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Abstract

We discuss in this paper statistical inference of Monte Carlo simulation based

approximations of stochastic optimization problems, where the \true" objec-

tive function, and probably some of the constraints, are estimated, typically by

averaging a random sample. The classical maximum likelihood estimation can

be considered in that framework. Recently statistical analysis of such meth-

ods has been motivated by a development of simulation based optimization

techniques. We investigate asymptotic properties of the optimal value and an

optimal solution of the corresponding Monte Carlo simulation approximations

by employing the so-called Delta method, and discuss some examples.

1 Introduction

Consider the optimization problem

Min
x2S

f(x); (1.1)

where S is a subset of IRm and f : S ! IR. Suppose that the above optimization
problem is approximated by a sequence of problems

Min
x2S

f̂N(x); (1.2)

where f̂N(x) are random functions converging, as N ! 1, in some probabilistic
sense to f(x). We refer to (1.1) and (1.2) as the true and approximating problems,
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respectively. Typically the objective function f(x) is given as the expected value
function

f(x) := IEPfg(x; !)g =
Z


g(x; !)P (d!); (1.3)

where (
;F ; P ) is a probability space, and the approximating functions f̂N(x) are
constructed by averaging a random sample.

Let v0, v̂N and x0, x̂N be the optimal values and optimal solutions of the problems
(1.1) and (1.2), respectively. In this paper we discuss asymptotic statistical inference
of v̂N and x̂N , as N tends to in�nity. We also consider the cases where the feasible
set S is subject to perturbations and is given by random constraints. Let us discuss
some examples.

Example 1.1 Our �rst example is motivated by the classical maximum likelihood
method of estimation. That is, let g(y; �) be a family of probability density functions
(pdf), parameterized by the parameter vector � 2 � � IRm, and let Y1; :::; YN be an
i.i.d. random sample with a probability distribution P . De�ne

f̂N(�) := �N�1
NX
i=1

ln g(Yi; �):

By the Law of Large Numbers we have that, for any �xed value of �, f̂N (�) converges
to

f(�) := �IEPfln g(Y; �)g = �
Z
ln g(y; �)P (dy);

with probability one, as N !1, provided of course that the above expectation exists.
This leads to the \true" and \approximating" optimization problems of minimizing
f(�) and f̂N(�), respectively, over the parameter set �.

In particular, suppose that the distribution P is given by a pdf g(y; �0), �0 2 �,
from the above parametric family, i.e., the parametric model is correctly speci�ed.
Then �0 is an unconstrained minimizer of f(�), and hence is an optimal solution of
the \true" problem. Indeed, by using concavity of the logarithm function, we obtain

f(�0)� f(�) =
Z
ln

"
g(y; �)

g(y; �0)

#
g(y; �0)dy �

Z "
g(y; �)

g(y; �0)
� 1

#
g(y; �0)dy = 0:

There is a large literature on the maximum likelihood method, and the above deriva-
tion of optimality of �0 is known of course. We will come back to this example later.
Let us note at this point that the corresponding random sample usually represents
available data and the associated minimizer �̂N of f̂N (�), over �, is viewed as the max-
imum likelihood estimator of the \true" value �0 of the parameter vector. There are
also various extensions of the maximum likelihood method, in particular the method
of M -estimators introduced by Huber [13, 15].
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Somewhat di�erent type of examples is motivated by a Monte Carlo simulation
approach to numerical solutions of stochastic programming problems. A goal of a
such stochastic programming problem is to solve an optimization problem of the form
(1.1) with the objective function f(x) given as the expected value in the form (1.3).
The probability distribution P is supposed to be known, although may be not given
explicitly. However, the corresponding integral (expected value) cannot be calculated
in a closed form and has to be approximated. Monte Carlo simulation techniques
provide such an approximation by averaging a generated a random sample with an
appropriate probability distribution. Let us discuss the following two examples of
stochastic programming with recourse and a GI=G=1 queue.

Example 1.2 Consider the optimization problem

Min
x2S

cTx+ IEfQ(x; h(!))g; (1.4)

where c 2 IRm is a given vector, Q(x; h) is the optimal value of the optimization
problem

Min
y�0

qTy subject to Wy = h� Ax; (1.5)

and h = h(!) is a random vector with a known probability distribution. (For the sake
of simplicity we assume that only vector h is random while other parameters in the
linear programming problem (1.5) are deterministic.) This is the so-called two-stage
stochastic programming problem with recourse, which originated in works of Beale [2]
and Dantzig [8]. If the random vector h has a discrete distribution, then the expected
value function IEfQ(x; h)g is given in a form of summation and problem (1.4) can
be written as a large linear programming problem. Over the years this approach
was developed and various techniques were suggested in order to make it numerically
e�cient. The interested reader is referred to recent books by Kall and Wallace [16]
and Birge and Louveaux [4], and references therein, for an extensive discussion of
these methods.

However, the number of realizations of h (the number of discretization points
in case the distribution of h is continuous) typically grows exponentially with the
dimensionality of h. Consequently, this number can quickly become so large that
even modern computers cannot cope with the required calculations. Monte Carlo
simulation techniques suggest an approach to deal with this problem. That is, a
random sample h1; :::; hN of N independent realizations of the random vector h are
generated, and the expected value function IEfQ(x; h)g is estimated by the average
function Q̂N (x) := N�1PN

i=1Q(x; hi). Consequently the \true" problem (1.4) is
approximated by the problem

Min
x2S

cTx+ Q̂N (x): (1.6)

By calculating an optimal solution x̂N of the above approximating problem, one
obtains an estimator of an optimal solution of the true problem.
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By the Law of Large Numbers we have that the average function Q̂N(x) converges,
pointwise, to IEfQ(x; h)g with probability one, as N !1. The function Q(�; h), and
hence the function Q̂N (�), are piecewise linear and convex. The function Q(�; h) is
not given explicitly and in itself is an output of an optimization procedure. Nev-
ertheless, its value and a corresponding subgradient can be calculated, at any given
point x, by solving the linear program (1.5). This allows to apply, reasonably e�cient,
deterministic algorithms in order to solve the approximating problem (1.6). For a dis-
cussion of such algorithms and a numerical experience in solving two-stage stochastic
programming problems by such methods we refer to Shapiro and Homem-de-Mello
[33].

Let us make the following observations. The above example is di�erent from the
maximum likelihood example in several respects. In the above example the corre-
sponding random sample is generated in the computer and can be controlled to some
extend. The only limitation on the number N of generated points is the computa-
tional time and computer's memory capacity. It is also possible to implement various
variance reduction techniques which in some cases considerably enhance the numeri-
cal performance of the algorithm. Usually the feasible set S is de�ned by constraints.
In this respect inequality type constraints appear naturally in optimization problems.
In the maximum likelihood example the optimal solution of the \true" problem is
actually an unconstrained minimizer of the objective function. There is no reason
for such behavior of an optimal solution of the optimization problem (1.4). As we
shall see later this introduces an additional term in the asymptotic expansion of x̂N ,
associated with a curvature of the set S. Let us �nally note that the average function
Q̂N(x) is not everywhere di�erentiable. If the distribution of h is discrete, this is car-
ried over to the expected value function. On the other hand, if the distribution of h is
continuous, then the expected value function is smooth (di�erentiable). This makes
the asymptotics of x̂N quite di�erent in cases of discrete and continuous distributions
of h. We shall discuss that later.

Example 1.3 As our last example we consider a GI=G=1 queue whose service times
depend on a parameter vector x. Let Yi be the time between arrivals of the (i� 1)th

and ith customers, and for a given value of x, let Zi(x) be the service time of the
ith customer, i = 1; 2; :::. Let Gi(x) denote the i

th sojourn time, i.e., the total time
spent by the ith customer in the queue. It is assumed that the interarrival and service
times are random i.i.d., that the �rst customer arrives at an empty queue and that for
every x 2 S the queue is regenerative with the expected number of customers served
in one busy period (regenerative cycle) being �nite. A recursive relation between the
sojourn times is given by Lindley equation

Gi(x) = Zi(x) + [Gi�1(x)� Yi]+: (1.7)
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Under standard regularity conditions (e.g., [36] ), the long-run average functions

f̂N (x) := N�1
NX
i=1

Gi(x)

converge pointwise, with probability one, to the expected value (mean) steady state
sojourn time f(x). Consider the optimization problem

Min
x2S

f(x) +  (x); (1.8)

where  (x) is a (deterministic) cost function. The above \true" problem can be
approximated by generating the i.i.d. sequences of the interarrival and service times
and then calculating the sojourn times, by using Lindley equation (1.7), and replacing
f(x) with its average estimate f̂N (x). Let us observe that the sojourn times, used in
the averaging procedure, are not independent. The approximating functions f̂N (x)
are piecewise smooth. It is possible to extend the above example to more complex
queueing systems. It is somewhat surprising that there are examples of simple queues
with deterministic service times, depending on a parameter x belonging to an interval
of the real line, such that the corresponding expected value steady state sojourn time
is not di�erentiable at a dense set of points on that interval (Shapiro and Wardi [32]).

2 The Delta method

In order to investigate asymptotic properties of the estimators v̂N and x̂N it will
be convenient to use the Delta method, which we discuss in this section. Let YN
be a sequence of random vectors, converging in probability to a vector �. Suppose
that there exists a sequence �N of positive numbers, tending to in�nity, such that
�N (YN��) converges in distribution to a random vector Y , denoted �N (YN��)) Y .
Let G(y) be a vector valued function, di�erentiable at �. That is

G(y)�G(�) =M(y � �) + r(y); (2.1)

where M = rG(�) is the Jacobian matrix (of �rst order partial derivatives) of G at
�, and the remainder r(y) is of order o(ky� �k), i.e., r(y)=ky� �k ! 0 as y ! �. It
follows from (2.1) that

�N [G(YN)�G(�)] =M [�N (YN � �)] + �Nr(YN): (2.2)

Since �N (YN � �) converges in distribution, it is bounded in probability, and hence
kYN � �k is of stochastic order Op(�

�1
N ). It follows that

r(YN) = o(kYN � �k) = op(�
�1
N );

and hence �Nr(YN) converges in probability to zero. Consequently we obtain by (2.2)
that
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�N [G(YN)�G(�)])MY: (2.3)

This formula is routinely employed in multivariate analysis and is known as the (�nite
dimensional) Delta Theorem (e.g., [24]).

We need to extend this method in several directions. The random functions f̂N can
be viewed as random elements in an appropriate functional space and the correspond-
ing estimators v̂N and x̂N as functions of these random elements. This motivates us
to extend formula (2.3) to a Banach space setting. Let B1 and B2 be two Banach
(i.e., linear normed, complete) spaces, and G : B1 ! B2 be a mapping. Suppose that
G is directionally di�erentiable at a considered point � 2 B1, i.e., the limit

G0�(d) := lim
t#0

G(�+ td)�G(�)

t
(2.4)

exists for all d 2 B1. If, in addition, the directional derivative G0� : B1 ! B2 is
linear and continuous, then it is said that G is Gâteaux di�erentiable at �. Note
that, in any case, the directional derivative G0�(�) is positively homogeneous, that is
G0�(�d) = �G0�(d) for any � � 0 and d 2 B1.

It follows from (2.4) that

G(�+ d)�G(�) = G0�(d) + r(d)

with the remainder r(d) being \small" along any �xed direction d, i.e., r(td)=t ! 0
as t # 0. This property is not su�cient, however, to neglect the remainder term in
the corresponding asymptotic expansion and we need a stronger notion of directional
di�erentiability. It is said that G is directionally di�erentiable at � in the sense of
Hadamard if the directional derivative G0�(d) exists for all d 2 B1 and, moreover,

G0�(d) = lim
t#0

d0!d

G(�+ td0)�G(�)

t
: (2.5)

It is possible to show that if G is Hadamard directionally di�erentiable at �, then
the directional derivative G0�(�) is continuous, although possibly is not linear. For a
discussion of various concepts of directional di�erentiability see, e.g., [29].

Now letB1 and B2 be equipped with their Borel �-algebras B1 and B2, respectively.
(Recall that Borel �-algebra of a normed space is the �-algebra generated by the
family of its open sets.) An F -measurable mapping from a probability space (
;F ; P )
into B1 is called a random element of B1. Consider a sequence XN of random elements
of B1. It is said that XN converges in distribution (weakly) to a random element Y of
B1, and denotedXN ) Y , if the expected values IEff(XN)g converge to IEff(Y )g, as
N !1, for any bounded and continuous function f : B1 ! IR (see, e.g., Billingsley
[3] for a discussion of weak convergence). Let us formulate now the �rst version of
the Delta Theorem.
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Theorem 2.1 Let B1 and B2 be Banach spaces, equipped with their Borel �-algebras,
YN be a sequence of random elements of B1, G : B1 ! B2 be a mapping, and �N be
a sequence of positive numbers tending to in�nity as N !1. Suppose that the space
B1 is separable, the mapping G is Hadamard directionally di�erentiable at a point
� 2 B1, and the sequence XN := �N (YN � �) converges in distribution to a random
element Y of B1. Then

�N [G(YN)�G(�)]) G0�(Y ); (2.6)

and
�N [G(YN)�G(�)] = G0�(XN) + op(1): (2.7)

Note that, because of the Hadamard directional di�erentiability of G, the map-
ping G0� : B1 ! B2 is continuous, and hence is measurable with respect to the Borel
�-algebras of B1 and B2. The above in�nite dimensional version of the Delta Theo-
rem appeared in works of Gill [11], Gr�ubel [12] and King [17, 18]. It can be proved
easily by using the following Skorohod-Dudley almost sure representation theorem,
e.g., [23, p.71]).

Representation Theorem. Suppose that a sequence of random elements XN , of a
separable Banach space B, converges in distribution to a random element Y . Then
there exists a sequence X 0

N , Y
0, de�ned on a single probability space, such that

X 0
N

D
= XN , for all N , Y 0 D= Y and X 0

N ! Y 0 with probability one.

Here Y 0 D= Y means that the probability measures induced by Y 0 and Y coincide.
We give now a proof of theorem 2.1 for the sake of completeness.

Proof of theorem 2.1. Consider the sequence XN := �N(YN��) of random elements
of B1. By the Representation Theorem, there exists a sequence X 0

N , Y
0, de�ned on

a single probability space, such that X 0
N

D
= XN , Y

0 D
= Y and X 0

N ! Y 0 w.p.1.

Consequently for Y 0
N := �+��1N X 0

N , we have Y
0
N

D
= YN . It follows then from Hadamard

directional di�erentiability of G that

�N [G(Y
0
N)�G(�)]! G0�(Y

0) w:p:1: (2.8)

Since convergence with probability one implies convergence in distribution and the
terms in (2.8) have the same distributions as the corresponding terms in (2.6), the
asymptotic result (2.6) follows.

Now since G0�(�) is continuous and X
0
N ! Y 0 w.p.1, we have that

G0�(X
0
N )! G0�(Y

0) w:p:1: (2.9)

Together with (2.8) this implies that the di�erence between G0�(X
0
N) and the left hand

side of (2.8) tends w.p.1, and hence in probability, to zero. We obtain that

�N [G(Y
0
N)�G(�)] = G0� [�N (Y

0
N � �)] + op(1);
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which implies (2.7).
Let us now formulate the second version of the Delta Theorem where the mapping

G is restricted to a subset K of the space B1. We say thatG is Hadamard directionally
di�erentiable at a point � tangentially to the set K if for any sequence dN of the form
dN := (yN � �)=tN , where yN 2 K and tN # 0, and such that dN ! d, the following
limit exists

G0�(d) = lim
N!1

G(�+ tNdN)�G(�)

tN
: (2.10)

Equivalently the above condition (2.10) can be written in the form

G0�(d) = lim
t#0

d0!
K
d

G(�+ td0)�G(�)

t
; (2.11)

where the notation d0 !
K
d means that d0 ! d and �+ td0 2 K.

Since yN 2 K, and hence �+ tNdN 2 K, the mapping G needs only to be de�ned
on the set K. Recall that the contingent (Bouligand) cone to K at �, denoted TK(�),
is formed by vectors d 2 B such that there exist sequences dN ! d and tN # 0 such
that �+ tNdN 2 K. Note that TK(�) is nonempty only if � belongs to the topological
closure of K. By the above de�nitions we have that G0�(�) is de�ned on the set TK(�).
The following \tangential" version of the Delta Theorem can be easily proved in a
way similar to the proof of theorem 2.1 (Shapiro [30]).

Theorem 2.2 Let B1 and B2 be Banach spaces, K be a subset of B1, G : K ! B2

be a mapping, and YN be a sequence of random elements of B1. Suppose that: (i) the
space B1 is separable, (ii) the mapping G is Hadamard directionally di�erentiable at
a point � tangentially to the set K, (iii) for some sequence �N of positive numbers
tending to in�nity, the sequence XN := �N (YN � �) converges in distribution to a
random element Y , (iv) YN 2 K, with probability one, for all N large enough. Then

�N [G(YN)�G(�)]) G0�(Y ): (2.12)

Moreover, if the set K is convex, then equation (2.7) holds.

Note that it follows from the assumptions (iii) and (iv) that the distribution of Y
is concentrated on the contingent cone TK(�), and hence the distribution of G0�(Y )
is well de�ned.

Our third variant of the Delta Theorem deals with a second order expansion of
the mapping G. That is, suppose that G is directionally di�erentiable at � and de�ne

G00�(d) = lim
t#0

d0!d

G(�+ td0)�G(�)� tG0�(d
0)

1
2t
2

: (2.13)

If the mapping G is twice continuously di�erentiable, then this second order direc-
tional derivativeG00�(d) coincides with the second order term in the Taylor expansion of
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G(� + d). The above de�nition of G00�(d) makes sense for directionally di�erentiable
mappings. However, in interesting applications, where it is possible to calculate
G00�(d), the mapping G is actually (Gâteaux) di�erentiable. We say that G is sec-
ond order Hadamard directionally di�erentiable at � if the second order directional
derivative G00�(d), de�ned in (2.13), exists for all d 2 B1. We say that G is second
order Hadamard directionally di�erentiable at � tangentially to a set K � B1 if for
all d 2 TK(�) the limit

G00�(d) = lim
t#0

d0!
K
d

G(�+ td0)�G(�)� tG0�(d
0)

1
2t
2

(2.14)

exists.

Note that if G is �rst and second order Hadamard directionally di�erentiable
at � tangentially to K, then G0�(�) and G00�(�) are continuous on TK(�), and that
G00�(�d) = �2G00�(d) for any � � 0 and d 2 TK(�).

Theorem 2.3 Let B1 and B2 be Banach spaces, K be a convex subset of B1, YN be a
sequence of random elements of B1, G : K ! B2 be a mapping, and �N be a sequence
of positive numbers tending to in�nity as N ! 1. Suppose that: (i) the space B1

is separable, (ii) G is �rst and second order Hadamard directionally di�erentiable
at � tangentially to the set K, (iii) the sequence XN := �N(YN � �) converges in
distribution to a random element Y of B1, (iv) YN 2 K w.p.1 for N large enough.
Then

� 2N
h
G(YN)�G(�)�G0�(YN � �)

i
) 1

2G
00
�(Y ); (2.15)

and

G(YN) = G(�) +G0�(YN � �) + 1
2G

00
�(YN � �) + op(�

�2
N ): (2.16)

Proof. let X 0
N , Y

0 and Y 0
N be elements as in the proof of theorem 2.1. Recall that

their existence is guaranteed by the Representation Theorem. Then by the de�nition
of G00� we have

� 2N
h
G(Y 0

N)�G(�)� ��1N G0�(X
0
N )
i
! 1

2G
00
�(Y

0) w:p:1:

Note that G0�(�) is de�ned on TK(�) and, since K is convex, X 0
N = �N(Y

0
N � �) 2

TK(�). Therefore the expression in the left hand side of the above limit is well
de�ned. Since convergence w.p.1 implies convergence in distribution, formula (2.15)
follows. Since G00�(�) is continuous on TK(�), and, by convexity of K, Y 0

N �� 2 TK(�)
w.p.1, we have that � 2NG

00
�(Y

0
N � �)! G00�(Y

0) w.p.1. Since convergence w.p.1 implies
convergence in probability, formula (2.16) then follows.
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3 First order asymptotics of the optimal value

In this section we discuss asymptotics of the optimal value v̂N , of the approximating
problem, based on �rst order expansions of the optimal value function. We assume
that the feasible set S, of the true and approximating problems, is a compact subset
of IRm. In many interesting applications such assumption cannot be guaranteed and
in fact S can be unbounded. Nevertheless, it can be often showed that an optimal
solution of the approximating problem stays with probability one in a bounded subset
of IRm, and hence we can restrict the optimization procedure to a compact subset of
IRm.

Let us consider the Banach space C(S) of continuous functions y : S ! IR
equipped with the sup-norm kyk := supx2S jy(x)j. We assume that the objective
function f(x), of the true problem (1.1), is continuous, and hence f 2 C(S), and that
the approximating functions f̂N are random elements of C(S). De�ne the optimal
value function # : C(S) ! IR as #(y) := infx2S y(x). We have then that v0 = #(f)
and v̂N = #(f̂N ).

It is not di�cult to see that the optimal value function # is concave and Lipschitz
continuous modulus one, i.e., j#(y1)�#(y2)j � ky1�y2k for any y1; y2 2 C(S). More-
over, it is possible to show (e.g., [30]) that # is Hadamard directionally di�erentiable
at any point � 2 C(S) and for any � 2 C(S),

#0�(�) = inf
x2S�(�)

�(x); (3.1)

where S�(�) := argminx2S �(x). Note that the set S�(�) is nonempty since �(x) is
continuous and S is compact. Together with theorem 2.1 this leads to the following
asymptotic result (Shapiro [30]).

Theorem 3.1 Suppose that, for a sequence �N of positive numbers converging to in-
�nity, the sequence �N (f̂N�f), of random elements of C(S), converges in distribution
to a random element Y of C(S). Then

�N (v̂N � v0)) inf
x2S�(f)

Y (x); (3.2)

where S�(f) is the set of optimal solutions of the true problem (1.1). In particular, if
the true problem has unique optimal solution x0, then

�N (v̂N � v0)) Y (x0): (3.3)

Let us specify the above, somewhat abstract, asymptotic result to the case where
f is the expected value function, de�ned in (1.3), and the approximating functions
f̂N are constructed by averaging a random sample. That is,

f̂N(x) := N�1
NX
i=1

g(x; !i); (3.4)
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where !1; :::; !N is an i.i.d. random sample, in (
;F), with the probability distribu-
tion P . Let us make the following assumptions.

(A1) For every x 2 S, the function g(x; �) is F -measurable.

(A2) For some point x 2 S, the expectation IEPfg(x; !)2g is �nite.

(A3) There exists an F -measurable function � : 
 ! IR such that IEPf�(!)2g is
�nite and

jg(x1; !)� g(x2; !)j � �(!)kx1 � x2k (3.5)

for all x1; x2 2 S and P -almost all ! 2 
.

The above assumptions (A1) - (A3) are su�cient for the Central Limit Theorem
to hold in C(S). That is, the sequence N1=2(f̂N � f), of random elements of C(S),
converges in distribution to a random element Y (see Araujo and Gin�e [1], for details).
Note that for any �xed point x0 2 S, Y (x0) is a real valued random variable having
normal distribution with zero mean and variance �2(x0) equal to the variance of
g(x0; !), i.e.,

�2(x0) = IEPfg(x0; !)
2g � f(x0)

2: (3.6)

We obtain the following results [30].

Theorem 3.2 Suppose that f and f̂N are given in the form (1.3) and (3.4), respec-
tively, with !i being an i.i.d. random sample, that the above assumptions (A1) - (A3)
hold, and that the true problem (1.1) has unique optimal solution x0. Then it fol-
lows that N1=2(v̂N � v0) converges in distribution to normal N(0; �2), with variance
�2 = �2(x0) given in (3.6), and

v̂N = f̂N (x0) + op(N
�1=2): (3.7)

Formula (3.7) shows that, under the assumptions of the above theorem, the opti-
mal value v̂N of the approximating problem (1.2) is equivalent, up to order op(N

�1=2),

to the value of the problem with the same objective function f̂N and the feasible set S
reduced to the single point x0. This indicates that the above (�rst order) asymptotics
do not depend on the local structure of the set S near the point x0. Note that since
f̂N(x0) is an unbiased estimator of v0 = f(x0) and that v̂N � f̂N(x0), the estimator
v̂N of v0 typically has a negative bias. We will derive later an approximation of the
asymptotic bias of v̂N , of order O(N

�1), by using a second order expansion of the
optimal value function.

Consider the framework of the maximum likelihood example 1.1. Let �0 and �1

be subsets of IRm and suppose that we wish to test the null hypothesis H0 : � 2 �0

against the alternative H1 : � 2 �1. Let

`N := 2

"
inf
�2�0

NX
i=1

ln g(Yi; �)� inf
�2�1

NX
i=1

ln g(Yi; �)

#
(3.8)
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be the corresponding log-likelihood ratio test statistic. Suppose that f(�) := �IEPfln g(Y; �)g
has unique minimizers �0 and �1 over the sets �0 and �1, respectively. Recall that
if the distribution P , of the random sample, is given by a pdf g(x; �0), then �0 is an
unconstrained minimizer of f(�). Moreover, if the parameter vector � is identi�ed at
�0, then �0 is such unique minimizer. We have by (3.7) that

N�1=2`N = 2N�1=2
NX
i=1

[ln g(Yi; �0)� ln g(Yi; �1)] + op(1); (3.9)

provided that the corresponding regularity assumptions (A1) - (A3) hold. It follows
that
N�1=2(`N � `0) converges in distribution to normal N(0; �2), where `0 and �

2 are the
mean and the variance, respectively, of the random variableZ := 2 ln[g(Y; �0)=g(Y; �1)].

Note that if �0 = �1, then this variable Z degenerates into Z � 0. Therefore
in cases where vectors �0 and �1 are close to each other (and usually these are the
cases we are interested in), the above normal approximation of the distribution of
`N is not accurate. In fact it is possible to obtain a much better approximation
of the distribution of `N by using a second order expansion of the optimal value
function. However, in stochastic programming applications the asymptotic result
(3.7) is very useful due to its simplicity and generality. The asymptotic variance
�2(x) can be consistently estimated at each iteration point x = x� of a simulation
based optimization algorithm. This allows to incorporate t-test type procedures into
such algorithms and to construct con�dence intervals for the true optimal value v0
(see [33]).

Let us consider now a situation where the feasible set is de�ned by constraints
which are not given explicitly and should be estimated. That is,

S := fx 2 Q : hi(x) � 0; i = 1; :::; kg ; (3.10)

where Q is a closed subset of IRm and the constraint functions hi are given as expected
values, hi(x) := IEfgi(x; !)g, i = 1; :::; k. Suppose that each constraint function hi(x)
is real valued (i.e., the corresponding expectation exists), and that hi(x) can be
estimated, say be a sample average, function ĥiN (x). Then the true problem (1.1)
can be approximated by the problem

Min
x2SN

f̂N(x); (3.11)

where

SN :=
n
x 2 Q : ĥiN (x) � 0; i = 1; :::; k

o
: (3.12)

It is possible to show that, under mild regularity conditions, the optimal value v̂N
and an optimal solution x̂N of the above approximating problem (3.12) are consistent
estimators of their \true" counterparts. Let us mention recent work of Dupa�cov�a and
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Wets [10], King and Wets [19] and Robinson [25], where this consistency problem is
studied from the point of view of epi-convergence analysis.

Recall that the true problem (1.1) is said to be convex if the set Q is convex and
the objective function f and the constraint functions hi, i = 1; :::; k, are convex. The
Lagrangian function, associated with problem (1.1), is

L(x; �) := f(x) +
kX
i=1

�ihi(x): (3.13)

Suppose that the true problem (1.1) is convex and that the Slater condition holds, i.e.,
there exists a point �x 2 Q such that hi(�x) < 0, i = 1; :::; k. Then with every optimal
solution x0 of (1.1) is associated a nonempty and bounded set �(x0) of Lagrange
multipliers vectors � = (�1; :::; �k) satisfying the optimality conditions:

x0 2 argmin
x2Q

L(x; �); �i � 0 and �ihi(x0) = 0; i = 1; :::; k: (3.14)

The set �(x0) coincides with the set of optimal solutions of the dual of (1.1) problem,
and therefore is the same for any optimal solution of (1.1) (see Rockafellar [26]).

Let the set Q be a compact convex subset of IRm and consider the Banach space
B := C(Q) � ::: � C(Q), given by the Cartesian product of k + 1 replications of
the space C(Q). Note that real valued convex functions are continuous and hence
(f; h1; :::; hk) 2 B. Denote by K the subset of B formed by � = (�0; :::; �k) 2 B such
that each function �i(�), i = 0; :::; k, is convex on Q. Since problem (1.1) is convex, we
have that (f; h1; :::; hk) 2 K. Note that the set K is closed and convex in B. De�ne
the optimal value function

#(�) := inff�0(x) : x 2 Q; �i(x) � 0; i = 1; :::; kg: (3.15)

Clearly, for � := (f; h1; :::; hk) and YN := (f̂N ; ĥ1N ; :::; ĥkN), we have that #(�) = v0
and #(YN) = v̂N .

It is possible to show that the optimal value function #(�) is Hadamard direction-
ally di�erentiable at the point � := (f; h1; :::; hk), tangentially to the set K, provided
the Slater condition is satis�ed, which together with the Delta Theorem 2.2 imply
the following results (Shapiro [30]).

Theorem 3.3 Suppose that the true problem is convex and that the Slater condition,
for the true problem, is satis�ed. Then the optimal value function # is Hadamard
directionally di�erentiable at the point � := (f; h1; :::; hk) tangentially to the set K
and for any � 2 TK(�),

#0�(�) = inf
x2S�(�)

sup
�2�(�)

"
�0(x) +

kX
i=1

�i�i(x)

#
; (3.16)

where S�(�) and �(�) are the sets of optimal solutions and Lagrange multipliers,
respectively, of the true problem. If, moreover, YN := (f̂N ; ĥ1N ; :::; ĥkN) are random
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elements of the Banach space B such that with probability one YN 2 K, i.e., the
approximating problem (3.11) is convex, and N1=2(YN � �) converges in distribution
to a random element Y = (Y0; :::; Yk) of B, then

N1=2(v̂N � v0)) inf
x2S�(�)

sup
�2�(�)

"
Y0(x) +

kX
i=1

�iYi(x)

#
: (3.17)

The above formula (3.17) indicates that in order to ensure asymptotic normality
of v̂N , one needs to assume that the true problem has unique optimal solution x0 to
which corresponds unique Lagrange multipliers vector �� = (��1; :::; ��k). In that case
we obtain, assuming that conditions (A1) - (A3) hold for every function gi(x; !), that

N1=2(v̂N � v0)) N(0; �2); (3.18)

with �2 = var
n
g(x0; !) +

Pk
i=1

��igi(x0; !)
o
.

Without the convexity assumption an asymptotic analysis of stochastic problems
like (3.11) is more involved. It is still possible to derive asymptotic normality of
the optimal value v̂N , as in (3.18), but under stronger regularity conditions. In
particular, one needs to assume Lipschitz continuity of the involved functions and
that assumptions like (A1) -(A3) hold for the corresponding Lipschitz constants as
well (Shapiro [30]).

4 Second order expansions of the optimal value

and asymptotics of optimal solutions

In this section we discuss second order expansions of the optimal value function,
which (as we shall see) are closely related to asymptotics of optimal solutions of the
approximating problems. We consider the case where the feasible set S is closed (not
necessarily convex) and �xed (deterministic) and only the objective function f is
subject to perturbations. Unless stated otherwise, we assume throughout this section
that the function f is twice continuously di�erentiable and that the true problem
(1.1) has unique optimal solution x0. By rf(x) and r2f(x) we denote the gradient
and the Hessian matrix (of second order partial derivatives), respectively, of f at x.

The following �rst order necessary conditions hold at the point x0:

wTrf(x0) � 0; for all w 2 TS(x0): (4.1)

We say that the second order growth condition holds at x0 if there exist a constant
c > 0 and a neighborhood U � IRm of x0 such that

f(x) � f(x0) + ckx� x0k
2; for all x 2 S \ U: (4.2)
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This condition is closely related to second order optimality conditions. The set

C(x0) :=
n
w 2 TS(x0) : w

Trf(x0) = 0
o

(4.3)

is called the critical cone of the problem (1.1). It represents those directions for which
�rst order conditions (4.1) do not provide information about optimality of x0. Note
that if rf(x0) = 0, then C(x0) = TS(x0). If the distribution P , in the maximum
likelihood example 1.1, is given by a pdf g(y; �0), �0 2 �, then �0 is an unconstrained
minimizer of f(�) and hence rf(�0) = 0. Therefore in that case the critical and
tangent cones to the parameter set � coincide at the point �0.

It turns out that second order optimality conditions, as well as second order
expansions of the optimal value function, involve a term related to the curvature of
the set S. There are several ways how the curvature of S can be measured. We
approach that problem from the following point of view. The set

T 2
S(x; d) :=

n
w 2 IRm : dist

�
x + td+ 1

2t
2w; S

�
= o(t2)

o
(4.4)

is called the second order tangent set, to the set S at the point x in the direction d.
Here dist(x; S) := infz2S kx � zk denotes the distance from a point x to the set S.
Note that T 2

S(x; d) can be nonempty only if x 2 S and d 2 TS(x). Yet even if S is
convex and x 2 S and d 2 TS(x), it can happen that the corresponding second order
tangent set is empty.

We also will need the following technical condition. We say that the set S is second
order regular at the point x0 if for any vector d 2 TS(x0) and any sequence xN 2 S
of the form xN := x0 + tNd +

1
2 t
2
NwN , where tN # 0 and tNwN ! 0, the following

condition holds
lim
N!1

dist
�
wN ; T

2
S(x0; d)

�
= 0: (4.5)

If wN ! w, then w 2 T 2
S(x0; d) by the de�nition of second order tangent sets, and

hence (4.5) holds. The sequence wN , however, can be unbounded and it is only
required that the term t2NwN , in the expansion of xN , is of order o(tN). The above
second order regularity condition ensures that T 2

S(x0; d) provides a \su�ciently tight"
second order approximation of the set S in the direction d. This condition and a
related second order analysis of optimization problems is extensively discussed in the
forthcoming book by Bonnans and Shapiro [5]. Note that the second order regularity
condition implies that the set T 2

S(x0; d) is nonempty, and that dist(x0+ td; S) = o(t),
t > 0, for any d 2 TS(x0).

Under the second order regularity condition, the following second order optimality
conditions are necessary and su�cient for the second order growth condition (4.2) to
hold at the point x0 ([5]):

dTr2f(x0)d+ inf
w2T 2

S
(x0;d)

wTrf(x0) > 0; for all d 2 C(x0) n f0g: (4.6)

Apart from the quadratic term, corresponding to the second order Taylor expansion
of the function f , an additional term, associated with the second order tangent set
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T 2
S(x0; d), appears in the left hand side of (4.6). This terms vanishes if rf(x0) = 0.

That is what happens in the maximum likelihood example 1.1.

Example 4.1 Suppose that the set S is de�ned by equality and inequality constraints

S := fx : hi(x) = 0; i = 1; :::; q; hi(x) � 0; i = q + 1; :::; pg; (4.7)

with the constraint functions hi, i = 1; :::; p, being twice continuously di�erentiable.
Let L(x; �) := f(x) +

Pp
i=1 �ihi(x) be the Lagrangian function of the true prob-

lem. Suppose that the following, Mangasarian-Fromovitz [21], constraint quali�cation
holds, at the point x0:

� the gradient vectors rhi(x0), i = 1; :::; q, are linearly independent,

� there exists a vector w 2 IRm such that wTrhi(x0) = 0, i = 1; :::; q, and
wTrhi(x0) < 0, i 2 I(x0), where

I(x0) := fi : hi(x0) = 0; i = q + 1; :::; pg (4.8)

denotes the set of active at x0 inequality constraints.

Then

TS(x0) =
n
d 2 IRm : dTrhi(x0) = 0; i = 1; :::; q; dTrhi(x0) � 0; i 2 I(x0)

o
; (4.9)

and �rst order (Kuhn-Tucker) necessary optimality conditions take the form: there
exists a vector � = (�1; :::; �p) such that

rxL(x0; �) = 0; �i � 0; �ihi(x0) = 0; i = q + 1; :::; p: (4.10)

Under the Mangasarian-Fromovitz constraint quali�cation, the set �(x0) of all La-
grange multipliers vectors �, satisfying the above conditions (4.10), is nonempty and
bounded, and for any � 2 �(x0) the critical cone can be written as

C(x0) =
n
d : dTrhi(x0) = 0; i 2 f1; :::; qg [ I+(�); d

Trhi(x0) � 0; i 2 I0(�)
o
;

(4.11)
where

I+(�) := fi 2 I(x0) : �i > 0g and I0(�) := fi 2 I(x0) : �i = 0g:

Moreover, the set S is second order regular at x0, and for d 2 TS(x0),

T 2
S(x0; d) =

(
w 2 IRm :

wTrhi(x0) + dTr2hi(x0)d = 0; i = 1; � � � ; q;
wTrhi(x0) + dTr2hi(x0)d � 0; i 2 I1(x0; d)

)
; (4.12)

where
I1(x0; d) :=

n
i 2 I(x0) : d

Trhi(x0) = 0
o
: (4.13)

It follows then by duality arguments that the second order conditions (4.6) can be
written in the following equivalent form

sup
�2�(x0)

dTr2
xxL(x0; �)d > 0; for all d 2 C(x0) n f0g: (4.14)
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We are prepared now to discuss second order expansions of the optimal value
function. We assume that the set S is compact and work in the Banach spaceW 1;1(S)
of Lipschitz continuous functions y : S ! IR equipped with the norm

kyk := sup
x2S

jy(x)j+ sup

(
jy(x0)� y(x)j

kx0 � xk
: x; x0 2 S; x0 6= x

)
:

Since any function y 2 W 1;1(S) is Lipschitz continuous on S, the above norm of
y is �nite. Consider the optimal value function #(y) := infx2S y(x), and let �(y)
be a corresponding optimal solution, i.e., �(y) 2 argminx2S y(x). Note that, since
it is assumed that the set S is compact, such optimal solution always exists, al-
though possibly is not unique. Let K be the subset of W 1;1(S) formed by (Fr�echet)
di�erentiable at x0 functions, i.e., y 2 K if there exists ry(x0) 2 IRm such that
y(x) = y(x0) + (x � x0)

Try(x0) + o(kx � x0k) for x 2 S. Clearly K is a linear
subspace of W 1;1(S). We have then the following second order expansion of #(�) and
�rst order expansion of �(�) in the space W 1;1(S) tangentially to K (Bonnans and
Shapiro [5]).

Theorem 4.2 Suppose that: (i) the true problem has a unique optimal solution x0,
(ii) the function f is twice continuously di�erentiable in a neighborhood of the point
x0, (iii) the second order growth condition (4.2) holds, (iv) the set S is second order
regular at x0. Then the optimal value function # : W 1;1(S)! IR is �rst and second
order Hadamard directionally di�erentiable at f tangentially to the space K, and for
� 2 K it follows that #0f (�) = �(x0) and

#00f (�) = inf
d2C(x0)

(
2dTr�(x0) + dTr2f(x0)d+ inf

w2T 2
S
(x0;d)

wTrf(x0)

)
: (4.15)

Suppose, further, that: (v) for any � 2 K the optimization problem in the right hand
side of (4.15) has unique optimal solution �d(�). Then the optimal solution function
�(�) is Hadamard directionally di�erentiable at f tangentially to K and �0f (�) =

�d(�).

Clearly, if rf(x0) = 0, then the last term in the right hand side of (4.15) vanishes.
Another situation where this term vanishes is if the set S is polyhedral, i.e., is de�ned
by a �nite number of linear constraints. In general this term is related, through the
second order tangent set T 2

S(x0; d), to the curvature of the set S, at the point x0.
For two-stage stochastic programming problems with recourse expansion (4.15) was
derived, and extended further to a case with multiple optimal solutions, in Dentcheva
and R�omisch [9].

In case the set S is de�ned by smooth constraints, as in (4.7), and the Mangasarian-
Fromovitz constraint quali�cation holds, the set S is second order regular at x0 and
the second order growth condition (4.2) is equivalent to the second order optimality
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conditions (4.14). Moreover, it is possible to show, by using formula (4.12) and du-
ality arguments, that the second order expansion (4.15) can be written then in the
following equivalent form

#00f (�) = inf
d2C(x0)

(
2dTr�(x0) + sup

�2�(x0)
dTr2

xxL(x0; �)d

)
: (4.16)

Recall that, under the Mangasarian-Fromovitz constraint quali�cation, the set �(x0)
of Lagrange multipliers is nonempty and bounded. Note also that the second order
su�cient conditions (4.6) (second order su�cient conditions (4.14)) ensure that the
in�mum in the right hand side of (4.15) (in the right hand side of (4.16)) is attained,
although it can be not unique. The optimization problem in the right hand side of
(4.16) has a unique optimal solution if the function

 (d) := sup
�2�(x0)

dTr2
xxL(x0; �)d

is strictly convex on the linear space generated by the critical cone C(x0). In par-
ticular, this holds if the Hessian matrix r2

xxL(x0; �) is positive de�nite for every
� 2 �(x0).

The above second order expansion of the optimal value function #(�) and the cor-
responding �rst order approximation of the optimal solution mapping �(�), together
with the Delta method, imply the following asymptotics of the optimal value v̂N and
an optimal solution x̂N of the approximating problem.

Theorem 4.3 Suppose that the assumptions (i)-(iv) of theorem 4.2, for the true prob-
lem, are satis�ed. Let �N be a sequence of positive numbers tending to in�nity, and f̂N
be a sequence of random elements of W 1;1(S) such that the sequence �N(f̂N �f) con-
verges in distribution to a random element Y of W 1;1(S) and that f̂N (�) is (Fr�echet)
di�erentiable at x0 w.p.1. Then

� 2N
h
v̂N � f̂N(x0)

i
) 1

2#
00
f (Y ); (4.17)

and
v̂N = f̂N(x0) + 1

2#
00
f (f̂N � f) + op(�

�2
N ); (4.18)

where #00f (�) is given in (4.15). Suppose, further, that the assumption (v) of theorem 4.2
holds and let �d(�) be the corresponding (unique) optimal solution function associated
with the problem (4.15). Then

�N (x̂N � x0)) �d(Y ): (4.19)

Regularity conditions which are required to ensure convergence in distribution
of the sequence �N (f̂N � f) of random elements of the space W 1;1(S) may be not
satis�ed in interesting nondi�erentiable examples. Nevertheless, even in such cases
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formulas (4.17) - (4.19) often give correct asymptotics which can be proved by di�erent
methods.

Suppose now that the approximating functions f̂N are constructed by averaging
an i.i.d. random sample, as in (3.4). Suppose further that the function g(�; !) is
Lipschitz continuous on S and (Fr�echet) di�erentiable at x0 for P -almost every !.
Moreover, suppose that �rst order derivatives of f(x) can be taken inside the expected
value, i.e., formula

rf(x) = IEPfrxg(x; !)g (4.20)

holds. Then N1=2
�
rf̂N(x0)�rf(x0)

�
converges in distribution to multivariate nor-

mal N(0;�), with the covariance matrix

� = IEP

n
[rxg(x0; !)][rxg(x0; !)]

T
o
�rf(x0)rf(x0)

T ; (4.21)

provided that the second order moments of rxg(x0; !) do exist. We obtain therefore
the following results.

Theorem 4.4 Suppose that the assumptions (i)-(iv) of theorem 4.2, for the true prob-
lem, are satis�ed. Let the approximating function f̂N be constructed by averaging an
i.i.d. random sample, and suppose that the function g(�; !) is Lipschitz continuous on
S and (Fr�echet) di�erentiable at x0 w.p.1, that the interchangeability formula (4.20)
holds, and that N1=2(f̂N � f) are random elements of W 1;1(S) converging in distri-
bution. Then

N
h
v̂N � f̂N(x0)

i
) 1

2'(Z) (4.22)

and
v̂N = f̂N(x0) +

1
2'(�N) + op(N

�1); (4.23)

where Z � N(0;�) is a random vector having multivariate normal distribution with
the covariance matrix � given in (4.21), �N := rf̂N(x0)�rf(x0), and

'(�) := inf
d2C(x0)

(
2dT � + dTr2f(x0)d+ inf

w2T 2
S
(x0;d)

wTrf(x0)

)
: (4.24)

Suppose, further, that for any vector � 2 IRm the optimization problem in the right
hand side of (4.24) has a unique optimal solution, denoted �d(�). Then

N1=2 (x̂N � x0)) �d(Z): (4.25)

In case the set S is de�ned by smooth constraints, as in (4.7), and the Mangasarian-
Fromovitz constraint quali�cation holds, the function '(�), de�ned in (4.24), can be
written in the following equivalent from

'(�) = inf
d2C(x0)

(
2dT � + sup

�2�(x0)
dTr2

xxL(x0; �)d

)
: (4.26)
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In that form formulas (4.23) and (4.25) were derived in Shapiro [28] by a di�erent
method. Asymptotics of the optimal solution x̂N were also derived in King and Rock-
afellar [20] by the Delta method in a framework of variational inequalities (generalized
equations).

Note that the \curvature term" (involving the second order tangent set T 2
S(x0; d))

in the expansion (4.24) vanishes in two cases, namely if rf(x0) = 0 or if the set S is
polyhedral. In such cases r2

xxL(x0; �) = r2f(x0) for any � 2 �(x0).
Since f̂N (x0) is an unbiased estimator of v0, we can view the term 1

2IEf'(Z)g,
where Z � N(0;�), as the asymptotic bias of v̂N , of order O(N

�1). Note that
'(�) � 0 for any � 2 IRm, and hence this asymptotic bias is negative.

The optimal solution �d(�) can be a nonlinear function of � even if this optimal
solution is unique. In that case the distribution of �d(Z) is not normal and hence x̂N is
not asymptotically normal (this was pointed out by King [17]). For example, let S be
de�ned by constraints, as in (4.7), and suppose that the the gradient vectors rhi(x0),
i 2 f1; :::; qg [ I(x0), are linearly independent. Then �(x0) = f��g is a singleton and
'(�) and �d(�) are the optimal value and an optimal solution of the problem

Mind2IRm 2dT � + dTr2
xxL(x0; ��)d

subject to dTrhi(x0) = 0; i 2 f1; :::; qg [ I+(��); dTrhi(x0) � 0; i 2 I0(��):
(4.27)

This is a quadratic programming problem. The above linear independence condition
implies that it has a unique vector ��(�) of Lagrange multipliers, and that it has a
unique optimal solution �d(�) if the Hessian matrix r2

xxL(x0;
��) is positive de�nite

over the linear space de�ned by the �rst q + jI+(��)j (equality) linear constraints in
(4.27).

If, furthermore, the strict complementarity condition holds, i.e., ��i > 0 for all
i 2 I(x0), or in other words I+(��) = I(x0) and I0(��) = ;, then �d(�) and ��(�) can be
obtained as solutions of the following system of linear equations

"
H A
AT 0

# "
d
�

#
= �

"
�
0

#
: (4.28)

HereH := r2
xxL(x0;

��) and A is them�(q+jI(x0)j) matrix whose columns are formed
by vectors rhi(x0), i 2 f1; :::; qg [ I(x0). We obtain in that case, provided the block
matrix in the left hand side of (4.28) is nonsingular, that N1=2(x̂N � x0; �̂N � ��)
converges in distribution to normal with zero mean and the covariance matrix

"
H A
AT 0

#�1 "
� 0
0 0

# "
H A
AT 0

#�1
: (4.29)

It can happen that the critical cone C(x0) consists of the single point 0, i.e.,
C(x0) = f0g. In that case the functions '(�) and �d(�) are identically zero and the
corresponding asymptotics are di�erent. For example, if the set S is de�ned by
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constraints, as in (4.7), and the Mangasarian-Fromovitz constraint quali�cation holds,
then it follows from formula (4.11) that C(x0) = f0g if the gradient vectors rhi(x0),
i 2 f1; :::; qg[I+(�), generate the space IR

m. In particular this happens if the number
of active inequality constraints at x0 is m � q (i.e., jI(x0)j = m � q), the gradient
vectors rhi(x0), i 2 f1; :::; qg [ I(x0), are linearly independent and all Lagrange
multipliers corresponding to the active inequality constraints are positive.

Suppose that C(x0) = f0g. In that case there exists a neighborhood U of rf(x0)
such that if rf̂N(x0) 2 U , then the �rst order optimality conditions for the ap-
proximating problem hold at the point x0, and x0 is a locally optimal solution of the
approximating problem. By the strong Law of Large Numbers, we have that rf̂N(x0)
converges to rf(x0) w.p.1. Consequently, w.p.1 for N large enough, rf̂N(x0) 2 U ,
and hence x0 is a locally optimal solution of the approximating problem. It follows
then that x̂N = x0 w.p.1 for N large enough. Moreover, by the Large Deviations
theory (e.g., [6]) we have, under mild regularity conditions, that the probability of
the event rf̂N(x0) 62 U tends to zero exponentially fast as N ! 1, and hence the
asymptotic bias of v̂N approaches zero at an exponential rate.

Let us �nally remark that it is also possible to derive similar asymptotics, of
the optimal value and optimal solutions, in cases where the feasible set is de�ned
by constraints and the constraint functions are estimated by corresponding sample
averages (Rubinstein and Shapiro [27, section 6.6]).

5 Examples and a discussion

Consider the framework of the maximum likelihood example 1.1. Suppose that the
parameter set � is compact and that the distribution P , of the corresponding random
sample, is given by a pdf g(y; �0), �0 2 �, from the considered parametric family. Sup-
pose also that for P -almost every y, the function ln g(y; �) is continuously di�erentiable
in a neighborhood of �, and that the corresponding assumptions (A1) - (A3) hold
for the function ln g(y; �) and its �rst order partial derivatives @ ln g(y; �)=@�i. Then,
since �0 is an unconstrained minimizer of f(�), and rf(�) = �IEPfr� ln g(Y; �)g, we
obtain that rf(�0) = 0. Suppose, further, that the expected value function f(�) is
twice continuously di�erentiable at �0 (note that this property does not follow from
the above assumptions), that the parameter vector � is identi�ed at �0 (and hence
the minimizer �0 is unique), that the second order growth condition holds at �0 and
that the set � is \su�ciently regular" near �0. Then the corresponding asymptotic
expansions given in theorem 4.3 hold.

Since rf(�0) = 0, we have here that C(�0) = T�(�0) and the third term in the
right hand side of (4.24) vanishes. The covariance matrix � is equal here to I(�0),
where

I(�0) := IE
n
[r� ln g(Y; �0)][r� ln g(Y; �0)]

T
o

is Fisher's information matrix. As it is well known, under second order smooth-
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ness assumptions about the function ln g(y; �), we also have that r2f(�0) = I(�0).
Consequently, the second order growth condition is ensured here by the condition:
dT I(�0)d > 0 for all nonzero d 2 T�(�0). In particular, this holds if I(�0) is nonsin-
gular, and hence is positive de�nite. By (4.23) we obtain that

sup
�2�

NX
i=1

ln g(Yi; �) =
NX
i=1

ln g(Yi; �0) + sup
d2T�(�0)

n
dTZN � 1

2d
T I(�0)d

o
+ op(1);

where ZN := N�1=2PN
i=1r� ln g(Yi; �). Note that ZN ) N(0; I(�0)).

Consider the log-likelihood ratio statistic `N , de�ned in (3.8), for testing H0 : � 2
�0 against H1 : � 2 �1. Suppose that the true value �0 of the parameter vector
belongs to both sets �0 and �1, that the information matrix I(�0) is nonsingular,
and de�ne WN := I(�0)

�1ZN . Note that WN ) N(0; I(�0)
�1). We obtain then the

following expansion of `N ,

`N = inf
d2T�0 (�0)

(WN � d)T I(�0)(WN � d)� inf
d2T�1 (�0)

(WN � d)T I(�0)(WN � d) + op(1):

It also follows that if �̂N is the maximum likelihood estimator of �0 under H0 (under
H1), then N

1=2(�̂N � �0) converges in distribution to �d(W ), where W � N(0; I(�0)
�1)

and �d(w) is the minimizer of (w � d)T I(�0)(w � d) over T�0
(�0) (over T�1

(�0)). This
result goes back to Cherno� [7].

The above discussion shows that the example of maximum likelihood is quite
speci�c from the point of view of general stochastic optimization problems. In that
example the gradient of the objective function of the true problem is zero at the opti-
mal solution, and consequently the \curvature term" vanishes from the corresponding
second order expansions of the optimal value function.

Before proceeding further let us state the following useful proposition. It can be
easily proved by using the Lebesgue dominated convergence theorem (e.g., [27, pp.
70,71]).

Proposition 5.1 Let f(x) be the expected value function de�ned in (1.3). Suppose
that the expectation IEPfg(x; !)g exists for all x in a neighborhood of x0, that for
P -almost every ! the function g(�; !) is directionally di�erentiable at x0, and that
there exists a random variable �(!) � 0 such that IEPf�(!)g is �nite and

jg(x1; !)� g(x2; !)j � �(!)kx1 � x2k (5.1)

for all x1; x2 in a neighborhood of x0 and P -almost all ! . Then the function f(x) is
Lipschitz continuous near x0, directionally di�erentiable at x0 and

f 0(x0; d) = IEPfg
0
!(x0; d)g; (5.2)

where g0!(x0; d) denotes the directional derivative of g(�; !) at x0 in the direction d.
Moreover, if g(�; !) is di�erentiable at x0 w.p.1, then the interchangeability formula
(4.20) holds at x = x0.
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Let us discuss now the two-stage stochastic programming example 1.2. Consider
the function

G(z) := inffqTy : Wy = z; y � 0g:

Clearly the function Q(x; h), given as the optimal value of the problem (1.5), can be
written as Q(x; h) = G(h � Ax). By duality arguments of linear programming we
have that

G(z) = supf�Tz : W T � � qg;

provided the set f� :W T � � qg is nonempty. So let us suppose, for the sake of simplic-
ity, that this set is nonempty and bounded. Then the function G(z) is a real valued
piecewise linear convex function. Suppose also that the expectation IEfQ(x; h)g exists
for all x.

It follows that the approximating function f̂N (x) := cTx +N�1PN
i=1Q(x; hi) is a

piecewise linear convex function, and hence is not everywhere di�erentiable. There-
fore, the involved asymptotics are quite di�erent depending on whether the distribu-
tion of the random vector h is continuous or discrete. Suppose �rst that the random
vector h has a continuous distribution with a density function g(�). Let us �x a point
x0 2 IRm. Since the function G(z) is convex, the set of points where it is not di�er-
entiable has Lebesgue measure zero. Since h has a density, it follows then that the
function Q(�; h) is di�erentiable at x0 w.p.1. Together with (5.2) this implies that
f(x) is di�erentiable at x0 and rf(x0) = c+ IEfrxQ(x0; h)g. If, moreover, the den-
sity function g(�) is continuous, then f(x) is twice continuously di�erentiable (Wang
[35]). In that case the asymptotic formulas (4.22), (4.23) and (4.25), of theorem 4.4,
with the covariance matrix � of Z � N(0;�) de�ned in (4.21), make sense. Under
some mild assumptions about the density function g(�), these formulas can be proved
by a di�erent method, which is based on a stochastic mean value theorem due to
Huber [14], (Shapiro [31]).

Let us �nally mention that in case the random vector h has a discrete distribution
the situation is quite di�erent. It is possible to show that in such case and if the true
problem has unique optimal solution x0, then the probability of the event that x̂N is
exactly equal to x0 approaches one exponentially fast (Shapiro and Homem-de-Mello
[34]).
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