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Abstract— Often in highly-cluttered environments, a robot
can observe the exterior of the environment with ease, but
cannot directly view nor easily infer its detailed internal
structure (e.g., dense foliage or a full refrigerator shelf). We
present a data-driven approach that greatly improves a robot's
success at reaching to a goal location in the unknown interior of
an environment based on observable external properties, such
as the category of the clutter and the locations of openings
into the clutter (i.e., apertures). We focus on the problem of
selecting a good initial con guration for a manipulator when
reaching with a greedy controller. We use density estimation
to model the probability of a successful reach given an initial
condition and then perform constrained optimization to nd
an initial condition with the highest estimated probability of
success. We evaluate our approach with two simulated robots
reaching in clutter, and provide a demonstration with a real PR2
robot reaching to locations through random apertures. In our

evaluations, our approach signi cantly outperformed two alter- o 556r1res through which it can reach. We also assume
native approaches when making two consecutive reach attempts

to goals in distinct categories of unknown clutter. Notably, our that the robot has previously had the opportunity to learn

approach only uses sparse readily-apparent features. by reaChing into different instances of the same category
of environment. Given a novel instance about which it

. ,I' INTRODUCTION . . _has no speci c information, the robot must decide how to

Many manipulation tasks take place in environments wit,, o re ‘its manipulator before using a greedy haptically-
properties that are dif cult to dllrectly observe or |nd|rectlyguided controller that we have previously presented [1]. We
infer. For example, dense foliage and a full shelf of & oqant our approach to data-driven selection, which we call

Fef“gerat‘?f cqn5|st of numerous Ob]eCtS_ that occlude ﬂ\sarning initial conditions (LIC). We show that by intelli-
interior. Likewise, obscured locations behind structures ¢ ntly selecting the initial con guration of its manipulator

be reachable through gaps but not observable. Sensor limi fobot can greatly improve its chance of reaching the goal.

tions can also result in initial uncertainty about a particula{Ne also show that if its rst attempt fails, performing a
environment, such as due to too little or too much light. 1N o0 reach from another initial con guration, informed by

many of these situations, the robot can identify the categopg tajjyre, results in a higher overall chance of success than
of the environment even though the specic details of th%ther standard selection methods

environment are unknown. Likewise, the robot can often

detect openings through which it can reach. In this paper, The selected initial manipulator con guration can in u-
we investigate a method that enables a robot to leverage @8ce the performance of a manipulation behavior in a variety
previous experience in environments with similar readilyof ways. And, predicting how the manipulator con guration
apparent characteristics in order to improve its manipulatiowill in uence performance is challenging due to complex

capabilities when confronted with a novel instance of #teractions among the controller, the robot's body, and the
category of environment. environment. For example, con guring the end effector as a

In particular, we focus on the problem of selecting anwedge and pointing it towards a gap can result in the end
initial manipulator con guration when attempting to reacheffector pushing through movable objects, while otherwise
to a location in a cluttered environment. We assume thatienting it can result in the end effector pushing the movable
the robot only knows the goal location to which it shouldobjects along with it. Likewise, moving a link sideways
reach, the category of the environment, and the locatiomscreases the chances of it contacting an object, which

might help guide the manipulator through the environment.
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Fig. 1: Our method enabled a PR2 to select a base position, a
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through in order to reach the yellow ball in the foliage. The label
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Fig. 2: Overview of the PR2 system, which uses LIC to reach foliage-aperture-clutter Training is performed in simulation prior to

the real experiment. The goal and aperture locations were detected by external and head-mounted cameras, respectively. Then, LIC-1
selected the initial condition from the available base, torso, and arm con gurations. If the rst reach failed, LIC-2 was used. For the
passable-probability map shown in the gure, whiter squares correspond with better apertures through which to reach.

environment. This has the bene t of making our approackequences by learning contextual experience [8]. Berenson et
straightforward to generalize to different robots, environal. presented an online framework for building a path library
ments, and controllers. and producing a feasible path for a rapidly exploring random
We evaluated our approach in simulation using a 3 degregee (RRT) [9]. This body of work emphasizes trajectory
of-freedom (DoF) planar arm. The environments consist qfeneration in fully known 3D environments. In contrast,
randomly placed rigid objects that were either xed to thaye generate an initial condition that is likely to result in
ground or movable. For example cglinder-clutterenviron-  the success of a controller based on sparse readily-apparent
ment consists of upright cylinders, which has similarities t@eatures of highly-cluttered environments. We also provide

foliage. We also tested a narrow-passage environment, whighidence that these low-dimensional features can be highly
is similar to a hidden tunnel. We found that, in both the rstinformative.

and second reach attempts, our approach outperformed thé®aolini et al. have pursued a strongly related approach
use of random or cost-metric initial con guration selectionto data-driven manipulation in clutter [10]. Our approach
methods. In addition, we have demonstrated our approadiffers both in the task and the speci cs of our probabilistic
using a Willow Garage PR2 robot with a 7 DoF arm in a reaformulation. For example, we do not factor our probability
random-aperture environment. Our method has performetistribution into two components, one relating perception
well in this common class of situations for which the roboto world state and the other relating world state to action
can perceive openings through which to reach, which weutcomes.

refer to as apertures (see Fig. 1). In contrast to our approach, most research on manipulation
in clutter assumes that detailed geometric information about

Il. RELATED WORK ; . .
A ber of . tudies h . tiqated th the environment is available. Leeper et al. presented a method
number of previous studies have investigated the proky help remote operators nd collision-free poses for the
lem of learning policies that map the state of the worl

. . . . end effector in clutter [11]. Researchers have also presented
to a robot's actions, and have used a variety of polic

representations and learning methods such as those descri ﬁo lon planners that use models of objects in the world to
. . ble robots to rearrange clutter b hing, grasping, and
in [2], [3], and [4]. In this paper, we use a prede ned ' S 10 rearrange cUter by pushing, grasping, a

S . moving objects with their end effectors [12], [13], and [14].
deterministic policy that takes the form of a controller that ving ob) W I [12], [13] [14]

performs well when reaching in clutter [1]. At each time [1l. L EARNING INITIAL CONDITIONS (LIC)

step, it uses model predictive control (MPC) to minimize The starting con guration (i.e., initial condition) for a

the predicted distance between the robot's end effector apghot reaching into an unknown cluttered environment can
the goal location while keeping predicted contact forces lovigni cantly in uence the overall chance of success. In our
For this controller, our system learns initial conditions in thgyrevious work we showed that greedy reaching in clutter with
form of the manipulator’s initial con guration. In previous varying initial conditions is an effective method to achieve
work, we assumed the category of a cluttered environmeRigh rates of success (e.g., 91.4% of optimal given up to 5
was known in order to rapidly classify incidental contact withreaches with distinct initial conditions) [1]. In this paper, we
the robot's arm while reaching [5]. _ show that by intelligently selecting the initial condition for a

Our approach in this paper strongly relates to data-driveRach hased on readily-apparent features and past experience,

methods for trajectory generation. Jetchev and Toussaiftohot can achieve a high rate of success with substantially
showed how to nd suitable trajectories from a trajectoryte\ver reaches.

database using high-dimensional situation descript@s (

<791) with perfect information [6]. Dragan et al. use machineé®. General Formulation

learning to select high-level attributes that are likely to We propose a data-driven approach for selecting initial
be associated with an optimal trajectory, such as whetheonditions that makes use of an experience libr&ry=

a trajectory should go to the left or right of an objectf(s n;Xo n;f n);:i(s 1;%0 1;f 1)g. D is a set of tu-
[7]. Dey et al. proposed a framework to optimize controbles of the form(s;;Xo;;fi), where each tuple represents a
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(a) 2D cylinder-clutter (b) 2D passage-clutter (c) 2D cylinder-aperture-cluttewith a mobile robot

Fig. 3: Examples of two different categories of clutter with a three-link planar arm (grey and white). The arm starts from an initial
condition on the hand range (green line) and reaches to a goal (cyan circle) in a goal area (red rectangle). The green and red arrows
represent the contact force and the sensed normal component of this force on the arm's surface. The example on the right also shows
where the robot's base can translate (blue line) and random apertures through which the robot must reach (gaps in the dark red line).

past reach attempt by the robet. is a tuple that describes the goal with respect to the environment does not change
the speci ¢ situation encountered by the robot using spard®(x; = gjc;0;X%) we can describe the reaching task as
readily-apparent featurexp; is the initial condition that being invariant to this translation. If we further require that
was used by the robot. And; is a truth value denoting during a reach the mobile base translates to a location and
whether the robot successfully reached its goal. Furthermorgpps while the the serial manipulator reaches, we can use
we represent a situation a = (gi;G;0), whereg is a more efcient approach to select the initial position of
the goal the robot attempted to read, is the category the mobile base and the initial con guration of the serial
of the environment, and; represents other task-relevantmanipulator.
observations the robot made prior to the attempt. For this class of problem, we can makg only represent
For our approach, we ideally wish to nd a function the serial manipulator's initial con guration and then learn
that maps the current situatios, and past experienc®, F with respect to the robot's frame of reference. We can then
to the initial conditionx, with the highest probability of perform the optimization step with respect to both translation
success, of the mobile basely, and the serial manipulator's con g-
m(sD) ! xo: ) uration, Xo, by nding the ordered pai(by; Xo) that results
EAE Ao in the highest estimated probability of a successful reach.
Our data-driven method has two main stefsarning To do so, we appropriately translate the situat®nnto the
and optimization The learning step buildsF, which is a mobile robot's frame of reference. Speci cally,
non-parametric density estimate &(x; = (jcC;0;Xo), ALAN o,
where x; is the nal state of the manipulator. That is (Bh;Xo) = arg (r&%)F(Tbo(s),xo), )
F(S’X.O). P(x1 = gJC’O’).(O)' Notably, this density est!- whereT,, translatess so that it represents the situation that
mate is intended to generalize the contents of the experience .
. . . . . ould occur if the robot were to rst translate ty before
library D to novel situations. In practice, we create a distinc

. reaching with its serial manipulator from con guratioty.
model for each category of environment,and the content . .
: As we demonstrate with our results, this approach can also
of our observation tupleg, depends on the category. The

S A oo e work with reaching tasks that are only weakly invariant
optimizationstep searcheE to nd X, which is an initial . L
to translation.by can also be selected from a limited set

condition with the maximal estimated probability of success . :
A . . L2 of translations, such as a set of translations that are more
Xg = arg maxy, F (s;Xo), given the current situatiors.

We can summarize our method for approximating théelevant to the task or for which the task is more invariant.

functionm as C. Making a Second Reach with LIC-2
D! ' F(s:xo)! Xo: ) The previous description provides a method with which
_ Leaf”'“g _ Optimization a robot can select an initial conditiorg, when confronted
B. Reaching with a Mobile Base with a wholly-novel situations, that consists of reaching to

Our formulation does not depend on the robot having a goal,g, in an unknown environment of category,given
particular structure. For example, the initial conditimg, for ~ various readily-apparent task-relevant observations) this
a highly redundant robot could represent all of the robot'paper, we refer to the problem of learning initial conditions
degrees of freedom. However, increasing the dimensionalifgr this rst reach as LIC-1 and the database used for LIC-1
of xo will typically make density estimation and optimizationasD; .
more challenging, including increasing the computation and Due to the high uncertainty associated with this rst reach
training data required for good performance. (LIC-1), the robot will often fail. If it does fail to reach
An important special case for robot reaching is when ththe goal,g, we would like to enable the robot to make
robot has a mobile base that can translate the proximahother reach attempt to the same gpad the same speci c
end of a serial manipulator. If translating the robot anenvironment. While performing the rst reach, we expect



that the robot will be able to make new readily-apparentst reach, we instead use sparse, readily-apparent features
observations that can enable it to do a better job selecting inform selection of the initial condition for the second
an initial condition for its second attempt. reach. This works surprisingly well in practice.

We refer to the problem of selecting the initial condition, Once we have generat€x, the learning and optimization
Xo, for the second reach as LIC-2. For LIC-2, we couldsteps for LIC-2 are essentially the same as for LIC-1.
take a straightforward approach whereir_1 we collect a neW The Learning Step
experience databasB,,, that solely consists of tuples de-
scribing second attempts to reach gaal,each performed
after a single failed attempt to readah using the initial
condition provided by LIC-1. In this way, LIC-2 could mode
causal dependencies between the rst and second attem

For thelearning step, we used a Gaussian process (GP)
or K-Nearest Neighbor (K-NN) density estimator to generate
IF from D. For the GP estimation, we used an absolute
E/éponential correlation model. For the K-NN estimation,

and would be trained in the same manner as LIC-1, exce € used a weighted Gaussian kernel. We performed these

for the use oD, and additional observations. However, this,ens'ty. estimates with thgc!k|t-learn|ng machine learning
would require having LIC-1 fully trained and collecting anllbrary in Python (http://scikit-learn.org). .
entirelv new experience database One limitation of these estimators is that they can require
yr P . ' . 2 large amount of computation time during both learning
For this paper, we instead use a computationally favorable " -

L oo o and inference. To help overcome this issue, we sampled a
approxmaﬂon for LIC-2 that smph es training. We assume xed number of relevant local samples from the experience
that_ a reach _mto a specic e-nV|ronment does not alter thﬁ}brary, D, using a K-NN local approximation algorithm prior
environment in any way. This enables us to construct an

. ; 0 using the GP or K-NN density estimators, as described
experience databage, from the same single reach attemptsm [15]. In particular, we used this approach to reduce the
that we use to construdd;. We do this by rst having N p ’ PP

the robot attempt to reach a single goal in a speci ¢ enr_1umber of samples when performing density estimation for

vironment from uniformly sampled initial conditions. Given LIC-2.
our assumption that none of these reaches will change tke The Optimization Step

environment, the probability of success for a particular reach For the optimization step, we used the approximated
does not depend on the reach attempts that preceded it. Thigbability distribution from théearningstep as an objective

enables us to creat®, by simulating the situation where fynction and performed the following constrained optimiza-
the rst reach fails and then a second reach is taken. tion:

To simulate the rst reach, we randomly select a failed maximize F (s;Xo)
reach from the set of failed reaches using equal probability X
across all of the failed reach attempts. Treating all possible
rst reach failures for a particular environment and goal as Xo 2 open space
being equa”y ||ke|y has the adVantage of not requiring Where Omin and Omax are minimum and maximum joint
trained LIC-1. However, it introduces another approximatiofimits and 1K (x,) is the inverse kinematics for the ma-
that is likely to reduce the performance of LIC-2, sinceyipulator when the end effector is at posg. In addition,
LIC-2 would ideally be trained with respect to the actualye constrained the end effector to be located in the open
distribution of failures resulting from LIC-1. We simulate space outside of the clutter. For the simulated 3-link planar
the second reach by randomly selecting a reach from all @hanipulator we useds, de ned a position and orientation
the reach attempts, whether they resulted in failure or not. ¥gr the manipulator, so there was no issue with redundancy.
generate a useful set of experiences, we repeat this procegs the PR2x, speci ed a pose of the end effector, which
for uniformly sampled goals over many environmerés, resulted in redundancy. For this paper, we handled this by
randomly drawn from the environment categocy,where pre-selecting a single arm con guration for each end effector
the probability of drawingg; is P (g jc). pose Xo. To perform this constrained optimization, we used a

Once we have generated a set of simulated pairs gbund-constrained minimization algorithm, L-BFGS-B [16]

reaches, we append information obtained from the rst reaclls implemented in SciPy (http://www.scipy.org/).
to the observations available to the second reach. Each of

the second reach attempt tuples in databBse has an IV. EXPERIENCELIBRARIES FOREVALUATION
observation tupleg;, that includes additional observations To build an actual experience libraryD
obtained during the failed rst reach. We always includef (S n;Xo n;f n);i5i(s 1;%0 1;f 1) with s
the initial condition used in the failed rst reackxd, as (Gi;G;0), we need to de ne these tuples in detail. The
part of o, so that LIC-2 will know what was tried the details are especially important because, like most machine
rst time. In addition, depending on the category of thelearning approaches, the effectiveness of LIC depends on
environment, we include other observations, such as the naling informative feature vectors that support generalization.
state of manipulator from the rst reaclx) , which often The following list provides an overview of the parameters
corresponds to where the robot's end effector became stuske used in our evaluation:

Notably, rather than attempt to reconstruct a detailed model xq - initial condition: For this paper, we de nedg to

of the environment from information obtained during the be the pose of the robot's end effector. For the 3-link

subject to Gmin 1K (X0)  Omax (4)



the data collection we used for our evaluation.

A. Data Collection for the 2D Testbed
We used two categories of randomly generated cluttered
environments in a 2D testbed as described in Section V-A.
Each environment included all planar and rigid objects with
xed sizes, masses, and friction coef cients.
Cylinder-clutter Using a uniform distribution, we ran-
domly placed 40 movable and 40 xed circular objects,
each with a 0.0Im radius, in a 0.65 2.4 m rectangular
Fig. 4: Left: An example ofsphere-aperture-cluttefor the area, as shown in Fig. 3(a). A three-link planar arm

simulated PR2Right: Visualized contact forces from simulated S o .
tactile sensors on the simulated PR2 arm. Red arrows represent attempted to reach from 21 initial conditions to 45 grid

contact forces normal to the arm's surface. distributed goals of size 5 9 in 20 different cluttered envi-
N _ ) ronments. We placed the goals on a horizontal, rectangular
planar armxo was the position(x;y) and orientation plane 0.4m long and 0.8m wide at 0.1m intervals. The

of the end effector. For the PR2 roba was the position  jnitial positions were on a segment, 08 long, between
(X;y;z) and orientation of the end effector with orientation the robot and the clutter, equally distributed at Orl
represented as a quaterni(m ; dy; ¢;; Qw). For each class  intervals. The initial orientations were equally distributed at
of environmentg, the allowed set of initial conditions can 30 intervals. For sampling, we ran 18,900 reach attempts
be different. For example, when presented with aperturesyith 20 different clutter settings, 45 goal locations, and 21
the robot is only allowed to select an initial end effector jnjtjal conditions. For LIC-2, we used = fx3;x? g.

position that is at the center of an aperture, but it can select pagsage-clutterwe randomly placed a xed narrow pas-

an end effector orientation from a continuous range. sage with a 0.In gap between two 0./ long and 0.02
g - goat We de ned the goalg, to be the ideal position 1y wide walls, as shown in Fig. 3(b). The center positions
of the end effector after a successful reach. of the passages were randomly selected on a horizontal

f - success or failure The truth valuef , denoted whether  segment 0.4n long. The other properties were the same
or not the end effector's position was within a threshold 55 thecylinder-clutter The arm attempted to reach from
distance of the goalg, during a reach. Success did not 14 initial conditions to the middle point of the passage.
depend on the end effector's orientation. We distributed the arm's initial positions in the same way
¢ - category of the environment c represented the type a5 incylinder-clutter The initial orientations were equally
of environment into which the robot must reach, such as agjstriputed at 45 intervals. For sampling, we ran 1,680
cylinder-cluttey passage-clutteror sphere-aperture-clutter  yaach attempts of different clutter settings. For LIC-2, we
environment. For each simulated environment category inysedo = fxJ;29 g.

our evaluation, we de ned a probability distribution from  cyjinder-aperture-clutterA clutter environment was gen-
which we could draw environment instances. We alsOgrated in the same way as tloglinder-clutter category.
provided the correct category of the current environmentthen — xed-width openings (apertures) were randomly
to the robot prior to its rst reach attempt. placed in front of the environment (see Fig. 3(c)). The robot
0 - task-relevant observations o varied based on the \yas given exactly one initial position for each aperture and
category of the environment, and whether the robot was njtial orientations equally distributed at 4%ntervals. We

making its rst or second reach. For the rst reach in our ran 7 200 reach attempts with 480 different clutter settings.
evaluations,0 was the empty se = ;. For the second  For [|C-2, we used = fx4g.

reach in our evaluation® consisted of information from )
the rst reach attempt. Every second reasincluded the B- Data Collection for the 3D Testbed
initial condition used by the rst reachJ. Depending on In the 3D testbed described in Section V-A, we generated

the environment category) could also include the nal 40 random cluttered environments in a categaphere-
position of the end effector in the rst reach? , or an aperture-clutter to obtain training data for a real experiment.

estimate of the nal velocity of the end effector in the rst The clutter contains 40 movable oating spheres in a 0.29
reach,29 . 0.4 0.7m rectangular parallelepiped in front of a simulated
PR2. Each object had a 0.06 radius and a 0.kg mass,
In order to efciently collect a large number of tuples, and its velocity is decayed by a 0.5 exponential damping
we had the robots perform reach attempts from pre-de negain. Then, we put 20 square Q12 wide apertures between

start con gurations to task-space goals in simulation. Firsthe clutter and the robot, as shown in Fig. 1 (Left).
we prepared a number of randomly cluttered environments, The simulated PR2 tried to reach to 12 grid-distributed

setV,, of categoryc. Next, we de ned a discretized goal-setgoals of size 4 3 in 40 different cluttered environments
G in the environments and a start-condition Sein front from 20 initial conditions. The goals were placed on a
of the robot. When simulating second reach data, we usee@rtical, rectangular plane 06 wide and 0.4m tall at 0.2

all of the data we generated rather than randomly sampling intervals behind a set of spheres. The initial positions were
from it with equal probability. We now provide details aboutequally distributed on a vertical, rectangular plane of 9.8



V. TESTBEDS FOREVALUATION

y We trained and evaluated our LIC method with two
@) different simulation testbeds. Then, we demonstrated the
performance in realistic clutter using a PR2.

_— — A. Simulation Testbeds

We used a 2D simulation testbed with Open Dynamics
Engine (ODE) (http://www.ode.org/). Fig. 3 shows the robot,
which consists of a mobile base and a three-link planar arm,
which has kinematic and dynamic properties similar to the
properties of a human arm. The robot was controlled by a
1 kHz joint-space impedance controller, and tactile sensors
were placed on the entire surface of each link with a density
of 100 taxels per meter. A detailed description of this testbed
can be found in [1]. In the scenarios depicted in Fig. 3(a) and
\ Y| 3(b), we restricted the base to a xed point. In the scenario
shown in Fig. 3(c) the base could move and we used our
approach from Section I1I-B.

For 3D simulation, we used a simulated PR2 in Gazebo
(http://gazebosim.org). The PR2, shown in Fig. 4, is a 32-
DOF robot with two 7-DOF arms. We also simulated the
Fig. 5: Snapshots in time from two reach attempts in arm witha 1 k_Hz joint-space |mpedancg controller, and used
cylinder-clutter Left: First reach attempt using LIC-Right: simulated tactile Sensors across the entire s_urface of the arm.
Second reach attempt using LIC-2. We used the quasi-static model predictive controller
(MPC) from [1] to control all of the arms in this paper with
a don't care force thresholabf 5 N in 2D and 3N in 3D.

3 - 3

2| 08 2 08

. s ‘ B. Demonstration Testbed
g, - " For the proof-of-concept demonstration, we designed a
- . - ) « real foliage-aperture-clutteras shown in Fig. 1. 20 square

apertures, 0.2n wide, are randomly blocked and detected
by a camera mounted on the PR2 head. A goal was also
S or oz o o0 o oz 03 04" Yrororor oo s ez om0 randomly placed and detected by an external camera. The ob-
) o Yim . . Yim© jective was to reach the goal location by passing through the
Fig. 6: Visualization of density estimates showing initial b bléoli lutterbehind the ob bl ;
conditions that are more likely to succeed in red. The left densit nobserva 'ag‘?'_c utter _e. In € observable apertures.
estimate from LIC-1 corresponds with the rst reach attempt andLIC selected the initial condition and the PR2 used MPC and
the right density estimate from LIC-2 corresponds with the secon@bric-based tactile sensors. Fig. 2 shows an overview of the
reach attempt in Fig. 5. The initial condition is the end effector's experiment. LIC-1 estimated the probability of success of the
position on the starting line and its orientation with respect to  5\qilable base. torso. and arm con gurations given the goal
vertical (vertical is' =0 rad). LIC-1 selected (Y =-0.4 m, = d ¢ I, fi ' Aft lecting the initial diti
-0.45 rad) and LIC-2 selected (Y = -0.190 m,= 1.216 rad). and aperture locations. After selecting the initial condition,

the PR2 moved to the location and then attempted to reach
wide, 0.6m tall, and 0.2m intervals. To reduce the number to the goal. If it failed, the PR2 tried again with LIC-2.

of initial orientations, we selected one from each available

con guration using a cost functiol® that assigns a lower VI. EVALUATION

cost to manipulator con gurations with the end effector and We tested our approach and compared it with random and
forearm pointing towards the clutter. cost-metric methods.

2 02 2 02

C=1=( kx' P(ocow) K+ kxT Po: 00)K); (5) A. Strategies Used for Comparison

To evaluate our approach, we tested three strategies for
initial condition selection:

RND: This strategy randomly selected the rst initial

where and are positive constantx is a unit vector
pointing from the robot to the cluttef]; 0; 0]" . P(oioy) IS @

vector from the origin of the tip of the end effector to the - : o
9 b condition. If this reach fails it randomly selects the sec-

Wrist. P(o,0,) IS @ vector from the origin of the tip of the . : o ;
end eff((eoct:?o)r to the elbow. We ran 9,025 reach attempts. Weond condition. We assigned equal probability to all valid

: - itions.
also used our approach from Section IlI-B to generalize theCondl . _— .
bp g COST: This strategy selected the rst initial condition

PR2's learning over translations parallel to the environment's : i . -
from a cost-metric function that estimates a minimum-

surface, which it performed with its spine and wheeled base. .
For LIC-2. we uszob— fx3g P contact corridor between the hand and the goal. The se-
i) - O .

lected condition is positioned closer to and orientated more
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Fig. 8: Success rates of the methods we evaluated. Blue lines
show 90% con dence intervald.eft: Comparison in

) o cylinder-clutter Right: Comparison inpassage-clutter
Fig. 7: An example of LIC-2 initiating a successful reach (left)

into a still unknown part of the environment. LIC-1 initiated the the performance of LIC and the other two strategies. In

failed reach on the right. contrast, we did not nd a signi cant difference between
directly toward a goal than other conditions. If the rstthe performance of '-_'C_W'th the two ML methods we used,
reach fails, this strategy selects the second best conditiG @nd K-NN, for - =0:05.

: - : .., We also evaluated our approach withlinder-aperture-
from the cost-metric function excluding the rst condition's clutter, which requires a 3-link planar robot that can translate
position and a local neighborhood around it. ' q b

LIC: This strategy selects the rst initial condition using S|_deways to reach to a goal through random apertures (see
) . . Fig. 3(c)). Table IV shows that LIC had a greater overall

LIC-1. If this reach fails, this strategy selects the second 0

condition using LIC-2. Figures 5 and 6 illustrate the use 0 uccess rate after two.attempts of 77.8% compared to the

. ND and COST strategies success rates of 29.7% and 77.8%,
this approach. .
respectively.

B. Results The PR2 robot reaching fioliage-aperture-cluttedemon-

One advantage of LIC-1 is that it can improve performancglrates that LIC can be applied to real robots reaching in
when a robot reaches into an environment about which %2- Fig. 2 illustrates the operation of the PR2 reaching
has no speci ¢ geometric information. As illustrated by FigSystem. Fig. 9 shows an example of the PR2 successfully
7, LIC-2 can also result in the robot reaching into a stilféaching through an aperture to a goal based on LIC. The

unknown part of the environment based on the results of tHeR2 successfully reached this goal after adjusting its base,
rst reach. torso, and arm con gurations in that order.

We compared the performance of LIC to the random VIl. DISCUSSION
(RND) and cost-metric (COST) strategies. Fig. 8 ShOWS Ao qh we focused on the problem of reaching in clutter,

that LIE_ with two diffe:cent ML teﬁhniqﬁes' GP and K- e expect that our approach could be generalized to other
NN, exhibited better performance than the RND and COSPﬁanipulation tasks. Other avenues for future work include

selection methods over thousands of reaches in two diﬁere&tending our approach to more than two reach attempts

categories of 2D cluttered environment. LIC-1 outperformegnd performing more extensive evaluation of our approach
the rst reach by the other strategies and outperformed tr‘ﬁith real robots reaching in real clutter

rst and second reach made by the other strategies in the |nstead of detailed geometric models, our approach relies
passage-clutterenvironment category. LIC-2 increased theyn probabilistic models strongly tied to the speci ¢ task of
overall success rate under all conditions, even though it Onhéaching. One challenge associated with our approach is the
has the opportunity to make an attempt when LIC-1 fails. neeq to collect training data. As we illustrated with our PR2
Tap!es | and !II show the numeric results for each 'n't'abemonstration, a plausible way forward is to use physical
condition selection method. The columns show the SUCCESRnulations to generate initial probabilistic models to inform
rate of each strategy and the rows show the success rateygl 5 iong of real robots. As the real robot accumulates real-

consecutive reach attempts. The fraction in parentheses gigs, 4 experiences, it could then improve these initial models
the number of successful reach attempts out of the numbg\;er time

of total reach attempts.
In thecylinder-cluttercategory, LIC had an overall success VIIl. CONCLUSION

rate after two attempts of 8.45% compared to the RND We have presented our approach to the problem of reach-
and COST strategies success rates of 74.15% and 78.158g into an unknown environment. The key to our approach is
respectively. In thpassage-cluttecategory, LIC had a much that readily-apparent aspects of an environment can usefully
greater overall success rate after two attempts of 83.95Mform the rst reach in the absence of detailed information

compared to the RND and COST strategies success ratesabbut the environment's interior. For example, as we have
56.8% and 60.9%, respectively. shown, just knowing the category of an environment can

We also performed Studentttests on the resulting enable a robot to select a better location from which to rst
binomial distributions from thecylinder-clutter evaluation. reach into the unknown.

Table 1l provides thet-test results between the pairs of In addition, we've provided evidence that even simple
tested approaches. We found signi cant differences betweamservations from the rst reach attempt, such as where



Fig. 9: Snapshots of from the PR2 reachingatiage-aperture-clutterlt automatically adjusted its base, torso, and arm con gurations

using LIC to successfully reach the yellow ball.

TABLE I: Success rate of two consecutive reach attempts in
cylinder-clutter We use 200 random environments with 10
different random goal locations.

TABLE lll: Success rate of two consecutive reach attempts in
passage-clutterWe use 2000 random environments with a goal in
its passage.

RND COST LIC(GP) LIC(K-NN) RND COST . LIC(GP) LIC(K-NN)
1st Random | Cost metric LIC1 LIC1 1st i%”g;m Coiitl T;t”c elélg5lty 7';'8:510/
attemot]  61:0% 68.65% 77.8% 76.15% attempt 4% 1% -95% .05%
PU (122012000) | (1373/2000) | (1556/2000) | (1523/2000) (808/2000) (682/2000) | (1339/2000) | (1441/2000)
ond Random Cost metric LIC2 LIC2 2nd ';?nsdl%?] CZ%t ggﬁ/trlc SI:_LIS;/ 3I(_)IC0:52°/
attempt] 33716 30.30% 29.96% 31.86% attempt >1% -66% 43% .05%
(263/780) (190/627) (133/444) (152/477) (328/1192) | (536/1318) (340/661) (168/559)
ol | 7A15% 78.15% 84.45% 83.75% Total 56.8% 60.9% 83.95% 81.35%
(1483/2000) | (1563/2000) | (1689/2000) | (1675/2000) (1136/2000) | (1218/2000) | (1679/2000) | (1627/2000)
TABLE 1V: Success rate of two consecutive reach attempts in

TABLE II: Paired sample t-tests inylinder-clutter Each result

describes degrees of freedotrtest value, angb-value in order.

the rst reach started and where it ended, can bene cially

cylinder-aperture-cluttemwith a mobile base.

Pairs [ Sample t-test result RRNdD = C?STt . LICS(C'TN)
anaom 0OSt metric
RND-LIC(GP) | (3998) = -8.103p=7.059 10 ™ 1st attempt 17.2% 65.2% 67.5%
COST-LIC(GP t(3998) = -5.125p = 3.120 10
RND-LICHCNN) | (3908) = 74975 = 5098 10 e
COST-LIC(K-NN) | (3998) = -4.520p = 6.368 10 ° 2nd attempt 15.1% 16.4% 31.7%
LIC(GP)-LIC(K-NN) 1(3998) = 0.605p = 0.545 (125/828) (57/348) (103/325)
Total 29.7% 70.9% 77.8%
(297/1000) (709/1000) (778/1000)

inform a second reach attempt in the event of a failed
rst attempt. Our use of sparse, low-dimensional, readily-[7] A. Dragan, G. Gordon, and S. Srinivasa, “Learning from experience
observable, task-relevant features distinguishes our approach
from methods that attempt to make extensive observations i
order to generate detailed models of the environment. Being

able to perform well without having a detailed model of the

El

environment gives robots the opportunity to ef ciently act
and also operate in environments that may not be conducive
to detailed modeling, such as complex and dynamic clutterétf!
environments, like a swamp or dense foliage blowing in the
breeze.
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