Tackling the next level of uncertainty in medical decision-making

In the words of Sir William Osler, the Father of Modern Medicine: “Medicine is a science of uncertainty and an art of probability.” Medical decision-making is a process that involves considering uncertainty in the consequences and trade-offs of decisions. For instance, when managing a patient’s cardiovascular disease, doctors must consider uncertainty about whether the patient will have a heart attack or stroke in the future. While some medications may reduce the risk of a heart attack and a stroke, these medications cost money and can have side effects.

Fortunately, mathematical models like the Markov decision process (MDP) can be used to synthesize all of this information to guide treatment decisions that are made sequentially over time. Given an estimate of the risk (i.e., probability) that the patient will have a cardiovascular event, MDPs can weigh the benefits and harms of many possible treatments to inform a strategy of whether and when to treat that makes the most sense for the patient.

But what should a modeler do when there are multiple, conflicting estimates of a patient’s risk? In the case of cardiovascular disease, there are multiple, well-established risk calculators that use a patient’s information to estimate their risk of a cardiovascular event, but different risk calculators can give conflicting estimates for the same patient profile. MDPs that rely on these conflicting estimates in turn give different treatment recommendations, leading to ambiguity in how the doctor should proceed to manage the patient’s condition.

In their article “Multi-model Markov Decision Processes,” Georgia Tech assistant professor Lauren N. Steimle, University of Michigan professor Brian Denton and University of Michigan-Dearborn assistant professor David Kaufman propose a new approach to mitigate this ambiguity. Their approach finds treatment strategies that work well across multiple plausible models of the probabilities while maintaining a similar level of complexity of strategies that are based on one model.

Using a case study of cardiovascular disease, the authors show that their approach recommends treatment strategies with lower expected regret compared to those based on a single model alone, as is typically done in practice. The study suggests that incorporating multiple plausible models into solution methods...
may be a promising way to mitigate the effects of ambiguity in medical decision-making and sequential decision-making more broadly.

In short, Steimle, Kaufman, and Denton propose a new take on Markov Decision Processes that pivot conflicting models from a dilemma to a feature, with applications to medicine and beyond.

CONTACT: Lauren Steimle; steimle@gatech.edu; (404) 894-4659; Georgia Tech H. Milton Stewart School of Industrial and Systems Engineering, 755 Ferst Drive, NW, Atlanta, GA 30332.

Operating multiple robot taxis to transport wafers in a semiconductor fabrication

Large-scale complex engineering systems are often composed of subsystems interacting with each other. Examples include wind turbines in a farm, robots or machines in a factory and energy systems in a smart grid. As the system becomes more complex, it becomes challenging to control such subsystems cooperatively to achieve system-level performance.

Multi-agent reinforcement learning, a multiagent extension of reinforcement learning, is an effective learning-based method that can learn the cooperative and decentralized control policy controlling subsystems to achieve system-level performance.

In a semiconductor fabrication (FAB), thousands of overhead hoist transporters automatically transport a bundle of wafers from one machine to another while moving along a

Call for special issue submissions

Author submissions are being sought for two upcoming special issues of IISE Transactions.

Analytical methods for detecting, disrupting and dismantling illicit operations

This special issue will highlight analytical approaches that can help detect, disrupt and ultimately dismantle illicit operations. Its goal is to showcase the role of analytical methods in the fight against illicit operations by bringing together those within the industrial and systems engineering community and domain experts in distinct areas of fighting illicit operations. Of special interest are papers that integrate domain expertise and/or stakeholder engagement in their model formulation, analysis and validation.

The guest editors for the issue are Thomas Sharkey of Clemson University, Renata Konrad of Worcester Polytechnic Institute, Burcu Keskin of the University of Alabama and Maria Mayorga of North Carolina State University.

The deadline for abstract submissions is Oct. 31, 2021, with article submission due by Jan. 31, 2022. To learn more and provide a submission, visit think.taylorandfrancis.com/special_issues/analytical-methods-illicit-operations.

Modeling and optimization of supply chain resilience to pandemics and long-term crises

This issue aims to attract novel research dealing with supply chain resilience modeling and optimization in context of long-term crises motivated by the COVID-19 pandemic. The authors seek methodically rigor and practically relevant papers dealing with the settings when recovery/adaptation should be planned and deployed in the presence of disruptions and bouncing back to “old normal” is impossible or difficult on a short-term scale, and the only way to survive is to adapt. They encourage submissions that explicitly account for the context of epistemic and deep uncertainty (i.e., unknown-unknown) and supply chain viability.

The special issue editors are David Coit and Weiwei Chen, both of Rutgers University; Dmitry Ivanov of the Berlin School of Economics and Law; and Nezih Altay of DePaul University.

The deadline for submission is Feb. 28, 2022. To learn more and provide a submission, visit think.taylorandfrancis.com/special_issues/supply-chain-resilience-pandemics.
one-way track installed under a ceiling. The operation of the transporters in a FAB is similar to the operation of robot taxis in a city; a taxi should be optimally allocated to a customer while considering the traffic conditions of the road network and the geographical distributions of taxis and customers to maximize the service rate. As the semiconductor FAB become larger and, thus, more transporters need to be operated, it is imperative to operate transporters in a FAB intelligently to increase the productivity of automatic material handling.

In the work “Cooperative Zone-based Rebalancing of Idle Overhead Hoist Transportations Using Multi-Agent Reinforcement Learning with Graph Representation Learning,” doctoral student Kyuree Ahn and professor Jinkyoo Park from the Korea Advanced Institute of Science and Technology (KAIST) propose a cooperative zone-based rebalancing algorithm to allocate idle overhead hoist transporters in a semiconductor FAB. They discretize the FAB into a number of zones and derive a decentralized rebalancing policy for each zone by applying multiagent reinforcement learning with graph-centric state representation. The graph representation module effectively extracts and processes the geographical distribution of transporters (taxis) and the waiting wafers (customers), and uses them to determine the optimum rebalancing action.

The authors then demonstrated that the proposed method can significantly reduce the average retrieval time while reducing the transporter utilization ratio. In addition, they show that the rebalancing policy trained with various FAB conditions can be used under unseen dynamic scenarios without further training, hence validating the transferability of the proposed method. This research was funded by SYNUS Tech.

CONTACT: Jinkyoo Park; Jinkyoo.park@kaist.ac.kr; +82 (42) 350-3133; Department of Industrial & Systems Engineering, Korean Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea

Yu Ding is the Mike and Sugar Barnes Professor of Industrial and Systems Engineering at Texas A&M University and Associate Director for Research Engagement at the Texas A&M Institute of Data Science. He is editor-in-chief of IISE Transactions and a fellow of IISE.

About the journal

IISE Transactions (link.iise.org/iisetransactions) is IISE’s flagship research journal and is published monthly. It aims to foster exchange among researchers and practitioners in the industrial engineering community by publishing papers that are grounded in science and mathematics and motivated by engineering applications.

To subscribe, call (800) 494-0460.