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Abstract— Often in highly-cluttered environments, a robot
can observe the exterior of the environment with ease, but
cannot directly view nor easily infer its detailed internal
structure (e.g., dense foliage or a full refrigerator shelf). We
present a data-driven approach that greatly improves a robot's
success at reaching to a goal location in the unknown interior of
an environment based on observable external properties, such
as the category of the clutter and the locations of openings
into the clutter (i.e., apertures). We focus on the problem of
selecting a good initial con�guration for a manipulator when
reaching with a greedy controller. We use density estimation
to model the probability of a successful reach given an initial
condition and then perform constrained optimization to �nd
an initial condition with the highest estimated probability of
success. We evaluate our approach with two simulated robots
reaching in clutter, and provide a demonstration with a real PR2
robot reaching to locations through random apertures. In our
evaluations, our approach signi�cantly outperformed two alter-
native approaches when making two consecutive reach attempts
to goals in distinct categories of unknown clutter. Notably, our
approach only uses sparse readily-apparent features.

I. I NTRODUCTION

Many manipulation tasks take place in environments with
properties that are dif�cult to directly observe or indirectly
infer. For example, dense foliage and a full shelf of a
refrigerator consist of numerous objects that occlude the
interior. Likewise, obscured locations behind structures can
be reachable through gaps but not observable. Sensor limita-
tions can also result in initial uncertainty about a particular
environment, such as due to too little or too much light. In
many of these situations, the robot can identify the category
of the environment even though the speci�c details of the
environment are unknown. Likewise, the robot can often
detect openings through which it can reach. In this paper,
we investigate a method that enables a robot to leverage its
previous experience in environments with similar readily-
apparent characteristics in order to improve its manipulation
capabilities when confronted with a novel instance of a
category of environment.

In particular, we focus on the problem of selecting an
initial manipulator con�guration when attempting to reach
to a location in a cluttered environment. We assume that
the robot only knows the goal location to which it should
reach, the category of the environment, and the locations
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Fig. 1: Our method enabled a PR2 to select a base position, a
torso height, an initial arm con�guration, and an aperture to reach
through in order to reach the yellow ball in the foliage. The label
we used for this category of environment was
foliage-aperture-clutter.

of apertures through which it can reach. We also assume
that the robot has previously had the opportunity to learn
by reaching into different instances of the same category
of environment. Given a novel instance about which it
has no speci�c information, the robot must decide how to
con�gure its manipulator before using a greedy haptically-
guided controller that we have previously presented [1]. We
present our approach to data-driven selection, which we call
learning initial conditions (LIC). We show that by intelli-
gently selecting the initial con�guration of its manipulator,
a robot can greatly improve its chance of reaching the goal.
We also show that if its �rst attempt fails, performing a
second reach from another initial con�guration, informed by
its failure, results in a higher overall chance of success than
other standard selection methods.

The selected initial manipulator con�guration can in�u-
ence the performance of a manipulation behavior in a variety
of ways. And, predicting how the manipulator con�guration
will in�uence performance is challenging due to complex
interactions among the controller, the robot's body, and the
environment. For example, con�guring the end effector as a
wedge and pointing it towards a gap can result in the end
effector pushing through movable objects, while otherwise
orienting it can result in the end effector pushing the movable
objects along with it. Likewise, moving a link sideways
increases the chances of it contacting an object, which
might help guide the manipulator through the environment.
Environments can also have dynamic elements that vary over
time or due to the robot's actions, such as a net or a fabric
barrier. Given these complex interactions, we take a data-
driven approach to probabilistically model the relationship
between the initial con�guration of the manipulator, the goal
location, and the success of a reach for a given category of
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Fig. 2: Overview of the PR2 system, which uses LIC to reach intofoliage-aperture-clutter. Training is performed in simulation prior to
the real experiment. The goal and aperture locations were detected by external and head-mounted cameras, respectively. Then, LIC-1
selected the initial condition from the available base, torso, and arm con�gurations. If the �rst reach failed, LIC-2 was used. For the
passable-probability map shown in the �gure, whiter squares correspond with better apertures through which to reach.

environment. This has the bene�t of making our approach
straightforward to generalize to different robots, environ-
ments, and controllers.

We evaluated our approach in simulation using a 3 degree-
of-freedom (DoF) planar arm. The environments consist of
randomly placed rigid objects that were either �xed to the
ground or movable. For example, acylinder-clutterenviron-
ment consists of upright cylinders, which has similarities to
foliage. We also tested a narrow-passage environment, which
is similar to a hidden tunnel. We found that, in both the �rst
and second reach attempts, our approach outperformed the
use of random or cost-metric initial con�guration selection
methods. In addition, we have demonstrated our approach
using a Willow Garage PR2 robot with a 7 DoF arm in a real
random-aperture environment. Our method has performed
well in this common class of situations for which the robot
can perceive openings through which to reach, which we
refer to as apertures (see Fig. 1).

II. RELATED WORK

A number of previous studies have investigated the prob-
lem of learning policies that map the state of the world
to a robot's actions, and have used a variety of policy
representations and learning methods such as those described
in [2], [3], and [4]. In this paper, we use a prede�ned
deterministic policy that takes the form of a controller that
performs well when reaching in clutter [1]. At each time
step, it uses model predictive control (MPC) to minimize
the predicted distance between the robot's end effector and
the goal location while keeping predicted contact forces low.
For this controller, our system learns initial conditions in the
form of the manipulator's initial con�guration. In previous
work, we assumed the category of a cluttered environment
was known in order to rapidly classify incidental contact with
the robot's arm while reaching [5].

Our approach in this paper strongly relates to data-driven
methods for trajectory generation. Jetchev and Toussaint
showed how to �nd suitable trajectories from a trajectory
database using high-dimensional situation descriptors (2
< 791) with perfect information [6]. Dragan et al. use machine
learning to select high-level attributes that are likely to
be associated with an optimal trajectory, such as whether
a trajectory should go to the left or right of an object
[7]. Dey et al. proposed a framework to optimize control

sequences by learning contextual experience [8]. Berenson et
al. presented an online framework for building a path library
and producing a feasible path for a rapidly exploring random
tree (RRT) [9]. This body of work emphasizes trajectory
generation in fully known 3D environments. In contrast,
we generate an initial condition that is likely to result in
the success of a controller based on sparse readily-apparent
features of highly-cluttered environments. We also provide
evidence that these low-dimensional features can be highly
informative.

Paolini et al. have pursued a strongly related approach
to data-driven manipulation in clutter [10]. Our approach
differs both in the task and the speci�cs of our probabilistic
formulation. For example, we do not factor our probability
distribution into two components, one relating perception
to world state and the other relating world state to action
outcomes.

In contrast to our approach, most research on manipulation
in clutter assumes that detailed geometric information about
the environment is available. Leeper et al. presented a method
to help remote operators �nd collision-free poses for the
end effector in clutter [11]. Researchers have also presented
motion planners that use models of objects in the world to
enable robots to rearrange clutter by pushing, grasping, and
moving objects with their end effectors [12], [13], and [14].

III. L EARNING INITIAL CONDITIONS (LIC)

The starting con�guration (i.e., initial condition) for a
robot reaching into an unknown cluttered environment can
signi�cantly in�uence the overall chance of success. In our
previous work we showed that greedy reaching in clutter with
varying initial conditions is an effective method to achieve
high rates of success (e.g., 91.4% of optimal given up to 5
reaches with distinct initial conditions) [1]. In this paper, we
show that by intelligently selecting the initial condition for a
reach based on readily-apparent features and past experience,
a robot can achieve a high rate of success with substantially
fewer reaches.

A. General Formulation
We propose a data-driven approach for selecting initial

conditions that makes use of an experience library,D =
f (s� n ; x0� n ; f � n ); :::; (s� 1; x0� 1; f � 1)g. D is a set of tu-
ples of the form(si ; x0i ; f i ), where each tuple represents a
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(a) 2D cylinder-clutter (b) 2D passage-clutter (c) 2D cylinder-aperture-clutterwith a mobile robot

Fig. 3: Examples of two different categories of clutter with a three-link planar arm (grey and white). The arm starts from an initial
condition on the hand range (green line) and reaches to a goal (cyan circle) in a goal area (red rectangle). The green and red arrows
represent the contact force and the sensed normal component of this force on the arm's surface. The example on the right also shows
where the robot's base can translate (blue line) and random apertures through which the robot must reach (gaps in the dark red line).

past reach attempt by the robot.si is a tuple that describes
the speci�c situation encountered by the robot using sparse
readily-apparent features.x0i is the initial condition that
was used by the robot. And,f i is a truth value denoting
whether the robot successfully reached its goal. Furthermore,
we represent a situation assi = ( gi ; ci ; oi ), where gi is
the goal the robot attempted to reach,ci is the category
of the environment, andoi represents other task-relevant
observations the robot made prior to the attempt.

For our approach, we ideally wish to �nd a functionm
that maps the current situation,s, and past experience,D,
to the initial conditionx �

0 with the highest probability of
success,

m(s;D) ! x �
0; (1)

Our data-driven method has two main steps:learning
and optimization. The learning step buildsF , which is a
non-parametric density estimate ofP(x1 = gjc; o; x0),
where x1 is the �nal state of the manipulator. That is
F (s; x0) � P(x1 = gjc; o; x0). Notably, this density esti-
mate is intended to generalize the contents of the experience
library D to novel situations. In practice, we create a distinct
model for each category of environment,c, and the content
of our observation tuple,o, depends on the category. The
optimizationstep searchesF to �nd x̂ �

0, which is an initial
condition with the maximal estimated probability of success,
x̂ �

0 = arg max x 0 F (s; x0), given the current situation,s.
We can summarize our method for approximating the

function m as

D ������!
Learning

F (s; x0) ���������!
Optimization

x̂ �
0: (2)

B. Reaching with a Mobile Base
Our formulation does not depend on the robot having a

particular structure. For example, the initial condition,x0, for
a highly redundant robot could represent all of the robot's
degrees of freedom. However, increasing the dimensionality
of x0 will typically make density estimation and optimization
more challenging, including increasing the computation and
training data required for good performance.

An important special case for robot reaching is when the
robot has a mobile base that can translate the proximal
end of a serial manipulator. If translating the robot and

the goal with respect to the environment does not change
P(x1 = gjc; o; x0) we can describe the reaching task as
being invariant to this translation. If we further require that
during a reach the mobile base translates to a location and
stops while the the serial manipulator reaches, we can use
a more ef�cient approach to select the initial position of
the mobile base and the initial con�guration of the serial
manipulator.

For this class of problem, we can makex0 only represent
the serial manipulator's initial con�guration and then learn
F with respect to the robot's frame of reference. We can then
perform the optimization step with respect to both translation
of the mobile base,b0, and the serial manipulator's con�g-
uration,x0, by �nding the ordered pair(b0; x0) that results
in the highest estimated probability of a successful reach.
To do so, we appropriately translate the situation,s, into the
mobile robot's frame of reference. Speci�cally,

(b̂�
0; x̂ �

0) = arg max
(b0 ;x 0 )

F (Tb0 (s); x0); (3)

whereTb0 translatess so that it represents the situation that
would occur if the robot were to �rst translate tob0 before
reaching with its serial manipulator from con�gurationx0.
As we demonstrate with our results, this approach can also
work with reaching tasks that are only weakly invariant
to translation.b0 can also be selected from a limited set
of translations, such as a set of translations that are more
relevant to the task or for which the task is more invariant.

C. Making a Second Reach with LIC-2
The previous description provides a method with which

a robot can select an initial condition,x0, when confronted
with a wholly-novel situation,s, that consists of reaching to
a goal,g, in an unknown environment of category,c, given
various readily-apparent task-relevant observations,o. In this
paper, we refer to the problem of learning initial conditions
for this �rst reach as LIC-1 and the database used for LIC-1
asD1.

Due to the high uncertainty associated with this �rst reach
(LIC-1), the robot will often fail. If it does fail to reach
the goal, g, we would like to enable the robot to make
another reach attempt to the same goalg in the same speci�c
environment. While performing the �rst reach, we expect



that the robot will be able to make new readily-apparent
observations that can enable it to do a better job selecting
an initial condition for its second attempt.

We refer to the problem of selecting the initial condition,
x0, for the second reach as LIC-2. For LIC-2, we could
take a straightforward approach wherein we collect a new
experience database,D2, that solely consists of tuples de-
scribing second attempts to reach goal,g, each performed
after a single failed attempt to reachg using the initial
condition provided by LIC-1. In this way, LIC-2 could model
causal dependencies between the �rst and second attempts
and would be trained in the same manner as LIC-1, except
for the use ofD2 and additional observations. However, this
would require having LIC-1 fully trained and collecting an
entirely new experience database.

For this paper, we instead use a computationally favorable
approximation for LIC-2 that simpli�es training. We assume
that a reach into a speci�c environment does not alter the
environment in any way. This enables us to construct an
experience databaseD2 from the same single reach attempts
that we use to constructD1. We do this by �rst having
the robot attempt to reach a single goal in a speci�c en-
vironment from uniformly sampled initial conditions. Given
our assumption that none of these reaches will change the
environment, the probability of success for a particular reach
does not depend on the reach attempts that preceded it. This
enables us to createD2 by simulating the situation where
the �rst reach fails and then a second reach is taken.

To simulate the �rst reach, we randomly select a failed
reach from the set of failed reaches using equal probability
across all of the failed reach attempts. Treating all possible
�rst reach failures for a particular environment and goal as
being equally likely has the advantage of not requiring a
trained LIC-1. However, it introduces another approximation
that is likely to reduce the performance of LIC-2, since
LIC-2 would ideally be trained with respect to the actual
distribution of failures resulting from LIC-1. We simulate
the second reach by randomly selecting a reach from all of
the reach attempts, whether they resulted in failure or not. To
generate a useful set of experiences, we repeat this process
for uniformly sampled goals over many environments,ej ,
randomly drawn from the environment category,c, where
the probability of drawingej is P(ej jc).

Once we have generated a set of simulated pairs of
reaches, we append information obtained from the �rst reach
to the observations available to the second reach. Each of
the second reach attempt tuples in databaseD2 has an
observation tuple,oi , that includes additional observations
obtained during the failed �rst reach. We always include
the initial condition used in the failed �rst reach,x0

0, as
part of oi , so that LIC-2 will know what was tried the
�rst time. In addition, depending on the category of the
environment, we include other observations, such as the �nal
state of manipulator from the �rst reach,x0

1 , which often
corresponds to where the robot's end effector became stuck.
Notably, rather than attempt to reconstruct a detailed model
of the environment from information obtained during the

�rst reach, we instead use sparse, readily-apparent features
to inform selection of the initial condition for the second
reach. This works surprisingly well in practice.

Once we have generatedD2, the learning and optimization
steps for LIC-2 are essentially the same as for LIC-1.

D. The Learning Step
For the learning step, we used a Gaussian process (GP)

or K-Nearest Neighbor (K-NN) density estimator to generate
F from D. For the GP estimation, we used an absolute
exponential correlation model. For the K-NN estimation,
we used a weighted Gaussian kernel. We performed these
density estimates with thescikit-learningmachine learning
library in Python (http://scikit-learn.org).

One limitation of these estimators is that they can require
a large amount of computation time during both learning
and inference. To help overcome this issue, we sampled a
�xed number of relevant local samples from the experience
library, D, using a K-NN local approximation algorithm prior
to using the GP or K-NN density estimators, as described
in [15]. In particular, we used this approach to reduce the
number of samples when performing density estimation for
LIC-2.

E. The Optimization Step
For the optimization step, we used the approximated

probability distribution from thelearningstep as an objective
function and performed the following constrained optimiza-
tion:

maximize
x 0

F (s; x0)

subject to qmin � IK (x0) � qmax

x0 2 open space;

(4)

where qmin and qmax are minimum and maximum joint
limits and IK (x0) is the inverse kinematics for the ma-
nipulator when the end effector is at posex0. In addition,
we constrained the end effector to be located in the open
space outside of the clutter. For the simulated 3-link planar
manipulator we used,x0 de�ned a position and orientation
for the manipulator, so there was no issue with redundancy.
For the PR2,x0 speci�ed a pose of the end effector, which
resulted in redundancy. For this paper, we handled this by
pre-selecting a single arm con�guration for each end effector
pose,x0. To perform this constrained optimization, we used a
bound-constrained minimization algorithm, L-BFGS-B [16]
as implemented in SciPy (http://www.scipy.org/).

IV. EXPERIENCEL IBRARIES FOREVALUATION

To build an actual experience libraryD =
f (s� n ; x0� n ; f � n ); :::; (s� 1; x0� 1; f � 1)g with si =
(gi ; ci ; oi ), we need to de�ne these tuples in detail. The
details are especially important because, like most machine
learning approaches, the effectiveness of LIC depends on
using informative feature vectors that support generalization.
The following list provides an overview of the parameters
we used in our evaluation:
� x0 - initial condition : For this paper, we de�nedx0 to
be the pose of the robot's end effector. For the 3-link



Fig. 4: Left: An example ofsphere-aperture-clutterfor the
simulated PR2.Right: Visualized contact forces from simulated
tactile sensors on the simulated PR2 arm. Red arrows represent
contact forces normal to the arm's surface.

planar armx0 was the position(x; y) and orientation�
of the end effector. For the PR2 robot,x0 was the position
(x; y; z) and orientation of the end effector with orientation
represented as a quaternion(qx ; qy ; qz ; qw ). For each class
of environment,c, the allowed set of initial conditions can
be different. For example, when presented with apertures,
the robot is only allowed to select an initial end effector
position that is at the center of an aperture, but it can select
an end effector orientation from a continuous range.

� g - goal: We de�ned the goal,g, to be the ideal position
of the end effector after a successful reach.

� f - success or failure: The truth value,f , denoted whether
or not the end effector's position was within a threshold
distance of the goal,g, during a reach. Success did not
depend on the end effector's orientation.

� c - category of the environment: c represented the type
of environment into which the robot must reach, such as a
cylinder-clutter, passage-clutter, or sphere-aperture-clutter
environment. For each simulated environment category in
our evaluation, we de�ned a probability distribution from
which we could draw environment instances. We also
provided the correct category of the current environment
to the robot prior to its �rst reach attempt.

� o - task-relevant observations: o varied based on the
category of the environment,c, and whether the robot was
making its �rst or second reach. For the �rst reach in our
evaluations,o was the empty set,o = ; . For the second
reach in our evaluations,o consisted of information from
the �rst reach attempt. Every second reacho included the
initial condition used by the �rst reach,x0

0. Depending on
the environment category,o could also include the �nal
position of the end effector in the �rst reach,x0

1 , or an
estimate of the �nal velocity of the end effector in the �rst
reach, _̂x0

1 .

In order to ef�ciently collect a large number of tuples,
we had the robots perform reach attempts from pre-de�ned
start con�gurations to task-space goals in simulation. First,
we prepared a number of randomly cluttered environments,
setVc, of categoryc. Next, we de�ned a discretized goal-set
G in the environments and a start-condition setS in front
of the robot. When simulating second reach data, we used
all of the data we generated rather than randomly sampling
from it with equal probability. We now provide details about

the data collection we used for our evaluation.

A. Data Collection for the 2D Testbed
We used two categories of randomly generated cluttered

environments in a 2D testbed as described in Section V-A.
Each environment included all planar and rigid objects with
�xed sizes, masses, and friction coef�cients.
� Cylinder-clutter: Using a uniform distribution, we ran-
domly placed 40 movable and 40 �xed circular objects,
each with a 0.01m radius, in a 0.65� 2.4 m rectangular
area, as shown in Fig. 3(a). A three-link planar arm
attempted to reach from 21 initial conditions to 45 grid-
distributed goals of size 5� 9 in 20 different cluttered envi-
ronments. We placed the goals on a horizontal, rectangular
plane 0.4m long and 0.8m wide at 0.1m intervals. The
initial positions were on a segment, 0.8m long, between
the robot and the clutter, equally distributed at 0.1m
intervals. The initial orientations were equally distributed at
30� intervals. For sampling, we ran 18,900 reach attempts
with 20 different clutter settings, 45 goal locations, and 21
initial conditions. For LIC-2, we usedo = f x0

0; x0
1 g.

� Passage-clutter: We randomly placed a �xed narrow pas-
sage with a 0.1m gap between two 0.4m long and 0.02
m wide walls, as shown in Fig. 3(b). The center positions
of the passages were randomly selected on a horizontal
segment 0.4m long. The other properties were the same
as thecylinder-clutter. The arm attempted to reach from
14 initial conditions to the middle point of the passage.
We distributed the arm's initial positions in the same way
as incylinder-clutter. The initial orientations were equally
distributed at 45� intervals. For sampling, we ran 1,680
reach attempts of different clutter settings. For LIC-2, we
usedo = f x0

0; _̂x0
1 g.

� Cylinder-aperture-clutter: A clutter environment was gen-
erated in the same way as thecylinder-clutter category.
Then, �xed-width openings (apertures) were randomly
placed in front of the environment (see Fig. 3(c)). The robot
was given exactly one initial position for each aperture and
initial orientations equally distributed at 45� intervals. We
ran 7,200 reach attempts with 480 different clutter settings.
For LIC-2, we usedo = f x0

0g.

B. Data Collection for the 3D Testbed
In the 3D testbed described in Section V-A, we generated

40 random cluttered environments in a category,sphere-
aperture-clutter, to obtain training data for a real experiment.
The clutter contains 40 movable �oating spheres in a 0.29�
0.4� 0.7m rectangular parallelepiped in front of a simulated
PR2. Each object had a 0.05m radius and a 0.1kg mass,
and its velocity is decayed by a 0.5 exponential damping
gain. Then, we put 20 square 0.2m wide apertures between
the clutter and the robot, as shown in Fig. 1 (Left).

The simulated PR2 tried to reach to 12 grid-distributed
goals of size 4� 3 in 40 different cluttered environments
from 20 initial conditions. The goals were placed on a
vertical, rectangular plane 0.6m wide and 0.4m tall at 0.2
m intervals behind a set of spheres. The initial positions were
equally distributed on a vertical, rectangular plane of 0.8m
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Fig. 5: Snapshots in time from two reach attempts in
cylinder-clutter. Left: First reach attempt using LIC-1.Right:
Second reach attempt using LIC-2.
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Fig. 6: Visualization of density estimates showing initial
conditions that are more likely to succeed in red. The left density
estimate from LIC-1 corresponds with the �rst reach attempt and
the right density estimate from LIC-2 corresponds with the second
reach attempt in Fig. 5. The initial condition is the end effector's
position on the starting line and its orientation with respect to
vertical (vertical is' =0 rad). LIC-1 selected (Y = -0.4 m,' =
-0.45 rad) and LIC-2 selected (Y = -0.190 m,' = 1.216 rad).

wide, 0.6m tall, and 0.2m intervals. To reduce the number
of initial orientations, we selected one from each available
con�guration using a cost functionC that assigns a lower
cost to manipulator con�gurations with the end effector and
forearm pointing towards the clutter.

C = 1=(� kxT p(ot ow ) k + � kxT p(ot oe ) k); (5)

where � and � are positive constants.x is a unit vector
pointing from the robot to the clutter,[1; 0; 0]T . p(ot ow ) is a
vector from the origin of the tip of the end effector to the
wrist. p(ot oe ) is a vector from the origin of the tip of the
end effector to the elbow. We ran 9,025 reach attempts. We
also used our approach from Section III-B to generalize the
PR2's learning over translations parallel to the environment's
surface, which it performed with its spine and wheeled base.
For LIC-2, we usedo = f x0

0g.

V. TESTBEDS FOREVALUATION

We trained and evaluated our LIC method with two
different simulation testbeds. Then, we demonstrated the
performance in realistic clutter using a PR2.

A. Simulation Testbeds
We used a 2D simulation testbed with Open Dynamics

Engine (ODE) (http://www.ode.org/). Fig. 3 shows the robot,
which consists of a mobile base and a three-link planar arm,
which has kinematic and dynamic properties similar to the
properties of a human arm. The robot was controlled by a
1 kHz joint-space impedance controller, and tactile sensors
were placed on the entire surface of each link with a density
of 100 taxels per meter. A detailed description of this testbed
can be found in [1]. In the scenarios depicted in Fig. 3(a) and
3(b), we restricted the base to a �xed point. In the scenario
shown in Fig. 3(c) the base could move and we used our
approach from Section III-B.

For 3D simulation, we used a simulated PR2 in Gazebo
(http://gazebosim.org). The PR2, shown in Fig. 4, is a 32-
DOF robot with two 7-DOF arms. We also simulated the
arm with a 1 kHz joint-space impedance controller, and used
simulated tactile sensors across the entire surface of the arm.

We used the quasi-static model predictive controller
(MPC) from [1] to control all of the arms in this paper with
a don't care force thresholdof 5 N in 2D and 3N in 3D.

B. Demonstration Testbed
For the proof-of-concept demonstration, we designed a

real foliage-aperture-clutter, as shown in Fig. 1. 20 square
apertures, 0.2m wide, are randomly blocked and detected
by a camera mounted on the PR2 head. A goal was also
randomly placed and detected by an external camera. The ob-
jective was to reach the goal location by passing through the
unobservablefoliage-clutterbehind the observable apertures.
LIC selected the initial condition and the PR2 used MPC and
fabric-based tactile sensors. Fig. 2 shows an overview of the
experiment. LIC-1 estimated the probability of success of the
available base, torso, and arm con�gurations given the goal
and aperture locations. After selecting the initial condition,
the PR2 moved to the location and then attempted to reach
to the goal. If it failed, the PR2 tried again with LIC-2.

VI. EVALUATION

We tested our approach and compared it with random and
cost-metric methods.

A. Strategies Used for Comparison
To evaluate our approach, we tested three strategies for

initial condition selection:
� RND: This strategy randomly selected the �rst initial
condition. If this reach fails it randomly selects the sec-
ond condition. We assigned equal probability to all valid
conditions.

� COST: This strategy selected the �rst initial condition
from a cost-metric function that estimates a minimum-
contact corridor between the hand and the goal. The se-
lected condition is positioned closer to and orientated more



Fig. 7: An example of LIC-2 initiating a successful reach (left)
into a still unknown part of the environment. LIC-1 initiated the
failed reach on the right.

directly toward a goal than other conditions. If the �rst
reach fails, this strategy selects the second best condition
from the cost-metric function excluding the �rst condition's
position and a local neighborhood around it.

� LIC: This strategy selects the �rst initial condition using
LIC-1. If this reach fails, this strategy selects the second
condition using LIC-2. Figures 5 and 6 illustrate the use of
this approach.

B. Results
One advantage of LIC-1 is that it can improve performance

when a robot reaches into an environment about which it
has no speci�c geometric information. As illustrated by Fig.
7, LIC-2 can also result in the robot reaching into a still
unknown part of the environment based on the results of the
�rst reach.

We compared the performance of LIC to the random
(RND) and cost-metric (COST) strategies. Fig. 8 shows
that LIC with two different ML techniques, GP and K-
NN, exhibited better performance than the RND and COST
selection methods over thousands of reaches in two different
categories of 2D cluttered environment. LIC-1 outperformed
the �rst reach by the other strategies and outperformed the
�rst and second reach made by the other strategies in the
passage-clutterenvironment category. LIC-2 increased the
overall success rate under all conditions, even though it only
has the opportunity to make an attempt when LIC-1 fails.

Tables I and III show the numeric results for each initial
condition selection method. The columns show the success
rate of each strategy and the rows show the success rate of
consecutive reach attempts. The fraction in parentheses gives
the number of successful reach attempts out of the number
of total reach attempts.

In thecylinder-cluttercategory, LIC had an overall success
rate after two attempts of 8.45% compared to the RND
and COST strategies success rates of 74.15% and 78.15%,
respectively. In thepassage-cluttercategory, LIC had a much
greater overall success rate after two attempts of 83.95%
compared to the RND and COST strategies success rates of
56.8% and 60.9%, respectively.

We also performed Student'st-tests on the resulting
binomial distributions from thecylinder-clutter evaluation.
Table II provides thet-test results between the pairs of
tested approaches. We found signi�cant differences between
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Fig. 8: Success rates of the methods we evaluated. Blue lines
show 90% con�dence intervals.Left: Comparison in
cylinder-clutter. Right: Comparison inpassage-clutter.

the performance of LIC and the other two strategies. In
contrast, we did not �nd a signi�cant difference between
the performance of LIC with the two ML methods we used,
GP and K-NN, for� = 0 :05.

We also evaluated our approach withcylinder-aperture-
clutter, which requires a 3-link planar robot that can translate
sideways to reach to a goal through random apertures (see
Fig. 3(c)). Table IV shows that LIC had a greater overall
success rate after two attempts of 77.8% compared to the
RND and COST strategies success rates of 29.7% and 77.8%,
respectively.

The PR2 robot reaching infoliage-aperture-clutterdemon-
strates that LIC can be applied to real robots reaching in
3D. Fig. 2 illustrates the operation of the PR2 reaching
system. Fig. 9 shows an example of the PR2 successfully
reaching through an aperture to a goal based on LIC. The
PR2 successfully reached this goal after adjusting its base,
torso, and arm con�gurations in that order.

VII. D ISCUSSION

Although we focused on the problem of reaching in clutter,
we expect that our approach could be generalized to other
manipulation tasks. Other avenues for future work include
extending our approach to more than two reach attempts,
and performing more extensive evaluation of our approach
with real robots reaching in real clutter.

Instead of detailed geometric models, our approach relies
on probabilistic models strongly tied to the speci�c task of
reaching. One challenge associated with our approach is the
need to collect training data. As we illustrated with our PR2
demonstration, a plausible way forward is to use physical
simulations to generate initial probabilistic models to inform
the actions of real robots. As the real robot accumulates real-
world experiences, it could then improve these initial models
over time.

VIII. C ONCLUSION

We have presented our approach to the problem of reach-
ing into an unknown environment. The key to our approach is
that readily-apparent aspects of an environment can usefully
inform the �rst reach in the absence of detailed information
about the environment's interior. For example, as we have
shown, just knowing the category of an environment can
enable a robot to select a better location from which to �rst
reach into the unknown.

In addition, we've provided evidence that even simple
observations from the �rst reach attempt, such as where



Fig. 9: Snapshots of from the PR2 reaching infoliage-aperture-clutter. It automatically adjusted its base, torso, and arm con�gurations
using LIC to successfully reach the yellow ball.

TABLE I: Success rate of two consecutive reach attempts in
cylinder-clutter. We use 200 random environments with 10
different random goal locations.

RND COST LIC(GP) LIC(K-NN)

1st Random Cost metric LIC1 LIC1

attempt 61.0% 68.65% 77.8% 76.15%
(1220/2000) (1373/2000) (1556/2000) (1523/2000)

2nd Random Cost metric LIC2 LIC2

attempt 33.71% 30.30% 29.96% 31.86%
(263/780) (190/627) (133/444) (152/477)

Total 74.15% 78.15% 84.45% 83.75%
(1483/2000) (1563/2000) (1689/2000) (1675/2000)

TABLE II: Paired sample t-tests incylinder-clutter. Each result
describes degrees of freedom,t-test value, andp-value in order.

Pairs Sample t-test result

RND-LIC(GP) t(3998) = -8.103,p = 7.059� 10� 16

COST-LIC(GP) t(3998) = -5.125,p = 3.120� 10� 7

RND-LIC(K-NN) t(3998) = -7.497,p = 8.038� 10� 14

COST-LIC(K-NN) t(3998) = -4.520,p = 6.368� 10� 6

LIC(GP)-LIC(K-NN) t(3998) = 0.605,p = 0.545

the �rst reach started and where it ended, can bene�cially
inform a second reach attempt in the event of a failed
�rst attempt. Our use of sparse, low-dimensional, readily-
observable, task-relevant features distinguishes our approach
from methods that attempt to make extensive observations in
order to generate detailed models of the environment. Being
able to perform well without having a detailed model of the
environment gives robots the opportunity to ef�ciently act
and also operate in environments that may not be conducive
to detailed modeling, such as complex and dynamic cluttered
environments, like a swamp or dense foliage blowing in the
breeze.
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