Radiation responses of additive manufactured stainless steel

Miguel Pena

Advisor: Lin Shao

Department of Nuclear Engineering, Texas A&M University, College Station, TX 77845

mpena97@tamu.edu

Abstract:
Additive-manufactured (AM) alloys have been proposed for nuclear reactor applications, for the advantages in reducing materials manufacturing costs and facilitating urgent on-site replacement. The method is particularly attractive for the flexibility to produce complicated geometries. Additive manufacturing, however, creates various unique micro-structures, which can lead to unique behaviors under neutron and ion irradiation. The impact of these structures on overall performance needs to be systematically evaluated. The project aims to identify the correlations between irradiation responses and characteristic features of AM alloys. Hence we can establish the relationship between irradiation tolerance and processing parameters. Neutron irradiations can take a significantly long time to complete, therefore to get meaningful data in a timely manner, irradiations have been performed with both light and heavy ions. The irradiation responses that are being investigated include void swelling, precipitation, and boundary segregation. Heavy ion irradiations were performed in order to investigate void swelling at high damage levels. Light ion irradiations were used for the investigation of both precipitation and boundary segregation. Knowledge on the aforementioned responses is necessary for the application of additive manufactured alloys in reactor environments and to further optimization of the AM process. At the later stages of the project, we will proceed to ion beam analysis of AM alloys, as a way to characterize alloys' composition and porosity in a non-destructive manner. The intent is to develop the technique of micron proton beam induced X-ray fluorescence (μPIXRF) and high resolution micron beam Rutherford (μRBS).