LINEAR PROGRAMMING AND CIRCUIT IMBALANCES

László Végh

IPC O Summer School
Georgia Tech, May 2021

Slides available at https://personal.lse.ac.uk/veghl/ipco
Linear programming

\[
\min c^T x \\
Ax = b \\
x \geq 0
\]
Facets of linear programming

- **Discrete**
 - Basic solutions
 - Polyhedral combinatorics
 - Exact solution

- **Continuous**
 - Continuous solutions
 - Convex program
 - Approximate solution
Linear programming algorithms

- n variables, m constraints
- L: total bit-complexity of the rational input (A, b, c)
- Simplex method: Dantzig, 1947
- Weakly polynomial algorithms: $\text{poly}(L)$ running time
 - Ellipsoid method: Khachiyan, 1979
 - Interior point method: Karmarkar, 1984

$$\min c^T x$$
$$Ax = b$$
$$x \geq 0$$
Weakly vs strongly polynomial algorithms for LP

- n variables, m constraints, total encoding L.

- Strongly polynomial algorithm:
 - $\text{poly}(n,m)$ elementary arithmetic operations (+, −, ×, ÷, ≥), independent of L.

- **PSPACE**: The bit-length of numbers during the algorithm remain polynomially bounded in the size of the input.

- Can also be defined in the real model of computation

\[
\begin{align*}
\min \ c^\top x \\
Ax &= b \\
x &\geq 0
\end{align*}
\]
Is there a strongly polynomial algorithm for Linear Programming?

Smale’s 9th question
Strongly polynomial algorithms for some classes of Linear Programs

- Systems of linear inequalities with at most two nonzero variables per inequality: Megiddo ’83

- Network flow problems
 - Maximum flow: Edmonds-Karp-Dinitz ’70-72, ...
 - Min-cost flow: Tardos ’85, Fujishige ’86, Goldberg-Tarjan ’89, Orlin ’93, ...
 - Generalized flow: V ’17, Olver-V ’20

- Discounted Markov Decision Processes: Ye ’05, Ye ’11, ...
Dependence on the constraint matrix only

\[\min c^\top x, \ Ax = b \ x \geq 0 \]

- Algorithms with running time dependent only on \(A \), but not on \(b \) and \(c \).
- Combinatorial LP’s: integer matrix \(A \in \mathbb{Z}^{m \times n} \).
 \[\Delta_A = \max \{ | \det(B) | : B \text{ submatrix of } A \} \]
 Tardos ’86: \(\text{poly}(n, m, \log \Delta_A) \) \text{ black box } LP \text{ algorithm}

- Layered-least-squares (LLS) Interior Point Method
 Vavasis-Ye ’96: \(\text{poly}(n, m, \log \bar{\chi}_A) \) LP algorithm in the real model of computation
 \(\bar{\chi}_A \): condition number

- Dadush-Huiberts-Natura-V ’20: \(\text{poly}(n, m, \log \bar{\chi}_A^*) \)
 \(\bar{\chi}_A^* \): optimized version of \(\bar{\chi}_A \)
Outline of the lectures

1. Tardos’s algorithm for min-cost flows
2. The circuit imbalance measure κ_A and the condition measure $\overline{\chi}_A$
3. Solving LPs: from approximate to exact
4. Optimizing circuit imbalances
5. Interior point methods: basic concepts
6. Layered-least-squares interior point methods
- **Dadush-Huiberts-Natura-V ’20**: A scaling-invariant algorithm for linear programming whose running time depends only on the constraint matrix

- **Dadush-Natura-V ’20**: Revisiting Tardos’s framework for linear programming: Faster exact solutions using approximate solvers
Part 1
Tardos’s algorithm for min-cost flows
circuits, proximity, and variable fixing
The minimum-cost flow problem

- Directed graph $G = (V, E)$, node demands $b: V \to \mathbb{R}$ with $b(V) = 0$, costs $c: E \to \mathbb{R}$.
 \[
 \min c^T x \\
 \text{s.t. } \sum_{ji \in \delta^-(i)} x_{ji} - \sum_{ij \in \delta^+(i)} x_{ij} = b_i \quad \forall i \in V \\
 x \geq 0
 \]

- Form with arc capacities can be reduced to this form.

- Constraint matrix is totally unimodular (TU)

Form with arc capacities can be reduced to this form.

Constraint matrix is totally unimodular (TU)
The minimum-cost flow problem: optimality

- Directed graph $G = (V, E)$, node demands $b: V \to \mathbb{R}$ with $b(V) = 0$, costs $c: E \to \mathbb{R}$.

\[
\begin{align*}
\min & \quad c^T x \\
\text{s.t.} & \quad \sum_{(j,i) \in \delta^-(i)} x_{ji} - \sum_{(i,j) \in \delta^+(i)} x_{ij} = b_i \quad \forall i \in V \\
& \quad x \geq 0
\end{align*}
\]

- Dual program:

\[
\begin{align*}
\max & \quad b^T \pi \\
\text{s.t.} & \quad \pi_j - \pi_i \leq c_{ij} \quad \forall ij \in E
\end{align*}
\]

- Optimality: $f_{ij} > 0 \quad \Rightarrow \quad \pi_j - \pi_i = c_{ij}$
Dual solutions: potentials

- **Dual program**: max cost feasible potential
 \[
 \max b^T \pi \\
 \text{s.t. } \pi_j - \pi_i \leq c_{ij} \quad \forall ij \in E
 \]
- **Residual cost**:
 \[
 c_{ij}^\pi = c_{ij} + \pi_i - \pi_j \geq 0
 \]
- **Residual graph**:
 \[
 E_f = E \cup \{(j, i) : f_{ij} > 0\} \\
 c_{ji} = -c_{ij}
 \]

Lemma: The primal feasible \(f \) is optimal \(\iff \)

- \(\exists \pi: c_{ij}^\pi \geq 0 \text{ for all } (i, j) \in E \text{ and } c_{ij}^\pi = 0 \text{ if } f_{ij} > 0 \iff \)
- \(\exists \pi: c_{ij}^\pi \geq 0 \text{ for all } (i, j) \in E_f \)
Variable fixing by proximity

- If for some \((i, j) \in E\) we can show that \(f_{ij}^* = 0\) in every optimal solution, then we can remove \((i, j)\) from the graph.
- **Overall goal:** in strongly polynomial number of steps, guarantee that we can infer this for at least one arc.

PROXIMITY THEOREM: Let \(\bar{\pi}\) be the optimal dual potential for costs \(\tilde{c}\), and \(f^*\) an optimal primal solution for the original costs \(c\). Then,
\[
c_{ij} \bar{\pi} > |V| \cdot ||c - \tilde{c}||_\infty \quad \Rightarrow \quad f_{ij}^* = 0
\]
Circulations and cycle decompositions

- For the node-arc incidence matrix A, $\ker(A) \subseteq \mathbb{R}^E$ is the set of circulations:

 $\text{in-flow} = \text{out-flow}$

- **Lemma**: every circulation $f \geq 0$ can be decomposed as

 $$f = \sum_{i} \lambda_i \chi_{C_i}, \quad \lambda_i \geq 0$$

 for directed cycles C_i
LEMMA: Let f and f' be two feasible flows for the same demand vector b. Then, we can write

$$f' = f + \sum_{i} \lambda_i \chi_{C_i}, \quad \lambda_i \geq 0$$

for sign-consistent directed cycles C_i in \tilde{E}:

- If $f'_{ij} > f_{ij}$ then cycles may only contain ij but not ji.
- If $f_{ij} > f'_{ij}$ then cycles may only contain ji but not ij.
- If $f_{ij} = f'_{ij}$ then no cycle contains ij or ji.

Every cycle is moving from f towards f'.
PROXIMITY THEOREM: Let \(\tilde{\pi} \) be the optimal dual potential for costs \(\tilde{c} \), and \(f^* \) an optimal primal solution for the original costs \(c \). Then,

\[
c_{ij} \tilde{\pi} > |V| \cdot \|c - \tilde{c}\|_\infty \Rightarrow f_{ij}^* = 0
\]

PROOF:
Rounding the costs

- Rescale c such that $\|c\|_\infty = |V|\sqrt{|E|}$
- Round costs as $\tilde{c}_{ij} = \lfloor c_{ij} \rfloor$
- For \tilde{c} we can find optimal primal and dual solutions in strongly polynomial time, e.g. the Out-of-Kilter method by Ford and Fulkerson 1962.
- For the optimal dual $\tilde{\pi}$, fix all arcs to 0 that have $c_{ij} > |V| > |V| \cdot \|c - \tilde{c}\|_\infty$

QUESTION: Why would such an arc exist?
Minimum-norm projections

- Residual cost:
 \[c_{ij}^\pi = c_{ij} + \pi_i - \pi_j \geq 0 \]

- The cost vectors
 \[U = \{ c^\pi : \pi \in \mathbb{R}^V \} \subset \mathbb{R}^E \]
 form an affine subspace.

- For any feasible flow \(f \) and any residual cost \(c^\pi \),
 \[(c^\pi)^T f = c^T f + b^T \pi \]

- Solving the problem for \(c \) and \(c^\pi \) is equivalent.

- If \(0 \in U \), i.e. \(\exists \pi : c^\pi \equiv 0 \), then every feasible flow is optimal.

- IDEA: Replace the input \(c \) by the min norm projection to the affine subspace \(U \):
 \[c^\pi = \arg \min_{\pi \in \mathbb{R}^V} \| c^\pi \|_2 \]
Rounding the costs

- Assume \(c \) is chosen as a min norm projection:
 \[
 \|c^\pi\|_2 \geq \|c\|_2 \quad \forall \pi \in \mathbb{R}^V
 \]

- Rescale \(c \) such that \(\|c\|_\infty = |V| \sqrt{|E|} \)

- Round costs as \(\tilde{c}_{ij} = \lfloor c_{ij} \rfloor \)

- For the optimal dual \(\tilde{\pi} \), fix all arcs to 0 that have
 \[
 c_{ij} > |V| > |V| \cdot \|c - \tilde{c}\|_\infty
 \]

LEMMA: There exist at least one such arc.

PROOF:

\[
\|c^\tilde{\pi}\|_\infty \geq \frac{\|c^\tilde{\pi}\|_2}{\sqrt{|E|}} \geq \frac{\|c\|_2}{\sqrt{|E|}} \geq \frac{\|c\|_\infty}{\sqrt{|E|}} = |V|
\]

Also note that

\[
c_{ij} \geq \tilde{c}_{ij} \geq 0
\]
Summary of Tardos’s algorithm

- Variable fixing based on **proximity** that can be shown by cycle decomposition.
- Replace the input cost by an equivalent min-cost projection
- **Round** to small integer costs \(\tilde{c} \)
- Find optimal dual \(\tilde{\pi} \) for \(\tilde{c} \) with simple classical method
- Identify a variable \(f_{ij}^* = 0 \) as one where \(c_{ij}^{\tilde{\pi}} \) is large and remove all such arcs.
- Iterate
Outline of the lectures

1. Tardos’s algorithm for min-cost flows
2. The circuit imbalance measure κ_A and the condition measure $\bar{\chi}_A$
3. Solving LPs: from approximate to exact
4. Optimizing circuit imbalances
5. Interior point methods: basic concepts
6. Layered-least-squares interior point methods
Part 2
The circuit imbalance measure κ_A and the condition measure $\tilde{\chi}_A$
The circuit imbalance measure

- The matrix $A \in \mathbb{R}^{m \times n}$ defines a linear matroid on $[n] = \{1, 2, \ldots, n\}$: a set $I \subseteq [n]$ is independent if the columns $\{a_i: i \in I\}$ are linearly independent.

- $C \subseteq [n]$ is a circuit if $\{a_i: i \in C\}$ is a linearly dependent set minimal for containment.

- For a circuit C, there exists a vector $g^C \in \mathbb{R}^C$ unique up to a scalar multiplier such that
 \[\sum_{i \in C} g^C_i a_i = 0 \]

- C_A : set of all circuits.

- The circuit imbalance measure is defined as
 \[\kappa_A = \max \left\{ \left| \frac{g_j^C}{g_i^C} \right| : C \in C_A, i, j \in C \right\} \]
Properties of κ_A

$$\kappa_A = \max \left\{ \left| \frac{g_j^C}{g_i^C} \right| : C \in C_A, i, j \in C \right\}$$

- This measure depends only on the linear subspace $W = \ker(A)$: if $\ker(A) = \ker(B)$ then $\kappa_A = \kappa_B$
- We will use $\kappa_W = \kappa_A$ for $W = \ker(A)$

Connection to subdeterminants:
- For an integer matrix $A \in \mathbb{Z}^{m \times n}$,
 $$\Delta_A = \max\{ \left| \det(B) \right| : B \text{ submatrix of } A \}$$
- For a circuit $C \in C_A$, with $|C| = t$ let $D = A_{J,C} \in \mathbb{R}^{(t-1) \times t}$ be a submatrix with linearly independent rows.

For a circuit $C \in C_A$, with $|C| = t$ let $D = A_{J,C} \in \mathbb{R}^{(t-1) \times t}$ be a submatrix with linearly independent rows.

$D^{(i)} \in \mathbb{R}^{(t-1) \times (t-1)}$ remove the i-th column from D. By Cramer’s rule

$$g^C = (\det(D^{(1)}), \det(D^{(2)}), \ldots, \det(D^{(t)}))$$
Properties of κ_A

- **LEMMA:** For an integer matrix $A \in \mathbb{Z}^{m \times n}$,

 \[\kappa_A \leq \Delta_A \]

 For a totally unimodular matrix A, $\kappa_A = 1$

- **EXERCISE:**

 i. If A is the node-edge incidence matrix of an undirected graph, then $\kappa_A \in \{1,2\}$

 ii. For the incidence matrix of a complete undirected graph on n nodes,

 \[\Delta_A \geq 2^{\left\lfloor \frac{n}{3} \right\rfloor} \]
Circuit imbalance and TU matrices

THEOREM (Cederbaum, 1958): If $A \in \mathbb{Z}^{m \times n}$ is a TU-matrix, then $\kappa_A = 1$. Conversely, if $\kappa_W = 1$ for a linear subspace $W \subseteq \mathbb{R}^n$ then there exists a TU-matrix A such that $W = \ker(A)$.

PROOF (Ekbatani & Natura):
Duality of circuit imbalances

THEOREM: For every linear subspace $W \subseteq \mathbb{R}^n$, we have

$$\kappa_W = \kappa_{W^\perp}$$
Circuits in optimization

- Appear in various LP algorithms directly or indirectly
- IPCO summer school 2020: Laura Sanità’s lectures discussed circuit augmentation algorithms and circuit diameter
- Integer programming: κ has a natural integer variant that is related to Graver bases
- ...

The condition number $\bar{\chi}_A$

$$\bar{\chi}_A = \sup\{\|A^T(ADA^T)^{-1}AD\|: D \text{ is positive diagonal matrix}\}$$

- Measures the norm of *oblique* projections
- Introduced by Dikin 1967, Stewart 1989, Todd 1990
- **THEOREM** (Vavasis-Ye 1996): There exists a $\text{poly}(n, m, \log \bar{\chi}_A)$ LP algorithm for $\min c^T x, Ax = b, x \geq 0, A \in \mathbb{R}^{m \times n}$

- **LEMMA**
 i. If A is an integer matrix with bit encoding length L, then $\bar{\chi}_A \leq 2^{O(L)}$
 ii. $\bar{\chi}_A = \max\{\|B^{-1}A\|: B \text{ nonsingular } m \times m \text{ submatrix of } A\}$
 iii. $\bar{\chi}_A$ *only depends on the subspace* $W = \ker(A)$
 iv. $\bar{\chi}_W = \bar{\chi}_{W^\perp}$
The lifting operator

- For a linear subspace $W \subset \mathbb{R}^n$ and index set $I \subseteq [n]$, we let
 \[\pi_I: \mathbb{R}^n \rightarrow \mathbb{R}^I \]
 denote the coordinate projection, and
 \[\pi_I(W) = \{ x_I : x \in W \} \]

- The lifting operator $L_I^W : \mathbb{R}^I \rightarrow \mathbb{R}^n$ is defined as
 \[L_I^W (z) = \arg \min_{x \in W} \| x \|_2 : x_I = z \]

- This is a linear operator; we can efficiently compute a projection matrix $H \in \mathbb{R}^{n \times I}$ such that $L_I^W (z) = Hz$.

- **Lemma:**
 \[\tilde{\chi}_A = \max_{I \subseteq [n]} \| L_I^W \| = \max \left\{ \frac{\| L_I^W (z) \|_2}{\| z \|_2} : I \subseteq [n], z \in \pi_I(W) \setminus \{0\} \right\} \]
The lifting operator

\[L_I^W (z) = \arg \min \{ \| x \|_2 : x \in W, x_I = z \} \]
The lifting operator

LEMMA:

\[
\kappa_A = \max \left\{ \frac{\|L_I^W(z)\|_\infty}{\|z\|_1} : I \subseteq [n], z \in \pi_I(W) \setminus \{0\} \right\}
\]

PROOF:
The condition numbers κ_A and $\bar{\chi}_A$

THEOREM: For every matrix $A \in \mathbb{R}^{m \times n}$, $n \geq 2$

$$\sqrt{1 + \kappa_A^2} \leq \bar{\chi}_A \leq n\kappa_A$$

Approximability of κ_A and $\bar{\chi}_A$:

LEMMA (Tunçel 1999): It is NP-hard to approximate $\bar{\chi}_A$ by a factor better than $2^{\text{poly} (\text{rank}(A))}$
Outline of the lectures

1. Tardos’s algorithm for min-cost flows
2. The circuit imbalance measure κ_A and the condition measure $\bar{\chi}_A$
3. Solving LPs: from approximate to exact
4. Optimizing circuit imbalances
5. Interior point methods: basic concepts
6. Layered-least-squares interior point methods
Part 3
Solving LPs: from approximate to exact
Fast approximate LP algorithms

\[\begin{align*}
\min c^T x \\
A x &= b \\
x &\geq 0
\end{align*} \]

- \(\varepsilon \)-approximate solution:
 - Approximately feasible: \(\|Ax - b\| \leq \varepsilon (\|A\|_F R + \|b\|) \)
 - Approximately optimal: \(c^T x \leq \text{OPT} + \varepsilon \|c\| R \)

- Finding an approximate solution with \(\log \left(\frac{1}{\varepsilon} \right) \) running time dependence implies a weakly polynomial exact algorithm.
Fast approximate LP algorithms

\[
\min c^T x \quad Ax = b \quad x \geq 0
\]

- \(n \) variables, \(m \) equality constraints, Randomized vs. Deterministic
- Significant recent progress:
 - \(R \circ O \left((\text{nnz}(A) + m^2)\sqrt{m} \log^O(1) (n) \log \left(\frac{n}{\epsilon} \right) \right) \) Lee–Sidford ’13–’19
 - \(R \circ O \left(n^\omega \log^O(1) (n) \log \left(\frac{n}{\epsilon} \right) \right) \) Cohen, Lee, Song ’19
 - \(D \circ O \left(n^\omega \log^2 (n) \log \left(\frac{n}{\epsilon} \right) \right) \) van den Brand ’20
 - \(R \circ O \left((mn + m^3) \log^O(1) (n) \log \left(\frac{n}{\epsilon} \right) \right) \) van den Brand, Lee, Sidford, Song ’20
 - \(R \circ O \left((mn + m^{2.5}) \log^O(1) (n) \log \left(\frac{n}{\epsilon} \right) \right) \) van den Brand, Lee, Liu, Saranurak, Sidford, Song, Wang ’21

Some important techniques:
- weighted and stochastic central paths
- fast approximate linear algebra
- efficient data structures
Fast exact LP algorithms with κ_A dependence

- n variables, m equality constraints

THEOREM (Dadush, Natura, V. ’20) There exists a $\text{poly}(n, m, \log \kappa_A)$ algorithm for solving LP exactly.

- Feasibility: m calls to an approximate solver
- Optimization: mn calls to an approximate solver
 with $\varepsilon = 1/(\text{poly}(n, \kappa_A))$. Using van den Brand ’20, this gives a deterministic exact $O(mn^{\omega+1} \log^2(n) \log(\kappa_A+n))$ time LP optimization algorithm

- Generalization of Tardos ’86 for real constraint matrices and with directly working with approximate solvers.
- Main difference: arguments in Tardos ’86 heavily rely on integrality assumptions

\[
\min c^T x \\
A x = b \\
x \geq 0
\]
Hoffman’s proximity theorem

Polyhedron $P = \{ x \in \mathbb{R}^n : Ax \leq b \}$, point $x_0 \notin P$, norms $\| \cdot \|_\alpha$, $\| \cdot \|_\beta$

THEOREM (Hoffman, 1952): There exists a constant $H_{\alpha,\beta}(A)$ such that

$$\exists x \in P: \| x - x_0 \|_\alpha \leq H_{\alpha,\beta}(A)(Ax_0 - b)^+ \|_\beta$$
LP in subspace form

- **Matrix form:** \(A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, c \in \mathbb{R}^n \)

\[
\begin{align*}
\min & \quad c^T x \\
\text{s.t.} & \quad Ax = b \\
& \quad x \geq 0 \\
\end{align*}
\]

\[
\begin{align*}
\max & \quad b^T y \\
\text{s.t.} & \quad A^T y + s = c \\
& \quad s \geq 0 \\
\end{align*}
\]

- **Subspace form:** \(W = \ker(A), d \in \mathbb{R}^n \) s.t. \(Ad = b \)

\[
\begin{align*}
\min & \quad c^T x \\
\text{s.t.} & \quad x \in W + d \\
& \quad x \geq 0 \\
\end{align*}
\]

\[
\begin{align*}
\max & \quad d^T (c - s) \\
\text{s.t.} & \quad s \in W^\perp + c \\
& \quad s \geq 0 \\
\end{align*}
\]
Proximity theorem with κ_A

THEOREM: For $A \in \mathbb{R}^{m \times n}, d \in \mathbb{R}^n$, consider the system

$$x \in W + d, x \geq 0.$$

There exists a feasible solution x such that

$$\|x - d\|_\infty \leq \kappa_W \|d^-\|_1$$

PROOF:
Linear feasibility algorithm

Linear feasibility problem
\[x \in W + d, \quad x \geq 0. \]

- Recursive algorithm using a **stronger** problem formulation:
 \[x \in W + d, \quad x \geq 0. \]
 \[\|x - d\|_\infty \leq C'\kappa_W^2\|d^-\|_1 \]

- Black box oracle for \(\varepsilon = 1/(\text{poly}(n, \kappa_A)) \)

proximity
\[x \in W + d \]
\[\|x - d\|_\infty \leq C\kappa_W\|d^-\|_1 \]

error
\[\|x^-\|_\infty \leq \varepsilon\|d^-\|_1 \]
The lifting operator

\[L_I^W(z) = \arg \min \{ \| x \|_2 : x \in W, x_I = z \} \]
The linear feasibility algorithm

1. Call the black box solver to find a solution z for $\varepsilon = 1/(\kappa \cdot n)^4$

 \[
 z \in W + d \\
 \|z - d\|_\infty \leq C \kappa \|d^-\|_1 \\
 \|z^-\|_\infty \leq \varepsilon \|d^-\|_1
 \]

2. Set $J = \{i \in [n]: z_i < \kappa \|d^-\|_1\}$; assume $J \neq [n]$.

3. Recursively obtain $\tilde{x} \in \mathbb{R}^J_+$ from $\mathcal{F}(\pi_J(W), z_J)$

4. Return $x = z + L^W_J (\tilde{x} - z_J)$

Problem $\mathcal{F}(W, d)$

\[
x \in W + d \\
\|x - d\|_\infty \leq C' \kappa^2 \|d^-\|_1 \\
x \geq 0
\]
1. Call the black box solver to find a solution z for $\varepsilon = 1/(\kappa W n)^4$

$z \in W + d$
$\|z - d\|_{\infty} \leq C \kappa W \|d^-\|_1$
$\|z^-\|_{\infty} \leq \varepsilon \|d^-\|_1$

2. Set $J = \{i \in [n]: z_i < \kappa W \|d^-\|_1\}$; assume $J \neq [n]$.

3. Recursively obtain $\bar{x} \in \mathbb{R}_+^J$ from $\mathcal{F}(\pi_J(W), z_J)$

4. Return $x = z + L^W_J (\bar{x} - z_J)$
The linear feasibility algorithm

\[J = \{ i \in [n] : z_i < \kappa_W \| d^- \|_1 \}; \]

- If \(J = [n] \), then we replace \(d \) by its projection to \(W^\perp \)
- Bound \(n \) on the number of recursive calls; can be decreased to \(m \)
- \(O(mn^{\omega+o(1)} \log(\kappa_W + n)) \) feasibility algorithm using van den Brand '20.
Certification

- In case of infeasibility we return an exact Farkas certificate.
- \(\kappa_W \) is hard to approximate within \(2^{O(n)} \) Tunçel 1999.
- We use an estimate \(M \) in the algorithm.
- The algorithm may fail if \(\|L_j^W (\bar{x} - z_j)\|_\infty > M \|\bar{x} - z_j\|_1 \).
- In this case, we restart with
 \[
 \max \left\{ M^2, \frac{\|L_j^W (\bar{x} - z_j)\|_\infty}{\|\bar{x} - z_j\|_1} \right\}
 \]
- Our estimate never overshoots \(\kappa_W \) by much, but can be significantly better.
Proximity for optimization

\[
\begin{aligned}
\min & \quad c^T x \\
\text{s.t.} & \quad x \in W + d, \quad x \geq 0
\end{aligned}
\]

\[
\begin{aligned}
\max & \quad d^T (c - s) \\
\text{s.t.} & \quad s \in W^\perp + c, \quad s \geq 0
\end{aligned}
\]

THEOREM: Let \(s \in W^\top + c, s \geq 0 \) be a feasible dual solution, and assume the primal is also feasible. Then there exists a primal optimal \(x^* \in W + d, x^* \geq 0 \) such that

\[
\|x^* - d\|_\infty \leq \kappa_W \left(\|d^-\|_1 + \|d_{\text{supp}(s)}\|_1 \right).
\]
Optimization algorithm

\[
\begin{align*}
\min c^T x & \quad \max d^T(c - s) \\
x \in W + d & \quad s \in W^\perp + c \\
x \geq 0 & \quad s \geq 0
\end{align*}
\]

- \(nm\) calls to the black box solver
- \(\leq n\) Outer Loops, each comprising \(\leq m\) Inner Loops
- Each Outer Loop finds \(\tilde{d}\) with \(\|d - \tilde{d}\| \) "small", and \((x, s)\) primal and dual optimal solutions to
 \[
 \min c^T x \text{ s.t. } x \in W + \tilde{d}, d \geq 0
 \]
- Using proximity, we can use this to conclude \(x_I > 0\) for a certain variable set \(I \subseteq n\) and recurse.
Outline of the lectures

1. Tardos’s algorithm for min-cost flows
2. The circuit imbalance measure κ_A and the condition measure $\bar{\kappa}_A$
3. Solving LPs: from approximate to exact
4. Optimizing circuit imbalances
5. Interior point methods: basic concepts
6. Layered-least-squares interior point methods
Part 4
Optimizing circuit imbalances
Diagonal rescaling of LP

\[
\begin{align*}
\min \; & c^T x \\
\text{s.t.} \; & Ax = b \\
& x \geq 0
\end{align*}
\]
\[
\begin{align*}
\max \; & b^T y \\
\text{s.t.} \; & A^T y + s = c \\
& s \geq 0
\end{align*}
\]

Positive diagonal matrix \(D \in \mathbb{R}^{n \times n} \)

\[
\begin{align*}
\min \; & (Dc)^T x' \\
\text{s.t.} \; & ADx' = b \\
& x' \geq 0
\end{align*}
\]
\[
\begin{align*}
\max \; & b^T y' \\
\text{s.t.} \; & (AD)^T y' + s' = Dc \\
& s' \geq 0
\end{align*}
\]

Mapping between solutions:
\[
x' = D^{-1} x, \quad y' = y, \quad s' = Ds
\]
Diagonal rescaling of LP

Positive diagonal matrix $D \in \mathbb{R}^{n \times n}$

$$\begin{align*}
\min & \quad (Dc)^T x' \\
\text{s.t.} & \quad ADx' = b \\
& \quad x' \geq 0
\end{align*}$$

$$\begin{align*}
\max & \quad b^T y' \\
\text{s.t.} & \quad (AD)^T y' + s' = Dc \\
& \quad s' \geq 0
\end{align*}$$

Mapping between solutions:
$$x' = D^{-1}x, \quad y' = y, \quad s' = Ds$$

- Natural symmetry of LPs and many LP algorithms.
- The **Central Path** is invariant under diagonal scaling.
- Most “standard” interior point methods are invariant.
Dependence on the constraint matrix only

\[
\min c^T x, \ Ax = b \ x \geq 0
\]

- Algorithms with running time dependent only on \(A \), but not on \(b \) and \(c \).
- Combinatorial LP’s: integer matrix \(A \in \mathbb{Z}^{m \times n} \).
 \[
 \Delta_A = \max\{|\det(B)|: B \text{ submatrix of } A\}
 \]
 Tardos ’86: \(\text{poly}(n, m, \log \Delta_A) \) LP algorithm
- Layered-least-squares (LLS) Interior Point Method
 Vavasis-Ye ’96: \(\text{poly}(n, m, \log \bar{\chi}_A) \) LP algorithm in the real model of computation
 \(\bar{\chi}_A \): condition number
- Dadush-Huiberts-Natura-V ’20: \(\text{poly}(n, m, \log \bar{\chi}_A^*) \)
 \(\bar{\chi}_A^* \): optimized version of \(\bar{\chi}_A \)
Optimizing κ_A and $\tilde{\chi}_A$ by rescaling

$\mathcal{D} = \text{set of } n \times n \text{ positive diagonal matrices}$

$\kappa_A^* = \inf \{ \kappa_{AD} : D \in \mathcal{D} \}$

$\tilde{\chi}_A^* = \inf \{ \tilde{\chi}_{AD} : D \in \mathcal{D} \}$

- A scaling invariant algorithm with $\tilde{\chi}_A$ dependence automatically yields $\tilde{\chi}_A^*$ dependence.

- Recall $\sqrt{1 + \kappa_A^2} \leq \tilde{\chi}_A \leq n\kappa_A$.

THEOREM (Dadush-Huiberts-Natura-V ’20): Given $A \in \mathbb{R}^{m \times n}$, in $O(n^2 m^2 + n^3)$ time, one can
 - approximate the value κ_A within a factor $(\kappa_A^*)^2$, and
 - compute a rescaling $D \in \mathcal{D}$ satisfying $\kappa_{AD} \leq (\kappa_A^*)^3$.

THEOREM (Tunçel 1999): It is NP-hard to approximate $\tilde{\chi}_A$ (and thus κ_A) by a factor better than $2^{\text{poly}(\text{rank}(A))}$
Approximating κ_A^*

$D = \text{set of } n \times n \text{ positive diagonal matrices}$

$\kappa_A^* = \inf\{\kappa_{AD}: D \in D\}$

- **EXAMPLE:** Let $\ker(A) = \text{span}((0,1,1, M), (1,0, M, 1))$
Pairwise circuit imbalances

- For a circuit C, there exists a vector $g^C \in \mathbb{R}^C$ unique up to a scalar multiplier such that
 \[
 \sum_{i \in C} g_i^C a_i = 0
 \]
- C_A : set of all circuits.
- For any $i, j \in [n]$,
 \[
 \kappa_{ij} = \max \left\{ \frac{|g_j^C|}{|g_i^C|} : C \in C_A, \text{s. t. } i, j \in C \right\}
 \]
- The circuit imbalance measure is
 \[
 \kappa_A = \max_{i,j \in [n]} \kappa_{ij}
 \]
Cycles are invariant under scaling

Lemma For any directed cycle H on $\{1, 2, \ldots, n\}$

$$(k_A^*)^{\vert H \vert} \geq \prod_{(i,j) \in H} \kappa_{ij}$$
Circuit imbalance min-max formula

THEOREM (Dadush-Huiberts-Natura-V ’20):

\[\kappa_A^* = \max \left\{ \left(\prod_{(i,j) \in H} \kappa_{ij} \right)^{1/|H|} : H \text{ directed cycle on } \{1,2, \ldots, n\} \right\} \]

PROOF:
Circuit imbalance min-max formula

THEOREM (Dadush-Huiberts-Natura-V ’20):

\[
\kappa_A^* = \max \left\{ \left(\prod_{(i,j) \in H} \kappa_{ij} \right)^{1/|H|} : H \text{ directed cycle on } \{1,2, \ldots, n\} \right\}
\]

- **BUT:** Computing the \(\kappa_{ij}\) values is NP-complete...
- **LEMMA:** For any circuit \(C \in C_A\) s.t. \(i, j \in C\),

\[
\frac{|g_j^C|}{|g_i^C|} \geq \frac{\kappa_{ij}}{(\kappa_W^*)^2}
\]
Outline of the lectures

1. Tardos’s algorithm for min-cost flows
2. The circuit imbalance measure κ_A and the condition measure $\bar{\chi}_A$
3. Solving LPs: from approximate to exact
4. Optimizing circuit imbalances
5. Interior point methods: basic concepts
6. Layered-least-squares interior point methods
Part 5
Interior point methods: basic concepts
Primal and dual LP

- **Matrix form:** \(A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, c \in \mathbb{R}^n \)

 \[
 \begin{align*}
 \min & \ c^T x \\
 \text{subject to} & \ Ax = b \\
 & \ x \geq 0 \\
 \end{align*}
 \]

 \[
 \begin{align*}
 \max & \ b^T y \\
 \text{subject to} & \ A^T y + s = c \\
 & \ s \geq 0 \\
 \end{align*}
 \]

- **Subspace form:** \(W = \ker(A), d \in \mathbb{R}^n \) s.t. \(Ad = b \)

 \[
 \begin{align*}
 \min & \ c^T x \\
 \text{subject to} & \ x \in W + d \\
 & \ x \geq 0 \\
 \end{align*}
 \]

 \[
 \begin{align*}
 \max & \ d^T (c - s) \\
 \text{subject to} & \ s \in W^\top + c \\
 & \ s \geq 0 \\
 \end{align*}
 \]

- **Complementary slackness:** Primal and dual solutions \((x, s) \) are optimal if \(x^T s = 0 \): for each \(i \in [n] \), either \(x_i = 0 \) or \(s_i = 0 \).

- **Optimality gap:**
 \[
 c^T x - d^T (c - s) = x^T s.
 \]
The central path

- For each $\mu > 0$, there exists a unique solution $w(\mu) = (x(\mu), y(\mu), s(\mu))$ such that
 \[x(\mu)_i s(\mu)_i = \mu \quad \forall i \in [n] \]
 the central path element for μ.

- The central path is the algebraic curve formed by $\{w(\mu): \mu > 0\}$.

- For $\mu \to 0$, the central path converges to an optimal solution $w^* = (x^*, y^*, s^*)$.

- The optimality gap is $s(\mu)^T x(\mu) = n\mu$.

- Interior point algorithms: walk down along the central path with μ decreasing geometrically.
The Mizuno-Todd-Ye Predictor-Corrector Algorithm

- Start from point $w_0 = (x_0, y_0, s_0)$ 'near' the central path at some $\mu_0 > 0$.

- Alternate between
 - **Predictor steps**: 'shoot down' the central path, decreasing μ by a factor at least $1 - \beta/n$. May move slightly 'farther' from the central path.
 - **Corrector steps**: do not change parameter μ, but move back 'closer' to the central path.

Within $O(n)$ iterations, μ decreases by a factor 2.
The predictor step

- Step direction $\Delta w = (\Delta x, \Delta y, \Delta s)$

\[
\begin{align*}
A\Delta x &= 0 \\
A^T \Delta y + \Delta s &= 0 \\
s_i \Delta x_i + x_i \Delta s_i &= -x_i s_i \quad \forall i \in [n]
\end{align*}
\]

- Pick the largest $\alpha \in [0,1]$ such that w' is still "close enough" to the central path $w' = w + \alpha \Delta w = (x + \alpha \Delta x, y + \alpha \Delta y, s + \alpha \Delta s)$

- Long step: $|\Delta x_i \Delta s_i|$ small for every $i \in [n]$
- New optimality gap is $(1 - \alpha)\mu$.
The predictor step – subspace view

\[
\begin{align*}
A\Delta x &= 0 \\
A^T \Delta y + \Delta s &= 0 \\
\forall i \in [n], s_i \Delta x_i + x_i \Delta s_i &= -x_i s_i
\end{align*}
\]

- Assume the current point \(w = (x, y, s) \) is on the central path. The steps can be found as minimum norm projections in the \((1/x)\) and \((1/s)\) rescaled norms:

\[
\begin{align*}
\Delta x &= \arg \min \sum_{i=1}^{n} \left(\frac{x_i + \Delta x_i}{x_i} \right)^2 \quad \text{s. t. } x \in W = \text{ker}(A) \\
\Delta s &= \arg \min \sum_{i=1}^{n} \left(\frac{s_i + \Delta s_i}{s_i} \right)^2 \quad \text{s. t. } s \in W^\perp = \text{im}(A^T)
\end{align*}
\]
Some recent progress on interior point methods

- Tremendous recent progress on fast approximate variants LS’14–’19, CLS’19, vdB’20, vdBLSS’20, vdBLLSSSW’21
- Fast approximate algorithms for combinatorial problems flows, matching and MDPs: DS’08, M’13, M’16, CMSV’17, AMV’20, vdBLNPTSSW’20, vdBLLSSSW’21
Outline of the lectures

1. Tardos’s algorithm for min-cost flows
2. The circuit imbalance measure κ_A and the condition measure $\bar{\chi}_A$
3. Solving LPs: from approximate to exact
4. Optimizing circuit imbalances
5. Interior point methods: basic concepts
6. Layered-least-squares interior point methods
Part 6
Layered-least-squares interior point methods
Layered-least-squares (LLS) Interior Point Methods:
Dependence on the constraint matrix only

\[\bar{\chi}_A^* = \inf \{ \bar{\chi}_{AD} : D \in D \} \]

- Vavasis-Ye ’96: \(O(n^{3.5} \log(\bar{\chi}_A + n)) \) iterations
- Monteiro-Tsuchiya ’03 \(O(n^{3.5} \log(\bar{\chi}_A^* + n) + n^2 \log \log 1/\varepsilon) \) iterations
- Lan-Monteiro-Tsuchiya ‘09 \(O(n^{3.5} \log(\bar{\chi}_A^* + n)) \) iterations, but the running time of the iterations depends on \(b \) and \(c \)
- Dadush-Huiberts-Natura-V ’20: scaling invariant LLS method with \(O(n^{2.5} \log(n) \log(\bar{\chi}_A^* + n)) \) iterations
Near monotonicity of the central path

LEMMA For \(w = (x, y, s) \) on the central path, and for any solution \(w' = (x', y', s') \) s.t. \((x')^Ts' \leq x^Ts \), we have

\[
\sum_{i=1}^{n} \frac{x'_i}{x_i} + \frac{s'_i}{s_i} \leq 2n
\]

PROOF:

IPM learns gradually improved upper bounds on the optimal solution.
Variable fixing...—or not?

LEMMA After every iteration, there exists variables x_i and s_j such that

$$\frac{1}{O(n)} \leq \frac{x_i}{x^*_i}, \frac{s_j}{s^*_j} \leq O(n)$$

For the optimal (x^*, y^*, s^*). Thus, x_i and s_j have “converged” to their final values.

PROOF: Can be shown using the form of the predictor step:

$$\Delta x = \arg \min \sum_{i=1}^{n} \left(\frac{x_i + \Delta x_i}{x_i} \right)^2 \quad \text{s. t. } x \in W$$

$$\Delta s = \arg \min \sum_{i=1}^{n} \left(\frac{s_i + \Delta s_i}{s_i} \right)^2 \quad \text{s. t. } s \in W^\perp$$

and bounds on the stepsize.
Variable fixing...—or not?

LEMMA After every iteration, there exists variables x_i and s_j such that

$$\frac{1}{O(n)} \leq \frac{x_i}{x^*_i}, \frac{s_j}{s^*_j} \leq O(n)$$

Thus, x_i and s_j have “converged” to their final values.

We cannot identify these indices, just show their existence 🤔
Layered least squares methods

- Instead of the standard predictor step, split the variables into layers.
- Variables on different layers “behave almost like separate LPs”
- Force new primal and dual variables that must have converged.
Recap: the lifting operator and κ_A

- For a linear subspace $W \subset \mathbb{R}^n$ and index set $I \subseteq [n]$, we let
 \[\pi_I: \mathbb{R}^n \to \mathbb{R}^I \]
 denote the coordinate projection, and
 \[\pi_I(W) = \{x_I: x \in W\} \]

- The lifting operator $L^W_I: \mathbb{R}^I \to \mathbb{R}^n$ is defined as
 \[L^W_I(z) = \arg \min \{ \|x\|_2: x \in W, x_I = z \} \]

- **Lemma:** $\kappa_A = \max \left\{ \frac{\|L^W_I(z)\|_\infty}{\|z\|_1}: z \in \pi_I(W) \right\}$

- For every $z \in \pi_I(W)$, $x = L^W_I(z) \in W$ s.t.
 \[x_I = z, \text{ and } \|x\|_\infty \leq \kappa_A \|z\|_1 \]
Motivating the layering idea:
final rounding step in standard IPM

\[
\begin{align*}
\min & \quad c^T x \\
A x &= b \\
x &\geq 0
\end{align*}
\]
\[
\begin{align*}
\max & \quad b^T y \\
A^T y + s &= c \\
s &\geq 0
\end{align*}
\]

- Limit optimal solution \((x^*, y^*, s^*)\), and optimal partition \([n] = B \cup N\) s.t. \(B = \text{supp}(x^*),\ N = \text{supp}(s^*)\).

- Given \((x, y, s)\) near central path with ‘small enough’ \(\mu = s^T x/n\) such that for every \(i \in [n]\), either \(x_i\) or \(s_i\) very small.

- Assume that we can correctly guess
 \[B = \{i: x_i > M\sqrt{\mu}\}, \quad N = \{i: s_i > M\sqrt{\mu}\}\]
Assume we have a partition B, N, we have
\[i \in B: \ x_i > M\sqrt{\mu}, \quad s_i < \sqrt{\mu}/M \]
\[i \in N: \ x_i < \sqrt{\mu}/M, \quad s_i > M\sqrt{\mu} \]

Goal: move to $\bar{x} = x + \Delta x, \ \bar{y} = y + \Delta y, \bar{s} = s + \Delta s$
s.t. supp(\bar{x}) $\subseteq B$, supp(\bar{s}) $\subseteq N$. Then, $\bar{x}^T\bar{s} = 0$: optimal solution.

Choice:
\[\Delta x = -L_N^W (x_N), \quad \Delta s = -L_B^W (s_B) \]
Layered-least-squares step

Assume we have a partition B, N, with

$i \in B: x_i > M\sqrt{\mu}$, $s_i < \sqrt{\mu}/M$

$i \in N: x_i < \sqrt{\mu}/M$, $s_i > M\sqrt{\mu}$

Standard primal predictor step:

\[
\Delta x = \arg \min \sum_{i=1}^{n} \left(\frac{x_i + \Delta x_i}{x_i} \right)^2
\]

s. t. $\Delta x \in W$

Vavasis-Ye LLS step with layers (B, N):

\[
\Delta x_N = \arg \min \sum_{i \in N} \left(\frac{x_i + \Delta x_i}{x_i} \right)^2
\]

s. t. $\Delta x \in W$

\[
\Delta x_B = \arg \min \sum_{i \in B} \left(\frac{x_i + \Delta x_i}{x_i} \right)^2
\]

s. t. $(\Delta x_B, \Delta x_N) \in W$
Layered-least-squares step
Vavasis-Ye ‘96

- Order variables decreasingly as \(x_1 \geq x_2 \geq \cdots \geq x_n \)
- Arrange variables into layers \((J_1, J_2, \ldots, J_t)\); start a new layer when \(x_i > O(n^c) \bar{\chi}_A x_{i+1} \)
- Primal step direction by least squares problems from backwards, layer-by-layer
- Lifting costs from lower layers low
- Dual step in the opposite direction

Not scaling invariant!
Progress measure: crossover events
Vavasis-Ye’96

- **DEFINITION:** The variables x_i and x_j cross over between μ and μ', $\mu > \mu'$, if
 - $O(n^c)(\bar{\chi}_A)^n x_j(\mu) \geq x_i(\mu)$
 - $O(n^c)(\bar{\chi}_A)^n x_j(\mu'') < x_i(\mu'')$ for any $\mu'' \leq \mu'$

- **LEMMA:** In the Vavasis-Ye algorithm, a crossover event happens every $O(n^{1.5} \log(\bar{\chi}_A + n))$ iterations, totalling to $O(n^{3.5} \log(\bar{\chi}_A + n))$.
Scaling invariant layering
DNHV’20

- Instead of the ratios x_i/x_j, we consider the rescaled circuit imbalance measures $\kappa_{ij} x_i/x_j$
- Layers: strongly connected components of the arcs

$$(i,j): \frac{\kappa_{ij} x_i}{x_j} > \frac{1}{\text{poly}(n)}$$

The κ_{ij} values are not known: increasingly improving estimates.
Scaling invariant crossover events

Vavasis-Ye’96

- **DEFINITION:** The variables x_i and x_j cross over between μ and μ', $\mu > \mu'$, if
 - $O(n^c)(\bar{\chi}_A)^n x_j(\mu) \geq \kappa_{ij} x_i(\mu)$
 - $O(n^c)(\bar{\chi}_A)^n x_j(\mu'') < \kappa_{ij} x_i(\mu'')$ for any $\mu'' \leq \mu'$

- Amortized analysis, resulting in improved $O(n^{2.5} \log(n) \log(\bar{\chi}_A + n))$ iteration bound.
The Limitation of IPMs

- **Theorem (Allamigeon–Benchimol–Gaubert–Joswig ‘18):** No standard path following method can be strongly polynomial.

- Proof using **tropical geometry:** studies the tropical limit of a family of parametrized linear programs.
Future directions

- Circuit imbalance measure: key parameter for strongly polynomial solvability.
- LP classes with existence of strongly polynomial algorithms open:
 - LPs with 2 nonzeros per column in the constraint matrix, equivalently: min cost generalized flows
 - Undiscounted Markov Decision Processes
- Extend the theory of circuit imbalances more generally, to convex programming and integer programming.

Thank you!
Postdoc position open

Application deadline: 5 June