Responses to locomotion commotion caused by translation perturbations

Jennifer K. Leestma1,2, Gregory S. Sawicki1,2,3, and Aaron J. Young1,2

1George W. Woodruff School of Mechanical Engineering, 2Institute for Robotics and Intelligent Machines, and 3School of Biological Sciences, Georgia Institute of Technology

Motivation

How do humans navigate non-steady-state environments?

A thorough understanding of stability could aid in:
- Assessing impaired populations and informing rehabilitation therapies [1]
- Creating assistive and augmentative devices [2]
- Informing methods for stable control of bipedal robots

Perturbation recovery strategy is indicated by:
- Step length (SL)
- Step width (SW)
- Step time (ST)

Methods

- N = 1
- Walking speed: 1.25 m/s
- Perturb subject by translating walking platform (24 conditions)
 - Magnitudes: 5, 10, 15 cm
 - Directions: 45º increments
 - (24 conditions) x (12 repetitions) = 288 perturbations
- Collected kinematics
- Identified gait events using kinematic coordinate method [3]
- Calculated step length (SL), step width (SW), and step time (ST) for the perturbed step (S0) and subsequent steps (S1 - S5)

Hypotheses

Mediolateral perturbations will cause the most extreme changes in step width

Anteroposterior perturbations will cause the most extreme changes in step length

Results

- Radial axis: magnitude of platform movement
- Angular axis: direction of platform movement relative to stance foot, all data displayed as right foot perturbed
- Columns: perturbed step (S0) and subsequent steps (S1 - S5)
- Rows: change in SL, SW, and ST as a percent of steady-state (SS)

In general, platform movement in one direction will cause center of mass (CoM) movement in the opposite direction. Ex: lateral (L) perturbation causes CoM movement to the medial side of the perturbed stance foot

Discussion

Step length:
- Most affected on the S1 step, trends last 1-2 steps
- Shorter steps with PL perturbations (up to -18%), longer steps with AM perturbations (up to +7%)

Step width:
- Most affected on the S1 step, trends last 2-3 steps
- Narrower steps with M perturbations (up to -135%), wider steps with L perturbations (up to +129%)

Step time:
- Most affected on the S2 step, trends last 3-4 steps
- Faster steps with AL perturbations (up to -7%), slower steps with P perturbations (up to 6%)

Key Takeaways

- Humans modulate SL, SW, and ST in response to perturbations
- Largest changes to SL, SW, and ST are not elicited by the same perturbation conditions
- PL, a diagonal condition that is not often incorporated into experimental protocols, elicited the most extreme change in SL

References

Acknowledgements

This work was funded by the NSF Research Traineeship: ARMS Award #1545287.

Experimental additions:
- We are including perturbation timing as a third independent variable in future experiments
- More subjects will be tested to expand on this pilot work

Future analyses:
- Role of stance and swing limb joint torques in balance response
- Lower limb muscle activity correlations with joint torques and recovery strategies