
Mario Mendoza

Advisor: Pavel V. Tsvetkov

Texas A&M University

marmen13@tamu.edu

Abstract:

The effort is focused on science and technology of predictive and on-demand characterization of localized developments on the Earth surface, subsurface and within the atmosphere. The use of orbital survey methods offers access options for any location in 3D from subsurface up to the upper atmosphere, continuously and over discrete periods of interest. The project is a synthesis of high TRL observational platforms (cube satellites) with lower TRL sensors and predictive methods including fusion and machine learning to yield a robust multi-modal surveillance and prediction capability. The process signature development is an integral part of the effort. The results will be widely applicable for all survey programs where signatures are needed to characterize developing local phenomena remotely. The CubeSat platform solves the challenge of access to a location of interest. The effort is envisioned as an integrated program consisting of computational and experimental elements including development, design, and analysis of configuration options for cube-satellite-based survey systems to demonstrated advantages of such a platform in remote sensing activities. The poster will discuss the current status focusing on the phenomena of relevance, feasible architectures for the CubeSat system, and signature-based sensor considerations.