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ON A CLASS OF NONSMOOTH COMPOSITE FUNCTIONS

ALEXANDER SHAPIRO

We discuss in this paper a class of nonsmooth functions which can be represented, in a neighbor-
hood of a considered point, as a composition of a positively homogeneous convex function and a
smooth mapping which maps the considered point into the null vector. We argue that this is a suf-
ficiently rich class of functions and that such functions have various properties useful for purposes
of optimization

1. Introduction. There are many instances where nonsmoothness appears naturally in
optimization problems. Typically, the involved nonsmoothness is not arbitrary and is struc-
tured in some particular way. In the last three decades quite a number of theories were
developed to deal with various aspects of nonsmooth problems, both theoretically and
computationally.
In this paper we discuss a class of extended real-valued functions f � �n →��, which can

be represented in an open neighborhood � ⊂ �n of a given point x̄ ∈ �n in the form

(1.1) f �x� �= f �x̄�+g�F �x���

for some mapping F � � → �m and function g� �m →��.
Definition 1.1. We say that the function f �x� is g �F decomposable at x̄ if the rep-

resentation (1.1) holds for all x ∈ � with f �x̄� being finite, and F and g satisfying the
following assumptions: (A1) The mapping F � � →�m is smooth. (A2) F �x̄�= 0. (A3) The
function g�·� is positively homogeneous, proper, convex, and lower semicontinuous.
By smoothness of F we mean that F �·� is k-times continuously differentiable on �, where

k can be one, two, etc., depending on an application. Recall that it is said that the function
g�·� is proper if g�y� >−� for all y ∈ �m and its domain dom g �= �y ∈ �m� g�y� <+��
is nonempty. It follows from (A3) that g�0�= 0.
The class of decomposable functions is closely related to the class of amenable func-

tions, in the sense of Rockafellar and Wets (1998, Definition 10.23), which assumes local
representation (1.1) with the function g�·� being proper, convex, and lower semicontinu-
ous and a certain regularity condition being satisfied. If in addition g is piecewise-linear
quadratic, then it is said that f is fully amenable. The main difference between the classes
of decomposable functions (in the sense of Definition 1.1) and (fully) amenable functions
is that the function g�·� in (1.1) is assumed to be positively homogeneous, but not neces-
sarily piecewise linear, and that F maps x̄ into the null vector. The above class of decom-
posable functions may be viewed as being somewhat between the classes of amenable and
fully amenable functions. An important example which can be handled in the framework
of decomposable, but not fully amenable, functions is the example of eigenvalue functions
(see Example 2.3 below).
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678 A. SHAPIRO

Remark 1.1. In the above definition we treat cases where the function f �·� can be
proper extended real valued, i.e., it can take value of +�. The theory will simplify consid-
erably if we assume that the function f �·� is real valued on �, and hence g�·� is real valued
on �m. This will cover all examples of the next section except Example 2.4 of the indicator
function. Adding the indicator function of the feasible set allows us to absorb set constraints
into the objective function of the considered optimization problem. Alternatively, one can
deal with set constraints by adding an exact penalty term. Therefore, we often assume that
actually the function f �·� is real valued. Because any real-valued convex function is con-
tinuous, in fact even locally Lipschitz continuous, we have that if the function g�·� is real
valued, then the assumption of lower semicontinuity in (A3) is superfluous.
The class of g � F decomposable functions has a number of useful properties that we

study in this paper. In particular, we show that such real-valued functions are semismooth
in the sense of Mifflin (1977), have a � �-structure in the sense of Lemaréchal et al. (1999)
and partly smooth in the sense of Lewis (forthcoming). We also demonstrate that this class
is sufficiently rich. In particular, all examples given in Lemaréchal et al. (1999), Mifflin
and Sagastizábel (2000), and Lewis (2002), except the example of spectral abcissa in Lewis
(2002), can be treated in the framework of g �F decomposable functions.
Recall that it is said that f �·� is directionally differentiable at a point x ∈ � if the limit

f ′�x�h� �= lim
t↓0

f �x+ th�− f �x�

t

exists for every h ∈ �n. If, moreover, the limit

f ′′�x�h�w� �= lim
t↓0

f �x+ th+ 1
2 t

2w�− f �x�− tf ′�x�h�
1
2 t

2

exists for every h�w ∈�n, then it is said that f �·� is parabolically second-order directionally
differentiable at x. If f �·� is directionally differentiable at x and the directional derivative
f ′�x�h� is linear in h ∈ �n, then it is said that f is (Gâteaux) differentiable at x and
Df �x�h= f ′�x�h�.
We use the following notation and terminology throughout the paper. By

epi g �= {
�y� c� ∈ �m×�� c ≥ g�y�

}
�

we denote the epigraph of the function g�·�. Let C be a subset of �m. We denote by �C�y�
the support function of C, i.e., �C�y� �= supz∈C z

T y, and by distC�y� �= infz∈C 
y− z
 the
distance from y ∈ �m to the set C with respect to a chosen norm 
·
 on �m. By iC�·�, we
denote the indicator function of the set C; that is, iC�y� = 0 if y ∈ C and iC�y� = +� if
y �C. By conv�C�, we denote the convex hull of C. In case the set C is convex, we denote
by ri�C� the relative interior of C, and by TC�x� and NC�x� the tangent and normal cones,
respectively, to C at x ∈ C. For a convex cone C we denote by lin�C� �= C ∩ �−C� its
lineality space. For a linear space L⊂ �m, we denote by

L⊥ �= {
z ∈ �m� zT y = 0� y ∈ L

}

its orthogonal space. For a linear mapping A� �n → �m, we denote by A∗� �m → �n its
adjoint mapping, defined by yT Ax = �A∗y�T x for any x ∈ �n and y ∈ �m.

2. Examples. In this section we discuss several examples of decomposable functions.
Example 2.1. Let fi� �

n → �, i = 1� 	 	 	 �m, be smooth functions and consider

(2.1) f �·� �= max
1≤i≤m

fi�·�




NONSMOOTH COMPOSITE FUNCTIONS 679

Consider a point x̄ ∈ �n and define

I�x̄� �= �i� f �x̄�= fi�x̄�� i = 1� 	 	 	 �m�


Then for all x in a neighborhood of x̄ we have that f �x� = maxi∈I�x̄� fi�x�. Therefore, the
function f �·� can be represented near x̄ in the form (1.1) with the mapping

F �·� �= �fi1�·�− f �x̄�� 	 	 	 � fik �·�− f �x̄��� �n → �k�

and g�y� �= max�y1� 	 	 	 � yk�, where i1� 	 	 	 � ik are the elements of the set I�x̄�. Clearly,
F �x̄� = 0 and the function g�·� is real-valued convex, positively homogeneous, and
piecewise linear. We also have here that g�·� is the support function of the set C �=
conv�e1� 	 	 	 � ek�, where ei denotes the ith coordinate vector of �k.

The above example can be extended to the following more general case.
Example 2.2. Let F � �n → �m be a smooth mapping and f �·� �= �C�F �·��, where

C is a nonempty convex closed subset of �m. Consider a point x̄ ∈ �n. We have that
the support function g�·� �= �C�·� is proper, convex, lower semicontinuous, and positively
homogeneous. Therefore, if F �x̄�= 0, then Assumptions (A1)–(A3) hold. So, let us consider
ȳ �= F �x̄� �= 0. Suppose further that the set C is polyhedral, and hence �C�·� is piecewise
linear, and that F �x̄� ∈ dom g; i.e., �C�ȳ� is finite. Define

�C�ȳ� �= {
z ∈ C� zT ȳ = �C�ȳ�

}



Because C is polyhedral and �C�ȳ� is finite, the set �C�ȳ� is nonempty and forms a face of
the set C, and moreover

�C�y�= sup
z∈�C�ȳ�

zT y = ��C�ȳ��ȳ�+��C�ȳ��y− ȳ�

for all y sufficiently close to ȳ. Therefore, for all x in a neighborhood of x̄ we have that

(2.2) f �x�= f �x̄�+��C�ȳ��F �x�−F �x̄��


That is, f �·� is representable near x̄ in the form (1.1) with g�·� �= ��C�ȳ��·�, and clearly the
mapping x �→ F �x�−F �x̄� maps x̄ into 0 ∈ �m.
In particular, any norm 
·
 on �m is the support function of the unit ball with respect

to its dual norm. Therefore, the above construction can be applied to functions of the form
f �·� �= 
F �·�
 at a point x̄ such that F �x̄�= 0. If F �x̄� �= 0, then the above construction can
be applied to any polyhedral norm, e.g., l1 or l� norms. If g�·� �= 
·
 is the lp norm with
p ∈ �1���, then it is smooth in a neighborhood of any nonnull point, and hence, again, the
function f �·� �= 
F �·�
 is g �F decomposable at any point.
The following example is related to the eigenvalue optimization and is more sophisticated.
Example 2.3. Consider the linear space � p of p×p symmetric matrices. For a matrix

X ∈� p denote by �1�X�≥ · · · ≥ �p�X� its eigenvalues arranged in the decreasing order. We
say that �k�X� is a leading eigenvalue of X, of multiplicity r , if �k−1�X� > �k�X�= · · · =
�k+r−1�X� > �k+r �X�. By the definition of the largest eigenvalue, �1�X� is a leading eigen-
value of X. Let �X ∈� p and �k��X� be a leading eigenvalue of �X of multiplicity r , for some
k� r ∈ �1� 	 	 	 � p�. Then it is possible to construct a mapping �� � p →� r with the follow-
ing properties (a detail construction of this mapping is given in Shapiro and Fan 1995 and
Bonnans and Shapiro 2000, Example 3.98, p. 211).

(i) The mapping ��·� is analytic (and hence is infinitely differentiable) in a neighbor-
hood of �X,

(ii) ���X�= Ir , where  �= �k��X� and Ir is the r× r identity matrix;
(iii) D���X�� � p →� r is onto;
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(iv) For all X ∈� p in a neighborhood of �X,

�k+j−1�X�= �j���X��� j = 1� 	 	 	 � r�

where �1�Y �≥ · · · ≥ �r�Y � denote the eigenvalues of matrix Y ∈� r .
Consider the function f �X� �= �k�X�+· · ·+�k+l−1�X� for some l ∈ �1� 	 	 	 � r�. We then

have that for all X ∈ � p in a neighborhood of �X, the function f �X� can be represented in
the form

(2.3) f �X�= f ��X�+g�F �X���

where F �·� �=��·�−Ir and g�·� �= �1�·�+· · ·+�l�·�. The function g� � r →� is convex
and positively homogeneous, and by (ii) the mapping X �→ F �X� maps �X into the null
matrix of � r . Consequently, the function f �X� is g �F decomposable at �X. In particular,
the largest eigenvalue function f �·� �= �1�·� is decomposable at any X ∈� p.

Let us make the following observations.
Remark 2.1. Let f �x� be a g � F decomposable at x̄ function, and H� �k → �n be

a smooth mapping with H�z̄� = x̄. Then the composite function ��z� �= f �H�z�� can be
written as ��z�= ��z̄�+g�Q�z��, where Q�·� �= F �H�·��, and hence is also representable
in the form (1.1) near z̄. Moreover, Q�z̄�= F �x̄�= 0, and hence the function ��·� is g �Q
decomposable at z̄.
Remark 2.2. Let f �x� be a g �F decomposable at x̄ function and ��x� �= f �x�+��x�,

where �� �n → � is a smooth function. We can also represent ��x� in the form (1.1)
by changing the mapping x �→ F �x� to the mapping x �→ �F �x����x�� ∈ �m+1, and the
function y �→ g�y� to the function �m+1 � �y� t� �→ g�y�+ t. Therefore, the function ��x�
is also decomposable at x̄.
Remark 2.3. Let fi�·�, i = 1� 	 	 	 � s, be gi �Fi decomposable at x̄ ∈ �n functions. That

is, on an open neighborhood � of x̄ ∈ �n each function fi has Representation (1.1), the
functions Fi� �→�mi are smooth, Fi�x̄�= 0, i= 1� 	 	 	 � s, and the functions gi� �

mi →�� are
positively homogeneous, proper, convex, and lower semicontinuous. Consider the function
f �·� �= 1f1�·�+· · ·+sfs�·�, where 1� 	 	 	 �s are some positive constants. We then have
that f is g �F decomposable at x̄ with

F �·� �= �F1�·�� 	 	 	 � Fs�·��� � → �m1+···+ms �

and g�y1� 	 	 	 � ys� �= 1g1�y1�+· · ·+sgs�ys�. Of course, the construction of Remark 2.2
is a particular case of the above construction.
Consider now the max-function ��·� �=max�f1�·�� 	 	 	 � fs�·��. Define

I�x̄� �= {
i� ��x̄�= fi�x̄�� i = 1� 	 	 	 � s

}



Further, suppose that for all i∈ �1� 	 	 	 � s�\I�x̄� the functions gi�·� are real valued, and hence
the corresponding functions fi�·� are continuous near x̄. Then for all x in a neighborhood
of x̄ we have that ��x� = maxi∈I�x̄� fi�x�. It then follows that the max-function � is g �F
decomposable at x̄ with

F �·� �= �Fi1�·�� 	 	 	 � Fik �·��� � → �mi1
+···+mik �

and g�yi1� 	 	 	 � yik � �= max�gi1�yi1�� 	 	 	 � gik �yik ��, where i1� 	 	 	 � ik are the elements of the
set I�x̄�. Construction of Example 2.1 is a particular case of the above construction.
The class of g � F decomposable functions can be viewed as a functional analogue of

cone-reducible sets (see Definition 2.1) discussed in Bonnans and Shapiro (2000, §§3.4.4
and 4.6.1). In the remainder of this section we discuss a connection between these two
concepts. Let K be a nonempty closed subset of �n.
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Definition 2.1. It is said that the set K is cone reducible at a point x̄ ∈ K if there
exists a neighborhood � of x̄, a convex closed pointed cone C in a finite dimensional space
�m, and a smooth mapping �� � → �m such that: (i) ��x̄� = 0, (ii) D��x̄�� �n → �m is
onto, and (iii) K∩� = �x ∈ �� ��x� ∈ C�.
The following example shows that for indicator functions the concepts of g �F decom-

posability and cone reducibility are equivalent except for the additional requirement (ii) in
the definition of cone reducibility.
Example 2.4. Consider the indicator function f �·� �= iK�·� and a point x̄ ∈K. Suppose

that the set K is cone reducible at x̄; then f �x� = iC���x�� for all x ∈ �. Because C is
a convex closed cone, we have that the indicator function iC�·� is convex, lower semicon-
tinuous, and positively homogeneous. It follows that the indicator function f �·� is g ��
decomposable at x̄ with g�·� �= iC�·�.
Conversely, suppose that the indicator function f �·� �= iK�·� is g �F decomposable at x̄

and DF �x̄�� �n → �m is onto. It follows from the last assumption that F maps � onto a
neighborhood of 0 ∈ �m, and hence g�y� can take only two values, zero or +�. Conse-
quently, g�·� is the indicator function of the set C �= �y� g�y�= 0�, which is a convex closed
cone. We then obtain that K is cone reducible at x̄ to the cone C by the mapping F �·�.
Example 2.5. Suppose that the set K is cone reducible at x̄ ∈K and consider the func-

tion f �x� �= distC���x��. Since C is a convex cone, we have that the function g�·� �=
distC�·� is convex, continuous, and positively homogeneous. Consequently, f is g ��
decomposable at x̄. Moreover, the function f �·� is equivalent to the distance function
distK�·� in the sense that there exist positive constants  and � such that for all x in a
neighborhood of x̄ the following inequalities hold:

(2.4)  distC���x��≤ distK�x� and distK�x�≤ �distC���x��


Indeed, because the mapping ��·� is locally Lipschitz continuous, there is � > 0 such that

��x�−��y�
 ≤ �
x−y
 for all x� y near x̄. Because by Assumption (ii) of Definition 2.1
� maps � onto a neighborhood of 0 ∈ �m, it follows that for all x sufficiently close to x̄
and  �= �−1,

distK�x�= inf
y∈K


x−y
 = inf
��y�∈C


x−y
 ≥  inf
��y�∈C


��x�−��y�
 =  distC���x��


Under Assumption (ii) of Definition 2.1, the right-hand-side inequality of (2.4) follows by
metric regularity.
For example, let M ⊂ �n be a smooth manifold. Then, in a neighborhood � of a point

x̄ ∈M , the manifold M can be represented in the form M ∩� = �x ∈ �� F �x�= 0�, where
F � � → �m is a smooth mapping such that DF �x̄�� �n → �m is onto and m= n−dimM .
In this example the set M is reducible to the cone C �= �0�. Clearly, distC�y� = 
y
, and
hence distC�F �x��= 
F �x�
. We have here that distM�·� and 
F �·�
 are equivalent near x̄
and can be used as exact penalty functions (see §4).

3. Properties. In this section we study various useful properties of g �F decomposable
functions. Unless stated otherwise, we assume in this section that the function f �·� is
g � F decomposable at x̄ and real valued on �, and hence g�·� is real valued on �m (see
Remark 1.1).
Because g�·� is convex real valued, it is locally Lipschitz continuous and directionally

differentiable. It follows that f �·� is locally Lipschitz continuous on � and, by the chain
rule, that f �·� is directionally differentiable at every point x ∈ � with

(3.1) f ′�x�h�= g′�F �x��DF �x�h�
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In particular because g�·� is positively homogeneous, we have that g′�0� ·�= g�·� and hence
f ′�x̄� h� = g�DF �x̄�h�. Moreover, because f �·� is locally Lipschitz continuous, we have
that, for any x ∈ �,

(3.2) f �x+h�= f �x�+ f ′�x�h�+o�
h
�

Also, because g�·� is convex real valued and positively homogeneous, we have that g�·�

is the support function of a convex compact set C ⊂ �m; i.e., g�·� = �C�·�. The set C
coincides with the subdifferential �g�0� of g�·�, at x = 0, in the sense of convex analysis.
Moreover, we have (e.g., Bonnans and Shapiro 2000, Proposition 2.121) that g′�y� ·� is the
support function of the set

�C�y� �= {
z ∈ C� yT z= g�y�

}
�

and hence,

(3.3) �g�y�= �C�y�= argmax
z∈�g�0�

yT z


Although the function f �·� is not necessarily convex, its directional derivative function
��·� �= f ′�x� ·� is convex for any x ∈ �. We define �f �x� �= ���0�. In view of (3.2),
this definition coincides with the set of regular subgradients, of f at x, in the sense of
Rockafellar and Wets (1998, Definition 8.3). We also have here that �f �x� is equal to
Clarke’s generalized gradient, and hence the function f is regular in the sense of Clarke
(1983, Theorem 2.3.9).
It follows from the above that

(3.4) �f �x�= �DF �x��∗ �C�F �x��

In particular,

(3.5) �f �x̄�= �DF �x̄��∗�g�0�


Suppose now that the mapping F �·� is twice continuously differentiable on �. Consider
a path x�·�� �+ → �n of the form

(3.6) x�t� �= x̄+ th+ 1
2 t

2w�

where h�w ∈�n. Because F �x̄�= 0, by using the second-order Taylor expansion of F �·� at
x̄ we can write

(3.7) F �x�t��= tDF �x̄�h+ 1
2 t

2
[
DF �x̄�w+D2F �x̄��h�h�

]+o�t2�


We then have that

f �x�t��− f �x̄� = g
(
tDF �x̄�h+ 1

2 t
2�DF �x̄�w+D2F �x̄��h�h��

)+o�t2�(3.8)

= tg
(
DF �x̄�h+ 1

2 t�DF �x̄�w+D2F �x̄��h�h��
)+o�t2�

= tg�DF �x̄�h�+ 1
2 t

2g′
(
DF �x̄�h�DF �x̄�w+D2F �x̄��h�h�

)+o�t2�


We obtain that f �·� is parabolically second-order directionally differentiable at x̄ and

(3.9) f ′′�x̄� h�w�= g′
(
DF �x̄�h�DF �x̄�w+D2F �x̄��h�h�

)



Moreover, consider a mapping (path) t �→ wt , t ≥ 0, such that twt → 0 as t ↓ 0. We then
have that the second-order expansion (3.7) with w replaced by wt still holds. Also, since
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g�·� is convex, we have that for any y� z ∈ �m and t ≥ 0 the following inequality holds
g�y+ tz�≥ g�y�+ tg′�y� z�, and hence

g
(
DF �x̄�h+ 1

2 t�DF �x̄�wt +D2F �x̄��h�h��
)

(3.10)

≥ g�DF �x̄�h�+ 1
2 tg

′(DF �x̄�h�DF �x̄�wt +D2F �x̄��h�h�
)



By (3.9) and (3.10) we obtain

(3.11) f �x̄+ th+ 1
2 t

2wt�≥ f �x̄�+ t f ′�x̄� h�+ 1
2 t

2f ′′�x̄� h�wt�+o�t2�


Functions f �·� satisfying Condition (3.11) for any path t �→ wt such that twt → 0 as t ↓ 0,
were called second-order epiregular, at x̄, in Bonnans and Shapiro (2000, §3.3.4). Second-
order epiregularity is a useful property in a second-order analysis of nonsmooth functions. In
particular, second-order epiregularity of f �·� at x̄ implies that f �·� is parabolically regular
at x̄ in the sense of Rockafellar and Wets (1998; Definition 13.65) (see Bonnans and Shapiro
2000; Proposition 3.103). By the above discussion we have the following results.

Proposition 3.1. Suppose that the function f �·� is real valued and g �F decomposable
at x̄, with F �·� being twice continuously differentiable. Then Formulas (3.1) and (3.9) hold,
and f �·� is second-order epiregular and parabolically regular at x̄.

Next we study semismooth properties of f �·� in the sense of Mifflin (1977). There are
several equivalent ways to define semismoothness. We use the following definition (cf. Qi
and Sun 1993). Consider r�h� �= f ′�x̄+h�h�− f ′�x̄� h�. It is said that f �·� is semismooth
at the point x̄ if r�h� = o�
h
�. It is said that f �·� is strongly semismooth at x̄ if r�h� =
O�
h
2�.
Proposition 3.2. Suppose that the function f �·� is real valued and g �F decomposable

at x̄. Then f �·� is semismooth at x̄. If F �·� is twice continuously differentiable, then f �·� is
strongly semismooth at x̄.

Proof. Recall that because f �·� is real valued and g � F decomposable at x̄, it fol-
lows that f �·� is locally Lipschitz continuous and directionally differentiable near x̄. Also,
because g�·� is positively homogeneous, we have that g′�0� z�= g�z� and g′�z� z�= g�z�. It
follows that g�·� is strongly semismooth at 0. It is known that composition of a (strongly)
semismooth function with a continuously (twice continuously) differentiable mapping is
(strongly) semismooth (see, e.g., Qi and Sun 1993). This completes the proof. �

Let us show now that, under a regularity condition, g � F decomposable functions are
partially smooth in the sense of Lewis (2002). Consider C �= �g�0�, i.e., g�·�= �C�·�. Let
a be a point in the relative interior of the set C and consider the set S �= C − a. Then
0 ∈ ri�S� and g�y�= �S�y�+aT y. Let us denote by L the linear subspace of �m orthogonal
to the relative interior of the set S (or, equivalently, to the relative interior of C), and by L⊥

its orthogonal complement (in the present case L⊥ coincides with the linear space generated
by ri�S�). Note that �S�y�= 0 for all y ∈ L, and �S�y� > 0 for any y ∈ �m\L.

Consider the set

(3.12) � �= �x ∈ �� F �x� ∈ L��

and suppose that the following regularity condition holds:

(3.13) DF �x̄��n+L= �m


The above regularity condition means that F intersects L transversally at the point x̄.
We refer to (3.13) as the nondegeneracy condition. We have that x̄ ∈ � and, under the
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nondegeneracy Condition (3.13), the set � forms a smooth manifold in a neighborhood of
the point x̄ with the tangent space T��x�, at a point x ∈� sufficiently close to x̄, is given by

(3.14) T��x�= �h ∈ �n� DF �x�h ∈ L�= �DF �x�∗L⊥�⊥


Moreover, because �S�y�= 0 for all y ∈ L, we have that �S�F �x��= 0, and hence f �x�=
aT F �x� for all x ∈�. It follows that the function f �·� is smooth on �. This is the “restricted
smoothness” property of Lewis (2002).
For points x ∈ � sufficiently close to x̄, consider N��x� �= T��x�

⊥, i.e., N��x� is the
linear subspace of �n orthogonal to � at x. Note that N��x�= �DF �x��∗L⊥. We have that
the linear space DF �x�N��x� has only the null vector in common with the linear space L.
Therefore, there exists a constant � > 0 such that for all x ∈� sufficiently close to x̄ the
following holds:

(3.15) �S�DF �x�h�≥ �
h
� ∀h ∈ N��x�


Moreover, for any y ∈ �m and z ∈ L,

�S�y+ z�≤ �S�y�+�S�z�= �S�y��

and

�S�y�= �S�y+ z− z�≤ �S�y+ z�+�S�−z�= �S�y+ z��

and hence �S�y� = �S�y+ z�. Because g′�y�d� = � ′
S�y�d�+ aT d, it follows that for any

y�d ∈ �m and z ∈ L, g′�y�d�= g′�y+ z�d�. In particular, this implies that for any d ∈ �m

and z ∈ L, g′�z�d�= g′�0�d�= g�d�. Consequently, for any h ∈ �n and x ∈� we have by
(3.1) that f ′�x�h�= g�DF �x�h�, and hence

(3.16) f ′�x�h�= �S�DF �x�h�+ �DF �x�∗a�T h


It follows that there exists � > 0 such that for all x ∈� sufficiently close to x̄ and h∈N��x�,
the following holds:

(3.17) f ′�x�h�≥ bT h+�
h
� ∀h ∈ N��x��

where b �= DF �x̄�∗a. Inequality (3.17) implies the “normal sharpness” property of Lewis
(2002).
Because for any h ∈ �n and x ∈ �, f ′�x�h� = g�DF �x�h�, we have by continuity of

DF �·�h and g�·� that f ′�·� h� is continuous on �. This implies the “regularity” and “sub-
derivative continuity” properties of Lewis (2002) and completes the arguments showing that
under the nondegeneracy Condition (3.13), the function f is partially smooth.
The above analysis also shows that under (3.13) the function f �·� has the � �-structure

at x̄ in the sense of Lemaréchal et al. (1999).
Consider, for instance, the setting of Example 2.1. Denote e �= �1� 	 	 	 �1� ∈ �k. Then

the point a �= k−1e belongs to the relative interior of the set C = conv�e1� 	 	 	 � ek�. The
corresponding linear space L, orthogonal to ri�C�, is the one-dimensional space generated
by vector e. The nondegeneracy Condition (3.13) can be formulated here in the following
form: vectors (

�fis �x̄�

�x1
� 	 	 	 �

�fis �x̄�

�xn
�1
)
∈ �n+1� s = 1� 	 	 	 � k�

are linearly independent.
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As another example, consider the setting of Example 2.3. Let �X ∈ � p and �k��X�
be a leading eigenvalue of �X of multiplicity r . Let ��·� be a mapping satisfying
Properties (i)–(iv) specified in Example 2.3, and F �·� �= ��·�−Ir . Consider the function
f �·� �= �k�·�+· · ·+�k+l−1�·� for some l ∈ �1� 	 	 	 � r�. We have here that f is g �F decom-
posable at �X and DF ��X� is onto. The corresponding space L is the one-dimensional space
generated by the identity matrix Ir , and the set � is given by

(3.18) �= {
X ∈ �� �k−1�X� > �k�X�= · · · = �k+r−1�X� > �k+r �X�

}
�

where � ⊂� p is a neighborhood of �X. Because DF ��X� is onto, the above set � is a smooth
manifold.
Now let A� �n → � p be a smooth mapping such that A�x̄�= �X for some x̄ ∈ �n. Then

the function f �A�·�� is g �H decomposable at x̄, with H�·� �= F �A�·��. The corresponding
nondegeneracy Condition (3.13) takes the form

(3.19) DA�x̄��n+T�X�=� p�

and means that the mapping A intersects� transversally at x̄. In the eigenvalue optimization,
transversality Condition (3.19) was introduced in Shapiro and Fan (1995).

4. Optimality conditions and locally convergent algorithms. In this section we
consider the optimization problem

(4.1) Min
x∈�

f �x��

where, as before, � is an open neighborhood of a point x̄ ∈ �n. We assume that f is g �F
decomposable at x̄ and is real valued on �. Let us observe that set constraints of the form
x ∈ K, where K is a closed subset of �n, can be absorbed into the objective function. One
obvious way is to add the indicator function iK�·� to f �·�. This, however, may destroy the
real valuedness of the objective function. Alternatively, we may add the penalty function
� distK�·� to f �·�. Because locally f �·� is Lipschitz continuous, by taking � bigger than
the corresponding Lipschitz constant of f �·�, we obtain that in a neighborhood of x̄ the
problem of minimizing f �·�+� distK�·� is equivalent to (4.1); i.e., � distK�·� is an exact
penalty term. Further, suppose that K is cone reducible at x̄ in the sense of Definition 2.1,
and consider the penalty term � distC���·��. Because of the equivalence relations (2.4), we
have that for � large enough this is also an exact penalty term. Recall that the sum of two
decomposable functions is also decomposable (see Remark 2.3), and hence this penalty
term preserves decomposability of the objective function.
We can formulate the optimization problem (4.1) in the following equivalent form

(4.2) Min
�x� c�∈�×�

c subject to �F �x�� c� ∈Q�

where Q �= epig. Because g is real valued, convex, and positively homogeneous, the set Q
is a closed convex cone in �m+1 with a nonempty interior. Therefore, the Problem (4.2) can
be treated in the framework of cone constraint optimization (see, e.g., Bonnans and Shapiro
2000, §3.4.1). General results of that theory can be applied to the Problem (4.2).
It is not difficult to write first-order optimality conditions for the Problem (4.1) directly.

We have that if x̄ is an optimal solution of (4.1), then f ′�x̄� h� ≥ 0 for all h ∈ �n. This
is equivalent to the condition 0 ∈ �f �x̄�. By (3.5) we then obtain the following first-order
necessary condition for x̄ to be an optimal solution of (4.1):

(4.3) 0 ∈ �DF �x̄��∗�g�0�
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Consider the Lagrangian L�x��� �= �T F �x�, where �x��� ∈�n×�m, of the Problem (4.1),
and the set of Lagrange multipliers

(4.4) ��x̄� �= {
� ∈ �g�0�� DxL�x̄���= 0

}= {
� ∈ �g�0�� �DF �x̄��∗�= 0

}



Condition (4.3) means, of course, that the set ��x̄� is nonempty. It could be observed that
the point �F �x̄��1� belongs to the interior of the cone Q, and hence the Slater condition
always holds for the Problem (4.2). We say that the point x̄ is stationary if Condition (4.3)
is satisfied or, equivalently, the set ��x̄� is nonempty.
Let us observe that under the nondegeneracy Condition (3.13) the following holds:

(4.5) �DF �x̄��∗�ri �g�0��= ri
(
�DF �x̄��∗�g�0�

)= ri �f �x̄�


Indeed, we have that �DF �x̄��∗y = 0 iff y ∈ �DF �x̄��n�⊥ and the nondegeneracy Condi-
tion (3.13) is equivalent to the condition

(4.6) �DF �x̄��n�⊥ ∩L⊥ = �0�


It follows that �DF �x̄��∗ restricted to L⊥ is one-to-one, and because L⊥ is parallel to the
affine space generated by �g�0�, �DF �x̄��∗ restricted to �g�0� is also one-to-one. The first
equality in (4.5) then follows. The second equality in (4.5) simply follows from (3.5).
The leneality space of the cone Q is formed by points �y� g�y��, y ∈ L. Therefore, the

nondegeneracy condition discussed in Bonnans and Shapiro (2000, §4.6.1) coincides here
with the nondegeneracy Condition (3.13). Suppose also that x̄ is stationary. Under the
nondegeneracy Condition (3.13), the strict complementarity condition (cf. Bonnans and
Shapiro 2000, Definition 4.74) means here that

(4.7) 0 ∈ ri �f �x̄��

or, equivalently, that f ′�x̄� h� > 0 for all h ∈ N��x̄�\�0�. By the general theory we have
that if the nondegeneracy Condition (3.13) holds, then ��x̄�= ��̄� is a singleton. Together
with (4.5), this implies that the strict complementarity Condition (4.7) is equivalent to the
Condition

(4.8) �̄ ∈ ri �g�0�


Conversely, if ��x̄� is a singleton and the strict complementarity condition holds, then the
nondegeneracy condition follows (Bonnans and Shapiro 2000, Proposition 4.75).
We say that the quadratic growth condition holds at x̄ if for some � > 0 and all x in a

neighborhood of x̄ the following holds:

f �x�≥ f �x̄�+�
x− x̄
2

Clearly, the above quadratic growth condition implies that x̄ is a locally optimal solution of
(4.1). Suppose that x̄ is stationary, and consider the so-called critical cone

(4.9) ��x̄� �= �h ∈ �n� f ′�x̄� h�= 0�


Because f ′�x̄� h�= g�DF �x̄�h� and g�·� is the support function of the set �g�0�, we have

��x̄�= �h ∈ �n� g�DF �x̄�h�= 0�= �h ∈ �n� sup�∈�g�0��DF �x̄�
∗��T h= 0�


Because x̄ is stationary, it follows that for any �̄ ∈��x̄�,

(4.10) ��x̄�= �h ∈ �n� DF �x̄�h ∈ N�g�0���̄��
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We assume in the remainder of this section that F �·� is twice continuously differentiable.
We have that if x̄ is an optimal solution of (4.1), then

(4.11) inf
w∈�n

f ′′�x̄� h�w�≥ 0� ∀h ∈��x̄�


Moreover, suppose that the point x̄ is stationary. Then, because of the parabolic regularity
of f (see Proposition 3.1), we have that the following condition is necessary and sufficient
for the quadratic growth condition to hold at x̄:

(4.12) inf
w∈�n

f ′′�x̄� h�w� > 0� ∀h ∈��x̄��

(Bonnans and Shapiro 2000, Proposition 3.105).
Recall Formula (3.9) for f ′′�x̄� h�w�. Consider a point h ∈ ��x̄�. By (4.9) we have that

g�DF �x̄�h�= 0, and hence g′�DF �x̄�h� ·� is the support function of the set

�h �= �z ∈ �g�0�� zT DF �x̄�h= 0�


It follows that the infimum in the left-hand side of (4.11) and (4.12) is equal to the optimal
value of the the following problem:

(4.13)
Min

�w� c�∈�n+1
c

subject to
(
DF �x̄�w+D2F �x̄��h�h�� c

) ∈Q∗
h�

where Q∗
h is the epigraph of the support function of the set �h. Moreover, the optimal value

of the above problem is equal to the optimal value of its dual:

(4.14) Max
�∈��x̄�

�T D2F �x̄��h�h�

(cf. Bonnans and Shapiro 2000, p. 175). Note that

�TD2F �x̄��h�h�=D2
xxL�x̄����h�h��

and that the additional, so-called sigma term vanishes here. This is because the mapping
�x� c� �→ �F �x�� c� in Problem (4.2) maps �x̄�0� into the vertex (null vector) of the cone Q.
We obtain the following second-order optimality conditions (cf. Bonnans and Shapiro 2000,
Theorems 3.108 and 3.109).

Proposition 4.1. If x̄ is an optimal solution of Problem (4.1), then the following holds

(4.15) sup
�∈��x̄�

D2
xxL�x̄����h�h�≥ 0� ∀h ∈��x̄�


Suppose that x̄ is a stationary point of Problem (4.1). Then the quadratic growth condition
holds at x̄ iff

(4.16) sup
�∈��x̄�

D2
xxL�x̄����h�h� > 0� ∀h ∈��x̄�\�0�


Note again that Conditions (4.15) and (4.16) are equivalent to the respective Condi-
tions (4.11) and (4.12).
Consider the problem

(4.17) Min
x∈�

f �x��

where the set � is defined in (3.12). Suppose that the nondegeneracy condition holds, and
hence � is a smooth manifold. Because f �·� coincides with aT F �·� on � and � is defined
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by smooth constraints (3.12), we have by the standard first-order necessary conditions for
smooth problems that if x̄ is an optimal solution of (4.17), then there exists z ∈ L⊥ such
that �DF �x̄��∗�a+ z� = 0. Because a ∈ �g�0�, this means that there exists � in the affine
space generated by �g�0� such that �DF �x̄��∗�= 0. This is equivalent to the condition that
the affine space generated by �f �x̄� includes 0. This is also equivalent to the condition that
f ′�x̄� h�≥ 0 for all h∈ T��x̄�. Of course, the above conditions are weaker than the condition
0 ∈ �f �x̄�; that is, a stationary point of (4.17) may be not a stationary point of (4.1).
Suppose now that x̄ is a stationary point of the Problem (4.1) and the nondegeneracy and

strict complementarity conditions hold. It follows, then, that ��x̄�= ��̄� is a singleton, and
the critical cone ��x̄� coincides with the tangent space T��x̄�. The second-order optimality
Condition (4.16) then takes the form

(4.18) D2
xxL�x̄� �̄��h�h� > 0� ∀h ∈ T��x̄�\�0�


Under the above assumptions, (4.18) is a necessary and sufficient condition for the quadratic
growth condition to hold at x̄ for Problem (4.17) as well as for Problem (4.1).
The above analysis suggests that in order to solve Problem (4.1), one may try to solve the

restricted Problem (4.17). Yet the restricted Problem (4.17) cannot be solved by algorithms
designed for smooth problems because the function f �·� is not smooth on �. So, suppose
that we can construct a smooth function �� � → � such that f �x� = ��x� for all x ∈�.
Often such a function � can be constructed in a natural way. For instance, in the setting of
Example 2.1 we can take � to be any convex combination of the functions fi1� 	 	 	 � fik . In
the setting of Example 2.3 we can take ��·� �= �l/r���k�·�+· · ·+�k+r−1�·��.
Clearly, Problem (4.17) is equivalent to the problem

(4.19) Min
x∈�

��x�


Problem (4.19) is smooth and can be solved, at least locally, by Newton-type meth-
ods. Under the nondegeneracy, strict complementarity, and second-order optimality Con-
ditions (4.18), a locally optimal solution of (4.19) provides a locally optimal solution for
the original Problem (4.1). Typically, Newton-type algorithms are locally convergent at a
quadratic rate. In the eigenvalue optimization, such an algorithm was suggested in Overton
(1988).
To apply a Newton-type algorithm to (4.19), one also needs a constructive way of defining

the smooth manifold �. In the setting of Example 2.1 the corresponding mapping F �·� is
defined explicitly provided that the set I�x̄�, of active at the optimal solution functions, is
known. In practice, of course, one estimates the set I�x̄� by introducing a certain tolerance
parameter. In the eigenvalue optimization describing the manifold � by smooth constraints
is a more delicate problem (see, e.g., Shapiro and Fan 1995 for such a construction).

5. Perturbation analysis. In this section we discuss how optimal solutions of the Prob-
lem (4.1) behave under small perturbations of the objective function. As in the previous
sections, we assume that f is g � F decomposable at x̄ and is real valued on �. We say
that a mapping 	 � �×� → �m, where � is an open subset of a finite dimensional lin-
ear space, is a smooth parameterization of the mapping F , if 	 �·� ·� is smooth (at least
twice continuously differentiable) on �×� and F �x�= 	 �x�u0� for some u0 ∈� and all
x ∈ �. Of course, the parameterization 	 �x�u� defines the corresponding parameterization
��x�u� �= g�	 �x�u�� of the objective function f . Consider the parameterized optimization
problem

(5.1) Min
x∈�

��x�u�


We have that for u= u0, Problem (5.1) coincides with the (unperturbed) Problem (4.1).
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Let us observe that Problem (5.1) can be formulated in the form of a cone-constrained
problem similar to Problem (4.2). Perturbation (sensitivity) analysis of such parameter-
ized problems is discussed extensively in Bonnans and Shapiro (2000). That theory can be
applied to the considered case. What is specific about the considered problem is that the con-
straint mapping �x� c� �→ �	 �x�u0�� c� maps �x̄�0� into the vertex of the cone Q �= epig.
The cone Q has no “curvature” at its vertex point and consequently the additional, so-called
sigma, term vanishes in the corresponding formulas. We already observed that in the previ-
ous section while discussing second-order optimality conditions. Note also that the cone Q
is second-order regular, in the sense of Bonnans and Shapiro (2000, Definition 3.85), at its
vertex point. Let us discuss some of the implications of the general theory to the parame-
terized Problem (5.1).
The nondegeneracy Condition (3.13) is stable under small (smooth) perturbations and,

in a certain sense, is generic. That is, if the parameterization 	 �x�u� is sufficiently rich,
then the nondegeneracy holds for almost every value of the parameter vector u ∈ �. The
“sufficiently rich” means here that the mapping 	 intersects L transversally, and the above
is a classical result in differential geometry (see, e.g., Golubitsky and Guillemin 1973). For
the eigenvalue optimization this generic property of the nondegeneracy was observed in
Shapiro and Fan (1995, §2).
Let x̂�u� ∈ � be a stationary point of Problem (5.1); i.e., first-order necessary optimality

conditions hold at x̂�u�. For the composite function ��x�u� these optimality conditions can
be formulated in the following form:

(5.2) ∃ �̂ ∈ �g�ŷ� such that Dx
�x̂� �̂� u�= 0�

where 
�x���u� �= �T	 �x�u� is the Lagrangian of Problem (5.1), x̂= x̂�u�, ŷ �= 	 �x̂� u�,
and �̂ = �̂�u� is the corresponding Lagrange multipliers vector (see, e.g., Bonnans and
Shapiro 2000, p. 219). Of course, for u = u0 and x̂ = x̄ we have that 	 �x̄� u0� = 0, and
Condition (5.2) is equivalent to Condition (4.3) for the unperturbed problem. Also, recall
Formula (3.3) for �g�y�.
Suppose that the point x̄ is a stationary point of the unperturbed problem and the non-

degeneracy and strict complementarity conditions hold at x̄. There then exists a unique
vector �̄ of Lagrange multipliers and �̄ ∈ ri �g�0�. Moreover, for u ∈� sufficiently close to
u0 and x̂�u� sufficiently close to x̄, we have that �̂�u� is close to �̄, and hence it follows
by (5.2) and (3.3) that �̂�u� ∈ ri �g�0�. That is, strict complementarity is also stable under
small perturbations. Suppose also that the second-order Condition (4.18) holds. Then x̄ is
a locally optimal solution of the restricted Problem (4.17) as well as of the (unperturbed)
Problem (4.1), and moreover x̄ is a locally unique stationary point of (4.1). By compact-
ness arguments it follows then that there exists a locally optimal solution of x̂�u� ∈ � of
(5.1) converging to x̄ as u tends to u0. It follows that x̂�u� is a stationary point of (5.1) for
u sufficiently close to u0, and x̂�u� ∈��u�, where

(5.3) ��u� �= {
x ∈ �� 	 �x�u� ∈ L

}



Under the above conditions, local behavior of x̂�u� is explained by the classical Implicit
Function Theorem. That is, for all u in a neighborhood of u0, x̂�u� is a unique stationary
and optimal solution of (5.1) in a neighborhood of x̄, x̂�u� is continuously differentiable
at u = u0, and its differential Dx̂�u0�d is given by the optimal solution ĥ = ĥ�d� of the
linearized system:

(5.4) Min
h∈�n

D2
xx
�x̄� �̄� u0��h�h�+D2

xu
�x̄� �̄� u0��h�d��

subject to Dx	 �x̄� u0�h+Du	 �x̄� u0�d ∈ N�g�0���̄�
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Recall that the strict complementarity condition means that �̄∈ ri �g�0�. Therefore, it implies
that N�g�0���̄� coincides with the linear space L. That is, under the strict complementarity
condition, the constraint of the Problem (5.4) is just the linearization, at the point �x̄� u0�,
of the constraint 	 �x�u� ∈ L.
The above is quite a standard result in sensitivity analysis of optimization problems (cf.

Bonnans and Shapiro 2000; Shapiro and Fan 1995; §5). Note that (5.4) is a quadratic
programming problem subject to linear (or rather affine) constraints, the quadratic form
D2

xx
�x̄� �̄� u0��·� ·� coincides with D2
xxL�x̄� �̄��·� ·�, and that the affine space defined by the

constraints of (5.4) is parallel to the tangent space T��x̄�. Therefore, the second-order Con-
dition (4.18) ensures that Problem (5.4) possesses unique optimal solution ĥ= ĥ�d�, which
is a linear function of d. One can also write (first-order) optimality conditions for (5.4),
reducing it to a system of linear equations involving h and vector  of Lagrange multipliers
of (5.4). Under the above assumptions, that system has a unique solution �ĥ�d�� ̂�d��,
which is a linear function of d. As was stated above, Dx̂�u0�d = ĥ�d�, and moreover, it
holds that D�̂�u0�d = ̂�d�.
We have here that under the nondegeneracy, strict complementarity, and second-order

Condition (4.18), the locally optimal solution x̂�u� is a smooth function of u and does
not leave the manifold ��u� for all u sufficiently close to u0. While relaxing these condi-
tions, sensitivity analysis becomes considerably more involved. Yet it is possible to show
that, under quite weak assumptions, x̂�u� is directionally differentiable with the directional
derivative given as an optimal solution of an auxiliary problem (see Bonnans and Shapiro
2000). We give below a simplified version of a more general result.

Theorem 5.1. Suppose that the Lagrange multipliers set ��x̄�= ��̄� is a singleton and
the second-order condition (4.16) is satisfied. Then the following holds:
(i) For all u ∈� in a neighborhood of u0, Problem (5.1) has a locally optimal solution

x̂�u� converging to x̄ as u→ u0.
(ii) There exists a constant � > 0 such that for all u ∈� in a neighborhood of u0 and a

locally optimal solution x̂�u� of (5.1) in a neighborhood of x̄, the following holds

(5.5) 
x̂�u�− x̄
 ≤ �
u−u0


(iii) If, for u�t� �= u0+ td, x̂�u�t�� is a locally optimal solution of (5.1) converging to x̄

as t ↓ 0, then any accumulation point of �x̂�u�t��− x̄�/t, as t ↓ 0, is an optimal solution of
(5.4).
(iv) If Problem (5.4) has a unique optimal solution ĥ= ĥ�d�, then the directional deriva-

tive x̂′�u0�d� exists and is equal to ĥ�d�.

It follows that, under the assumptions of the above theorem, the locally optimal solution
x̂�u� leaves the manifold ��u� under small perturbations in the direction d if every optimal
solution ĥ= ĥ�d� of the Problem (5.4) is such that Dx	 �x̄� u0�ĥ+Du	 �x̄� u0�d �∈ L.

Uniqueness of the optimal solution ĥ�d� can be ensured by a sufficiently strong second-
order sufficient condition. For example, if D2

xxL�x̄� �̄� is positive definite over the linear
space generated by the feasible set of (5.4), then ĥ�d� is unique. If this holds for all d, then
it follows that x̂�u� is directionally differentiable at u0.

As was mentioned before, the nondegeneracy is a sufficient condition for uniqueness of
the vector �̄ of Lagrange multipliers. A more general sufficient condition for uniqueness of
�̄ is the following (see Bonnans and Shapiro 2000, Proposition 4.47):

(5.6) DF �x̄��n+N�g�0���̄�= �m


Moreover, if the radial cone to �g�0� at �̄ is closed, then (5.6) is also necessary for unique-
ness of �̄. In particular, (5.6) is a necessary and sufficient condition for uniqueness of �̄
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if the set �g�0� is polyhedral, or in other words, if g�·� is piecewise linear. Under the
strict complementarity condition we have that N�g�0���̄� = L, and hence in that case (5.6)
coincides with the nondegeneracy condition.
Now consider the following so-called uniform quadratic growth condition introduced in

Bonnans and Shapiro (2000, Definition 5.16).
Definition 5.1. Let x̄ be a stationary point of Problem (4.1). It is said that the uniform

quadratic growth condition holds at x̄ if for any smooth parameterization 	 �x�u� of F �x�
there exist c > 0 and neighborhoods � and � of x̄ and u0, respectively, such that for any
u ∈� and any stationary point x̂�u� ∈ � of the corresponding parameterized problem, the
following holds:

(5.7) ��x�u�≥ ��x̂�u��u�+ c
x− x̂�u�
2� ∀x ∈ � 


The uniform quadratic growth has important implications for the behavior of stationary
and locally optimal solutions. In particular, it implies that for all u ∈� the parameterized
problem has a unique, and continuous in u, stationary point x̂�u� ∈ � , and that x̂�u� is the
minimizer of ��·� u� over � (see Bonnans and Shapiro 2000, Theorem 5.17, Remark 5.18).

Theorem 5.2. Let x̄ be a stationary point of Problem (4.1). Suppose that the non-
degeneracy and strict complementarity conditions are satisfied at x̄. Then the second-order
Condition (4.18) is necessary and sufficient for the uniform quadratic growth condition to
hold at x̄.

Proof. It is clear that the uniform quadratic growth condition implies the quadratic
growth condition. Because under the present assumptions Condition (4.18) is necessary
(and sufficient) for the quadratic growth at x̄, necessity of this condition for the uniform
quadratic growth follows.
So let us prove the sufficiency. The following proof is similar to the proof of

Theorem 5.27 in Bonnans and Shapiro (2000). We argue by contradiction. Suppose that the
uniform quadratic growth condition does not hold for a smooth parameterization 	 �x�u�.
Then there exist sequences un → u0, xn → x̄, and hn → 0 (hn �= 0) such that with xn is
associated a Lagrange multiplier �n, of the parameterized problem, and

(5.8) ��xn+hn�un�≤ ��xn�un�+o�
hn
2�


Because by the nondegeneracy assumption ��x̄�= ��̄� is a singleton, we have that �n → �̄.
Consider h̄n �= hn/
hn
. By passing to a subsequence if necessary, we can assume that h̄n

converges to a vector h̄. Clearly 
h̄
 = 1, and hence h̄ �= 0.
By (5.2) and (3.3) we have that ��xn�un� = 
�xn��n�un�. Because ��x�u� =

��g�0��	 �x�u�� and �n ∈ �g�0�, we also have that ��xn + hn�un� ≥ 
�xn + hn��n�un�.
Consequently, it follows by (5.8) that

(5.9) 
�xn+hn��n�un�−
�xn��n�un�≤ o�
hn
2�


Because Dx
�xn��n�un� = 0, by using a second-order Taylor expansion of the left-hand
side of (5.9), with respect to hn, and passing to the limit, we obtain that

(5.10) D2
xxL�x̄� �̄��h̄� h̄�≤ 0


Because g�·� is Lipschitz continuous and convex, we have

(5.11)
��xn+hn�un�=g

(
	 �xn� un�+Dx	 �xn� un�hn

)+o�
hn
�
≥ g

(
	 �xn� un�

)+�T
nDx	 �xn� un�hn+o�
hn
�
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Moreover, by (5.2) we have that �T
nDx	 �xn� un�hn = 0, and hence it follows from (5.8) and

(5.11) that

(5.12) ��xn+hn�un�−��xn�un�= o�
hn
�

So far, we did not use the strict complementarity condition.
As was discussed earlier, the strict complementarity condition implies that 	 �xn� un� ∈ L

for sufficiently large n. Consequently, by passing to the limit we obtain by (5.12) that
g
(
DF �x̄�h̄

)= 0, which means that h̄ ∈ ��x̄�. Together with (5.10), this contradicts (4.18),
and therefore the proof is complete. �

The above proof shows that without the assumption of strict complementarity, the condi-
tion for the Hessian matrix D2

xxL�x̄� �̄� to be positive definite is sufficient for the uniform
quadratic growth, at x̄, to hold. It seems that such a condition is too strong. General neces-
sary and sufficient second-order conditions for the uniform quadratic growth are not known.
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