
3-D Simulation Models for Wideband MIMO
Mobile-to-Mobile Channels

Alenka G. Zajíc and Gordon L. Sẗuber
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Abstract— This article presents a three-dimensional mathe-
matical reference model for wideband multiple-input multiple-
output (MIMO) mobile-to-mobile (M-to-M) channels. Based on
this model, two sum-of-sinusoids based simulation models are
proposed for 3-D wideband MIMO M-to-M multipath-fading
channels. The statistics of the simulation models are derived and
verified by simulation.

I. I NTRODUCTION

Mobile-to-mobile (M-to-M) radio propagation channels
arise in inter-vehicular communications, mobile ad-hoc wire-
less networks, and relay-based cellular radio networks. The
statistical properties of M-to-M channels are quite different
from conventional fixed-to-mobile (F-to-M) cellular land mo-
bile radio channels [1], [2]. M-to-M communication systems
are equipped with low elevation antennas and have both the
transmitter (Tx) and receiver (Rx) in motion. Akki and Haber
[1], [2] proposed a reference model for single-input single-
output (SISO) M-to-M Rayleigh fading channels. The refer-
ence models for narrowband multiple-input multiple-output
(MIMO) M-to-M channels have been proposed in [3], [4].
Simulation models for MIMO M-to-M channels have been
proposed in [5], [6]. All these models assume that the field
incident on theTx or Rx antenna is composed of a number of
waves travelling only in thehorizontalplane. This assumption
does not seem appropriate for an urban environment where
the Tx and Rx antenna arrays are often located in close
proximity to and lower than surrounding buildings. Recently,
we proposed a three-dimensional (3-D) reference model for
narrowbandMIMO M-to-M multipath fading channels [7].

This article presents a 3-D mathematical reference model
for widebandMIMO M-to-M channels. To describe our 3-
D reference model, we first introduce a 3-D geometrical
model for wideband MIMO M-to-M channels, referred to
as the “concentric-cylinders” model. From the 3-D reference
model, the space-time-frequency correlation function for a 3-D
non-isotropic scattering environment is derived. The reference
models assume an infinite number of scatterers, which prevents
practical implementation. Hence, we first propose an ergodic
statistical (deterministic) sum-of-sinusoids (SoS) simulation
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model for a 3-D non-isotropic scattering environment. The
statistical properties of our model are verified by simulations.
Deterministic simulators are often used because they are
easy to implement and have short simulation times. However,
they do not reflect the practical channel realizations because
their scatterers are placed at specific sights for all simulation
trials. By allowing the phases, Doppler frequencies, and time
delays to be random variables, the deterministic model is
modified to better match statistical properties of the reference
model. This model is called the statistical simulation model.
The statistical properties of this (statistical) model vary for
each simulation trial, but will converge to desired ensemble
averaged properties when averaged over a sufficient number
of simulation trials. The statistical properties of this model are
also verified by simulations. Compared to the deterministic
model, the statistical properties of the statistical model match
those of the reference model over a wider range of normalized
time delays while using smaller number of scatterers.

The remainder of the paper is organized as follows. Sec-
tion II introduces the “concentric-cylinders” model and pre-
sents the 3-D reference model for wideband MIMO M-to-M
channels. Section III derives the space-time-frequency corre-
lation function for 3-D non-isotropic scattering. Section IV
details the deterministic and statistical SoS simulation models.
Section V presents simulation results and, finally, Section VI
provides some concluding remarks.

II. A 3-D REFERENCEMODEL FORWIDEBAND MIMO
MOBILE-TO-MOBILE CHANNELS

This paper considers a wideband MIMO communication
system withLt transmit andLr receive omnidirectional an-
tenna elements. It is assumed that both theTx andRx are in
motion and equipped with low elevation antennas. The radio
propagation is characterized by 3-D wide sense stationary un-
correlated scattering (WSSUS) with non-line-of-sight (NLoS)
conditions between theTx and Rx. The MIMO channel can
be described by anLr×Lt matrix H(t, τ) = [hij(t, τ)]Lr×Lt

of the input delay-spread functions.
First, we introduce a 3-D geometrical model for wideband

MIMO M-to-M channels, called the “concentric-cylinders”
model. The “concentric-cylinders” model is an extension of
the “two-cylinder” model for narrowband M-to-M channels
proposed in [7]. Fig. 1 shows the “concentric-cylinders” model
for a wideband MIMO M-to-M channel withLt = Lr = 2
antenna elements. The “concentric-cylinders” model defines
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four cylinders, two around theTx and another two around
the Rx, as shown in Fig. 1. Around the transmitter,M fixed
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Fig. 1. The “concentric-cylinders” model for wideband MIMO M-to-M
channel withLt = Lr = 2 antenna elements.

omnidirectional scatterers occupy a volume between cylinders
of radii Rt1 andRt2. It is assumed that theM scatterers lie
on L cylindric surfaces of radiiRt1 ≤ R

(l)
t ≤ Rt2, where

1 ≤ l ≤ L. The lth cylindric surface containsM (l) fixed
omnidirectional scatterers, and the(m, l)th transmit scatterer
is denoted byS(m,l)

T . Similarly, around the receiver,N fixed
omnidirectional scatterers occupy a volume between cylinders
of radii Rr1 and Rr2. It is assumed thatN scatterers lie on
K cylindric surfaces of radiiRr1 ≤ R

(k)
r ≤ Rr2, where

1 ≤ k ≤ K. The kth cylindric surface containsN (k) fixed
omnidirectional scatterers, and the(n, k)th receive scatterer is
denoted byS(n,k)

R . The distance between the centers of theTx

andRx cylinders isD. It is assumed thatmax{Rt2, Rr2} ¿ D
(local scattering condition) andD <= 4Rt1Rr1Lr/(λ(Lt −
1)(Lr − 1)) (channel does not experience keyhole behavior
[8]), where λ denotes the carrier wavelength. The spacing
between antenna elements at theTx and Rx is denoted by
dT and dR, respectively. It is assumed thatdT and dR are
much smaller than the radiiRt1 andRr1, i.e.,max{dT , dR} ¿
min{Rt1, Rr1}. AnglesθT andθR describe the orientation of
the Tx andRx antenna array in thex - y plane, respectively,
relative to thex - axis. Similarly, anglesψT andψR describe
the elevation of theTx’s antenna array and theRx’s antenna
array relative to thex - y plane, respectively. TheTx andRx

are moving with speedsvT and vR in directions described
by anglesγT and γR, respectively. The symbolsα(m,l)

T and
α

(n,k)
R denote the azimuth angle of departure (AAoD) and

the azimuth angle of arrival (AAoA), respectively. Similarly,
the symbolsβ(m,l)

T and β
(n,k)
R denote the elevation angle of

departure (EAoD) and the elevation angle of arrival (EAoA),
respectively. Finally, the symbolsεp,m,l, εm,l,n,k, and εn,k,q

denote distancesA(p)
T - S

(m,l)
T , S

(m,l)
T - S

(n,k)
R , andS

(n,k)
R -

A
(q)
R , respectively, as shown in Fig. 1.
In the 3-D reference model, the number of local scatterers

around theTx and Rx is infinite. Consequently, the input
delay-spread function of the linkA(p)

T −A
(q)
R is

hpq(t, τ) = (1)

lim
M,N→∞

L,M(l)∑

l,m=1

K,N(k)∑

k,n=1

ηl,k gm,l,n,k(t) δ(τ − τm,l,n,k),

where parametersηl,k, τm,l,n,k denote amplitudes of the
multipath components and time delays, respectively. Function
gm,l,n,k(t) is defined as follows

gm,l,n,k(t) = e−j 2π
λ (εp,m,l+εm,l,n,k+εn,k,q)+jφm,l,n,k (2)

× ej2πt[fTmax cos(α
(m,l)
T −γT )+fRmax cos(α

(n,k)
R −γR)],

wherefTmax = vT /λ and fRmax = vR/λ are the maximum
Doppler frequencies associated with theTx and Rx, respec-
tively, andλ is the carrier wavelength. The amplitude of the
multipath component,ηl,k, is defined as

ηl,k =

√
Ppqλ

4π
√

M (l)N (k)

(
R

(l)
t + D + R(k)

r

)−γ/2

≈ Ωpq

(
1− γ

2
R

(l)
t + R

(k)
r

2D

)
, (3)

where Ppq denotes the power transmitted through the sub-
channel A

(p)
T − A

(q)
R , γ is the path loss exponent, and

Ωpq = D−γ/2
√

Ppqλ/
(
4π
√

M (l)N (k)
)

. Finally, the time de-
lay τm,l,n,k is defined as the travel time of the wave impinged
on the scattererS(m,l)

T and scattered from the scattererS
(n,k)
R ,

i.e., τm,l,n,k = D/c0 + R
(l)
t (1 − cosα

(m,l)
T )/c0 cosβ

(m,l)
T +

R
(k)
r (1 + cosα

(n,k)
R )/c0 cosβ

(n,k)
R , wherec0 is the speed of

light. It is assumed that the angles of departures (AAoDs and
EAoDs), the angles of arrivals (AAoAs and EAoAs), and the
radii R

(l)
t and R

(k)
r are random variables. Since all rays are

double-bounced, the angles of departure and radiiR
(l)
t are

independent from the angles of arrival and radiiR
(k)
r [8].

Additionally, it is assumed that the phasesφmn are random
variables uniformly distributed on the interval[−π, π) and
independent from the angles of departure, the angles of arrival,
and the radii of the cylinders.

The distancesεp,m,l, εn,k,q, and εm,l,n,k can be expressed
as functions of the random variablesα(m,l)

T , α
(n,k)
R , β

(m,l)
T ,

β
(n,k)
R , R

(l)
t , andR

(k)
r as follows:

εp,m,l ≈ R
(l)
t /cosβ

(m,l)
T − (0.5Lt + 0.5− p)

[
dTz sin β

(m,l)
T

+ dTx cosα
(m,l)
T cosβ

(m,l)
T + dTy sin α

(m,l)
T cos β

(m,l)
T

]
, (4)

εn,k,q ≈ R(k)
r /cos β

(n,k)
R − (0.5Lr + 0.5− q)

[
dRz sin β

(n,k)
R

+ dRx cosα
(n,k)
R cosβ

(n,k)
R + dRy sinα

(n,k)
R cosβ

(n,k)
R

]
, (5)

εm,l,n,k ≈ D, (6)

where parametersp and q take values from the setsp ∈
{1, . . . , Lt} and q ∈ {1, . . . , Lr}, dTx = dT cos ψT cos θT ,
dTy = dT cosψT sin θT , dRx = dR cosψR cos θR, dRy =
dR cos ψR sin θR, dTz = dT sinψT , and dRz = dR sinψR.
Derivations of expressions (4) - (6) are omitted for brevity.



In further derivations we will use the time-variant transfer
function instead of the input delay-spread function. The time-
variant transfer function is defined as the Fourier transforma-
tion of the input delay-spread function and using (1) - (6) can
be written as

Tpq(t, f) = Fτ {hpq(t, τ)}= lim
M,N→∞

L,M(l),K,N(k)∑

l,m,k,n=1

ejφm,l,n,k−j 2π
c0

fD (7)

Ωpq

(
1− γ

2
R

(l)
t + R

(k)
r

2D

)
ap,m,lbn,k,qe

j2πtfTmax cos(α
(m,l)
T −γT )

e
j2πtfRmax cos(α

(n,k)
R −γR)−j 2π

c0
f

"
R

(l)
t (1−cos α

(m,l)
T

)

cos β
(m,l)
T

+
R

(k)
r (1+cos α

(n,k)
R

)

cos β
(n,k)
R

#

,

where parametersap,m,l andbn,k,q are defined as

ap,m,l = e−j 2π
λ (D/2+R

(l)
t )+j π

λ (Lt+1−2p)dT z sin β
(m,l)
T (8)

× ej π
λ (Lt+1−2p) cos β

(m,l)
T (dT x cos α

(m,l)
T +dT y sin α

(m,l)
T ),

bn,k,q = e−j 2π
λ (D/2+R(k)

r )+j π
λ (Lr+1−2q)dRz sin β

(n,k)
R (9)

× ej π
λ (Lr+1−2q) cos β

(n,k)
R (dRx cos α

(n,k)
R +dRy sin α

(n,k)
R ).

III. SPACE-TIME-FREQUENCYCORRELATION FUNCTION

OF THE 3-D REFERENCEMODEL

Assuming a 3-D non-isotropic scattering environment, we
now derive the space-time-frequency correlation function
of the 3-D reference model. The normalized space-time-
frequency correlation function between two time-variant trans-
fer functionsTpq(t, f) andTp̃q̃(t, f) is defined as

Rpq,p̃q̃[∆t,∆f ] =
E

[
T ∗pq(t, f)Tp̃q̃(t + ∆t, f + ∆f)

]
√

E[|Tpq(t, f)|2]E[|Tp̃q̃(t, f)|2] , (10)

where ( · )∗ denotes complex conjugate operation,E[ · ]
is the statistical expectation operator,p, p̃ ∈ {1, . . . , Lt},
and q, q̃ ∈ {1, . . . , Lr}. Since the number of local scatterers
in the reference model described in Section II is infinite,
the discrete AAoDs,α(m,l)

T , EAoDs, β(m,l)
T , AAoAs, α

(n,k)
R ,

EAoAs, β(n,k)
R , and radiiR(l)

t andR
(k)
r can be replaced with

continuous random variablesαT , βT , αR, βR, Rt, andRr with
probability density functions (pdfs)f(αT ), f(βT ), f(Rt),
f(αR), f(βR), and f(Rr), respectively. Several different
scatterer distributions, such as uniform, Gaussian, Laplacian,
and von Mises, are used in prior work to characterize the
random azimuth anglesαT andαR. In this paper, we use the
von Mises pdf because it approximates many of the previously
mentioned distributions and leads to closed-form solutions for
many useful situations. The von Mises pdf is defined in [9]
as f(θ) = exp [k cos(θ − µ)]/(2πI0(k)), whereθ ∈ [−π, π),
I0( · ) is the zeroth-order modified Bessel function of the first
kind, µ ∈ [−π, π) is the mean angle at which the scatterers
are distributed in thex - y plane, andk controls the spread of
scatterers around the mean. Prior work uses several different
scatterer distributions, such as uniform, cosine, and Gaussian,
to characterize the random elevation anglesβT andβR. Here,

we use the pdf [10]

f(ϕ) =

{
π

4ϕm
cos

(
π
2

ϕ
ϕm

)
, | ϕ |≤ ϕm ≤ π

2

0 , otherwise
, (11)

because it matches well the experimental data in [11]. Para-
meter ϕm is the absolute value of the maximum elevation
angle and lies in the range0◦ ≤ ϕm ≤ 20◦ [11]. To
characterize the radiiRt and Rr we use the pdfsf(Rt) =
2Rt/(R2

t2−R2
t1) andf(Rr) = 2Rr/(R2

r2−R2
r1), respectively.

This pdf is selected because it matches well the experimental
data in [12]. Using trigonometric transformations, the equal-
ity

∫ π

−π
exp {a sin(c) + b cos(c)}dc = 2πI0

(√
a2 + b2

)
[13,

eq. 3.338-4], and the results in [7], the space-time-frequency
correlation function can be closely approximated as

Rpq,p̃q̃[dT ,dR,∆t,∆f ]≈AT

∫ Rt2

Rt1

e−j 2π
c0

∆fRtI0

(√
x2 + y2

)
2RtdRt

× AR

∫ Rr2

Rr1

(
1− γ

Rr

D

)
e−j 2π

c0
∆fRrI0

(√
w2 + z2

)
RrdRr

+ AT

∫ Rt2

Rt1

(
1− γ

Rt

D

)
e−j 2π

c0
∆fRtI0

(√
x2 + y2

)
RtdRt

× AR

∫ Rr2

Rr1

e−j 2π
c0

∆fRrI0

(√
w2 + z2

)
2RrdRr, (12)

where parametersAT , AR, x, y, z, andw are

AT =
e−jπ∆fD/c0

I0(kT )
cos( 2π

λ βTm(p− p̃)dTz )

1−
(

4βTm (p−p̃)dTz

λ

)2

1
R2

t2 −R2
t1

,

AR =
e−jπ∆fD/c0

I0(kR)
cos( 2π

λ βRm(q − q̃)dRz )

1−
(

4βRm (q−q̃)dRz

λ

)2

1
R2

r2 −R2
r1

,

x = j2π(p− p̃)dTx/λ+j2π∆tfTmax cos γT +j2π∆fRt/c0+
kT cosµT , y = j2π(p − p̃)dTy/λ + j2π∆tfTmax sin γT +
kT sinµT , z = j2π(q − q̃)dRx/λ + j2π∆tfRmax cos γR −
j2π∆fRr/c0 + kR cos µR, w = j2π(q − q̃)dRy/λ + j2π∆t
fRmax sin γR +kR sin µR. To obtain the space-time-frequency
correlation function for the 3-D MIMO M-to-M system, the
integrals in (12) must be evaluated numerically, because they
do not have closed-form solutions.

IV. W IDEBAND MIMO M OBILE-TO-MOBILE SIMULATION

MODELS

The reference model for wideband MIMO M-to-M channel
described in Section II assumes an infinite number of scatter-
ers, which prevents practical implementation. It is desirable to
design simulation models with a finite number of scatterers,
while still matching the statistical properties of the reference
model. Assuming 3-D non-isotropic scattering, using the ref-
erence model described in Section II, and using the results
in [14], we propose the following function as a time-variant
transfer function:Tpq(t, f) = T

(I)
pq (t, f) + jT

(Q)
pq (t, f) where

T (I)
pq (t, f) =

L,M
(l)
A ,M

(l)
E ,K,N

(k)
A ,N

(k)
E∑

l,m,i,k,n,g=1

1√
M

(l)
A M

(l)
E N

(k)
A N

(k)
E

(13)



×
(
1− γ

2
R

(l)
t + R

(k)
r

2D

)
cos

{
KpDT + KqDR + 2πtfTmax

× cos
(
α

(m,l)
T −γT

)
+2πtfRmaxcos

(
α

(n,k)
R −γR

)
+φm,i,l,n,g,k

−2π

c0
f

[
D+R

(l)
t

(
1− cos α

(m,l)
T

)
+ R(k)

r

(
1 + cos α

(n,k)
R

) ]}
,

T (Q)
pq (t, f) =

L,M
(l)
A ,M

(l)
E ,K,N

(k)
A ,N

(k)
E∑

l,m,i,k,n,g=1

1√
M

(l)
A M

(l)
E N

(k)
A N

(k)
E

(14)

×
(
1− γ

2
R

(l)
t + R

(k)
r

2D

)
sin

{
KpDT + KqDR + 2πtfTmax

× cos
(
α

(m,l)
T −γT

)
+2πtfRmaxcos

(
α

(n,k)
R −γR

)
+φm,i,l,n,g,k

−2π

c0
f

[
D+R

(l)
t

(
1− cos α

(m,l)
T

)
+ R(k)

r

(
1 + cos α

(n,k)
R

) ]}
,

are the in-phase (I) and quadrature (Q) components of the
time-variant transfer function,M (l) = M

(l)
A M

(l)
E , N (k) =

N
(k)
A N

(k)
E , Kp = π(Lt + 1 − 2p)/λ, Kq = π(Lr + 1 −

2q)/λ,DT = dTx cos α
(m,l)
T + dTy sin α

(m,l)
T + dTz sin β

(i,l)
T ,

and DR = dRx cos α
(n,k)
R + dRy sin α

(n,k)
R + dRz sin β

(g,k)
R .

Note that the input delay-spread function can be obtained as
the inverse Fourier transformation of the time-variant transfer
function, i.e.hpq(t, τ) = F−1

f {Tpq(t, f)}.
A. Deterministic Wideband MIMO M-to-M Simulation Model

First, we propose an ergodic statistical (deterministic)
model. This model has only phases as random variables
and needs only one simulation trial to obtain the desired
statistical properties. The time-variant transfer function is
Tpq(t, f) = T

(I)
pq (t, f) + jT

(Q)
pq (t, f), where functions

T
(I)
pq (t, f) and T

(Q)
pq (t, f) are defined in (13) and (14). The

AAoDs, α
(m,l)
T , and the AAoAs,α(n,k)

R , are modelled using
the von Mises pdf and are generated as follows:

α
(m,l)
T = F−1

(
m− 0.5

M
(l)
A

)
, α

(n,k)
R = F−1

(
n− 0.5

N
(k)
A

)
, (15)

for m = 1, . . . , M
(l)
A , n = 1, . . . , N

(k)
A , where F ( · )−1

denotes the inverse cumulative von Mises distribution function
and is evaluated using method in [15]. The EAoDs,β

(m,l)
T , and

the EAoAs,β(n,k)
R , are modelled using the pdf in (11) and are

generated as follows:

β
(i,l)
T =

2βTm

π
arcsin

(
2i− 1

M
(l)
E

− 1

)
, (16)

β
(g,k)
R =

2βRm

π
arcsin

(
2g − 1

N
(k)
E

− 1

)
, (17)

for i = 1, . . . ,M
(l)
E , g = 1, . . . , N

(k)
E . The radii R(l)

t and
R

(k)
r are modelled using pdfsf(Rt) = 2Rt/(R2

t2 −R2
t1) and

f(Rr) = 2Rr/(R2
r2−R2

r1), respectively, and are generated as
follows:

R
(l)
t =

√
(l − 0.5)(R2

t2 −R2
t1)

L
+ R2

t1, (18)

R(k)
r =

√
(k − 0.5)(R2

r2 −R2
r1)

K
+ R2

r1, (19)

for l = 1, . . . , L, k = 1, . . . ,K. The phasesφm,i,l,n,g,k

are generated as independent random variables uniformly
distributed on the interval[−π, π). For M, N →∞, our
deterministic model can be shown to exhibit property (12) of
the reference model. Derivation is omitted for brevity.

B. Statistical Wideband MIMO M-to-M Simulation Model

Deterministic simulators are often used because they are
easy to implement and have short simulation times. However,
they do not reflect the practical channel realizations because
their scatterers are placed at specific sights for all simulation
trials. By allowing phases, Doppler frequencies, and time
delays to be random variables, our deterministic model can
be modified to match statistical properties of the reference
model over a wider range of normalized time delays, while
at the same time requiring a smaller number of scatterers.
The statistical properties of this (statistical) model vary for
each simulation trial, but will converge to desired ensemble
averaged properties when averaged over a sufficient number
of simulation trials.

The time-variant transfer function isTpq(t, f) = T
(I)
pq (t, f)

+ jT
(Q)
pq (t, f), where functionsT (I)

pq (t, f) andT
(Q)
pq (t, f) are

defined in (13) and (14). The AAoDs, the AAoAs, the EAoDs,
the EAoAs, and the radii are generated as follows:

α
(m,l)
T = F−1

(
m + θ

(l)
A − 1

M
(l)
A

)
, (20)

α
(n,k)
R = F−1

(
n + ψ

(k)
A − 1

N
(k)
A

)
, (21)

β
(i,l)
T =

2βTm

π
arcsin

(
2(i + θ

(l)
E − 1)

M
(l)
E

− 1

)
, (22)

β
(g,k)
R =

2βRm

π
arcsin

(
2(g + ψ

(k)
E − 1)

N
(k)
E

− 1

)
, (23)

R
(l)
t =

√
(l + σT − 1)(R2

t2 −R2
t1)

L
+ R2

t1, (24)

R(k)
r =

√
(k + σR − 1)(R2

r2 −R2
r1)

K
+ R2

r1, (25)

for m = 1, . . . , M
(l)
A , n = 1, . . . , N

(k)
A , i = 1, . . . ,M

(l)
E , g =

1, . . . , N
(k)
E , l = 1, . . . , L, andk = 1, . . . , K respectively. The

parametersθ(l)
A , ψ

(k)
A , θ

(l)
E , ψ

(k)
E , σT , andσR are independent

random variables uniformly distributed on the interval[0, 1).
Our statistical model can be shown to exhibit property (12) of
the reference model. Derivation is omitted for brevity.

V. SIMULATION RESULTS

In this section, we present some simulation results to verify
theoretical derivations and to compare the simulation models
with the reference model proposed in Section II. In all simula-
tions, we use a normalized sampling periodfTmaxTs = 0.01
(fTmax = fRmax are the maximum Doppler frequencies and



Ts is the sampling period). The parameters used to obtain
curves in Figs. 2 and 3 areLt = Lr = 2, βTm = βRm = 15◦,
θT = θR = π/4, ψT = ψR = π/3, γT = γR = 20◦, kT =
kR = 0, λ = 0.3 m, Rt1 = Rr1 = 30 m, Rt2 = Rr2 = 300 m,
D = 5000 m, andγ = 4.

Fig. 2 compares the Doppler spectra obtained using our
reference model (fordT = dR = 0) with measured Doppler
spectra for SISO system. The measured results are taken from
Fig. 4(d) of [16]. The close agreement between the theoretical
and empirical curves confirms the utility of the proposed
wideband model. Fig. 3 compares the space-time-frequency 
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Fig. 2. The normalized simulated and measured Doppler power spectra for
SISO system.

correlation functions (dT = dR = 0.5 λ, ∆f = 100 Hz) of
the reference, deterministic, and statistical models. The space-
time-frequency correlation function of the deterministic model
is obtained withM

(l)
A = 32, M

(l)
E = 7, N

(k)
A = 32, and

N
(k)
E = 7 scatterers and six tap-delays (L = 3 and K = 3),

whereas the space-time-frequency correlation function of the
statistical model is obtained withM (l)

A = 12, M
(l)
E = 3,

N
(k)
A = 12, and N

(k)
E = 3 scatterers, six tap-delays (L = 3

and K = 3), and Nstat = 10 simulation trials. Results
show that the space-time-frequency correlation function of the
deterministic model closely matches the theoretical one in the
range of normalized time delays,0 ≤ fTmaxTs ≤ 4, whereas
the space-time correlation function of the statistical model
approaches the theoretical one in a wider range of normalized
time delays, i.e.,0 ≤ fTmaxTs ≤ 10.

VI. CONCLUSIONS

In this paper, the 3-D reference model for wideband MIMO
M-to-M fading channels is developed. From the reference
model, the space-time-frequency correlation function for a
3-D non-isotropic scattering environment is derived. Finally,
the deterministic and statistical SoS simulators are presented
and shown to closely match the statistical properties of the
reference model.
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 Fig. 3. The normalized space-time-frequency correlation functions (dT =
dR = 0.5 λ, ∆f = 100 Hz) of the reference, deterministic, and statistical
models.
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