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Abstract—Robots must be capable of learning from previously
solved tasks and generalizing that knowledge to quickly perform
new tasks to realize the vision of ubiquitous and useful robot
assistance in the real world. While multi-task learning research
has produced agents capable of performing multiple tasks, these
tasks are often encoded as one-hot goals. In contrast, natural
language specifications offer an accessible means both for (1)
users to describe a set of new tasks to the robot and (2) robots to
reason about the similarities and differences among tasks through
language-based task embeddings. Until now, multi-task learning
with language has been limited to navigation based tasks and
has not been applied to continuous manipulation tasks, requiring
precision to grasp and move objects. We present LANCON-LEARN,
a novel attention-based approach to language-conditioned multi-
task learning in manipulation domains to enable learning agents
to reason about relationships between skills and task objectives
through natural language and interaction. We evaluate LANCON-
LEARN for both reinforcement learning and imitation learning,
across multiple virtual robot domains along with a demonstration
on a physical robot. LANCON-LEARN achieves up to a 200%
improvement in zero-shot task success rate and transfers known
skills to novel tasks faster than non-language-based baselines,
demonstrating the utility of language for goal specification.

Index Terms—Deep Learning Methods, Imitation Learning,
Reinforcement Learning

I. INTRODUCTION

MULTI-TASK learning offers the promise of intelligent
agents by enabling robots to accomplish multiple tasks

specified by end-users. To program these agents with policies
that map the state of the world to the correct action to
accomplish a given task, users are typically expected to either
define reward functions, in the case of reinforcement learning
(RL), or to provide demonstrations or corrective feedback, in
the case of imitation learning (IL). Despite the progress in
multi-task learning, much work still centers around defining
tasks as an orthonormal space (i.e., tasks are “one-hot” encoded
in an orthonormal set [1], [2], [3]). However, defining tasks
as an orthonormal space prohibits robots from identifying and
leveraging semantic similarities across tasks. Further, one-hot
encodings do not allow for flexibility in growing the agent’s
capacity to new problems, as the size of the orthonormal space
is fixed a priori. While some prior work relaxes the assumption
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Fig. 1: LANCON-LEARN applied to multi-task learning with
(left) high-level language commands embedded into seman-
tically meaningful vectors versus (right) traditional, one-hot
encodings requiring the robot to learn from scratch.

of defining the number of tasks a priori by leveraging a
continuous embedding space [4], [5], [6], [7], these approaches
do not incorporate human feedback, knowledge, or specification,
thereby ignoring useful prior knowledge. What is critically
needed is a methodology for specifying robot tasks that is
both flexible to the addition of new tasks and conveys prior
knowledge about the goals or objectives of the tasks, i.e.
through natural language.

Natural language affords a unique opportunity to leverage
task-specific semantic knowledge and is a convenient medium
for many users to provide task objectives for robots, being more
intuitive than a one-hot encoding. Leveraging language embed-
dings overcomes the limitations of learned task-embeddings by
distilling natural language into semantically rich embeddings;
however, prior work in mapping language to task abstractions
has primarily considered navigation problems [8], [9], [10],
[11], [12]. In contrast to prior work, we consider a set of
diverse manipulation skills in a multi-task setup [2], involving
a higher-dimension action space in which small mistakes are
more likely to lead to complete task failures, thus complicating
the learning process. Furthermore, our learning domain consists
of tasks with randomized elements (e.g., objects spawn in
random locations), making even one task in our work a multi-
task learning problem by prior definitions [13]. Our approach
enables us to tackle such diverse tasks with a single agent
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because language-commands provide significantly more task-
relevant information than conventional approaches to goal-
specification for learning agents.

In this paper, we present Language Conditioned Learning
(LANCON-LEARN), a novel approach for specifying goals
to multi-task learning agents by embedding natural language
sequences into semantically task-relevant goal embeddings (i.e.,
text-based natural language commands mapped to real-valued
vectors for use by neural network policies). The key to our
success is the application of attention to a language-specified
goal for the activation of task-relevant skills, eliciting goal-
conditioned behavior by attending to salient components of
a language command. We leverage the insight that language
sequences contain semantically useful information to relate
task objectives in a meaningful way, where prior work instead
relies on uninformative, one-hot encodings or task-specific
embeddings. Leveraging a language model to translate text-
based goal specifications into real-valued vectors for input as
goal embeddings, LANCON-LEARN generalizes to unseen tasks
where conventional methods fail, leveraging prior knowledge
and the relationships between known and novel goals. We
demonstrate the power of our approach using both RL and
IL. Our IL setup enables end-users to naturally teach robots
multiple tasks using language and corrective feedback, showing
four-fold improvement in zero-shot skill transfer compared to
baselines. Through reinforcement, we offer an alternative in
which the robot learns from a language command and a defined
reward function, if corrective feedback from a human teacher
is impractical [14], achieving over three-fold improvement in
zero-shot skill transfer relative to baselines. We set a new state-
of-the-art for zero-shot task success and few-shot knowledge
transfer in Meta-World [15], achieving up to 100% success-
rates on novel tasks with no prior experience.

Our Contributions:
• Introduce LANCON-LEARN, a novel approach to multi-task

learning leveraging prior knowledge from language rather
than naively learning from one-hot encodings.

• Demonstrate our technique in two distinct paradigms (IL
and RL), yielding significant performance improvements.

• Validate the efficacy of LANCON-LEARN on zero-shot
learning, showing up to 200% improvement on task success
relative to baseline approaches [2], [16].

• Demonstrate LANCON-LEARN on transfer learning tasks,
showing that our approach enables multi-task robots to
leverage language to quickly outperform baselines and
achieve 100% success on new tasks.

II. RELATED WORK

Language-guided Learning – Early approaches to language-
guided behavior needed to consider grounding language to
symbols in the environment, often using parallel data to
acquire language [17], [18], [19], [20]. These approaches,
as well as more modern research [8], [21], [22], [23], [24],
[25], [26], [27], [28], typically require a large corpus of
commands or observations with granular instructions, as well
as a detailed alignment of commands to states. Contemporary
work demonstrates the utility of language commands for multi-
task RL [29], while our work expands language-conditioning

to encompass both IL and RL. For a review of recent crossover
between language and task learning, we refer readers to [30].

The instruction-following literature includes several exam-
ples of language-based learning agents, centered on navigation
[31], [32], [33], [10], [9], [34], [12], [35] or simple manipu-
lation tasks [11], [36], [22]. While navigation requires coarse
control in two dimensions, manipulation with realistic physics
requires fine-grained control in three dimensions in addition
to precise gripper control. Furthermore, prior approaches are
primarily concerned with mapping language to a goal location
rather than mapping language to a goal location and skill. Our
work therefore targets both a broader set of skills and a more
complex, demanding action-space.

Finally, research has framed the task-learning problem as
one of program synthesis [37] or program-guided learning [38],
[39], [40], [41]. Such work relies on low-level control for spe-
cific movement or sub-goal specification, rather than abstract,
high-level commands. Our work presents an abstraction of
such low-level instruction, leveraging only high-level language
commands for robot learning to complete tasks without directly
considering sub-goals or constraints on task execution. Our
approach opens up opportunities in future work for more natural
human-robot interactions [42] while providing a useful goal
embedding in the process.

Multi-task Reinforcement Learning – Multi-task RL is a
subfield of reinforcement learning concerned with teaching a
single agent to solve multiple tasks. Whereas single-task RL
optimizes for a single reward function, multi-task robots must
learn robust policies that satisfy multiple objectives. While there
are advantages to a multi-task learning setup (e.g., additional
data to learn state representations, useful initializations, or
multiple views of the same task [43], [44], [45]), there are
often practical challenges such as catastrophic forgetting and
conflicting gradients when learning multiple tasks [46].

One popular approach to multi-task RL is to employ
hierarchical [23], [47] or modular neural networks [31], [48],
[2]. Both approaches attempt to learn different sub-components
of a larger network which can each specialize in a sub-task. In
this work, we build on the notion of “soft-modularization” [2],
which is an approach aimed at improving the generality of
modular neural networks. Instead of attempting to learn discrete
sub-tasks or modules, we learn a general set of modules
alongside attention mechanisms. The attention mechanisms
are conditioned on goals and activate necessary modules by
re-weighting state representations between behavior modules.

Prior work unifying natural language and multi-task learning
is primarily centered around low-level instructions [49], [50],
[21] or other meta-data [29] for task specifications. These
approaches require large datasets of annotated text and tedious
alignment between language and specific motions. In this
work, we contribute a novel approach to specifying goals
for multi-task learning agents which circumvents the need for
fine-grained, low-level instruction, yet still enables learning
agents to leverage the power of natural language for identifying
relationships between tasks.

Language Modeling – Our work is motivated by the insight
that language contains useful, task-relevant information. Word-
embedding techniques, e.g. GloVe [51], learn to associate
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individual tokens with neighboring tokens, learning the “mean-
ing” of words. Recurrent neural network models, such as
the long-short-term-memory network (LSTM) [52] have since
been used to learn longer sequence-level representations (e.g.,
sentences). Modern approaches, including transformer models
like BERT [53], have advanced the state of the art to consider
context, rather than simply words in a vacuum. In our work,
we leverage word embedding models and modern transformers.

III. PRELIMINARIES

Markov Decision Processes – We represent each task in
our multi-task learning setup as a Markov Decision Process
(MDP), which is a 6-tuple of ⟨S,A, P,R,G, γ⟩ where S is the
set of all possible states and A denotes the action space for
the domain. P : S ×A× S′ → [0, 1] denotes the environment
dynamics or the transition function, providing the probability
of arriving in a new state s′ after taking action a in state s.
R : S×A×S′ → R is the reward function, and γ is a discount
factor to determine the weight of future value for each state.
Our multi-task robot must find a policy, π : S ×G→ [0, 1]|A|,
that samples actions given states and task goals to maximize
the long-term expected reward. Our agent estimates the value
of current states s under the policy, π, by the value function
V π(s, g), which the policy seeks to maximize as given by
V π(s, g) = Ea∼π(s,g),s′∼P (·|s,a)R(s, π(s, g)) + γV π(s′, g).

Dataset Aggregation (DAgger) – To directly learn how to
complete multiple tasks from a teacher, we consider the dataset
aggregation (DAgger) approach to IL [54]. By imitating an ex-
pert, we can learn skills faster than with RL and demonstrate a
path to multi-task learning from demonstration. Within DAgger,
the learning agent guides the learning process by performing
exploration and taking the best action in each state. The learning
agent intermittently queries the teacher for action labels for
each state the learner has encountered. As we are learning over
N -dimensional continuous actions, we employ a mean-squared
error loss, Lπ(θ) =

∑N
n=0(yn,t−πθ(sn,t, gn,t))

2, with respect
to the teacher’s actions y, state, s, and goal, g, at time t.

Soft Actor-Critic – To alleviate the burden on human
teachers, we also explore multi-task RL, which requires
comparatively little effort from humans. To learn π in our
multi-task RL problems, we leverage Soft Actor-Critic (SAC)
[55]. In this framework, the agent must learn to maximize
both expected task-return and entropy over available actions
throughout the policy rollout. The full policy update, mod-
ified for our multi-task learning setup, is given by Jπ(θ) =

Eat∼πθ,st,gt∼D[α log(πθ(at|st, gt))−Qω(st, gt, at)]].

IV. APPROACH

A. Soft-modular Architecture

Specifying goals in LANCON-LEARN using natural language,
we leverage a soft-modular [2] neural network architecture.
This architecture learns a policy directly over task information
and activates sub-components of the policy according to goal
embeddings, as shown in Fig. 2. Each step in a domain, the
agent receives state and goal information from the environment
and returns an action. The state information is embedded for use

by the two central components of the architecture: the behavior
modules and the attention mechanisms. Similarly, the goal
information is embedded for use by the attention mechanisms of
the architecture. Rather than use a conventional neural network
with language goals concatenated to state-data as input to the
network [56], we leverage a soft-modular architecture based
upon empirical experimentation discussed in Sec. V.c.

The behavior modules are a set of successive parallel
linear layers that learn to respond to task information to
produce actions. Crucially, these layers only receive the state
embedding, and are therefore encouraged to learn general
representations and behaviors. Every module passes a hidden
representation onto all successive modules, which receive a
weighted sum of outputs from the previous layer. The output
of the modules is weighted by the attention mechanisms of the
architecture. Between each set of modules in the architecture,
all representations are re-weighted by an attention mechanism
before being passed on to the next set of modules. The agent
thus learns a set of general-purpose modules that act over input
states, and recombines these modules according to attention
mechanisms activated by goals.

B. Goal-label Prediction

To enhance LANCON-LEARN’s ability to reason about the
similarities and differences among language specifications
and to cluster related commands, we incorporate an auxiliary
supervised learning task into our RL setup. We obtain the multi-
modal embedding by combining the state and goal embeddings,
which is passed to a new network head that predicts which
goal the agent is currently targeting. The probability of the
current goal, Pr[g], is 1 if g is the agent’s current goal, and 0
otherwise. This process is visualized in Fig. 2, where LAUX

is the cross-entropy loss for our auxiliary task, as shown in
Eq. 1, where st is the current environment state, ϕ and θ are
the language model and policy parameters, respectively, and ĝ
is the goal-prediction embedding.

LAUX(θ, ϕ) = −Pr[g] log(Pr[g|ĝ, st,Lϕ(g), πθ]) (1)

Empirically, we find that the auxiliary task improves language-
grounding for RL agents but is unnecessary for IL agents,
likely due to the relative density and informativeness of the
corrective feedback signal in IL. In RL, this additional task
helps learn more robust embeddings for downstream tasks.

During training, both the language model, L, and the policy,
π, may be updated according to both the SAC objective
and the auxiliary task. We treat the weighting between the
objectives as a hyperparameter. We note that the SAC objective
is contingent on both Lϕ and πθ, as the policy depends on
language embeddings over the goal, g, produced by Lϕ, as
shown in Eq. 2.

Jπ,L(θ, ϕ) = Eat∼πθ [Est,gt∼D[α log(πθ(at|st,Lϕ(gt)))

−Qω(st,Lϕ(gt), at)]] (2)

Every λ steps in the environment, where λ is a hyper-
parameter, our multi-task robot updates according to the SAC
and auxiliary objectives jointly. The complete gradient is a
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Algorithm 1 Multi-Task Training Loop

1: Initialize: Policy πθ, Language model Lϕ

Replay Buffer β ← ∅, Step index t← 0
2: Given: Labeled language dataset DL

3: while Training: do
4: Sample new task from the environment and correspond-

ing natural language goal, g ∈ G, from DL

5: zg ← Lϕ(g)
6: for i = 1 to length of episode do
7: st ← environment_step
8: ai ∼ πθ(·|st, zg)
9: β ← β + {st, at, g}

10: if i % update_interval == 0 then
11: Update θ, ϕ via Eq. 3 using IL or RL with minibatch

from β
12: end if
13: end for
14: end while
15: Return: πθ, Lϕ

Fig. 2: Our architecture. State data are sent to behavior
modules to learn general skills. Language goals are embedded
and sent to attention mechanisms that re-weight data between
modules to recombine skills into goal-specific behaviors. The
model is trained via either IL or RL.

weighted combination of gradients from Eq.s 1 and 2 with
respect to both sets of parameters, as in Eq. 3.

∇ϕ,θ =w1∇θJπ,L(θ, ϕ) + w2∇θLAUX(θ, ϕ)+

w3∇ϕJπ,L(θ, ϕ) + w4∇ϕLAUX(θ, ϕ) (3)

C. Multi-task Training Algorithm

To make use of language specifications as goals in LANCON-
LEARN, we begin by collecting a set of language commands
that the agent will use. In our work, we gather five sequences for
each task. The LANCON-LEARN learning process is presented
in Algorithm 1. At the beginning of each episode, the agent
receives a new goal, g, from the environment (Line 4). The
goal, g, is then passed to the agents language model, Lϕ,
producing a goal embedding, zg, which the agent receives
alongside state information, s, for the duration of the episode
(Line 5). By using zg rather than g directly, learning updates
are now conditioned on the policy, πθ, and the language model,
Lϕ. As output, the agent produces the mean, µ, and standard
deviation, σ of a normal distribution, one for each dimension
in which the end-effector can move. Actions, a ∈ A, consist
of changes in end-effector position, which are drawn from
N (µ, σ2) during training. In evaluation mode, the agent directly
uses the predicted mean µ.

At pre-defined update intervals, we update the parameters of
the agent’s policy, θ and language model, ϕ. We employ either
DAgger [54] (using a trained agent as the oracle labeler) for
IL, or SAC [55] for RL via the environment’s reward functions.
We note that any policy learning algorithm or framework could
be used in our setup simply by changing the update mechanism
in Line 11 of Algorithm 1.

V. EXPERIMENTS AND RESULTS

We empirically demonstrate LANCON-LEARN on a virtual
and real, physical robot. For this demonstration, we use a
Rethink Robotics Sawyer, a seven degree-of-freedom robot
arm. For all tasks, the agent is trained in simulation and the

real-robot execution demonstrates robust plans that work across
shifting dynamics (from simulation to the real world).

We first test LANCON-LEARN on unseen tasks (i.e., tasks
that were not used during training). These test tasks require
the robot to manipulate novel objects not encountered during
training. Training language agents versus conventional one-hot
goal encoding agents across ten tasks, we test how well the
agents are able to generalize their learned skills to novel tasks
with no additional training (i.e. zero shot transfer), using IL and
multi-task RL. Finally, we conduct a qualitative investigation
of the underlying goal embedding space using t-SNE projection
of language commands [57].
A. Baselines

We compare the efficacy of language embeddings as goal
representations across multiple conditions, allowing us to
compare common approaches from prior work and serving
as an ablation study for our approach.
• LANCON-LEARN (Ours) – Goal sequences are embedded

using GloVe [51] and then condensed with a bi-directional
LSTM. The first and final hidden states of the LSTM are
concatenated and given as a goal embedding.

• Ours\Auxiliary – Ours without the auxiliary goal-prediction
task. We omit this comparison for IL, as the auxiliary task
had no effect in the IL setup.

• Ours\GloVe – Ours with random rather than pre-trained
word embeddings.

• Ours\LSTM – Goal sequences are embedded as the average
GloVe embedding across words in the goal specification,
losing word ordering information.

• BERT– Goal sequences are passed through a BERT [53]
model that has been pre-trained for sequence classification1,
and the goal is the hidden state for ⟨CLS⟩.

• One-Hot– Goals are provided as one-hot encodings.
• Random– Goals are differentiable, randomly-initialized em-

beddings. Here, we benchmark against real-valued vectors
with no a priori meaning [16].
1 https://huggingface.co/bert-base-uncased
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Goal Set of Push Puck Topdown Button Handle Soccer Coffee Coffee
Specification Training Tasks With Obstacle Press With Obstacle Push Push Button

IL
(D

A
gg

er
) Ours 66% 42% 90% 74% 70% 50% 100%

Ours\LSTM 62.6% 24% 82% 62% 52% 26% 100%
Ours\GloVe 53.9% 0% 100% 46% 8% 0% 100%
BERT 41.9% 0% 100% 20% 0% 0% 100%
Random 49.3% 0% 44% 8% 14% 10% 100%
One-Hot 58.9% 0% 8% 52% 14% 30% 100%

R
L

(S
A

C
) Ours 38.1% 39% 100% 1% 34% 21% 100%

Ours\Auxiliary 16% 0% 40% 40% 0% 0% 100%
Ours\LSTM 36.2% 11% 57% 36% 2% 8% 92%
Ours\GloVe 28.3% 4% 16% 14% 0% 0% 100%
BERT 35.2% 12% 81% 0% 16% 5% 91%
Random 35.4% 0% 68% 5% 0% 0% 100%
One-Hot 36.3% 4% 25% 0% 0% 20% 40%

TABLE I: Success rates on training and unseen (zero-shot) testing tasks in Meta-World training with IL or RL.

Fig. 3: The 10 tasks in our Meta-World training setup. Initial
positions and goal locations (colored spheres) are randomized.

B. Domains
For our simulated domain, we employ Meta-World [15], a

multi-task and meta-learning domain that offers a wide array of
robot manipulation task distributions performed by a simulated
Sawyer robot. In this domain, we evaluate all agents on their
ability to learn a single multi-task policy for ten training tasks
in the “Multi-Task 10” setup (Fig. 3). Importantly, there is
not a high degree of overlap in these tasks (i.e., unique skills
must be learned for each task), forcing our agents to learn
diverse skills and to ground diverse language commands. For a
complete list of tasks, we refer the reader to [15]. We leverage
an extension of Meta-World2 that expands the state space to
include position, velocity, and orientation for all objects in the
domain (padded to a fixed-size regardless of task), and provides
simplified reward functions for each task. The action space in
Meta-World is a 4D continuous vector representing changes
in R3 position and a gripper status control. Success metrics
are defined for each task in terms of the difference between
task-dependent object positions and the goal position. We train
all agents for 15000 episodes across ten tasks, cycling to a
new task each episode, repeating each experiment five times
with different random seeds. Both initial and goal positions
are randomized for each task, making even one task in our
work a multi-task learning problem by prior definitions [13].

C. Architecture Choice
Using the soft-modular network architecture described in

Sec. IV, we obtained training task performance of 38.1%,
36.3%, and 35.4% success rates for Ours, One-Hot, and
Random agents, respectively. In contrast, a standard deep
network with a concatenated goal-state input achieved 0%, 8%,
and 0%, respectively. As such, we proceed with soft-modular
architectures (Sec. IV).

2 https://github.com/hartikainen/metaworld/tree/reward-tweaks-rebase

D. Zero-Shot Transfer Results
We present success rates for all IL and RL agents in Table

I, where we compare both training task success rates as well
as a selection of unseen tasks. Unseen tasks were selected as
a set tasks that have skill-overlap with training tasks, meaning
we could expect the agent to achieve more than a 0% success
rate (e.g., the agent learns to push an object in training, and
so we expect it can push a ball in the “soccer” task).

Our unseen task results show that LANCON-LEARN provides
a significant boost to out-of-distribution task success for
multi-task learning agents. When applied to unseen tasks,
LANCON-LEARN provides a clear advantage compared to
conventional goal-specification techniques, achieving up to
or over 200% improvement on tasks such as “Push Puck
with Obstacle” or “Soccer”. This finding reinforces the value
of language specification for high-level goals. Rather than
simply passing a task index with no context or learning a goal-
specific embedding that cannot generalize to unseen objectives,
language specifications provide a useful prior and help to prime
multi-task robots for task-execution on new, unseen tasks. We
observe that the agent with the auxiliary task is as good or
better than the agent without the auxiliary task on all but one
of the six zero-shot transfer tasks.

While we observe that the Random and One-Hot agents find
occasional success in button-press tasks, these agents regularly
fail at adaptions of the “push” task. On closer inspection, we
find that these agents treat all unseen tasks as button-press
tasks, showing no understanding of the true task objective.
LANCON-LEARN, on the other hand, shows significantly higher
performance on an array of skills.

When tasks are specified with useful prior knowledge (e.g.,
using GloVe or BERT) the agent succeeds across all unseen
tasks, adapting to the task based on the language command the
agent is provided, with our approach completing up to 74%
of novel push tasks and 100% of novel button-press tasks. We
explore these results further in Sec. VI.

E. Meta-World Transfer Results

Having shown LANCON-LEARN outperforms baselines in
zero-shot skill transfer, we next seek to demonstrate the benefits
of our approach for transferring knowledge to rapidly acquire
novel skills. We compare LANCON-LEARN to the baseline
one-hot encoding and random embedding approaches using
three tasks not seen at all during training: “Sweep Into,” “Push
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(a) “Sweep Into” (b) “Push Puck With Obstacle” (c) “Handle Push”

Fig. 4: Task success rate over five runs of 1000 episodes in the knowledge-transfer tasks. LANCON-LEARN leverages prior
knowledge about tasks to enable the agent to transfer known skills and quickly solve the tasks.

Puck With Obstacle,” and “Handle Push” from Meta-World, as
our testbed, as these all involve skills learned in training (i.e.,
pushing) but applied in new ways. Using such tasks, we can
observe how quickly our agents transfer known skills to novel
situations. For these tasks, we will only consider RL, as IL
provides an over-simplification of the task and washes out any
benefits of prior-knowledge. We define the reward function as
a sparse reward of 10 on task success and a step penalty of
−0.01. In this experiment, we compare, Ours, One-Hot, and
Random goal-specification approaches.

We present results from the knowledge transfer experiment
in Fig. 4, where we plot task success rates over episodes of
training. LANCON-LEARN provides a substantial advantage to
a multi-task learning agent, as our approach starts off with a
high success rate and is then able to convincingly outperform
both baselines across the three tasks. We observe that our
agent often begins with over twice the success rate of prior
approaches, up to 50% compared to 20%, and always achieves a
higher final success rate, up to 100%. While a one-hot encoding
or random embedding provides no useful information, prior
knowledge from language embeddings guides the agent in
transferring known skills to new tasks.

F. Analysis of Embedding Space

To perform our investigation, we compute the t-SNE [57]
projections of all 250 language command embeddings in our
dataset both before and after training with LANCON-LEARN,
passing the language commands through the language encoder
and the first layer of the policy network. Each task in the
Meta-World domain has five associated language commands in
our work, and there are 50 total tasks (giving us the total 250
points). All points are colored according to their associated
task. Fig. 5 shows these t-SNE projections.

In these figures, we can see many closely related skills (e.g.,
“Button”, “Reach”, and “Push”) are clustered together. Despite
being initialized somewhat randomly and with little overlap,
the learned LSTM encoder has produced embeddings that are
highly similar after training. In a similar vein, we see that some
commands that started off nearby, such as the “Drawer Open”
and “Door Open” commands, have been pushed farther apart,
reflecting the inherent differences between the skills required
to complete each task. While the underlying language for
these two commands is very similar (e.g. “Open the door” and
“Open the drawer”), the skills required to complete the tasks are

very different. The language model has therefore learned that,
despite their similar language, the embeddings for these tasks
should be highly separated. We also conducted an analysis for
the One-Hot model, revealing a randomly-distributed plot with
no meaningful clusters around skills or task objectives before
or after training, shown in Fig. 6.

G. Deployment to Sawyer

In our real robot testbed, we deploy the learned policies to a
Sawyer robot. To apply trajectories across the domain gap, we
calibrate the simulator’s dynamics to the real Sawyer and then
playback simulated trajectories on the real robot. This setup
allows us to deploy our agents to the real world despite their
actions being calibrated for the simulator’s dynamics.

With our framework in place, we deploy the trajectories
from a learned agent to the real Sawyer robot across the
“Close Drawer,” “Topdown Button Press,” and “Close Window”
tasks. Each episode, the object and goal positions move to
new locations, and we randomly sample from the five different
language sequences for each episode. A visual sequence of
our robot deployment is shown in Fig. 7, and videos of our
experiments are included in the supplementary.

VI. DISCUSSION

LANCON-LEARN improves human-robot interaction for
untrained end-users and multi-task learning agents’ abilities
to generalize to unseen tasks using known skills with both
IL and RL methods in manipulation settings. We observe
that language embeddings as goals for learning agents help
to achieve this end being both more intuitive to specify (e.g.
saying “Push the button” instead of a providing a one-hot
encoding, [0, 0, ..., 1, 0]) and encapsulating prior knowledge
within the goal embedding itself.

In our experiments, we trained several different multi-task
agents using different goal specification techniques using IL and
RL. We observe that out-of-distribution test task performance
was significantly improved by using language embeddings
as goals. LANCON-LEARN agents were able to map high-
level concepts in language down to task execution, transferring
known skills such as “Push” from training domains into novel
testing domains with up to 100% success.

Further, prior knowledge from language embeddings enables
the rapid acquisition of new skills while conventional one-hot
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Fig. 5: t-SNE of language commands before and after training the LANCON-LEARN agent.

Fig. 6: Initial and final t-SNE for a One-Hot model

Fig. 7: We show that our agent is capable of producing
trajectories that can be applied to a real Sawyer robot, here
completing the “Close Drawer” task.

encoding approaches must re-learn skills from scratch. One-
hot encodings are unable to provide any notion of similarity
between distant indices in a large vector of zeros, thereby
showing much worse generalization to unseen tasks. As we
see in Table I and Fig. 4, language-conditioned agents yield
higher performance than baselines (i.e., one-hot and random
agents) across all tasks we tested.

When considering language goals, we observe that language-
based agents benefit from some form of pre-training.
Ours\GloVe is routinely worse than other language approaches
on novel tasks (Table I), suggesting an under-tuned language
model. Unseen words, such as “ball” in the “Soccer” task,
are completely unknown to the Ours\GloVe model, and so
the model provide a sequence embedding over untrained (i.e.
random) word embeddings. Using GloVe [51] embeddings
circumvents this out-of-distribution issue.

In our knowledge-transfer experiments, we show that
LANCON-LEARN provides a useful warm-start to multi-task
RL agents by fine-tuning a pre-trained agent on three new,
related tasks. With a sparse reward function contingent on
success, we observe that a multi-task agent that can leverage
a language prior is able to outperform a conventional one-hot
encoding agent. Our agent, using language sequences as high
level goals, solves the tasks in just a few hundred episodes,
exceeding baseline performance. This result highlights an excit-
ing prospect for multi-task learning in robotics, as we achieve
significant improvements to knowledge-transfer by providing
language commands. While our current deployment requires
sufficient similarity between a given language command for

a transfer task and those for training tasks, future work may
explore language-enabled approaches to compositionality of
learned skills, providing avenues for more generally reusable
robot skills in more varied domains.

VII. CONCLUSION

We presented LANCON-LEARN for learning multi-task
manipulation skills using high-level language commands for
efficient generalization to new skills. While prior research
has explored one-hot goals, such encodings lack meaningful
prior knowledge and do not generalize to unseen tasks. We
demonstrated that language enables useful goal specifications
to multi-task learning agents across a variety language represen-
tations. From mean GloVe embeddings to BERT hidden-states,
our experiments demonstrate that language representations of
goals provide useful task-specific knowledge. LANCON-LEARN
enables up to 100% success rates on unseen tasks (e.g., “Sweep
Into”) and affords rapid acquisition of new skills by relating
known skills and grounded-language to new objectives.
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