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Abstract

For a long time modeling approaches to stochastic programming were domi-
nated by scenario generation methods. Consequently the main computational
effort went into development of decomposition type algorithms for solving con-
structed large scale (linear) optimization problems. A different point of view
emerged recently where computational complexity of stochastic programming
problems was investigated from the point of view of randomization methods
based on Monte Carlo sampling techniques. In that approach the number of
scenarios is irrelevant and can be infinite. On the other hand, from that point
of view there is a principle difference between computational complexity of two
and multistage stochastic programming problems – certain classes of two stage
stochastic programming problems can be solved with a reasonable accuracy
and reasonable computational effort, while (even linear) multistage stochastic
programming problems seem to be computationally intractable in general.
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1. Introduction

Origins of Stochastic Programming are going back to more than 50 years ago
to papers of Beale [2] and Dantzig [4]. The essential idea of that approach is
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that decision variables are divided into groups of “here-and-now” decision vari-
ables which should be made before a realization of the uncertain data becomes
available, and “wait-and-see” decision variables made after observing data and
which are functions of the data. Furthermore, the uncertain parameters are
modeled as random variables, with a specified probability distribution, and
consequently the optimization problem is formulated in terms of minimizing
the expected values of the uncertain costs.

Two-stage stochastic linear programming problems can be written in the
form

Min
x∈X

〈c, x〉+ E[Q(x, ξ)], (1.1)

where X = {x ∈ R
n : Ax ≤ b} and Q(x, ξ) is the optimal value of the second

stage problem
Min
y∈Rm

〈q, y〉 subject to Tx+Wy ≤ h. (1.2)

Some/all of the parameters, summarized in data vector ξ := (q, h, T,W ), of the
second stage problem (1.2) are unknown (uncertain) at the first stage when a
“here-and-now” decision x should be made, while second stage decisions y =
y(ξ) are made after observing the data and are functions of the data parameters.
Parameters of the second stage problem are modeled as random variables and
the expectation in (1.1) is taken with respect to a specified distribution of the
random vector ξ.

This can be extended to the following multistage setting of T -stage stochas-
tic programming problems

Min
x1∈X1

f1(x1) + E

[

inf
x2∈X2(x1,ξ2)

f2(x2, ξ2) + E

[

· · ·+ E

[

inf
xT∈XT (xT−1,ξT )

fT (xT , ξT )
]]

]

,

(1.3)

driven by the random data process ξ1, ξ2, . . ., ξT . Here xt ∈ R
nt , t = 1, . . ., T ,

are decision variables, ft : R
nt × R

dt → R are continuous functions and
Xt : R

nt−1 × R
dt ⇒ R

nt , t = 2, . . ., T , are measurable closed valued multifunc-
tions. The first stage data, i.e., the vector ξ1, the function f1 : Rn1 → R, and the
set X1 ⊂ R

n1 are deterministic (not random). It is said that the multistage prob-
lem is linear if the objective functions and the constraint functions are linear.
That is,

ft(xt, ξt) := 〈ct, xt〉, X1 := {x1 : A1x1 ≤ b1} , (1.4)

Xt(xt−1, ξt) := {xt : Btxt−1 +Atxt ≤ bt} , t = 2, . . ., T, (1.5)

where ξ1 := (c1, A1, b1) is known at the first stage (and hence is nonrandom),
and ξt := (ct, Bt, At, bt) ∈ R

dt , t = 2, . . ., T , are data vectors.
For a long time approaches to modeling and solving stochastic programming

problems were dominated by scenario generation methods. In such an approach
a finite number of scenarios, representing what may happen in the future with
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assigned probability weights, were generated and consequently the constructed
optimization problem was solved by decomposition type methods. If one takes
the position that generated scenarios represent reality in a reasonably accurate
way, then there is no dramatic difference between two and multistage stochas-
tic programming. An argument is that considering many scenarios is certainly
better than solving the problem for just one scenario which would be a deter-
ministic optimization approach. Everybody would agree, however, that what
will really happen in the future will be different with probability one (w.p.1)
from the set of generated scenarios. This raises the question of what does it
mean to solve a stochastic programming problem? In that respect we may cite
[3, p. 413]: “... it is absolutely unclear what the resulting solution [of a sce-
nario based approximation of a multistage stochastic program] has to do with
the problem we intend to solve. Strictly speaking , we even cannot treat this
solution as a candidate solution, bad or good alike, to the original problem –
the decision rules we end up with simply do not say what our decisions should
be when the actual realizations of the uncertain data differ from the scenario
realizations.”

Somewhat different point of view emerged in a number of recent publica-
tions. It was shown theoretically and demonstrated in various numerical stud-
ies that certain classes of two stage stochastic programming problems can be
solved with reasonable accuracy and reasonable computational effort by em-
ploying Monte Carlo sampling techniques. From that point of view the number
of scenarios is irrelevant and can be astronomically large or even infinite. On the
other hand, it turns out that computational complexity of multistage stochastic
programming problems is conceptually different and scenario generation meth-
ods typically fail to solve multistage stochastic problems in a reasonable sense
to a “true” optimality. It also could be pointed out the criticism of the model-
ing assumption of knowing the “true” probability distribution of the involved
random data. We will not discuss this aspect of the stochastic programming
approach here.

We will use the following notation and terminology through the paper. No-
tation “ := ” means “equal by definition”; by ∆n := {x ∈ R

n
+ :

∑n
i=1 xi = 1}

we denote the n-dimensional simplex; Sm denotes the linear space of m × m
symmetric matrices; 〈x, y〉 denotes the standard scalar product of two vec-
tors x, y ∈ R

n and 〈x, y〉 := Tr(xy) for x, y ∈ S
m; unless stated otherwise

‖x‖ =
√

〈x, x〉 denotes the Euclidean norm of vector x; C∗ = {y : 〈y, x〉 ≥
0, ∀x ∈ C} denotes the (positive) dual of cone C ⊂ R

n; by “ �
C
” we denote

partial order induced by a closed convex cone C in a finite dimensional vector
space, i.e., x �

C
y means that y − x ∈ C; int(C) denotes the interior of set

C ⊂ R
n; dist(x,C) := infy∈C ‖x − y‖ denotes the distance from point x ∈ R

n

to set C; Prob(A) denotes probability of event A; ∆(ξ) denotes measure of

mass one at point ξ; “
D
→ ” denotes convergence in distribution; N (µ, σ2) de-

notes normal distribution with mean µ and variance σ2;MY (t) := E[exp(tY )] is
the moment generating function of random variable Y ; E[X|Y ] denotes condi-
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tional expectation of random variable X given Y , and Var[X] denotes variance
of X.

2. Asymptotic Analysis

Consider the following stochastic optimization problem

Min
x∈X

{

f(x) := E[F (x, ξ)]
}

. (2.1)

Here X is a nonempty closed subset of Rn, ξ is a random vector whose prob-
ability distribution P is supported on a set Ξ ⊂ R

d, and F : X × Ξ → R.
Unless stated otherwise all probabilistic statements will be made with re-
spect to the distribution P . The two stage problem (1.1) is of that form with
F (x, ξ) := 〈c, x〉+Q(x, ξ). We assume that the expectation f(x) is well defined
and finite valued for every x ∈ R

n. This, of course, implies that F (x, ξ) is fi-
nite valued for almost every (a.e.) ξ ∈ Ξ. For the two stage problem (1.1) the
later means that the second stage problem (1.2) is bounded from below and its
feasible set is nonempty for a.e. realization of the random data.

Suppose that we have a sample ξ1, ..., ξN of N realizations of the ran-
dom vector ξ. We assume that the sample is iid (independent identically dis-
tributed). By replacing the “true” distribution P with its empirical estimate

PN := 1
N

∑N
j=1 ∆(ξj), we obtain the following approximation of the “true”

problem (2.1):

Min
x∈X

{

f̂N (x) := 1
N

∑N
j=1 F (x, ξ

j)
}

. (2.2)

We denote by ϑ∗ and ϑ̂N the optimal values of problems (2.1) and (2.2), re-
spectively, and by S and SN the respective sets of optimal solutions.

In the recent literature on stochastic programming, problem (2.2) is often
referred to as the Sample Average Approximation (SAA) problem, and in ma-
chine learning as the empirical mean optimization. The sample ξ1, ..., ξN can be
a result of two somewhat different procedures – it can be given by a historical
data of observations of ξ, or it can be generated in the computer by Monte
Carlo sampling techniques. We will be mainly interested here in the second
case where we view the SAA problem (2.2) as an approach to solving the true
problem (2.1) by randomization techniques.

By the Law of Large Numbers (LLN) we have that for any x ∈ X , f̂N (x)
tends to f(x) w.p.1 as N → ∞. Moreover, let us assume the following.

(A1) For any x ∈ X the function F (·, ξ) is continuous at x for a.e. ξ ∈ Ξ.

(A2) There exists an integrable function H(ξ) such that |F (x, ξ)| ≤ H(ξ) for
all x ∈ X and ξ ∈ Ξ.

These assumptions imply that f(x) is continuous on X and f̂N (x) converges
w.p.1 to f(x) uniformly on any compact subset of X (uniform LLN). Assuming
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further that X is compact, it is not difficult to show that the optimal value
ϑ̂N and an optimal solution x̂N of the SAA problem converge to their true
counterparts w.p.1 as N → ∞ (see, e.g., [20, section 5.1.1.]).

It is also possible to derive rates of convergence. Let us make the following
stronger assumptions.

(A3) For some point x∗ ∈ X the expectation E[F (x∗, ξ)2] is finite.

(A4) There exists a measurable function C(ξ) such that E[C(ξ)2] is finite and

|F (x, ξ)− F (x′, ξ)| ≤ C(ξ)‖x− x′‖, ∀x, x′ ∈ X , ∀ξ ∈ Ξ.

Suppose further that the set X is compact and consider Banach space C(X ) of

continuous functions φ : X → R. Then f̂N can be viewed as a random element
of C(X ), and N1/2(f̂N − f) converges in distribution to a random element
Y ∈ C(X ). This is the so-called functional Central Limit Theorem (CLT) (e.g.,
[1]). By employing further an infinite dimensional Delta Theorem it is possible
to derive the following result (cf., [17]).

Theorem 2.1. Suppose that the set X is compact and assumptions (A3) and

(A4) hold. Then N1/2(f̂N − f) converges in distribution to a random element

Y ∈ C(X ) and

ϑ̂N = inf
x∈S

f̂N (x) + op(N
−1/2), (2.3)

N1/2(ϑ̂N − ϑ∗)
D
→ inf

x∈S
Y (x). (2.4)

If, moreover, S = {x̄} is a singleton, then

N1/2(ϑ̂N − ϑ∗)
D
→ N (0, σ2), (2.5)

where σ2 := Var[F (x̄, ξ)].

The above result shows that the optimal value of the SAA problem converges
to the optimal value of the true problem at a stochastic rate of Op(N

−1/2).

In particular, if the true problem has unique optimal solution x̄, then ϑ̂N =
f̂N (x̄) + op(N

−1/2), i.e., ϑ̂N converges to ϑ∗ at the same asymptotic rate as

f̂N (x̄) converges to f(x̄).

It is not difficult to show that E[ϑ̂N ] ≤ ϑ∗ and E[ϑ̂N+1] ≥ E[ϑ̂N ] (cf.,

[10]), i.e., ϑ̂N is a biased down estimate of ϑ∗ and the bias is monotonically
deceasing with increase of the sample size N . Note that for any fixed x ∈ X we
have that E[f̂N (x)] = f(x) and hence E[Y (x)] = 0, where Y (x) is the random
function specified in Theorem 2.1. Therefore if S = {x̄} is a singleton, then

the asymptotic bias of ϑ̂N is of order o(N−1/2). On the other hand, if the
true problem has more than one optimal solution, then the expected value of
infx∈S Y (x) typically will be strictly negative and hence the asymptotic bias
will be of order O(N−1/2).
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In some situations the feasible set of stochastic program is also given in a
form of expected value constraints. That is, consider the following problem

Min
x∈X

{

f(x) := E[F (x, ξ)]
}

subject to g(x) �
C
0, (2.6)

where C ⊂ R
m is a closed convex cone and g(x) := E[G(x, ξ)] with G : X ×Ξ →

R
m. Note that constraint g(x) �

C
0 means that −g(x) ∈ C. We assume that

for every x ∈ R
n the expectation g(x) is well defined and finite valued. Here

in addition to the data of problem (2.1) we have constraints g(x) �
C

0. For
example if C := R

m
+ , then these constraints become gi(x) ≤ 0, i = 1, ...,m,

where gi(x) is the i-th component of the mapping g(x). If C := S
m
+ is the

cone of m×m positive semidefinite matrices and G(x, ξ) is an affine in x map-
ping, then these constraints become constraints of semidefinite programming.
Given random sample ξ1, ..., ξN , the expected value mapping g(x) can be ap-

proximated by the sample average ĝN (x) := 1
N

∑N
j=1G(x, ξ

j), and hence the
following SAA problem can be constructed

Min
x∈X

f̂N (x) subject to ĝN (x) �
C
0. (2.7)

We say that problem (2.6) is convex if the set X is convex, and for every
ξ ∈ Ξ the function F (·, ξ) is convex and the mapping G(·, ξ) is convex with
respect to the cone C, i.e.,

G(tx+ (1− t)y, ξ) �
C
tG(x, ξ) + (1− t)G(y, ξ), ∀x, y ∈ R

n, ∀t ∈ [0, 1]. (2.8)

Note that the above condition (2.8) is equivalent to the condition that
〈λ,G(x, ξ)〉 is convex in x for every λ ∈ C∗. Note also that convexity of F (·, ξ)
and G(·, ξ) imply convexity of the respective expected value functions.

Consider the Lagrangian L(x, λ, ξ) := F (x, ξ)+〈λ,G(x, ξ)〉, and its expecta-

tion `(x, λ) := E[L(x, λ, ξ)] and sample average ˆ̀
N (x, λ) := f̂N (x)+ 〈λ, ĝN (x)〉,

associated with problem (2.6). The Lagrangian dual of problem (2.6) is the
problem

Max
λ∈C∗

{

ψ(λ) := min
x∈X

`(x, λ)

}

. (2.9)

It is said that the Slater condition for problem (2.6) holds if there exists a point
x∗ ∈ X such that g(x∗) ≺

C
0, i.e., −g(x∗) ∈ int(C). If the problem is convex

and the Slater condition holds, then the optimal values of problems (2.6) and
(2.9) are equal to each other and the dual problem (2.9) has a nonempty and
bounded set of optimal solutions, denoted Λ.

We can now formulate an analogue of the asymptotic result of Theorem 2.1
for convex problems of the form (2.6) (cf., [20, section 5.1.4]). We will need the
following analogues of assumptions (A3) and (A4).

(A5) For some point x∗ ∈ X the expectation E
[

‖G(x∗, ξ)‖2
]

is finite.
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(A6) There exists a measurable function C(ξ) such that E[C(ξ)2] is finite and

‖G(x, ξ)−G(x′, ξ)‖ ≤ C(ξ)‖x− x′‖, ∀x, x′ ∈ X , ∀ξ ∈ Ξ.

As before we denote by ϑ∗ and ϑ̂N the optimal values of the true and SAA
problems (problems (2.6) and (2.7)), respectively.

Theorem 2.2. Suppose that: problem (2.6) is convex, Slater condition holds,

the set X is compact and assumptions (A3) – (A6) are satisfied. Then

ϑ̂N = inf
x∈S

sup
λ∈Λ

ˆ̀
N (x, λ) + op(N

−1/2). (2.10)

If, moreover, S = {x̄} and Λ = {λ̄} are singletons, then

N1/2(ϑ̂N − ϑ∗)
D
→ N (0, σ2), (2.11)

where σ2 := Var[L(x̄, λ̄, ξ)].

There is an interesting consequence of the above result. It was assumed that
in the SAA problem (2.7) the same sample ξ1, ..., ξN was used in constructing

approximations f̂N (x) and ĝN (x) of the objective and constraints functions, and
the asymptotic result (2.11) is formulated for that case. That is, the asymp-
totic variance σ2 is given by Var[L(x̄, λ̄, ξ)] = Var

[

F (x̄, ξ) +
∑m

i=1 λ̄iGi(x̄, ξ)
]

.
In the Monte Carlo sampling approach we have a choice of estimating the ob-
jective function and each component of the constraint mapping g(x) by using
independently generated samples. In that case similar result holds but with
the asymptotic variance given by Var [F (x̄, ξ)]+

∑m
i=1 Var

[

λ̄iGi(x̄, ξ)
]

. Since it
could be expected that the components Gi(x̄, ξ), i = 1, ...,m, of the constraint
mapping are positively correlated with each other, in order to reduce variability
of the SAA estimates it would be advantageous to use the independent samples
strategy.

3. Multistage Problems

The above analysis is performed for stochastic programs of a static form (2.1)
and can be applied to two stage programming problems. What can be said in
that respect for dynamic programs formulated in a multistage form? A solution
of the multistage program (1.3) is a policy x̄t = x̄t(ξ[t]), t = 1, ..., T , given
by measurable functions of the data process ξ[t] := (ξ1, ..., ξt) available at the
decision time t = 2, ..., T , with x̄1 being deterministic. It is said that policy is
feasible if it satisfies the feasibility constraints for a.e. realization of the data
process, i.e., x̄1 ∈ X1 and x̄t ∈ Xt(x̄t−1, ξt), t = 2, ..., T , w.p.1.

The following dynamic programming equations can be written for the mul-
tistage program (1.3) going backward in time

Qt(xt−1, ξ[t]) = inf
xt∈Xt(xt−1,ξt)

{

ft(xt, ξt) +Qt+1(xt, ξ[t])
}

, t = T, ..., 2, (3.1)
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where QT+1(xT , ξ[T ]) ≡ 0 by definition and

Qt+1(xt, ξ[t]) := E
{

Qt+1(xt, ξ[t+1])
∣

∣ξ[t]
}

, t = T − 1, ..., 2, (3.2)

are the respective cost-to-go functions. Finally at the first stage the following
problem should be solved

Min
x1∈X1

f1(x1) + E[Q2(x1, ξ2)]. (3.3)

A policy x̄t = x̄t(ξ[t]), t = 1, ..., T , is optimal if w.p.1 it holds that

x̄t ∈ arg min
xt∈Xt(x̄t−1,ξt)

{

ft(xt, ξt) +Qt+1(xt, ξ[t])
}

, t = T, ..., 2, (3.4)

and x̄1 is an optimal solution of the first stage problem (3.3).
Problem (3.3) looks similar to the stochastic program (2.1). The difference,

however, is that for T ≥ 3 the function Q2(x1, ξ2) is not given explicitly, or
at least in a computationally accessible form, but in itself is a solution of a
multistage stochastic programming problem. Therefore in order to solve (1.3)
numerically one would need to approximate the data process ξ1, ..., ξT by gener-
ating a tree of scenarios. The Monte Carlo sampling approach can be employed
in the following way. First, a random sample ξ12 , ..., ξ

N1

2 of N1 realizations of

the random vector ξ2 is generated. For each ξj2, j = 1, ..., N1, a random sample

of size N2 of ξ3, according to the distribution of ξ3 conditional on ξ2 = ξj2, is
generated and so forth for later stages. We refer to this procedure as conditional
sampling. In that way the true distribution of the random data process is dis-
cretized with every generated path of the process taken with equal probability.
We refer to each generated path as scenario and to the collection of all scenarios
as scenario tree. Note that the total number of scenarios N =

∏T−1
t=1 Nt. We

denote N := {N1, ..., NT−1} and by ϑ∗ and ϑ̂N the optimal values of the true
problem (1.3) and the constructed SAA problem, respectively.

Assume for the sake of simplicity that the data process is stagewise indepen-

dent, i.e., random vector ξt+1 is distributed independently of ξ[t], t = 1, ..., T−1.
Then the cost-to-go functions Qt+1(xt), t = 1, ..., T − 1, do not depend on the
random data process. Also in that case there are two possible approaches to
conditional sampling, namely for each ξj2, j = 1, ..., N1, it is possible to generate
different samples of ξ3 independent of each other, or it is possible to use the
same sample ξ13 , ..., ξ

N2

3 , and so forth for later stages. We consider the second
approach, which preserves the stagewise independence in the generated scenario

tree, with respective samples ξ1t , ..., ξ
Nt−1

t , at stages t = 2, ..., T .
We can write dynamic programming equations for the constructed SAA

problem. Eventually the (true) first stage problem (3.3) will be approximated
by the following SAA problem

Min
x1∈X1

f1(x1) + Q̂2,N1
(x1), (3.5)
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where Q̂2,N1
(x1) = 1

N1

∑N1

j=1 Q̃2(x1, ξ
j
2, ξ̃). Here ξ̃ = (ξ13 , ..., ξ

N2

3 , ..., ξ1T ,

..., ξ
NT−1

T ) is random vector composed from the samples at stages t ≥ 3 and

Q̃2(x1, ξ2, ξ̃) is the corresponding cost-to-go function of the SAA problem.
Note that function Q̃2(x1, ξ2, ξ̃) depends on the random samples used at stages
t = 3, ..., T , as well.

Suppose now that the sample size N1 tends to infinity while sample sizes Nt,
t = 2, ..., T − 1, are fixed. Then by the LLN we have that Q̂2,N1

(x1) converges

(pointwise) w.p.1 to the function E2(x1, ξ̃) := E
[

Q̃2(x1, ξ2, ξ̃)
∣

∣ξ̃
]

. Consider the
problem

Min
x1∈X1

f1(x1) + E2(x1, ξ̃). (3.6)

Conditional on ξ̃ we can view problem (3.5) as the SAA problem associated with
the (static) expected value problem (3.6). Consequently asymptotic results of
section 2 can be applied to the pair of problems (3.5) and (3.6).

Denote by ϑ∗(ξ̃) the optimal value of problem (3.6), and recall that ϑ̂N
denotes the optimal value of problem (3.5). We have that conditional on ξ̃,

the SAA optimal value ϑ̂N is a biased down estimate of ϑ∗(ξ̃). Since E2(x1, ξ̃)
is an SAA estimate of Q2(x1), we also have that E

[

E2(x1, ξ̃)
]

≤ Q2(x1) for

every x1 ∈ X1. It follows that E[ϑ
∗(ξ̃)] ≤ ϑ∗. Consequently the bias of the SAA

estimate ϑ̂N , of the optimal value ϑ∗ of the true multistage problem (1.3), will
increase with increase of the number of stages. It is possible to show that for
some models this bias growth exponentially with increase of the number T of
stages (cf., [20, p.225]).

In order for the SAA problems to converge to the true problem all samples
should be increased, i.e., all sample sizes Nt should tend to infinity. In the
next section we will discuss estimates of sample sizes required to solve the true
problem with a given accuracy.

4. Estimates of Stochastic Complexity

In order to solve a stochastic optimization problem of the form (2.1) one needs
to evaluate expectations E[F (x, ξ)], given by multidimensional integrals. This,
in turn, requires a discretization of (continuous) distribution of the random
vector ξ. Suppose that the components of ξ are distributed independently of
each other and that r points are used for discretization of the marginal dis-
tribution of each component. Then the total number of discretization points
(scenarios) is rd. That is, while the input data is proportional to rd and grows
linearly with increase of the number d of random parameters, the number of
scenarios increases exponentially. This indicates that deterministic optimiza-
tion algorithms cannot cope with such stochastic optimization problems. And,
indeed, it is shown in [5] that, under the assumption that the stochastic param-
eters are independently distributed, two-stage linear stochastic programming
problems are ]P-hard.
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The Monte Carlo sampling approach of approximating the true problem
(2.1) by the corresponding SAA problem (2.2) suggests a randomization ap-
proach to solving stochastic optimization problems. In a sense the sample size
N , required to solve the true problem with a given accuracy, gives an estimate
of computational complexity of the considered problem. Note that the SAA
approach is not an algorithm, one still needs to solve the constructed SAA
problem. Numerical experiments indicate that for various classes of problems,
e.g., two stage linear stochastic programs, computational effort in solving SAA
problems by efficient algorithms is more or less proportional to the sample
size N . Theorem 2.1 suggests that the convergence of SAA estimates is rather
slow. However, the convergence does not depend directly on dimension d of the
random data vector, but rather on variability of the objective function.

We proceed now to estimation of the sample size required to solve the true
problem with a given accuracy ε > 0. Recall that it is assumed that the ex-
pectation f(x) is well defined and finite valued for all x ∈ X . It is said that a
point x̄ ∈ X is an ε-optimal solution of problem (2.1) if f(x̄) ≤ infx∈X f(x)+ε.
We denote by Sε and Ŝε

N the sets of ε-optimal solutions of the true and SAA
problems (2.1) and (2.2), respectively. Let us make the following assumptions.

(C1) There exist constants σ > 0 and τ > 0 such that

Mx,x′(t) ≤ exp(σ2t2/2), ∀t ∈ [−τ, τ ], ∀x, x′ ∈ X , (4.1)

where Mx,x′(t) is the moment generating function of the random variable
[F (x′, ξ)− f(x′)]− [F (x, ξ)− f(x)].

(C2) There exists a measurable function κ : Ξ → R+ such that its moment
generating function Mκ(t) is finite valued for all t in a neighborhood of
zero and

|F (x, ξ)− F (x′, ξ)| ≤ κ(ξ)‖x− x′‖, ∀x, x′ ∈ X , ∀ξ ∈ Ξ. (4.2)

By Cramér’s Large Deviations Theorem it follows from assumption (C2)
that for any L > E[κ(ξ)] there is a positive constant β = β(L) such that

Prob(κ̂N > L) ≤ exp(−Nβ), (4.3)

where κ̂N := N−1
∑N

j=1 κ(ξ
j). The following estimate of the sample size is ob-

tained by applying (pointwise) upper bound of Cramér’s Large Deviations The-
orem and constructing a ν-net in X with number of points less than (%D/ν)n,
where D := supx,x′∈X ‖x′ − x‖ is the diameter of the set X and % > 0 is an
appropriate constant (cf., [18],[20, section 5.3.2]).

Theorem 4.1. Suppose that the set X has a finite diameter D and assumptions

(C1) – (C2) hold with respective constants σ and τ , and let α ∈ (0, 1), L >
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E[κ(ξ)], β = β(L) and ε > 0, δ > 0 be constants such that ε > δ ≥ 0 and

ε− δ ≤ τσ2. Then for the sample size N satisfying

N ≥ β−1 ln(2/α) and N ≥
8σ2

(ε− δ)2

[

n ln

(

8%LD

ε− δ

)

+ ln

(

2

α

)]

, (4.4)

it follows that

Prob
(

Ŝδ
N ⊂ Sε

)

≥ 1− α. (4.5)

In particular, if in (4.2) the function κ(ξ) ≡ L, i.e., the Lipschitz constant
of F (·, ξ) does not depend on ξ, then the first condition in the sample estimate
(4.4) can be omitted and the constant σ2 can be replaced by the estimate
2L2D2. The assertion (4.5) of the above theorem means that if x̄ ∈ X is a
δ-optimal solution of the SAA problem with the sample size N satisfying (4.4),
then x̄ is an ε-optimal solution of the true problem with probability ≥ 1 − α.
That is, by solving the SAA problem with accuracy δ < ε, say δ := ε/2, we are
guaranteed with confidence 1−α that we solve the true problem with accuracy
ε. Similar estimates of the sample size can be obtained by using theory of
Vapnik-Chervonenkis (VC) dimension (cf., [21]).

The above estimate of the sample size is theoretical and typically is too con-
servative for practical applications. Nevertheless it leads to several important
conclusions. From this point of view the number of scenarios in a formulation
of the true problem is irrelevant and can be infinite, while the computational
difficulty is influenced by variability of the objective function which, in a sense,
measured by the constant σ2. It also suggests that the required sample size is
proportional to ε−2. Such dependence of the sample size on required accuracy
is typical for Monte Carlo sampling methods and cannot be changed. Similar
rates of convergence can be derived for the optimal value of the SAA problem.
Central Limit Theorem type result of Theorem 2.1 confirms this from another
point of view. In some situations quasi-Monte Carlo methods can enhance rates
of convergence (cf., [6]), but in principle it is impossible to evaluate multidi-
mensional integrals with a high accuracy. On the other hand dependence on the
confidence 1−α is logarithmic, e.g., increasing the confidence say from 90% to
99.99% does not require a big change of the sample size.

For well conditioned problems it is possible to derive better rates of con-
vergence. It is said that a γ-order growth condition, with γ ≥ 1, holds for the
true problem if its set S of optimal solutions is nonempty and there is constant
c > 0 such that

f(x) ≥ ϑ∗ + c[dist(x,S)]γ (4.6)

for all x ∈ X in a neighborhood of S. Of interest is the growth condition of
order γ = 1 and γ = 2. If S = {x̄} is a singleton and the first-order growth con-
dition holds, the optimal solution x̄ is referred to as sharp. For convex problems
satisfying the second order growth condition the sample size estimate becomes
of order O(ε−1). In convex case of sharp optimal solution x̄ the convergence is
finite, in the sense that w.p.1 for N large enough the SAA problem has unique
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optimal solution x̄ coinciding with the optimal solution of the true problem
and, moreover, the probability of this event approaches one exponentially fast
with increase of N (see [20, p.190] for a discussion and exact formulation).

5. Multistage Complexity

Consider the multistage setting of section 3. Recall that the optimal value ϑ∗ of
the multistage problem (1.3) is given by the optimal value of the problem (3.3)
and Q2(x1) = E[Q2(x1, ξ2)]. Similarly to the static case we say that x̄1 ∈ X1

is an ε-optimal solution of the first stage of the true problem (1.3) if f1(x̄1) +
Q2(x̄1) ≤ ϑ∗ + ε. Suppose for the moment that T = 3. Then under regularity
conditions similar to the static case it is possible to derive the following estimate
of the sample sizes N1 and N2 needed to solve the first stage problem with a
given accuracy ε > 0 and confidence 1−α while solving the SAA problem with
accuracy, say, ε/2 (see [20, section 5.8.2] for technical details).

For constants ε > 0 and α ∈ (0, 1) and sample sizes N1 and N2 satisfying

[

O(1)D1L1

ε

]n1

exp
{

−O(1)N1ε
2

σ2

1

}

+
[

O(1)D2L2

ε

]n2

exp
{

−O(1)N2ε
2

σ2

2

}

≤ α,

(5.1)

we have that any (ε/2)-optimal solution of the first stage of the SAA

problem is an ε-optimal solution of the first stage of the true problem

with probability at least 1−α. Here O(1) denotes a generic constant inde-
pendent of the data and σ1, σ2, D1, D2 and L1, L2 are certain analogues
of the constants of the estimate (4.4).

In particular suppose that N1 = N2 and let n := max{n1, n2}, L :=
max{L1, L2}, D := max{D1, D2}. Then (5.1) becomes

N1 ≥
O(1)σ2

ε2

[

n ln

(

O(1)LD

ε

)

+ ln

(

1

α

)]

. (5.2)

The above estimate looks similar to the estimate (4.4) of the two stage program.
Note, however, that in the present case of three stage program the total number
of scenarios of the SAA problem is N = N2

1 . This analysis can be extended to a
larger number of stages with the conclusion that the total number of scenarios
needed to solve the true problem with a given accuracy grows exponentially

with increase of the number T of stages. Another way of putting this is that
the number of scenarios needed to solve T -stage problem (1.3) would grow as
O(ε−2(T−1)) with decrease of the error level ε > 0. This indicates that from the
point of view of the number of scenarios, complexity of multistage programming
problems grows exponentially with the number of stages. Furthermore, as it
was pointed in the Introduction, even if the SAA problem can be solved, its
solution does not define a policy for the true problem and of use may be only
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the computed first stage solution. There are even deeper reasons to believe that
(even linear) multistage stochastic programs are computationally intractable
(cf., [19]). This does not mean, of course, that some specific classes of multistage
stochastic programs cannot be solved efficiently.

6. Approximations of Multistage Stochastic

Programs

If multistage stochastic programming problems cannot be solve to optimality,
one may think about approximations. There are several possible approaches to
trying to solve multistage stochastic programs approximately. One approach
is to reduce dynamic setting to a static case. Suppose that we can identify
a parametric family of policies x̄t(ξ[t], θt), t = 1, ..., T , depending on a finite
number of parameters θt ∈ Θt ⊂ R

qt , and such that these policies are feasible for
all parameter values. That is, for all θt ∈ Θt, t = 1, ..., T , it holds that x̄1(θ1) ∈
X1 and x̄t(ξ[t], θt) ∈ Xt

(

x̄t−1(ξ[t−1], θt−1), ξt
)

, t = 2, ..., T , w.p.1. Consider the
following stochastic program

Min
θ1,...,θT

f1
(

x̄1(θ1)
)

+ E

[

∑T
t=2 ft

(

x̄t(ξ[t], θt), ξt
)

]

s.t. θt ∈ Θt, t = 1, ..., T.
(6.1)

The above problem (6.1) is a (static) stochastic problem of the form (2.1) and
could be solved, say by the SAA method, provided that the sets Θt are defined
in a computationally accessible way. Of course, quality of an obtained solution
x̄t(ξ[t], θ

∗
t ), t = 1, ..., T , viewed as a solution of the original multistage problem

(1.3), depends on a successful choice of the parametric family.
Suppose, for example, that we have a finite family of feasible policies

{

xkt (ξ[t]), t = 1, ..., T
}

, k = 1, ...,K. Suppose, further, that the multifunctions
Xt(·, ξt) are convex, i.e., the set X1 is convex and for a.e. ξt and all xt−1, x

′
t−1

and τ ∈ [0, 1] it holds that

τXt(xt−1, ξt) + (1− τ)Xt(x
′
t−1, ξt) ⊂ Xt

(

τxt−1 + (1− τ)x′t−1, ξt
)

, t = 2, ..., T.

Then any convex combination

x̄t(ξ[t], θ) :=

K
∑

k=1

θkx
k
t (ξ[t]), t = 1, ..., T,

where θ = (θ1, ..., θK) ∈ ∆K with ∆K being K-dimensional simplex, of these
policies is feasible. This approach with several examples was discussed in [8].

As another example consider linear multistage stochastic programs with
fixed recourse. That is, assume the setting of (1.4)–(1.5) with only the right
hand sides vectors bt, t = 2, ..., T , being random. Moreover, for the sake of
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simplicity assume that the data process b1, ..., bT , is stagewise independent with
distribution of random vector bt supported on set Ξt, t = 2, ..., T . Motivated by
its success in robust optimization it was suggested in [19] to use affine decision
rules. That is, consider policies of the form

x̄t = φt +
t

∑

τ=2

Φtτ bτ , t = 2, ..., T, (6.2)

depending on parameters – vectors φt and matrices Φtτ . The feasibility con-
straints here take the form

A1x1 ≤ b1, B2x1 +A2

(

φ2 +Φ22b2
)

≤ b2,

Bt

(

φt−1 +
∑t−1

τ=2 Φt−1,τ bτ
)

+At

(

φt +
∑t

τ=2 Φtτ bτ
)

≤ bt t = 3, ..., T,
(6.3)

and should hold for every bt ∈ Ξt, t = 2, ..., T (we can pass here from the
condition “for a.e.” to “for every” by continuity arguments). The system (6.3),
defining feasible parameters of the policy (6.2), involves an infinite number of
linear constraints. In case the sets Ξt are polyhedral, defined by a finite number
of linear constraints, it is possible to handle the semi-infinite system (6.3) in a
computationally efficient way (cf., [19]).

An alternative approach to solving multistage program (1.3) is to approx-
imate dynamic programming equations (3.1). One such approach can be de-
scribed as follows. Consider the linear setting (1.4)–(1.5) and assume that the
stagewise independence condition holds. In that case the cost-to-go functions
Qt(xt−1), t = 2, ..., T , are convex and do not depend on the random data.
Consider the corresponding SAA problem based on (independent) samples

ξ1t , ..., ξ
Nt−1

t , t = 2, ..., T . By the above analysis we have (under mild regu-
larity conditions) that if all sample sizes are of the same order, say all Nt =M ,
t = 1, ..., T − 1, then in order to solve the first stage problem with accuracy
ε > 0 we need M to be of order O(ε−2). Of course, even for moderate values of
M , say M = 100, the total number of scenarios N = MT−1 quickly becomes
astronomically large with increase of the number of stages. Therefore, instead of
solving the corresponding linear programming problem involving all scenarios,
one can try to approximate the cost-to-go functions of the SAA problem.

For a given set of samples of size N = (N1, ..., NT−1), let Q̃t,N (xt−1),
t = 2, ..., T , be cost-to-go functions of the SAA problem. These functions are
convex piecewise linear and do not depend on realizations of scenarios from the
SAA scenario tree. Suppose that we have a procedure for generating cutting
(supporting) planes for the SAA cost-to-go functions. By taking maximum of
respective collections of these cutting planes we can construct piecewise linear
convex functions Qt(xt−1) approximating the SAA cost-to-go functions from
below, i.e., Q̃t,N (·) ≥ Qt(·), t = 2, ..., T . These functions Qt(xt−1) and a feasi-
ble first stage solution x̄1 define the following policy:

x̄t ∈ argmin {〈ct, xt〉+Qt+1(xt) : Atxt ≤ bt −Btx̄t−1} , t = 2, ..., T, (6.4)
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with QT+1(xT ) ≡ 0 by definition. This policy can be applied to the true mul-
tistage problem and to its sample average approximation. In both cases the
policy is feasible by the construction and hence its expected value gives an up-
per bound for the optimal value of the corresponding multistage program. The
expected value of this policy can be estimated by sampling.

Since functions Qt(·) are given as maximum of a finite number of affine
functions, the optimization problems in the right hand side of (6.4) can be
formulated as linear programming problems of reasonable sizes. It was suggested
in [14] to generate trial decision points x̄t using randomly generated sample
paths in a forward step procedure of the form (6.4) and consequently to add
cutting planes, computed at these trial decision points, to approximations Qt(·)
in a backward step procedure. The required cutting planes are constructed by
solving duals of the linear programming problems associated with right hand
side of (6.4). This algorithm, called Stochastic Dual Dynamic Programming
(SDDP), became popular in energy planning procedures. It is possible to show
that under mild regularity conditions, functions Qt(·) converge w.p.1 to their
counterparts Q̃t,N (·) of the SAA problem, and hence policy (6.4) converges to
an optimal policy of the SAA problem (cf., [15]). The convergence can be slow
however.

For two stage programs the SDDP algorithm becomes Kelley’s cutting
plane algorithm, [7]. Worst case analysis of Kelley’s algorithm is dis-
cussed in [13, pp. 158-160], with an example of a problem where an
ε-optimal solution cannot be obtained by this algorithm in less than
(

1
2 ln 2

)

1.15n−1 ln(ε−1) calls of the oracle, i.e., the number of oracle calls
grows exponentially with increase of the dimension n of the problem. It
was also observed empirically that Kelley’s algorithm could behave quite
poorly in practice.

On the other hand, complexity of one run of the forward and backward steps of
the SDDP algorithm grows linearly with increase of the number of stages and
the algorithm produces a feasible and implementable policy.

7. Concluding Remarks

So far we discussed computational complexity from the point of view of the re-
quired number of scenarios. It should be remembered that a constructed SAA
problem still needs to be solved by an appropriate deterministic algorithm.
Consider for example the SAA problem associated with two stage linear prob-
lem (1.1). In order to compute a subgradient of the respective sample average

function Q̂N (x) = 1
N

∑N
j=1Q(x, ξj) at an iteration point of a subgradient type

algorithmic procedure, one would need to solve N second stage problems to-
gether with their duals.

For convex (static) stochastic problems an alternative to the SAA approach
is the Stochastic Approximation (SA) method going back to Robbins and Monro
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[16]. The classical SA algorithm generates iterates for solving problem (2.1) by
the formula

xj+1 = ΠX

(

xj − γjG(xj , ξ
j)
)

, j = 1, ..., (7.1)

where G(x, ξ) ∈ ∂xF (x, ξ) is a subgradient of F (x, ξ), ΠX is the metric pro-
jection onto the set X and γj > 0 are chosen stepsizes. The standard choice
of the stepsizes is γj = θ/j for some constant θ > 0. For an optimal choice of
the constant θ the estimates of rates of convergence of this method are sim-
ilar to the respective estimates of the SAA method. However, the method is
very sensitive to the choice of the constant θ and often does not work well in
practice. It is somewhat surprising that a robust version of the SA algorithm,
taking its origins in the mirror descent method of Nemirovski and Yudin [11],
can significantly outperform SAA based algorithms for certain classes of convex
stochastic problems (cf., [12]).

Theoretical estimates of the form (4.4), of the required sample size, are too
conservative for practical applications. In that respect we may refer to [10] and
[9] for a discussion of computational methods for evaluating quality of solutions
of the first stage of two stage stochastic problems.
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