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Gaussian process modeling for engineered
surfaces with applications to Si wafer production
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When producing engineered surfaces, the stochastic portion of the processing greatly affects the overall output
quality. We propose a Gaussian process model that accounts for the impact of control variables on the stochastic
elements of the produced surfaces. An optimization algorithm is outlined to find the maximum likelihood estimates
of the model parameters. A case study involving the thickness surfaces of semiconductor wafers is examined that
demonstrates the need for the proposed approach. Copyright © 2013 John Wiley & Sons, Ltd.
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Introduction

The material surface is of critical importance because of its impact on the downstream properties of products such as
friction and optical behavior. We study the case where we receive measurements from surfaces created via controlled
production or “engineered”. Data from engineered surfaces have become pervasive in recent years because of devel-
opments in measurement technology, information storage capacity, and processing power. A large amount of statistical
research has studied monitoring processes that produce surfaces (typically termed profiles). Monitoring is usually per-
formed by explicitly modeling a given surface (e.g., Qiu et al. (2010)). Our paper presents a different direction. Our
goal is not to explicitly model a given surface but instead to model the stochastic distribution of produced surfaces.
We study this distribution as the process inputs are altered. This problem is similar to a regression problem with func-
tional responses (Faraway, 1997). The core difference between this work and the works found in the current literature
is the focus on the stochastic portion of the responses.

We study the scenario where a user has the capability to alter certain variables, which we will denote control variables
or u. Surface measurements (Y) are collected corresponding to a set of explanatory variables (x) that represent the
spatial location of the measurement. This paper addresses the challenge of incorporating control variables into the
analysis of systems with stochastic surface responses. As an example, Section 4 studies wire-sawn semiconductor
wafers exhibiting undesirable waviness. Lapping, a process in which a liquid slurry containing abrasive particles is
pressed onto a rotating surface, is used to reduce waviness. Here, control variables include the downward pressure and
the rotation speed of the lapping pad. Table | outlines the response of a lapping process to a 24! fractional factorial
design of experiments with one center run; see Wu & Hamada (2009) for more information on designed experiments.

aH. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30318, USA
bGrado Department of Industrial and Systems Engineering, Virginia Institute of Technology, Blacksburg, VA 24061, USA
*Email: mplumlee@gatech.edu

Stat 2013; 2: 159-170 Copyright © 2013 John Wiley & Sons Ltd



M. Plumlee et al. Stat

(wileyonlinelibrary.com) DOI: 10.1002/sta4.26 The ISI's Journal for the Rapid
Dissemination of Statistics Research

Table I. Designed experiment for a lapping process.
Control variables u

Run Plow RPM tiow thigh Profile data

1 + — - — Y1,1 Ylyz Yl,d]
2 + + - + Y2,1 Y212 . Y2’d2
3 — — — + Y3,1 Y312 - Y3’c/3
4 — — + — Y4,1 Y412 . Y4’c/4
5 - + - - Ys Yso . Y5’d5
6 + - + + Ye6,1 Y62 . Y6,d6
7 + + + - Y71 Y2 . Y7’c/7
8 - + + + Ys.1 Y5> . Y&dg
9 0 0 0 0 Y9,1 Y912 e Y9’d9

The data, Y,-T/- =[Y;(1),...,Y;j(x,)], consist of over 150 thickness measurements on a regular grid (xy, ..., Xx,) on wafer

J produced at experimental index /.

Research has been reported to model the relationship between the control variables and the engineered surfaces by
using physical or mechanical knowledge. However, these models are often deterministic and lack the ability to deal
with the inherent stochasticity. The stochastic behavior of the system cannot be ignored for analysis as a multitude
of studies have found that topology related to stochastic variation affects the output quality (e.g., surface friction, see
Bhushan (2003)). Furthermore, there has been evidence that stochastic elements are affected by the processing used;
see Pei (2002) for an example involving a grinding process applied to silicon wafers.

Toward the aim of modeling the stochastic behavior of the system, we introduce a uniquely parameterized version
of a Gaussian process model. Gaussian process models have found extensive use in areas such as geostatistics,
environmental science, and computer experiments; see the works of Matheron (1963), Sans6 & Guenni (2000), and
Santner et al. (2003) for examples. The power of this model is the ability to account for varying levels differentiability
and continuity of a surface. For a more complete history of literature relating to spatial statistics, see Gelfand et al.
(2010).

The core contribution of this paper is the proposed model for the interaction of control variables and stochastic
behavior, outlined in Section 2. In Section 3, an iterative optimization technique for finding maximum likelihood
estimates (MLEs) for the model is discussed. Section 4 outlines a case study for this model that verifies the need to
model stochastic behavior as a function of the control variables. Additionally, Section 4 describes a surface model
defined on polar coordinates for silicon wafers produced via a rotational mechanism. Section 5 includes conclusions
and outlines possible future work.

Proposed modeling framework

The model discussed in this paper will emulate semi-parametric models such as those seen in Zeger & Diggle (1994),
replacing the spline model with a Gaussian process. This is justified by the connections between processes generated
by spline basis functions and Gaussian process models; see, for example, Wahba (1978). Each experimental index
i corresponds to a set of control variables denoted u;. The model of the k¥ point on the ji surface generated at
experimental index / is described as

Yir (Wi, X)) = pi; BW))) + Z; (x; 0(uy), 02 (7)) + €, (1)
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where u, Z, and € represent the underlying mean, a stochastic error due to processing, and measurement noise,
respectively. Values of measurement noise are modeled as independent and normal, € ~ N10,62]. The mean is
modeled as an additive linear model with a set of basis functions f,(x) that map x to R”, that is, u(x; B(u)) =
fI(x)ﬁ(u). The proper choice of a set of basis functions for the mean depends on the particular application. In
Section 4, we use a general set of spline basis functions for f, combined with a basis function that incorporates
engineering knowledge. The modeling of Z; will take the form of an independent realization of the Gaussian process,

Z; (x; (), o2 (u)) ~ GP [0, 62 W)R(, - ()],

where o2(u) and @(u) are the variance and correlation parameters of the process.

The Gaussian process model assumes that any collection of points on a surface follows a multivariate normal dis-
tribution that depends on the variance, Var(Zj(x;)) = o2(u), and the correlation function, Corr{Z;(x1),Z;(x2)} =
R(x1,x2; 6(u)). The correlation function, R, is a positive definite function that dictates the correlation between any
two points on a surface. For more information on the properties and development of correlation functions, see Gelfand
et al. (2010). Several correlation functions exist, including the powered exponential class, the Matérn class (Matérn,
1986), and the Cauchy class (Gneiting & Schlather, 2004). The Gaussian process model is useful in this circum-
stance because it has the power to account for the underlying continuity of the surface. Using the Gaussian process
assumption also creates the ability to use available maximum likelihood-based methods for estimating the parameters
of the model.

The core idea of this paper is the following: the parameters of the surfaces, especially ones that dictate stochastic
behavior, ought to be modeled as a function of the control variables. In terms of the proposed model, the mean
parameter (B(u)), the correlation parameter (6(u)), and the variance of the surface (o2(u)) are assumed to change
with the control variables. This implies that the control variables affect not only the mean but also the stochastic
portion of the surface model.

Because of the high cost associated with performing designed experiments in wafer manufacturing (both in terms of
material and measurement costs), it is common for few design points to be present in experiments such as Table I.
As a result, it is reasonable to use a linear model with higher order terms to represent how u interacts with the
surface parameters. The functions B(u), o?(u), and 0(u) are therefore modeled as linear combinations of a set of basis
functions f,(u) that map a value of u to RY9. Let A € R7*?, a, € RY, and ey € RY; the functions are B(u) = Af,(u),
log o2 (u) = oz(T,fu(u), and g(0(u)) = ocgfu(u), where g is a link function (e.g., a log-link function for a strictly positive
quantity). These functions are not known explicitly, and they depend on parameters A, o, and ag, respectively. We
propose estimating these parameters via the algorithm in Section 3. The same basis function, f,(u), is assumed for
each parameter B(u), o%(u), and @(u). This is not a requirement, but it often simplifies notation and allows for the
procedure outlined in this paper to be generally applicable.

Parameter estimation

The model described in the previous section has limited usability without valid parameter estimates. In this paper,
parameter estimates will be determined by the maximum likelihood criterion. Given the complex structure of the
model, closed-form estimates for all parameters could not be reached. Additionally, the amount of data present in
experiments such as those seen in Table | makes Markov chain Monte Carlo techniques intractable. This section will
detail an iterative method to find MLEs.

There is a simplified parameterization of the mean using properties of Kronecker products, ®. The expression for the
mean vector is simplified to
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w() = F,A),
= FAf, (),

— (FX ® f](u)) vec(A),

= (Fefiw)y,

where uT(u) =[pux1; BW)), ..., wX:; BW))], Fy is defined as FI =[f(X1),...,fx(X,)], and y is the new parameter
for the mean of the model.

By the model in (1), Y ~ N[ p(u)), 0?(R(6)) + o21)], where 6; = O(uj; ap) and 67 = o%(uj; &e5). The matrix R(6;)
is the surface correlation matrix composed of elements {R(6))};x = R(x;,xx; 6;). The total negative log-likelihood is
therefore proportional to (up to a constant)

m d;

e TR
/:ZZ nlog (o) + log (|R; |)+7 ' @

i=1 j=1 i

where m is the number of runs in the experiment, r,Tj =Y;i—-FK® fI(u,-))y)T, and R' = R(6)) + Z—%I. Minimizing

(2) is equivalent to maximizing the likelihood. The maximum likelihood estimate of the mean parameter, y, has a
closed-form solution, given the parameters ay and ey,

. -1 m .
y = {Zi%(nm}(ua)%f‘l (B@fl(w))} {Zi%(ﬂ@fj(u,))}?-lyﬁ}. )
j=1j=1 "1

i=1j=1 "1
The MLE estimate of the parameter a, also exhibits simplifications using the following proposition:

Proposition 3.1

Assume Y;, i = 1,...,m, follows a multivariate normal distribution with mean p(u;) and covariance o2 (u;)R(u;).
Assume that u(u;) and R(u;) are given and o?(u;) = a(T,fu(u,-). The generalized linear model estimate (Nelder &
Wedderburn, 1972) of e, with gamma distribution, input vectors f,(uy),...,f,(un) and a log-link function, to the
response o?,...,02, where 62 = 1(Y; — w(u;))'R™" () (Y; — p(w))), is equal to the maximum likelihood estimate of
5.

The preceding result is easily derived from the definition of generalized linear models. This demonstrates that we can
use popular software methods to find numerical estimates for a, .

Using the preceding results, we construct an optimization algorithm that finds the MLEs of a group of parameters
given all other parameters. This idea is similar in spirit to the classic EM algorithm (Dempster et al., 1977) viewed
as an iterative maximization problem (Neal & Hinton, 1998). The parameters are grouped as {ag, 0¢}, a5, and y. We
denote each iterate with the superscript {k} and suppress the two superscripts in the variance terms for clarity. The
algorithm is as follows:

{0}, 9’_{0}

Initialize o} , and 06{(,’.} for each experimental index /. Set k = 0.

Use o/ and 6! to initialize &, «i via least squares regression and initialize 0!* = 1 359

1,
2.
{ky
3. Set o = 02 (w;e?), 6 = 0 (u;e?), and RY =R (61) + o fforalli=1,...,m.
i
4,

Estimate y%+1 via (3) using R’ and o,{k}.
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5. Estimate the variance term for each surface via

o (ij - (FX ®f, (Uf)) )’{k+1})T R (y,j - (Fx Qf (U,-)) y{k+1})

Ui n

Fit a GLM with a log link with response 02 an mput vector f, (u;), and a gamma distribution to yield a{k“}

Set a.{kH} (u a({,kH}) and R’ R(G{k}) + Uf I Repeat to convergence of a{k+1}

6. Use a generic optimization algorithm to maximize the likelihood given in (2) using y = y¥*+1 and o; = o{kH}

\k+11
i=1,...,m, to choose aékH} and oekH} Set 9{k+1} 0 (u,,aékH}) and R,- =R (Gi{kH}) + {k+l}l'
o;

7. Repeat 4 to 6 until convergence.

This iterative formulation reduces the computational burden for the likelihood by exploiting known partial maximization
in steps 4 and 5. One might question the convergence of the preceding algorithm. The estimates will converge to the
true MLEs if the negative log-likelihood is convex with respect to all parameters because we are continually improving.
However, there is no guarantee of convexity. But, with adequate initialization, good estimates can be obtained. Initial
estimates of 0{0} 9(0} and 0{0} can be found via several statistical packages by fitting a Gaussian process model to
each surface Y,l, ..., Yig, and averaglng the result.

Case study: Si wafer thickness variation after
mechanical lapping

The geometric uniformity of the silicon wafers determines the incoming variation for the downstream processing to
create products such as integrated circuits and solar cells. Thus, this uniformity is a major control objective in wafer
manufacturing. This section presents analysis of a designed experiment to better understand the effect of a set of
control variables on a wafer flattening procedure.

4.1. Background and experimental description

Wire sawing is the most common approach to slice large-diameter silicon crystal ingots into wafers. Wire sawing can
lead to undesirable waviness in final product (Yasunaga et al., 1997), which may be due to the vibrations present
in the wire (Zhao et al., 2011). Flattening procedures, which include lapping, grinding, and chemical-mechanical
polishing (CMP), are used to reduce the waviness in the final product. For more details on the processes involved in
the production of wafers, see Evans et al. (2003) and Pei et al. (2003).

Significant work has been carried out in the study of these flattening procedures, and majority of work has been
focused in two areas:

Deterministic differential equation models An example of the differential equation methods can be seen in
Fu et al. (2001), which develops a model that uses plasticity properties of the surface material to study CMP. Sim-
ilar developments have been made in both lapping (Chang et al., 2000) and grinding (Pietsch & Kerstan, 2005).

Feature extraction This method consists of first extracting a feature from each surface. After feature extraction,
traditional analysis of experiments is performed where the extracted feature is modeled as the response (e.g.,
Zhang et al. (2007)). An example of an extracted feature is total thickness variation (TTV), which is computed by
subtracting the smallest thickness measurement from the largest thickness measurement on a single wafer.
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Figure 1. Exaggerated cross sections of semiconductor wafers with similar total thickness variation (TTV) caused by (a) mean
structure and (b) stochasticity.
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Figure 2. Pressure profile from the lapping process described in Section 4.

However, current research has not yet resolved the issues discussed in this paper. Deterministic differential equation
models lack the ability to describe stochastic outputs. Feature extraction techniques do not take full advantage of the
structure of the data, and those techniques lack the ability to compensate for known elements such as sensor noise.
As an example of the limits of feature extraction, compare a surface that consists of high thickness in the middle and
low thickness on the edges (Figure 1(a)) to a surface that has sharp peaks and troughs in thickness (Figure 1(b)).
With feature extraction, differentiation between these surfaces is impossible.

Furthermore, analogies between modern metrology for surfaces and our model indicate the importance of modeling
stochastic effects. As an example, the Birmingham set parameters, outlined in Dong et al. (1994), are widely used
as descriptive parameters for surface topology (Messner et al., 2003). These parameters are specifically designed to
extract features related to the spatial and amplitude properties of the surface. These quantities are directly comparable
with the variance and correlation parameters in the proposed model.

Motivated by the gap between current research in flattening procedures and the described goals, a designed experiment
was performed on a lapping process (outlined in Table I). Thickness measurements were taken at over 150 points after
a lapping process. The lapping pressure varies throughout the process, and the lapping pressure as a function of time
can be seen in Figure 2.

Our experiment studies the effect of altering different aspects from this pressure profile, which includes the low pressure
setting, the time at both the high and low pressures, and the rotation speed (measured in rotations per minute) of the
lapping pads. The process consists of a batch setup, with over 40 wafers being produced during each run.
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4.2. Exploratory data analysis

The measurement locations are shown in Figure 3 and are indexed in a counterclockwise spiral direction from inside
to out starting at angle v/2. The lapping process grinds fine particles on a rotating surface. Because of this flattening
mechanism, the use of Cartesian coordinates to analyze the mean and correlation structures would produce cryptic
results. Therefore, we use polar coordinates to examine the mean and correlation functions.

To study the properties of the mean and correlation functions, we first directly calculate the sample mean vector and
the sample correlation matrices from each of the experimental indices /. Using this estimate directly for analysis is
not considered a stable procedure because the number of points on a surface (150) exceeds the number of surface
observations (= 40) in this case study. This is a common problem in applications relating to surface engineering and
other functional responses. However, these computations are still useful for exploratory analysis.

Figure 4 shows the sample mean profile for all nine experimental indices. From this figure, a clear negative slope
relationship between the thickness measurement and the radial distance is present, along with local deviations from
the general trend. The negative relationship between radial distance and thickness has been observed in mechanical
polishing of wafers (Pietsch & Kerstan, 2005) and a similar trend is confirmed here. The global mean trend is modeled
with the function p(x), where p(x) represents the radial distance from the center of the wafer. To model the local
mean function, a set of cubic-spline basis functions, defined on polar coordinates, is used with knot points shown in
Figure 3. These two functions comprise a basis set of functions for each surface, that is, f,(x) discussed in Section 2.

The sample correlation is useful for investigating properties of the correlation functions. Here, we consider empir-
ical approximations of the correlation functions computed by averaging the estimated correlation coefficients of
any two points that differ by the same distance, yielding empirical measurements of a stationary correlation func-
tion, termed ﬁ(Al/f,Ap). We examine at the correlation function by studying the empirical angular correlation,
Ry (AYy) = R(Ay,0), and the empirical radial correlation, R,(Ap) = R(0, Ap).

Figure 5 shows the empirical angular correlation function over several experimental indices. As shown in Gaspari
& Cohn (1999), for a surface in two dimensions, a valid stationary correlation function of Ay, where Ay is the
difference in the angle between two points, must take the form of R(Ay) = Y 2, ax cos(kAy) with Y 72 ax = 1.

Measurement Points and Spline Knot Locations
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Figure 3. Measurement locations for each wafer marked with o. Spline knot locations marked with ®.
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Figure 4. Sample mean profile for each experimental index.
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Figure 5. Empirical angular (left) and radial (right) correlation functions estimated from the sample correlation matrices for
experimental indices 1(circles), 3(squares), 5(diamonds) and 8(stars).

With this in mind, the correlation function in the angular direction will modeled with a second order approximation,
Ry (Ay) = 0y cos(|AY) + (1 — Oy) cos(2|Ay]),

with a shape parameter 6y, which appears to be largely unaffected by the control variables u in Figure 5.

Figure 5 shows the approximate radial correlation function over several experimental indices. Unlike the angular
correlation function, this indicates the control variables (u) greatly affect the correlation structure. The unknown
correlation function R,(Ap) is therefore modeled using a Matérn class of correlation functions,

2\/5)0[’% (IA Izﬁ),

e = it (205 "o
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where Iy is the modified Bessel function of order ¢. Here, 8, is strongly affected by u; therefore, this will be modeled
by the linear function described Section 2. In total, the correlation function will be modeled by the outer product of
Ry and R,

R(AY, Ap) = Ry (AY)R,(Ap).

4.3. Results from parameter estimation and verification of model
significance

The focal point of this paper is the introduction of control variables, u, to the stochastic parameters of the Gaussian
process error term. This section will justify the need for this modeling through a comparison with a model with
constant stochastic parameters. For simplicity, we compare two models of increasing complexity:

[MO] Model (1) with assumptions o2(u) = o2 and 6,(u) = 6,, that is, both are constant functions.
[M1] Model (1) where the functions o2(u) and 6,(u) will be assumed to be a linear functions of u, as outlined in
previous sections.

Both models will have parameters chosen via the maximum likelihood criterion.

To check for a misrepresented surface, we compare examples of measured surfaces and simulated surfaces from MO
and M1 with estimated parameters. Figure 6 displays thickness maps with the scale removed at the request of the
data provider. While the surfaces do not look identical due to stochasticity in the process, the measured surfaces
appear to be similar to simulated surfaces. Furthermore, the model M1 seems to better capture the stochastic behavior
of the surface, although the difference is subtle.

0120
©00U
N 1%
oco

Figure 6. Examples of measured and simulated surfaces; darker regions indicate lower thickness. Scale is removed at the
request of the data provider.
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Table Il. Model selection criteria.

Model MO M1
InL 0 4482.6
BIC 413.8388 —1742.2

I i A‘é,m

0",'£éé¢ ALARAL ¢Y’ yWyy

1234567289 123456789 1234567289

(a) (b) ()

Figure 7. Violin plot of total thickness variation (TTV) at the nine experimental indices listed in Table | from different models:
(@) TTV from surfaces collected in the experiment and (b and c¢) TTV from surfaces generated from model M0 and M1
with estimated parameters, respectively. The black area represents a kernel smoothed density estimate and the white “+”
represents the median.

Table Il demonstrates that the likelihood is higher for the proposed model M1 versus the null comparison MO, indi-
cating that the proposed model better explains the data.” However, M1 contains more parameters than MO, so a
comparison with Bayesian information criteria (BIC) is more appropriate. BIC was chosen for its strong penalty for
excessive parameters and is given by —2InL + kInn, where L is the likelihood, k is the number of parameters, and n
is the number of observations. A smaller value of BIC represents a superior representation relative to the number of
parameters. In Table Il, the values of BIC indicate that M1 is a superior explanatory model.

To add to the preceding results, an engineering verification is to extract a feature from data generated from the models.
The chosen metric for this situation is TTV, which was discussed earlier in this section. This value was chosen because
of its pervasive use in wafer manufacturing (Tso & Teng, 2001). Figure 7 shows violin plots of TTV from simulated
data compared the TTV from the collected data. The full model, M1, best mimics the behavior of the original data.
Fundamentally, the need for quantifying changes in the stochastic portion of the model is demonstrated in this analysis.

Conclusions

This paper has demonstrated a model for systems that produce surface responses by incorporating not only surface
variables but also control variables in a Gaussian process error structure. Incorporating control variables into the
stochastic portion of the model allows for interpretation of the behavior of a system under different operating environ-
ments. The use of the model is justified in the described case study on wafer thickness surfaces. In future applications,

T The log-likelihood of MO is stated as null, or 0, and the log-likelihood of M1 is the value after subtracting the log-likelihood from MO. This
normalized log-likelihood is also used to compute BIC for both models. This normalization does not affect the comparison of likelihood or
BIC among the two models.
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using different aspects of this model, but not the full model, might be beneficial. For example, Chang et al. (2012)
studied nanoparticle dispersion, where the correlation structure is considered a function of the physical properties of
the atom and does not change with control variables.
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