
quite standard, so we will use it here.

We have to specify a space of random variables on which a con-
sidered risk measure will be defined. In that respect it is natural to
consider spaces LpðX;F ; PÞ of random variables Z(x) having finite
pth order moment, p 2 [1,1). Note that two random variables
Z(x) and Z0(x) are undistinguishable if Z(x) = Z0(x) for a.e. x 2X
(i.e., for all x 2X except on a set of P-measure zero). Therefore
LpðX;F ; PÞ consists of classes of random variables Z(x) such that
Z(x) and Z0(x) belong to the same class if Z(x) = Z0(x) for a.e.
x 2X, and EjZjp ¼ R

X jZðxÞjpdPðxÞ is finite. The space LpðX;F ; PÞ
equipped with the norm kZkp :¼

R
X jZðxÞjpdPðxÞ� �1=p becomes a

Banach space. We also consider space L1ðX;F ; PÞ of essentially
bounded functions. That is, L1ðX;F ; PÞ consists of random vari-
ables with finite sup-norm kZk1 :¼ ess sup jZj, where the essential
supremum of a random variable Z(x) is defined as

ess supðZÞ :¼ inffsup
x2X

Z0ðxÞ : Z0ðxÞ ¼ ZðxÞ a:e: x 2 Xg: ð3:1Þ1 In order to distinguish between a function xt(n[t]) and a vector xt 2 Rnt we often
write xt(�) to emphasize that this denotes a function.
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A set A � LpðX;F ; PÞ is said to be bounded if there exists constant
c > 0 such that kZkp 6 c for all Z 2 A. Unless stated otherwise all
topological statements related to the space LpðX;F ; PÞ will be made
with respect to its strong (norm) topology.

Formally, risk measure is a real valued function q : Z ! R,
where Z :¼ LpðX;F ; PÞ for some p 2 [1,1]. It is also possible to con-
sider risk measures taking values q(Z) = +1 for some Z 2 Z. How-
ever, with virtually every interesting risk measure is associated in a
natural way an LpðX;F ; PÞ space on which it is finite valued. It was
suggested in Artzner et al. [1] that a ‘‘good’’ risk measure should
satisfy the following axioms, and such risk measures were called
coherent.

(A1) Monotonicity: If Z; Z0 2 Z and Z 	 Z0, then q(Z)P q(Z0).
(A2) Convexity:

qðtZ þ ð1� tÞZ0Þ 6 tqðZÞ þ ð1� tÞqðZ0Þ
for all Z; Z0 2 Z and all t 2 [0,1].

(A3) Translation Equivariance: If a 2 R and Z 2 Z, then
q(Z + a) = q(Z) + a.

(A4) Positive Homogeneity: If tP 0 and Z 2 Z, then q(t Z) = tq(Z).

Here the notation Z 	 Z0 means that Z(x)P Z0(x) for a.e.x 2X.
Monotonicity property (axiom (A1)) is a natural condition that a
risk measure should satisfy (recall that we deal here with minimi-
zation rather than maximization formulations of optimization
problems). Convexity property is also a natural one. Because of
(A4) the convexity axiom (A2) holds iff the following subadditivity
property holds

qðZ þ Z0Þ 6 qðZÞ þ qðZ0Þ; 8 Z; Z0 2 Z: ð3:2Þ
That is, risk of the sum of two random variables is not bigger than
the sum of risks. Axioms (A3) and (A4) postulate position and scale
properties, respectively, of risk measures. We refer to [6,12,20] for a
thorough discussion of coherent risk measures.

We have the following basic duality result associated with
coherent risk measures. With each space Z :¼ LpðX;F ; PÞ;
p 2 ½1;1Þ, is associated its dual space Z
 :¼ LqðX;F ; PÞ, where
q 2 (1,1] is such that 1/p + 1/q = 1. For Z 2 Z and f 2 Z
 their scalar
product is defined as

hZ; fi :¼
Z
X
ZðxÞfðxÞdPðxÞ: ð3:3Þ

We denote by

P :¼ f 2 Z
 :
Z
X
fðxÞdPðxÞ ¼ 1; f 	 0

� �
ð3:4Þ

the set of probability density functions in the dual space Z
.

Theorem 3.1. Let Z :¼ LpðX;F ; PÞ; p 2 ½1;1Þ, and q : Z ! R be a
coherent risk measure. Then q is continuous (in the norm topology of
Z) and there exists a bounded closed convex set A � P such that

qðZÞ ¼ sup
f2A

hZ; fi; 8Z 2 Z: ð3:5Þ

Moreover, the set A can be written in the form

A ¼ ff 2 P : hZ; fi 6 qðZÞ; 8Z 2 Zg: ð3:6Þ
Conversely if the representation (3.5) holds for some nonempty
bounded set A � P, then q is a (real valued) coherent risk measure.

The dual representation (3.5) follows from the classical Fenchel–
Moreau theorem. Originally it was derived in [1], and the following
up literature (cf., [6]), for space Z :¼ L1ðX;F ; PÞ. For general spaces
Z :¼ LpðX;F ; PÞ this representation was obtained in [15] and it was
shown there that monotonicity (axiom (A1)) and convexity (axiom
(A2)) imply continuity of the (real valued) risk measure q. Note that

if the representation (3.5) holds for some bounded setA, then it also
holds if the setA is replaced by the topological closure of its convex
hull. Therefore,without loss of generality, it suffices to consider only
bounded closed convex sets A.

For f 2 P the scalar product hZ,fi can be understood as the
expectation EQ ½Z� taken with respect to the probability measure
dQ = fdP. Therefore the representation (3.5) can be written as

qðZÞ ¼ sup
Q2Q

EQ ½Z�; 8Z 2 Z; ð3:7Þ

where Q :¼ fQ : dQ ¼ fdP; f 2 Ag. Recall that if P and Q are two
measures on ðX;FÞ, then it is said that Q is absolutely continuous
with respect to P if A 2 F and P(A) = 0 implies that Q(A) = 0. The
Radon-Nikodym theorem says that Q is absolutely continuous with
respect to P iff there exists a function g : X ! Rþ (density function)
such that QðAÞ ¼ R

A gdP for every A 2 F . Therefore the result of The-
orem 3.1 can be interpreted as follows.

� Let Z :¼ LpðX;F ; PÞ; p 2 ½1;1Þ. Then a risk measure q : Z ! R is
coherent iff there exists a set Q of absolutely continuous with
respect to P probability measures such that the set of densities
dQ
dP : Q 2 Q

� 	
forms a bounded set in the dual space Z
 and the

representation (3.7) holds.

Let us consider some examples. The following risk measure is
called the mean-upper semideviation risk measure of order p 2
[1,1):

qðZÞ :¼ E½Z� þ kðE½½Z � E½Z��pþ�Þ1=p: ð3:8Þ
In the second term of the right hand side of (3.8), the excess of Z
over its expectation is penalized. In order for this risk measure to
be real valued it is natural to take Z :¼ LpðX;F ; PÞ. For any
k 2 [0,1] this risk measure is coherent and has the dual representa-
tion (3.5) with the set

A ¼ ff0 2 Z
 : f0 ¼ 1þ f� E½f�; kfkq 6 k; f 	 0g: ð3:9Þ
Note that the above set A is a bounded convex closed subset of the
dual space Z
 ¼ LqðX;F ; PÞ.

An important example of risk measure is Value-at-Risk measure

V@RaðZÞ :¼ inffz : PrðZ 6 zÞ P 1� ag;a 2 ð0;1Þ: ð3:10Þ
That is, V@Ra(Z) = H�1(1 � a) is the left side (1 � a)-quantile of the
distribution of Z. Here H(z) :¼ Pr(Z 6 z) if the cumulative distribution
function (cdf) of Z and

H�1ðcÞ :¼ inffz : HðzÞ P cg
for c 2 (0,1). For c = 0 the corresponding left side quantile
H�1(0) = �1, and by the definition H�1(1) = +1 if Z(x) is un-
bounded from above. The V@Ra risk measure is not coherent, it sat-
isfies axioms (A1), (A3) and (A4) but is not necessarily convex, i.e., it
does not possess the subadditivity property (3.2).

An important example of coherent risk measure is the Average
Value-at-Risk measure

AV@RaðZÞ :¼ inf
z2R

fzþ a�1E½Z � z�þg;a 2 ð0;1�: ð3:11Þ

It is natural to take here Z :¼ L1ðX;F ; PÞ. This risk measure is also
known under the names Expected Shortfall, Expected Tail Loss and
Conditional Value-at-Risk. It is possible to show that the set of mini-
mizers of the right hand side of (3.11) is formed by (1 � a)-quantiles
of the distribution of Z. In particular z⁄ = V@Ra(Z) is such aminimizer.
It follows that AV@Ra(Z)P V@Ra(Z). Also it follows from (3.11) that

AV@Ra1 ðZÞ P AV@Ra2 ðZÞ;0 < a1 6 a2 6 1: ð3:12Þ
The dual representation (3.5) for q(Z) :¼ AV@Ra(Z) holds with the
set
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A ¼ ff 2 L1ðX;F ; PÞ : fðxÞ 2 ½0;a�1� a:e: x 2 X; E½f� ¼ 1g: ð3:13Þ
Note that the above set A is a bounded closed subset of the dual
space Z
 ¼ L1ðX;F ; PÞ. If a = 1, then the set A consists of unique
point f(x) � 1. That is, AV@R1ðZÞ ¼ E½Z�, this can be verified directly
from the definition (3.11). For a tending to zero we have the follow-
ing limit

lim
a#0

AV@RaðZÞ ¼ ess supðZÞ: ð3:14Þ

In order for the risk measure q(Z) :¼ ess sup (Z) to be finite valued it
should be considered on the space Z :¼ L1ðX;F ; PÞ; defined on that
space this risk measure is coherent.

In both examples considered above the risk measures are func-
tions of the distribution of the random variable Z. Such risk mea-
sures are called law invariant. Recall that two random variables Z
and Z0 have the same distribution if their cumulative distribution
functions are equal to each other, i.e., Pr(Z 6 z) = Pr(Z0 6 z) for all
z 2 R. We write this relation as Z�D Z0.

Definition 3.1. It is said that a risk measure q : Z ! R is law
invariant if for any Z; Z0 2 Z such that Z�D Z0 it follows that
q(Z) = q(Z0).

Suppose for the moment that the set X = {x1, . . . ,xK} is finite
with respective probabilities p1, . . . ,pK such that any partial sums
of pk are different, i.e.,

P
k2Ipk ¼

P
k2J pk for I ;J � f1; . . . ;Kg only

if I ¼ J . Then Z; Z0 : X ! R have the same distribution only if
Z(x) = Z0(x) for all x 2X. In that case any risk measure, defined
on the space of random variables Z : X ! R, is law invariant. There-
fore, for a meaningful discussion of law invariant risk measures it is
natural to consider nonatomic probability spaces. It is said that
measure P, and hence the space ðX;F ; PÞ, is nonatomic if any set
A 2 F of positive measure P(A) contains a subset B 2 F such that
P(A) > P(B) > 0.

A natural question is how law invariance can be described in
terms of the set A in the dual representation (3.5). Let T :X?X
be one-to-one onto mapping, i.e., T(x) = T(x0) iff x =x0 and
T(X) =X. It is said that T is a measure-preserving transformation
if image T(A) = {T(x) :x 2 A} of any measurable set A 2 F is
also measurable and P(A) = P(T(A)) (see, e.g., [4, p.311]). Let us
denote by

G : ¼ fthe set of one� to� one onto measure
� preserving transformations T : X ! Xg:

We have that if T 2 G, then T�1 2 G; and if T1; T2 2 G, then their
composition2 T1 � T2 2 G. That is, G forms a group of
transformations.

Theorem 3.2. Suppose that the probability space ðX;F ; PÞ is non-
atomic. Then a coherent risk measure q : Z ! R is law invariant iff the
set A in the dual representation (3.5) is invariant with respect to
measure-preserving transformations, i.e., iff for any f 2 A and any
T 2 G and f0 :¼ f�T it follows that f0 2 A.

Proof. Let T 2 G and f 2 A. Consider f0 :¼ f�T. For Z 2 Z we have

hZ; f0i ¼
Z
X
ZðxÞfðTðxÞÞdPðxÞ ¼

Z
X
ZðT�1ðxÞÞfðxÞdQðxÞ ¼ hZ0; fi

ð3:15Þ
where Q = P T�1 = P and Z0 :¼ Z�T�1. Since T is measure-preserving
we have that Z�D Z0 and since q is law invariant, it follows that
q(Z) = q(Z0). Therefore by (3.6) we obtain that f0 2 A.

Conversely suppose that f � T 2 A for any f 2 A and any T 2 G.
Let Z,Z0 be two random variables having the same distribution.
Since the probability space ðX;F ; PÞ is nonatomic, there is T 2 G
such that Z0 = Z�T. For e > 0 let f 2 A be such that q(Z0) 6 hZ0,f i + e.
By (3.15) and since f0 2 A it follows that

qðZ0Þ 6 hZ0; fi þ e ¼ hZ; f0i þ e 6 qðZÞ þ e:

Since e > 0 is arbitrary, we obtain that q(Z0) 6 q(Z). The other
inequality q(Z0)P q(Z) can be obtained in the same way and hence
q(Z0) = q(Z). This competes the proof. h

With every law invariant risk measure q is associated its condi-
tional analogue. That is, let Z be a random variable and Y be a ran-
dom vector. Since q(Z) is a function of the distribution of Z we can
consider value of q at the conditional distribution of Z given Y = y,
which we write as q(ZjY = y). Note that q(ZjY = y) = /(y) is a func-
tion of y, and hence /(Y) is a random variable. We denote this ran-
dom variable /(Y) as q(ZjY) or qjY(Z) and refer to qjY(�) as
conditional risk measure. Of course, if Z and Y are independent, then
distribution of Z does not depend on Y and hence in that case
qjY(Z) = q(Z).

For example the conditional analogue of the mean-upper semi-
deviation risk measure (3.8) is

qjYðZÞ ¼ EjY ½Z� þ kðEjY ½½Z � EjY ½Z��pþ�Þ1=p: ð3:16Þ
The conditional analogue of the Average Value-at-Risk measure is

AV@RajYðZÞ ¼ inf
z2R

fzþ a�1EjY ½Z � z�þg;a 2 ð0;1�: ð3:17Þ

The set of minimizers of the right hand side of (3.17) is given by
(1 � a)-quantiles of the conditional distribution of Z, given Y, and
is a function of Y.

There is an alternative, and in a sense equivalent, approach to
defining conditional risk measures which is based on an axiomatic
method and using sequences of nested sigma algebras (cf.,
[11,16]). By considering sigma subalgebra of F generated by Y, the
above approach of conditional distributions can be equivalently de-
scribed in terms of the axiomatic approach. Both approaches have
advantages and disadvantages. The above approach is more intui-
tive, although is restricted to law invariant riskmeasures. Also some
properties could be easier seen in one approach than the other.

Since q(ZjY) is a random variable, we can condition it on an-
other random vector X. That is, we can consider the following con-
ditional risk measure q[q(ZjY)jX]. We refer to this (conditional) risk
measure as the composite risk measure and sometimes write it as
qjX�qjY(Z). In particular, we can consider the composition q�qjY.
The composite risk measure q�qjY inherits many properties of q.
If q is a law invariant coherent risk measure, then so is the compos-
ite risk measure q�qjY.

The composite risk measures q�qjY can be quite complicated
and difficult to write explicitly (cf., [16, Section 5]). In general it
does not hold that
q � qjY ¼ q: ð3:18Þ
For example, for nonconstant Y, Eq. (3.18) does not hold for
q :¼ AV@Ra with a 2 (0,1). Of course, if Z and Y are independent,
then q(ZjY) = q(Z) and hence q�qjY(Z) = q(Z), provided q is coherent.
In particular, (3.18) holds if Y is constant and hence Z is independent
of Y for any Z 2 Z. This also shows that the composite risk measure
q�qjY(�) depends on Y. Eq. (3.18) holds for any Y in at least two cases,
namely for qð�Þ :¼ Eð�Þ and q(�) :¼ ess sup (�).

4. Minimax and risk averse multistage programming

Consider the following minimax extension of the risk neutral
formulation (2.1) of multistage stochastic programs:

2 Composition T = T1�T2 of two mappings is the mapping T(x) = T1(T2(x)).
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Min
x1 ;x2ð�Þ;...;xT ð�Þ

sup
Q2M

fEQ ½F1ðx1Þ þ F2ðx2ðn½2�Þ; n2Þ þ � � � þ FTðxTðn½T�Þ; nTÞ�g

s:t: x1 2 X1; xtðn½t�Þ 2 X tðxt�1ðn½t�1�Þ; ntÞ; t ¼ 2; . . . ; T:

ð4:1Þ
Here M is a set of probability measures associated with vector
ðn2; . . . ; nTÞ 2 Rd2 � � � � � RdT . We assume that probability measures
of the set M are supported on a closed set N � Rd2 � � � � � RdT , i.e.,
for every Q 2 M it holds that Q-almost surely (n2, . . . ,nT) 2 N. As in
the risk neutral case the minimization in (4.1) is performed over
policies satisfying the feasibility constraints Q-almost surely for
every Q 2 M. The set M can be viewed as the uncertainty set of
probability measures and formulation (4.1) as hedging against a
worst possible distribution. Of course, ifM ¼ fPg is a singleton, then
(4.1) becomes the risk neutral formulation (2.1).

Let P be a (reference) probability measure3 on the set
N � Rd2 � � � � � RdT equipped with its Borel sigma algebra B and let
Z :¼ LpðN;B; PÞ. That is, for p 2 [1,1) the space Z consists of measur-
able functions Zð�Þ : N ! R viewed as random variables having finite
pth order moment (with respect to the reference probability mea-
sure P), and for p = 1 this is the space of essentially bounded mea-
surable functions. Consider a coherent risk measure q : Z ! R. The
corresponding risk averse multistage problem can be written as

Min
x1 ;x2ð�Þ;...;xT ð�Þ

q½F1ðx1Þ þ F2ðx2ðn½2�Þ; n2Þ þ � � � þ FTðxTðn½T�Þ; nTÞ�
s:t: x1 2 X1; xtðn½t�Þ 2 X tðxt�1ðn½t�1�Þ; ntÞ; t ¼ 2; . . . ; T:

ð4:2Þ
The optimization in (4.2) is performed over policies satisfying the
feasibility constraints for P-almost every realization of the data pro-
cess and such that the function (random variable)

Zðn½T�Þ :¼ F1ðx1Þ þ F2ðx2ðn½2�Þ; n2Þ þ � � � þ FTðxTðn½T�Þ; nTÞ ð4:3Þ
belongs to the considered space Z.

Using dual representation (3.7) we can write the risk measure q
as

qðZÞ ¼ sup
Q2Q

EQ ½Z�; 8Z 2 Z; ð4:4Þ

and hence problem (4.2) can be represented in the minimax form
(4.1) with M ¼ Q. There is a slight difference between respective
formulations (4.1) and (4.2) of robust multistage programs – the
setQ consists of probability measures on ðN;BÞwhich are absolutely
continuous with respect to the reference measure P, while we didn’t
make such assumption for the set M. However, at this point this is
not essential, we will discuss this later.

In order to write dynamic programming equations for problems
(4.1) and (4.2) we need a decomposable structure similar to (2.3)
for the expectation operator. At every stage t = 2, . . . ,T of the pro-
cess we know the past, i.e., we observe a realization n[t] of the data
process. For observed at stage t realization n[t] we need to define
what do we optimize in the future stages. From the point of view
of the minimax formulation (4.1) we need to specify conditional
distribution of n[t+1,T] given n[t] for every probability distribution
Q 2 M of n[T] = (n[t],n[t+1,T]).

Consider a linear space Z of measurable functions Zð�Þ : N ! R,
for example take Z :¼ LpðN;B; PÞ, and sequence of spaces
Z1 � Z2 � � � � � ZT with Zt being the space of functions Z 2 Z such
that Z(n[T]) does not depend on nt+1, . . . ,nT; with some abuse of nota-
tion we write such functions as Zt(n[t]). In particular, ZT ¼ Z and Z1

is the space of constants and can be identified with R. It could be
noted that functions Zt 2 Zt are defined on the set

Nt :¼ fn½t� 2 Rd2 � � � � � Rdt : 9 n0½T� 2 N such that n½t� ¼ n0½t�g;

which is the projection of N onto Rd2 � � � � � Rdt .
Consider sequence of mappings .t;Tð�Þ : Z ! Zt ; t ¼ 1; . . . ; T � 1,

defined as

½.t;TðZÞ�ðn½t�Þ :¼ sup
Q2M

EQ jn½t� ½Zðn½T�Þ�; Z 2 Z; ð4:5Þ

where the notation EQ jn½t� means that the expectation is conditional
on n[t] and with respect to probability distribution Q of n[T] =
(n[t],n[t+1,T]). We assume that the maximum in the right hand side
of (4.5) is finite valued. Restricted to the space Ztþ1 � Z the map-
ping .t,T will be denoted qt, i.e., qt : Ztþ1 ! Zt is given by

½qtðZtþ1Þ�ðn½t�Þ ¼ sup
Q2M

EQ jn½t� ½Ztþ1ðn½tþ1�Þ�; Ztþ1 2 Ztþ1: ð4:6Þ

We also use notation .t;Tjn½t� ðZÞ and qtjn½t� ðZtþ1Þ for [.t,T(Z)](n[t]) and
[qt(Zt+1)](n[t]), respectively. In a sense mappings qt can be viewed
as conditional risk mappings discussed in [11,16], where such map-
pings were introduced in an axiomatic way (see Section 5 for a fur-
ther discussion).

After observing value n[t] of the data process at stage t, it is nat-
ural to perform future optimization at later stages using the condi-
tional distributions of n[t+1,T] given n[t], that is with respect to
.t;Tjn½t� ð�Þ. This motivates to consider the composite function

�.ðZÞ :¼ .1;Tð.2;T . . . ð.T�1;TðZÞÞ . . .Þ; Z 2 Z; ð4:7Þ
denoted �. ¼ .1;T � .2;T � � � � � .T�1;T . Note that mappings .t,T(�) and
qt(�) do coincide on Ztþ1, and hence �. ¼ q1 � q2 � � � � � qT�1 as well.
Since Z1 can be identified with R, we can view �. : Z ! R as a real
valued function, i.e., as a risk measure.

Consider risk measure q(�) in the form (4.4), this risk measure is
coherent by Theorem 3.1. The respective composite risk measure
�. ¼ q1 � q2 � � � � � qT�1 is also coherent. For the composite risk mea-
sure �. the corresponding risk averse problem can be written in the
following nested form similar to (2.4):

Min
x12X1

F1ðx1Þ þ q1jn½1� inf
x22X2ðx1 ;n2Þ

F2ðx2; n2Þ þ q2jn½2�

�
� � �

�

þqT�1jn½T�1� inf
xT2XT ðxT�1 ;nT Þ

FTðxT ; nTÞ
� ���

; ð4:8Þ

(cf., [16]). Note that each mapping qt,t = 1, . . . ,T � 1, in (4.8) can be
equivalently replaced by the respective mapping .t,T.

The risk measure q is not necessarily the same as the associated
composite risk measure �., and formulations (4.1) and (4.8) are not
necessarily equivalent.

� From the point of view of information at stage t – observed real-
ization n[t] of the data process and the corresponding condi-
tional distributions at future stages – the nested formulation
(4.8) is time consistent. Therefore from this point of view the
minimax formulation (4.1) (the risk averse formulation (4.2))
is time consistent iff it is equivalent to the nested formulation
(4.8), in particular if qð�Þ ¼ �.ð�Þ.

Some risk averse formulations are time consistent and some are
not (cf., [19]). For a discussion and survey of time consistency con-
cepts we may refer to [5,17]; we will discuss this further in the
next section.

For the nested formulation (4.8) it is possible to write dynamic
programming equations in a way similar to (2.5), (2.6) (cf., [16]).
That is, Eq. (2.6) should be replaced by the equation

Vtþ1ðxt ; n½t�Þ ¼ qtjn½t� ½Vtþ1ðxt; n½tþ1�Þ�; ð4:9Þ

while Eq. (2.5) remains the same. Similar to the risk neutral case,
the cost-to-go (value) functions Vtþ1ðxt; n½t�Þ do not depend on n[t]
if the data process is stagewise independent. Here the stagewise
independence means that n[t+1,T] is independent of n[t] for every

3 Unless stated otherwise expectations and probabilistic statements will be made
here with respect to the reference measure P.
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distribution Q 2 M of n[T] and t = 1, . . . ,T � 1. In terms of the set M
the stagewise independence means that

M ¼ fQ ¼ Q2 � � � � � QT : Qt 2 Mt; t ¼ 2; . . . ; Tg; ð4:10Þ
where for t = 2, . . . ,T, the setMt is a set of probability measures on a
(closed) set Nt � Rdt equipped with its Borel sigma algebra Bt . Note
that here measures Q 2 M are defined on the set N = N1 � � � � � NT.

In order to see a relation between formulation (4.1) (formula-
tion (4.2)) and the corresponding nested formulation (4.8) let us
observe the following. For Z 2 Z, we can write

EQ ½Zðn½T�Þ� ¼ EQ jn1 ½� � � EQ jn½T�2� ½EQ jn½T�1� ½Zðn½T�Þ�� � � ��;
and hence for qð�Þ ¼ supQ2MEQ ½�� we have

qðZÞ ¼ sup
Q2M

EQ jn1 ½� � � EQ jn½T�2� ½EQ jn½T�1� ½Zðn½T�Þ�� � � ��

6 sup
Q2M

EQ jn1 ½� � � sup
Q2M

EQ jn½T�2� ½sup
Q2M

EQ jn½T�1� ½Zðn½T�Þ�� � � ��

¼ q1 � q2 � � � � � qT�1ðZÞ: ð4:11Þ
We obtain the following result.

Proposition 4.1. For risk measure qðZÞ :¼ supQ2MEQ ½Z� and the
corresponding composite risk measure �. ¼ q1 � q2 � � � � � qT�1 the
following inequality holds

qðZÞ 6 �.ðZÞ; 8Z 2 Z: ð4:12Þ
It follows that the optimal value of the minimax problem (4.1)

(risk averse problem (4.2)) is less than or equal to the optimal va-
lue of the corresponding problem (4.8). As the following example
shows the inequality (4.12) can be strict even in the case of stage-
wise independence.

Example 1. Let T = 3 and M :¼ M2 �M3, with set M2 :¼ fPg
being a singleton and M3 :¼ fDðnÞ : n 2 Ng being a set of proba-
bility measures formed by measures of unit mass at a single point
n 2 N. Then for Z = Z(n2,n3),

qðZÞ ¼ sup
Q22M2 ;Q32M3

EQ2�Q3 ½Zðn2; n3Þ� ¼ sup
n32N

EP ½Zðn2; n3Þ�; ð4:13Þ

and

�.ðZÞ ¼ sup
Q22M2

EQ2 ½ sup
Q32M3

EQ3 ½Zðn2; n3Þ�� ¼ EPfsup
n32N

Zðn2; n3Þg: ð4:14Þ

In (4.13) and (4.14) the expectations are taken with respect to the
probability distribution P of n2. As it is well known in stochastic pro-
gramming the inequality

sup
n32N

EP ½Zðn2; n3Þ� 6 EPfsup
n32N

Zðn2; n3Þg ð4:15Þ

can be strict. Suppose, for example, that the set N is finite. Then the
maximum of Z(n2,n3) over n3 2 N is attained at a point �n3 ¼ �n3ðn2Þ
depending on n2. Consequently the right hand side of (4.15) is equal
to EP ½Zðn2; �n3ðn2ÞÞ�, and can be strictly bigger than the left hand side
unless �n3ð�Þ is constant. Therefore, the inequality (4.15) can be strict
if the set N contains more than one point.

Proposition 4.2. Let qðZÞ :¼ supQ2MEQ ½Z� and suppose that the
stagewise independence holds, i.e., the set M is given in the form
(4.10). Then qð�Þ ¼ �.ð�Þ if the interchageability property

EQ2�����Qt sup
Qtþ12Mtþ1

EQtþ1 ½Ztþ1ðn½t�; ntþ1Þ�
( )

¼ sup
Qtþ12Mtþ1

EQ2�����Qtþ1 ½Ztþ1ðn½t�; ntþ1Þ�: ð4:16Þ

holds for all Z 2 Z and t = 2, . . . , T � 1.

Proof. Let the set M be given in the form (4.10). Then Eq. (4.6)
takes the form

½qtðZtþ1Þ�ðn½t�Þ ¼ sup
Qtþ12Mtþ1

EQtþ1 ½Ztþ1ðn½t�; ntþ1Þ�; ð4:17Þ

where the expectation EQtþ1 ½Ztþ1ðn½t�; ntþ1Þ� is taken with respect to
the distribution Qt+1 of nt+1 for fixed n[t]. Suppose that condition
(4.16) holds. Then

qðZÞ ¼ sup
Q22M2 ;...;QT2MT

EQ2 ½� � � EQT�1 ½EQT ½Zðn1; . . . ; nTÞ�� � � ��

¼ sup
Q22M2

� � � sup
QT2MT

EQ2 ½� � �EQT�1 ½EQT ½Zðn1; . . . ; nTÞ�� � � ��

¼ sup
Q22M2

� � � sup
QT�12MT�1

EQ2 ½� � �EQT�1 ½ sup
QT2MT

EQT ½Zðn1; . . . ; nTÞ�� � � ��

¼ sup
Q22M2

EQ2 ½� � � sup
QT�12MT�1

EQT�1 ½ sup
QT2MT

EQT ½Zðn1; . . . ; nTÞ�� � � ��;

ð4:18Þ
and hence qðZÞ ¼ �.ðZÞ. h

5. Applications and examples

In this section we discuss applications and examples of the gen-
eral approach outlined in Sections 3 and 4. Let us start with the fol-
lowing example corresponding to robust formulation of multistage
programming. Let M be the set of all probability measures on
ðN;BÞ. Then for computing the maximum in qð�Þ ¼ supQ2MEQ ½�� it
suffices to perform the maximization with respect to measures of
mass one at a point of the set N, and hence the minimax formula-
tion (4.1) can be written as

Min
x1 ;x2ð�Þ;...;xT ð�Þ

sup
ðn2 ;...;nT Þ2N

fF1ðx1Þ þ F2ðx2ðn½2�Þ; n2Þ þ � � � þ FTðxTðn½T�Þ; nTÞg

s:t: x1 2 X1; xtðn½t�Þ 2 X tðxt�1ðn½t�1�Þ; ntÞ; t ¼ 2; . . . ; T:

ð5:1Þ
Here the interchangeability property (4.16) holds and hence q(�)
coincides with the corresponding composite risk measure �.ð�Þ, the
minimax formulation is equivalent to the corresponding nested for-
mulation, and thus formulation (5.1) is time consistent. It could be
noted that in this example there is no reference probability measure
with respect to which all measures Q 2 M are absolutely continu-
ous. Therefore strictly speaking the above q(�) is not a risk measure
as it was defined in Section 3. In order to reformulate this in terms
of risk measures we may replace ‘‘sup’’ in (5.1) with the ‘‘ess sup’’
operator (recall that ess sup (�) can be interpreted as AV@R0(�) risk
measure, see (3.14)). For q:¼AV@R0 it holds that qð�Þ ¼ �.ð�Þ as well,
and the minimax formulation is equivalent to the corresponding
nested formulation. All that is discussed in detail in [21].

Let now q(�):¼AV@Ra(�) with Z :¼ L1ðN;B; PÞ and a 2 (0,1). In
that case q is not equal to the corresponding composite risk mea-
sure �. ¼ q1 � q2 � � � � � qT�1. Note that the associated mapping qtjn½t�
(see (4.6)) is not the same here as AV@Rajn½t� ð�Þ. Suppose, for exam-
ple, that T = 3 and the stagewise independence holds, i.e., the set
M is of the form (4.10). Then for Z = Z(n2,n3),

q2jn2 ðZÞ ¼ sup
f2A

Ejn2 ½Zðn2; n3Þfðn2; n3Þ�; ð5:2Þ

where A ¼ ffðn2; n3Þ : 0 
 fðn2; n3Þ 
 a�1;E½f� ¼ 1g. Consider the set
A0 formed by densities f 2 A which are functions of n3 alone, i.e.,
A0 ¼ ffðn3Þ : 0 
 fðn3Þ 
 a�1;E½f� ¼ 1g. Then

AV@Rajn2 ðZÞ ¼ sup
f2A0

Ejn2 ½Zðn2; n3Þfðn3Þ�: ð5:3Þ

Since A0 is a (strict) subset of A, it follows that q2jn2 ðZÞ P
AV@Rajn2 ðZÞ, and the inequality can be strict.
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The corresponding multistage problem (4.2) can be written as

Min
z;x1 ;x2ð�Þ;...;xT ð�Þ

Efzþa�1½F1ðx1ÞþF2ðx2ðn½2�Þ;n2Þþ �� �þFTðxTðn½T�Þ;nTÞ� z�þg
s:t: x1 2X1;xtðn½t�Þ 2X tðxt�1ðn½t�1�Þ;ntÞ;t¼2; . . . ;T:

ð5:4Þ
If the multistage problem is linear and the number of scenarios
(realizations of the data process) is finite, then it is possible to write
problem (5.4) as a large linear programming problem. As far as dy-
namic equations are concerned let us observe that at the last stage
t = Twe would need to solve problem conditional on z and decisions
up to stage t = T � 1. Therefore dynamic equations cannot be writ-
ten in an obvious way and formulation (5.4) is not time consistent.
The corresponding nested formulation, of course, is time consistent.
It is interesting to observe that in extreme cases of a = 1 (when
qð�Þ ¼ Eð�Þ) and a = 0 (when q(�) = ess sup (�)) the minimax and
nested formulations are equivalent.

As another example consider the problem of moments in a mul-
tistage setting (see, e.g., [10] and references therein for a discussion
of the problem of moments). Let Nt � Rdt ; bt 2 Rqt and wt : Nt ! Rqt

be a measurable mapping, t = 2, . . . ,T. Define Mt to be the set of
probability measures Qt on ðNt ;BtÞ satisfying the following mo-
ment conditions

EQt ½wtðntÞ� ¼ bt; t ¼ 2; . . . ; T; ð5:5Þ
and let M be the set of the form (4.10) of products of these mea-
sures. By this setting the stagewise independence condition holds
here.

In this example the minimax and nested formulations are not
necessarily equivalent. In order to see this consider the following
instance. Let T = 3 and the set N2 be finite. Then the moment con-
straints (5.5) take a form of linear equations for the respective
probabilities associated with points of the set N2. By an appropri-
ate choice the moment constraints define a unique probability
measure onN2. If furthermore the setM3 consists of all probability
measures on N3 � Rd3 , then this becomes a case considered in
Example 1. This shows that the corresponding inequality (4.12)
can be strict in this example.

For the respective nested formulation we can write the dynamic
programming equations in the form (2.10) with

Vtþ1ðxtÞ ¼ sup
Qtþ12Mtþ1

EQtþ1 ½Vtþ1ðxt ; ntþ1Þ�: ð5:6Þ

It can be noted that by the Richter–Rogosinski Theorem (cf., [14])
the maximum in the right hand side of (5.6) is attained at a proba-
bility measure supported on at most 1 + qt+1 points.

In the next section we discuss the classical inventory problem
with moment constraints (see, e.g., [23] for a thorough discussion
of the inventory model).

5.1. Inventory model

5.1.1. Static case
Let us start by setting the problem in a static case. Suppose that

a company has to decide about order quantity x of a certain prod-
uct to satisfy demand d. The cost of ordering is c > 0 per unit. If the
demand d is larger than x, then the company makes an additional
order for the unit price bP 0. The cost of this is equal to b(d � x) if
d > x, and is zero otherwise. On the other hand, if d < x, then holding
cost of h(x � d)P 0 is incurred. The total cost is then equal to4

Fðx;dÞ ¼ cxþ b½d� x�þ þ h½x� d�þ
¼ maxfðc � bÞxþ bd; ðc þ hÞx� hdg: ð5:7Þ

We assume that b > c, i.e., the back order penalty cost is larger than
the ordering cost. The objective is to minimize the total cost F(x,d),
with x being the decision variable.

One has to make a decision before knowing realization of the
demand d, so we model the demand as a random variable D. Sup-
pose that we have a partial information about probability distribu-
tion of D. That is, we can specify a familyM of probability measures
on Rþ and consider the following worst case distribution problem

Min
xP0

/ðxÞ :¼ sup
Q2M

EQ ½Fðx;DÞ�
( )

: ð5:8Þ

The above problem, with the setM defined by first and second order
moments of the demand D, was studied in the pioneering paper by
Scarf [18].

Suppose that range of the demand is known, i.e., it is known
that D 2 [l,u]. If there is no other information about distribution
of D, then we can take M to be the set of all probability distribu-
tions supported on the interval [l,u]. In that case the maximum
of EQ ½Fðx;DÞ� over Q 2 M is attained at measure of mass one at a
point of [l,u], and the respective optimal solution of the minimax
problem is (e.g., [20, p.5])

x
 ¼ hlþ bu
hþ b

: ð5:9Þ

Suppose, further, that mean l ¼ E½D� of the demand is known, and
hence let M be the set of probability distributions supported on
an interval ½l;u� � Rþ and having mean l.

Proposition 5.1. Suppose that M is the set of probability distribu-
tions supported on an interval ½l;u� � Rþ and having mean l. Then
problem (5.8) has the following optimal solution

�x ¼ l if b�c
bþh <

u�l
u�l ;

u if b�c
bþh >

u�l
u�l :

(
ð5:10Þ

If b�c
bþh ¼ u�l

u�l , then the set of optimal solutions of (5.8) coincides with the
interval [l,u].

Proof. Since the function F(x,d) is convex in d, we have by the fol-
lowing Lemma 5.1 that for any x the worst probability measure in
(5.8) is the measure supported on points l and u with respective
probabilities (u � l)/(u � l) and (l � l)/(u � l). Therefore problem
(5.8) is reduced to the classical Newsvendor Problem problem with
the respective cdf of the demand:

HðtÞ ¼
0 if t < l;
u�l
u�l if l 6 t < u;

1 if u 6 t:

8><
>:

The optimal solution of the Newsvendor Problem is �x ¼ H�1 b�c
bþh


 �
(e.g., [20, p.3]), and hence (5.10) follows. h

Lemma 5.1. Consider points l < u and l 2 [l,u], a convex function
g : R ! R and the set M of probability measures on the interval [l,u]
having mean l. Then the problem

Max
Q2M

EQ ½gðDÞ� ð5:11Þ

attains its optimal solution at probability measure supported on points
l and u with respective probabilities (u � l)/(u � l) and (l � l)/(u � l).

Proof. By the Richter–Rogosinski Theorem we have that maxi-
mum in (5.11) is attained at a probability measure supported on
two points of the interval [l,u].

Let us observe that for any c0 6 c, d0 P d, p 2 [0,1] and p0 2 [0,1]
such that

ð1� pÞc þ pd ¼ ð1� p0Þc0 þ p0d0
;4 For a number a 2 R; ½a�þ denotes the maximum max{a,0}.
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it follows by convexity of g(t) that

ð1� pÞgðcÞ þ pgðdÞ 6 ð1� p0Þgðc0Þ þ p0gðd0Þ: ð5:12Þ
Indeed, suppose for the moment that c = c0. Moreover, by making
change of variables t? t � c and replacing g(�) with g(�) � g(c), we
can assume without loss of generality that c = 0 and g(c) = 0. By con-
vexity of g(�) we have that for s 2 (0,1) the inequality g(sd0) 6 sg(d0)
holds. Taking s = p0/p and noting that p0/p = d/d0, we obtain that
pg(d) 6 p0g(d0). This proves (5.12) in case of c = c0. The other case
where d = d0 can be verified in a similar way.

Since the left hand side of (5.12) is equal to the expectation of
g(D) with respect to the probability measure supported on the
points c and d with respective probabilities 1 � p and p such that
(1 � p)c + pd = l, and the right hand side of (5.12) is equal to the
expectation of g(D) with respect to the probability measure
supported on the points c0 and d0 such that (1 � p0)c0 + p0d0 = l, it
follows that the optimal value of problem (5.11) is attained at a
probability measure supported on the points l and u. The corre-
sponding probabilities can be computed in a straightforward way
from the equation (1 � p)l + pu = l. h

5.1.2. Multistage case
Consider the following multistage worst distribution formula-

tion of inventory model

Min
xtPyt

sup
Q2M

EQ
PT
t¼1

ctðxt � ytÞ þ wtðxt;DtÞ
� �

s:t: ytþ1 ¼ xt � dt ; t ¼ 1; . . . ; T � 1:
ð5:13Þ

Here y1 is a given initial inventory level, ct,bt,ht are the ordering,
backorder penalty, and holding costs per unit, respectively, at time
t, and

wtðxt ;dtÞ :¼ bt½dt � xt�þ þ ht½xt � dt �þ:
We assume that bt > ct > 0 and ht P 0,t = 1, . . . ,T, and that M is a set
of probability measures (distributions) of the demand process vec-
tor ðD1; . . . ;DTÞ 2 RT

þ. The minimization in (5.13) is performed over
(nonanticipative) policies of the form x1,x2(d[1]), . . . ,xT(d[T � 1]) satis-
fying the feasibility constraints of (5.13) for almost every realization
(d1, . . . ,dT) of the demand process. As before d[t]:¼(d1, . . . ,dt) denotes
history of the process up to time t.

Suppose that the distribution of (D1, . . . ,DT) is supported on the
set N = N1 � � � � � NT, given by the direct product of (finite) inter-
vals Nt :¼ ½lt ;ut � � Rþ, and we know respective means lt ¼ E½Dt �.
That is, let Mt be the set of probability distributions supported
on the interval [lt,ut] and having mean lt 2 [lt,ut], t = 1, . . . ,T, and
let M be the corresponding set of product measures of the form
(4.10).

For the nested formulation the corresponding cost-to-go func-
tions are given by the following dynamic equations, t = T, . . . ,2,

VtðytÞ ¼ inf
xtPyt

ctðxt � ytÞ þ sup
Qt2Mt

EQt ½wtðxt;DtÞ þ Vtþ1ðxt � DtÞ�
( )

;

ð5:14Þ
where VT+1(�) � 0. It is straightforward to verify by induction that
the functions Vt(�) are convex, and hence by Lemma 5.1 we have

that the maximum in (5.14), over probability measures Qt 2 Mt ,
is attained at the probability measure

Q

t ¼ ptDðltÞ þ ð1� ptÞDðutÞ

supported on points lt and ut with respective probabilities
pt = (ut � lt)/(ut � lt) and 1 � pt = (lt � lt)/(ut � lt). Therefore the
respective problem is reduced to the corresponding problem with
single probability distribution Q 
 ¼ Q 


1 � � � � � Q 

T of the demand

process with the random variables Dt, t = 1, . . . ,T, being indepen-
dent of each other. That is, the problem is reduced to the risk neu-
tral case with the demand process having finite number N = 2T

scenarios.
Here the minimax and nested formulations are equivalent. In-

deed, the optimal value of the nested formulation is always greater
than or equal to the optimal value of the minimax formulation.
Here the opposite inequality also holds, this can be seen by setting
Q = Q⁄ in (5.13).
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