Correction to: ‘Cyclically producing the same average muscle-tendon force with a smaller duty increases metabolic rate’

Owen N. Beck, Jonathan Gosyne, Jason R. Franz and Gregory S. Sawicki

We wish to correct two subtle errors to the published article. Correcting these errors does not change the conclusion of our article.

First, we used an incorrect value for each participant’s maximal soleus shortening velocity. As stated in our article, we selectively studied the human soleus because it is primarily composed of slow economical fibres. This is notable because during submaximal voluntary muscle contractions, such as those recorded in the present study’s metabolic trials, the body generally activates slower more economical muscle fibres before activating faster less economical muscle fibres. When our participants repeatedly contracted their soleus for 5 min, they probably activated slower more economical muscle fibres (commonly referred to as Type 1 fibres). Accordingly, we should have used a maximal shortening velocity indicative of slow human soleus muscle fibres: 4.4 lengths per second (Bohm et al. 2019 Proc. R. Soc. B). Rather, in the article, we erroneously used a mixed combination of slow and fast soleus fibres to estimate the soleus maximum shortening velocity: 6.77 lengths per second (Bohm et al. 2019 Proc. R. Soc. B).

In the published article, we referred to this rationale many times, including in the last paragraph of the introduction as well as in the fourth paragraph of the discussion:

1. ‘By studying the soleus, which has a relatively homogeneous fibre-type composition [32], the greater metabolic energy expenditure that is associated with activating less economical muscle fibres over shorter durations of active force production should be trivial. This enabled us to investigate how duty factor affects metabolic energy expenditure, independent from the metabolic influence of active force production duration (e.g. fibre-type recruitment) …’

2. ‘Producing the same cycle-average force over shorter durations typically increases metabolic energy expenditure owing to the activation of faster, less economical muscle fibres [12,17,18]. However, given soleus’ relatively homogeneous muscle fibre composition [32], it probably yields similar rates of metabolic energy per unit active muscle volume (\(p_m\) in equation (1.5)). Therefore, we reasoned that the metabolic influence of the duration of active force production was probably minimal in our study.’

The following is the relevant original text and the corresponding corrected text, with updated wording bolded.

— Page 3, Methods, lines 1–7.

(I) Original text: ‘Eleven of the 14 volunteers who enrolled in our study completed the protocol (resulting sample size: 11 participants; average \(\pm\) s.d.; age: 24.5 \(\pm\) 3.5 years; height: 1.78 \(\pm\) 0.06 m; mass: 74.8 \(\pm\) 10.7 kg; Achilles tendon moment arm: 5.0 \(\pm\) 0.8 cm; optimal soleus fascicle length: 3.86 \(\pm\) 0.7 cm; maximum soleus fascicle shortening velocity: 26.1 \(\pm\) 4.6 cm s\(^{-1}\); and resting metabolic power 80 \(\pm\) 11 W).’

(II) Corrected text: ‘Eleven of the 14 volunteers who enrolled in our study completed the protocol (resulting sample size: 11 participants; average \(\pm\) s.d.;
age: 24.5 ± 3.5 years; height: 1.78 ± 0.06 m; mass: 74.8 ±
10.7 kg; Achilles tendon moment arm: 5.0 ± 0.8 cm; opti-
mal soleus fascicle length: 3.86 ± 0.7 cm; estimated
maximum soleus fascicle shortening velocity: 170 ± 30 mm s⁻¹ (assuming maximum soleus fascicle short-
tening velocity equals 4.4 L₀ s⁻¹ [42]), and resting
metabolic power 80 ± 11 W).'

— Page 4, Methods, Soleus kinetics, paragraph 2 lines 7–11.
(I) Original text: ‘Additionally, we reasoned that maximal
soleus shortening velocity equals 6.77 L₀ s⁻¹ [42], that
initial participant resting pennation angle was consist-
ent across trials and that passive soleus fascicle force
was negligible.’

(II) Corrected text: ‘Additionally, we reasoned that maxi-
mal soleus shortening velocity equals 4.4 L₀ s⁻¹ [42],
that initial participant resting pennation angle was con-
sistent across trials and that passive soleus fascicle
force was negligible.’

Secondly, we incorrectly reported soleus fascicle velocities
in cm s⁻¹, the data are actually in mm s⁻¹. In other words, we
overestimated fascicle shortening velocity by a factor of 10.
The following is the relevant original text and the corre-
sponding corrected text, with updated wording bolded.

— Page 1, Abstract, lines 13–18.
(I) Original text: ‘Mechanistically, smaller duty factors
increased maximum muscle-tendon force (p < 0.001),

further stretching in-series tendons and shifting soleus
fascicles to shorter lengths and faster velocities, thereby
increasing soleus total active muscle volume (p < 0.001).
Participant soleus total active muscle volume well-
explained net metabolic power (r = 0.845; p < 0.001).’

(II) Corrected text: ‘Mechanistically, smaller duty factors
increased maximum muscle-tendon force (p < 0.001),

further stretching in-series tendons and shifting soleus
fascicles to shorter lengths and faster velocities, thereby
increasing soleus total active muscle volume in the
higher moment level, but not the lower moment
level (p = 0.003 and p = 0.336, respectively). Par-tici-

pant soleus total active muscle volume well-explained
net metabolic power (r = 0.844; p < 0.001).’

— Page 5, Results, paragraph 2, lines 1–4.
(I) Original text: ‘Despite not affecting isometric active

muscle volume (equation (1.1)), duty factor influenced
total active muscle volume (p < 0.001) (equation (1.4))
by modulating soleus fascicle force-length and
force-velocity potential.’

(II) Corrected text: ‘Despite not affecting isometric active

muscle volume (equation (1.1)), duty factor influenced
total active muscle volume in the higher moment level,

but not the lower moment level (p = 0.003 and p =
0.336, respectively) (equation (1.4)) by modulating
soleus fascicle force–length and force–velocity potential.’

— Page 5, Results, paragraph 2, lines 11–15.
(I) Original text: ‘Nonetheless, combining the trends of
decreasing duty factors, shorter fascicle lengths and

faster velocities; decreasing duty factor increased
total soleus active muscle volume within both
moment levels (p < 0.001) (figure 4).’

(II) Corrected text: ‘Nonetheless, combining the trends of
decreasing duty factors, shorter fascicle lengths and

faster velocities; decreasing duty factor increased
total soleus active muscle volume in the higher
moment level (p = 0.003) (figure 4).’

— Page 5, Results, paragraph 2, line 15 through page 6,

lines 1–5.
(I) Original text: ‘Further, because decreasing duty factor

reduced soleus force-length and force-velocity poten-
tial but did not affect pennation angle, it increased the
difference between total and isometric active
muscle volume within each moment level (p < 0.001)
(electronic supplementary material, figure S2).’

(II) Corrected text: ‘Further, because decreasing duty factor

reduced soleus force-length and force–velocity potential but did not affect pennation angle, it
increased the difference between total and isometric active
muscle volume (lower and higher moment
level p = 0.054 and p = 0.048, respectively) (electronic
supplementary material, figure S2).’

— Page 6, Results, right column, lines 1–4.
(I) Original text: ‘Across both moment levels, participant
total active muscle volume explained 72% of the change
in net metabolic power (r = 0.845; p < 0.001) (figure 6).’

(II) Corrected text: ‘Across both moment levels, participant
total active muscle volume explained 71% of the change
in net metabolic power (r = 0.844; p < 0.001) (figure 6).’

— Page 7, Results, left column, lines 1–4.
(I) Original text: ‘Additionally, decreasing duty factor and
increasing total soleus active muscle volume both
yielded greater soleus (p ≤ 0.010) and lateral gastrocne-

mius (p ≤ 0.033) activation (figure 7).’

(II) Corrected text: ‘Additionally, duty factor, but not total

soleus active muscle volume (p ≥ 0.3149), yielded

greater soleus (p ≤ 0.010) and lateral gastrocnemius
(p ≤ 0.033) activation (figure 7). Theoretically, total

soleus active muscle volume and measured activation

should be directly related [11].’

— Page 7, Discussion, paragraph 4, lines 23–26 and page
8, lines 1–4.
(I) Original text: ‘To ensure that the activation of different

muscle fibre types (from the soleus and gastrocnemius

muscles) did not affect our conclusions, we performed
post hoc analyses which revealed that scaling total active

muscle volume by the rate of active force production

(1/ground contact duration in [17,18]) did not improve

the correlation between participant total active muscle

volume and net metabolic power (r = 0.840 versus 0.845).’

(II) Corrected text: ‘To ensure that the activation of different

muscle fibre types (from the soleus and gastrocnemius

muscles) did not affect our conclusions, we performed
post hoc analyses which revealed that scaling total active

muscle volume by the rate of active force production

(1/ground contact duration in [17,18]) did not improve

the correlation between participant total active muscle

volume and net metabolic power (r = 0.861 versus 0.844).’

The following are relevant original figures and the corre-
sponding corrected figure.
Original Figure 4. Left column: average time-series graphs of (a) soleus (sol) fascicle length, (c) soleus fascicle shortening velocity and (e) total soleus active muscle volume ($V_{\text{act,tot}}$). Right column: average (± s.e.) (b) minimum soleus fascicle length, (d) maximum soleus fascicle velocity and (f) cycle-average total soleus active muscle volume versus duty factor. Bottom row: Hill-type (g) force-length force potential expressed as a fraction of force (F) at optimal fascicle length (L_0), and (h) force-velocity potential expressed as a fraction of force at zero velocity (V). Maximum shortening velocity is expressed as V_{max}. Lighter to darker colour indicates longer to shorter duration of active force production per ankle moment level. Green and purple asterisks (*) indicate that the corresponding average moment level's duty factor affects the indicated dependent variable ($p < 0.05$).
Corrected Figure 4. Left column: average time-series graphs of (a) soleus (sol) fascicle length, (c) soleus fascicle shortening velocity and (e) total soleus active muscle volume ($V_{\text{act,tot}}$). Right column: average (± s.e.) (b) minimum soleus fascicle length, (d) maximum soleus fascicle velocity and (f) cycle-average total soleus active muscle volume versus duty factor. Bottom row: Hill-type (g) force–length force potential expressed as a fraction of force (F) at optimal fascicle length (L_0) and (h) force–velocity potential expressed as a fraction of force at zero velocity (V). Maximum shortening velocity is expressed as V_{max}. Lighter to darker colour indicates longer to shorter duration of active force production per ankle moment level. Green and purple asterisks (*) indicate that the corresponding average moment level's duty factor affects the indicated dependent variable ($p < 0.05$).
Original Figure 6. Average (± s.e.) net metabolic power versus total soleus active muscle volume ($V_{\text{act,tot}}$). Lighter to darker colour indicates longer to shorter duration of active moment production per ankle moment level. Green and purple asterisks (*) indicate that total soleus active muscle volume affects the indicated dependent variable ($p < 0.05$).

Corrected Figure 6. Average (± s.e.) net metabolic power versus total soleus active muscle volume ($V_{\text{act,tot}}$). Lighter to darker colour indicates longer to shorter duration of active moment production per ankle moment level. Green and purple asterisks (*) indicate that total soleus active muscle volume affects the indicated dependent variable ($p < 0.05$).

Original Supplementary Material Figure 2. Average (± SE) total soleus active muscle volume ($V_{\text{act,tot}}$) minus isometric soleus active muscle volume ($V_{\text{act,iso}}$) versus duty factor. Green and purple symbols indicate the lower and higher average ankle moment levels, respectively. Lighter to darker colours indicate longer to shorter durations of active force production per ankle moment level. Green and purple asterisks (*) indicate that the corresponding average moment level’s duty factor affects the indicated dependent variable ($p < 0.05$).

Corrected Supplementary Material Figure 2. Average (± SE) total soleus active muscle volume ($V_{\text{act,tot}}$) minus isometric soleus active muscle volume ($V_{\text{act,iso}}$) versus duty factor. Green and purple symbols indicate the lower and higher average ankle moment levels, respectively. Lighter to darker colours indicate longer to shorter durations of active force production per ankle moment level. Green and purple asterisks (*) indicate that the corresponding average moment level’s duty factor affects the indicated dependent variable ($p < 0.05$).
Original Supplementary Material Figure 3. (a) Soleus (Sol) mechanical power versus time and (b) net metabolic power versus positive mechanical work. Lighter to darker colour indicates longer to shorter duration of active force production per ankle moment level. Green and purple asterisks (*) indicate that the corresponding average moment level’s positive mechanical work affects indicated dependent variable ($p < 0.05$).

Corrected Supplementary Material Figure 3. (a) Soleus (Sol) mechanical power versus time and (b) net metabolic power versus positive mechanical work. Lighter to darker colour indicates longer to shorter duration of active force production per ankle moment level. Green and purple asterisks (*) indicate that the corresponding average moment level’s positive mechanical work affects indicated dependent variable ($p < 0.05$).