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Preface

Since its beginning, optimization has played a vital role in data science. The analysis
and solution methods for many statistical and machine learning models rely on
optimization. The recent surge of interest in optimization for computational data
analysis also comes with a few significant challenges. The high problem dimension-
ality, large data volumes, inherent uncertainty, unavoidable nonconvexity, together
with the increasing need to solve these problems in real time and sometimes under a
distributed setting all contribute to create a considerable set of obstacles for existing
optimization methodologies.

During the past 10 years or so, significant progresses have been made in the
design and analysis of optimization algorithms to tackle some of these challenges.
Nevertheless, they were scattered in a large body of literature across a few different
disciplines. The lack of a systematic treatment for these progresses makes it more
and more difficult for young researchers to step into this field, build up the necessary
foundation, understand the current state of the art, and push forward the frontier
of this exciting research area. In this book I attempt to put some of these recent
progresses into a slightly more organized manner. I mainly focus on the optimization
algorithms that have been widely applied or may have the applied potential (from
my perspective) to large-scale machine learning and data analysis. These include
quite a few first-order methods, stochastic optimization methods, randomized and
distributed methods, nonconvex stochastic optimization methods, projection-free
methods, and operator sliding and decentralized methods. My goal is to introduce
the basic algorithmic schemes that can provide the best performance guarantees
under different settings. Before discussing these algorithms, I do provide a brief
introduction to a few popular machine learning models to inspire the readers and
also review some important optimization theory to equip the readers, especially the
beginners, with a good theoretic foundation.

The target audience of this book includes the graduate students and senior under-
graduate students who are interested in optimization methods and their applications
in machine learning or machine intelligence. It can also be used as a reference book
for more senior researchers. The initial draft of this book has been used as the text
for a senior undergraduate class and a Ph.D. class here at Georgia Institute of Tech-
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nology. For a one-semester senior undergraduate course, I would suggest to cover
the following sections: 1.1, 1.2, 1.4, 1.5, 1.6, 1.7, 2.1, 2.2, 3.1, 3.2, 4.1, and 7.1, and
encourage students to work on a course project. For a one-semester Ph.D. course,
I would suggest to cover Sections 1.1-1.7, 2.1-2.4, 3.1-3.6, 4.1-4.3, 5.1, 5.3, 5.4,
6.1-6.5, and 7.1-7.4, and encourage students to read and present those uncovered
materials either in the book or from the literature.

Many of the materials that I selected to cover in this book originated from our
research in the past few years. I am deeply indebted to my Ph.D. supervisors, former
Ph.D. students, post-docs, and other collaborators. My foremost and sincerest appre-
ciation will go to Arkadi Nemirovski, who guided me through different stages of
my academic life and shaped me into whom I am now. Alex Shapiro provided much
guidance to me regarding how to write the book and constantly reminded me of its
status. Without his encouragement, I would probably have given up this effort. I am
very thankful to Renato Monteiro for his kindness, support and friendship. Working
on this book often refreshes my pleasant memory of collaborating in this area with
some very dedicated colleagues such as Yunmei Chen and Hongchao Zhang, and
highly talented former students and post-docs including Cong Dang, Qi Deng, Saeed
Ghadimi, Soomin Lee, Yuyuan Ouyang, Wei Zhang, and Yi Zhou. I am fortunate
that my present students also work quite independently which helped me to spare
some time to be dedicated to this book.

Atlanta, Georgia, USA, Guanghui Lan
May 2019
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Chapter 1
Machine Learning Models

In this chapter, we introduce some widely used statistics and machine learning models
in order to motivate our later discussion about optimization theory and algorithms.

1.1 Linear regression

To motivate our discussion, let us start with a simple example. Julie needs to decide
whether she should go to the restaurant “Bamboo Garden” for lunch or not. She
went to ask for her friends Judy and Jim, who had been to this restaurant. Both of
them gave a rating of 3 in the scale between 1 to 5 for the service in this restaurant.
Given these ratings, it is a bit difficult for Julie to decide if she should pay a visit
to “Bamboo Garden”. Fortunately, she has kept a table of Judy and Jim’s ratings for
some other restaurants, as well as her own ratings in the past, as shown in Table 1.1.

Table 1.1: Historical ratings for the restaurants.

Restaurant Judy’s rating Jim’s rating Julie’s ratings?
Goodfellas 1 5 2.5
Hakkasan 4.5 4 5
· · · · · · · · · · · ·

Bamboo Garden 3 3 ?

To fix notation, let us use u(i) to denote the “input” variables (ratings of Judy
and Jim in this example), also called input features, and v(i) to denote the “output”
or target variable (rating of Julie’s) to predict. A pair (u(i),v(i)) is called a training
example, and the dataset — a list of N training examples {(u(i),v(i)}, i = 1, . . . ,N, is
called a training set. We will also use U denote the space of input values, and V the
space of output values. In this example, U = R2 and V = R. Specifically, u(1)1 and

1



2 1 Machine Learning Models

u(1)2 are the Judy and Jim’s ratings for Goodfellas, respectively, and v(1) represents
Julie’s rating for Goodfellas.

Our goal is, given a training set, to learn a function h : U → V so that h(u) is a
“good" predictor for the corresponding value of v. This function h is usually called
a hypothesis or decision function. Machine learning tasks of these types are called
supervised learning. When the output v is continuous, we call the learning task
regression. Otherwise, if v takes values on a discrete set of values, the learning
task is called classification. Regression and classification are the two main tasks in
supervised learning.

One simple idea is to approximate v by a linear function of u:

h(u)≡ hθ (u) = θ0 +θ1u1 + . . .+θnun.

In our example, n simply equals 2. For notational convenience, we introduce the
convention of u0 = 1 so that

h(u) = ∑
n
i=0θiui = θ

T u,

where θ = (θ0; . . . ;θn) and u= (u0; . . . ;un). In order to find the parameters θ ∈Rn+1,
we formulate an optimization problem of

min
θ

{
f (θ) := ∑

N
i=1(hθ (u(i))− v(i))2

}
, (1.1.1)

which gives rise to the ordinary least square regression model.
To derive a solution of θ for (1.1.1), let

U =




u(1)
T

u(2)
T

...
u(N)T



.

U is sometimes called the design matrix and it consists of all the input variables.
Then, f (θ) can be written as:

f (θ) = ∑
N
i=1(u

(i)T
θ − v(i))2

= (Uθ − v)T (Uθ − v)

= θ
TUTUθ −2θ

TUT v− vT v.

Taking the derivative of f (θ) and setting it to zero, we obtain the normal equation

UTUθ −UT v = 0.

Thus the minimizer of (1.1.1) is given by
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θ
∗ = (UTU)−1UT v.

The ordinary least square regression is among very few machine learning models
that has an explicit solution. Note, however, that to compute θ ∗, one needs to compute
the inverse of an (n+ 1)× (n+ 1) matrix (UTU). If the dimension of n is big, to
compute the inverse of a large matrix can still be computationally expensive.

The formulation of the optimization problem in (1.1.1) follows a rather intuitive
approach. In the sequel, we provide some statistical reasoning about this formulation.
Let us denote

ε
(i) = v(i)−θ

T u(i), i = 1, . . . ,N. (1.1.2)

In other words, ε(i) denotes the error associated with approximating v(i) by θ T u(i).
Moreover, assume that ε(i), i = 1, . . . ,N, are i.i.d. (independently and identically
distributed) according to a Gaussian (or Normal) distribution with mean 0 and
variance σ2. Then, the density of ε(i) is then given by

p(ε(i)) = 1√
2πσ

exp
(
− (ε(i))2

2σ2

)
.

Using (1.1.2) in the above equation, we have

p(v(i)|u(i);θ) = 1√
2πσ

exp
(
− (v(i)−θ T u(i))2

2σ2

)
. (1.1.3)

Here, p(v(i)|u(i);θ) denotes the distribution of the output v(i) given input u(i) and
parameterized by θ .

Given the input variables u(i) and output v(i), i = 1, . . . ,N, the likelihood function
with respect to (w.r.t.) the parameters θ is defined as

L(θ) :=
N

∏
i=1

p(v(i)|u(i);θ) =
N

∏
i=1

1√
2πσ

exp
(
− (v(i)−θ T u(i))2

2σ2

)
.

The principle of maximum likelihood tells us that we should choose θ to maximize
the likelihood L(θ), or equivalently, the log likelihood

l(θ) := logL(θ)

= ∑
N
i=1 log

[
1√

2πσ
exp
(
− (v(i)−θ T u(i))2

2σ2

)]

= N log 1√
2πσ
− 1

2σ2 ∑
N
i=1(v

(i)−θ
T u(i))2.

This is exactly the ordinary least square regression problem, i.e., to minimize
∑

N
i=1(v

(i)−θ T u(i))2 w.r.t. θ . The above reasoning tells us that under certain proba-
bilistic assumptions, the ordinary least square regression is the same as maximum
likelihood estimation. It should be noted, however, that the probabilistic assumptions
are by no means necessary for least-squares to be a rational procedure for regression.
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1.2 Logistic regression

Let us come back to the previous example. Suppose that Julie only cares about
whether she will like the restaurant “Bamboo Garden” or not, rather her own ratings.
Moreover, she only recorded some historical data indicating whether she likes or
dislikes some restaurants, as shown in Table 1.2. These records are also visualized
in Figure 1.1, where each restaurant is represented by a green “O” or a red “X”,
corresponding to whether Julie liked or disliked the restaurant, respectively. The
question is: with the rating of 3 from both of her friends, will Julie like Bamboo
Garden? Can she use the past data to come up with a reasonable decision?

Table 1.2: Historical ratings for the restaurants.

Restaurant Judy’s rating Jim’s rating Julie likes?
Goodfellas 1 5 No
Hakkasan 4.5 4 Yes
· · · · · · · · · · · ·

Bamboo Garden 3 3 ?

Similar to the regression model, the input values are still denoted by U =

(u(1)
T

; . . . ;u(N)T
), i.e., the ratings given by Judy and Jim. But the output values

are now binary, i.e., v(i) ∈ {0,1}, i = 1, . . . ,N. Here v(i) = 1 means that Julie likes
the i-th restaurant and v(i) = 0 means that she dislikes the restaurant. Julie’s goal is to
come up with a decision function h(u) to approximate these binary variables v. This
type of machine learning task is called binary classification.

Julie’s decision function can be as simple as a weighted linear combination of her
friends’ ratings:

hθ (u) = θ0 +θ1 u1 + . . .+θnun (1.2.1)

with n = 2. One obvious problem with the decision function in (1.2.1) is that its
values can be arbitrarily large or small. On the other hand, Julie wishes its values to
fall between 0 and 1 because those represent the range of v. A simple way to force
h to fall within 0 and 1 is to map the linear decision function θ T u through another
function called the sigmoid (or logistic) function

g(z) = 1
1+exp(−z) (1.2.2)

and define the decision function as

hθ (u) = g(θ T u) = 1
1+exp(−θ T u) . (1.2.3)

Note that the range of the sigmoid function is given by (0,1), as shown in Figure 1.2.

Now the question is how to determine the parameters θ for the decision function
in (1.2.3). We have seen the derivation of the ordinary least square regression model
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Fig. 1.1: Visualizing ratings of the restaurants

as the consequence of maximum likelihood estimation under certain probabilistic
assumptions. We will follow a similar approach for the classification problem.

We assume that v(i), i = 1, . . . ,N, are independent Bernoulli random variables
with success probability (or mean) of hθ (u(i)). Thus their probability mass functions
are given by

p(v(i)|u(i);θ) = [hθ (u(i))]v
(i)
[1−hθ (u(i))]1−v(i) ,v(i) ∈ {0,1},

and the associated likelihood function L(θ) is defined as

L(θ) =
N

∏
i=1

{
[hθ (u(i))]v

(i)
[1−hθ (u(i))]1−v(i)

}
.

In view of the principle of maximum likelihood, we intend to maximize L(θ), or
equivalently, the log likelihood
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4 h2o_df = h2o.import_file("http://h2o-public-test-data.
s3.amazonaws.com/smalldata/prostate/prostate.csv")

5 gaussian_fit = H2OGeneralizedLinearEstimator(family =
"gaussian")

6 gaussian_fit.train(y = "VOL", x = ["AGE", "RACE", "PSA
", "GLEASON"], training_frame = h2o_df)

4.6.2 Logistic Regression (Binomial Family)

Logistic regression is used for binary classification problems where the response is
a categorical variable with two levels. It models the probability of an observation
belonging to an output category given the data (for instance Pr(y = 1|x)).
The canonical link for the binomial family is the logit function (also known as
log odds). Its inverse is the logistic function, which takes any real number and
projects it onto the [0, 1] range as desired to model the probability of belonging
to a class. The corresponding s-curve (or sigmoid function) is shown below,

and the fitted model has the form:

ŷ = Pr(y = 1|x) =
ex>�+�0

1 + ex>�+�0

Fig. 1.2: The Sigmoid (logistic) function

l(θ) = ∑
N
i=1 log

{
[hθ (u(i))]v

(i)
[1−hθ (u(i))]1−v(i)

}

= ∑
N
i=1

{
v(i) loghθ (u(i))+ [1− v(i)] log[1−hθ (u(i))]

}
.

Accordingly, we formulate an optimization problem of

max
θ

∑
N
i=1

{
− log[1+ exp(−θ

T u(i))]− [1− v(i)]θ T u(i)
}
. (1.2.4)

Even though this model is used for binary classification, it is often called logistic
regression for historical reasons.

Unlike linear regression, (1.2.4) does not have an explicit solution. Instead, we
need to develop some numerical procedures to find its approximate solutions. These
procedures are called optimization algorithms, a subject to be studied intensively
later in our lectures.

Suppose that Julie can solve the above problem and find at least one of its optimal
solutions θ ∗. She then obtains a decision function hθ∗(u) which can be used to predict
whether she likes a new restaurant (say “Bamboo Garden”) or not. More specifically,
recall that the example corresponding to “Bamboo Garden" is u = (1,3,3) (recall
u1 = 1). If hθ∗((1,3,3))> 0.5, then Julie thinks she will like the restaurant, otherwise
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she will not. The values of u’s that cause hθ∗(u) to be 0.5 is called the “decision
boundary” as shown in Figure 1.3. The black line is the “decision boundary.” Any
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Fig. 1.3: Decision boundary

point lying above the decision boundary is a restaurant that Julie likes, while any
point lying below the decision boundary is a restaurant that she does not like. With
this decision boundary, it seems that Bamboo Garden is slightly on the positive side,
which means she may like this restaurant.

1.3 Generalized linear models

In the previous two sections, we have introduced two supervised machine learning
models: the ordinary least square regression and the logistic regression. In the
former model, we had assumed that v|u;θ ∼N (µ,σ2), and in the latter model,
v|u;θ ∼ Bernoulli(q), for some appropriate definitions of µ and q as functions of
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u and θ . We will show in this section that both of them are certain special cases
of a broader family of models, called Generalized Linear Models (GLMs), which
essentially apply maximum likelihood estimation for exponential distribution family.

1.3.1 Exponential family

An exponential family is a set of probability distributions given in the form of

p(v;η) = b(v)exp(ηT T (v)−a(η)) (1.3.1)

for a fixed choice of T , a and b. This family is parameterized by η in the sense that
different distributions can be obtained by varying η .

Let us first check that the normal distribution can indeed be written in the form of
(1.3.1). For simplicity, we consider random variable v∼N (µ,1), i.e.,

p(v; µ) = 1√
2π

exp
(
− (v−µ)2

2

)

= 1√
2π

exp
(
− v2

2

)
exp
(

µ
T v− µ2

2

)
.

Clearly, p(v; µ) is a special case of (1.3.1) with η = µ ,

b(v) = 1√
2π

exp
(
− v2

2

)
,T (v) = v and a(η) = µ2

2 = η2

2 .

To check that Bernoulli is a special exponential distribution, we first rewrite its
density function

p(v;q) = qv(1−q)1−v

= exp(v logq+(1− v) log(1−q))

= exp
(

v log q
1−q + log(1−q)

)
.

Clearly, in view of (1.3.1), we have

η = log q
1−q ,b(v) = 1,T (v) = v and a(η) =− log(1−q).

It is interesting to note that by the first identity, we have

q = 1
1+exp(−η) ,

which gives exactly the logistic (sigmoid) function.
The exponential family covers a broad class of distributions, including normal,

exponential, gamma, chi-squared, beta, Dirichlet, Bernoulli, categorical, Poisson,
Wishart and Inverse Wishart distributions, etc.
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1.3.2 Model construction

Following how we construct the ordinary least square and logistic regression models,
we can summarize the basic elements of the GLM model as follows.

• We need to know the distribution of the response (output) v, given input u and
parameters θ to be estimated. More specifically, we assume that v|u;θ satisfies a
family of exponential distribution parameterized by η .

• Given u, we need to construct a decision function (or hypothesis) h(u) to predict
the outcome T (v) (in most cases T (v) = v as in the ordinary least square and
logistic regression). T (v) is random and we expect that h(u) = E[T (v)|u]. For
example, in logistic regression, we have chosen h in a way such that hθ (u) =
E[v|u].

• We assume that η linearly depends on the input values u, i.e., η = θ T u. If η is a
vector, we assume that ηi = θ T

i u.

While the first two elements are assumptions we make, the last element is more
related to the design of the model. In particular, with this type of design, the resulting
models are most likely easier to fit.

Let us check these elements have indeed been used in our development for
the ordinary least square model. Recall we assume that ε = v− θ T u is normally
distributed according to N (0,σ2). Hence, v|u;θ ∼N (η ,σ2) with η = θ T u. This
implies all the above three elements hold since v|u;θ is normally distributed, η =
E[v|u;θ ] and h(u) = θ T u = η .

Next we can check that these elements also hold for the logistic regression. Recall
we assume that v|u;θ satisfies a family of Bernoulli distribution with mean

q = h(u) = 1
1+exp(−θ T u) .

Denoting η = θ T u, and using it in the above identity, we obtain

q = 1
1+exp(−η) ,

or equivalently,
η = log q

1−q ,

which is exactly the parameter we used to write Bernoulli distribution in the form of
exponential family. These discussions imply that all the aforementioned elements of
GLM hold.

Let us look at one more example of a GLM. Consider a classification problem in
which the response variable v can take on any one of k values, i.e., v ∈ {1,2, . . . ,k}.
The response variable is still discrete, but can now take on more than two values.
This type of machine learning task is called multi-class classification.

In order to derive a GLM for modeling this type of task, we first assume that v is
distributed according to a multinomial distribution and show that multinomial is an
exponential family distribution.
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To parameterize a multinomial over k possible outcomes, we could use k parame-
ters q1, . . . ,qk to specify the probability of each outcome. However, these parameters
would not be independent because any k−1 of the qi’s uniquely determines the last
one due to the fact that ∑

k
i=1qi = 1. So, we will instead parameterize the multino-

mial with only k−1 parameters, q1, . . . ,qk−1, where qi = p(y = i;q). For notational
convenience, we also let qk = p(y = k;q) = 1−∑

k−1
i=1 qi.

To show that multinomial is an exponential distribution, let us define T (v) ∈Rk−1

as follows:

T (1) =




1
0
0
...
0



,T (2) =




0
1
0
...
0



, . . . ,T (k−1) =




0
0
0
...

k−1



,T (k) =




0
0
0
...
0



.

Unlike our previous examples, here we do not have T (v) = v. Moreover, T (v) is now
in Rk−1, instead of a real number. We will write (T (v))i to denote the i-th element of
the vector T (v).

We introduce one more useful piece of notation. An indicator function I{·} takes
on a value of 1 if its argument is true, and 0 otherwise. So, we can also write
the relationship between T (v) and v as (T (v))i = I{v = i}. Further, we have that
E[(T (v))i] = p(v = i) = qi.

We are now ready to show that multinomial distribution is a member of the
exponential family. We have:

p(v;q) = qI{v=1}
1 qI{v=2}

2 . . .qI{v=k}
k

= qI{v=1}
1 qI{v=2}

2 . . .q1−∑
k−1
i=1 I{v=i}

k

= q(T (v))1
1 q(T (v))2

2 . . .q1−∑
k−1
i=1 (T (v))i

k

= exp
(

∑
k−1
i=1 (T (v))i logqi +(1−∑

k−1
i=1 (T (v))i) logqk

)

= exp
(

∑
k−1
=1 (T (v))i log qi

qk
+ logqk

)
.

This is an exponential distribution with

ηi = log qi
qk
, i = 1, . . . ,k−1, a(η) =− logqk, and b = 1. (1.3.2)

In order to define the decision function, we first represent qi’s in terms of ηi’s, since
E[(T (y))i] = p(y = i) = qi and we would like hi(u) = qi. By (1.3.2), we have

qi
qk

= exp(ηi), i = 1, . . . ,k−1. (1.3.3)

For convenience, let us also denote ηk = 0 and

qk
qk

= exp(ηk).
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Summing up these identities and using the fact that ∑
k
i=1qi = 1, we have 1

qk
=

∑
k
i=1exp(ηi), and hence

qi =
exp(ηi)

∑
k
i=1exp(ηi)

, i = 1, . . . ,k−1. (1.3.4)

To finish the definition of the decision function, we assume hi(u) = qi and set
ηi = θ T

i u. Using these two relations together with (1.3.4), we obtain

hi(u) =
exp(θ T

i u)

∑
k
i=1exp(θ T

i u)
, i = 1, . . . ,k−1.

Finally, these parameters θi, i = 1, . . . ,k−1, used in the definition of hi(u) can be
estimated by maximizing the log likelihood

l(θ) = ∑
N
i=1 log p(v(i)|u(i);θ) = ∑

N
i=1 log

k

∏
j=1

(
exp(η j)

∑
k
j=1exp(η j)

)I(v(i)= j)

.

1.4 Support vector machines

In this section, we will provide a brief introduction to support vector machine, which
has been considered as one of the most successful classification models.

Consider the binary classification problem with N training examples (u(i),v(i)),
i = 1, . . . ,N. For convenience, we assume throughout this section that the output
v(i) is given by either 1 or −1, i.e., v(i) ∈ {−1,1}, rather than v(i) ∈ {0,1} as in the
previous sections. Observe that this is just a change of label for the class, but does
not affect at all the fact that one particular example belongs one class or the other.

We assume for this moment that these observed examples are separable. Formally
speaking, we assume that there exists a linear function of u, denoted by

hw,b(u) = b+w1u1 +w2u2 + . . .wnun,

such that for all i = 1, . . . ,N,

hw,b(u(i))

{
> 0, if v(i) = 1,
< 0, Otherwise(i.e., v(i) =−1).

In particular, hw,b(u) = 0 defines a hyperplane that separates the observed examples
into two different classes. The examples fall above the hyperplane are labeled by
v(i) = 1, while those below the hyperplane are labeled by v(i) =−1. Notice that our
notations for the decision function hw,b here also slightly differ from the previous
sections. First of all, we get rid of u0 which was assumed to be 1. Second, we denote
the normal vector w := (w1, . . . ,wn) and the intercept b by different notations, rather
than a single n+1 vector (θ0,θ1, . . . ,θn). The main reason is that we will investigate
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the geometric meaning of the normal vector w for the separating hyperplane hw,b(u)=
0.

By using logistic regression, we can possibly define a separating hyperplane.
Recall that we use a decision function hθ (u) = g(θ T u) to approximate the probability
p(y = 1|x;θ). Given an u, we predict its output to be either 1 or 0 depending on
whether hθ (u)≥ 0.5 or hθ (u)< 0.5, or equivalently, whether θ T u≥ 0 or θ T u < 0.
Therefore, this vector θ gives rise to a possible separating hyperplane as denoted by
H1 in Figure 1.4.
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Fig. 1.4: Inspiration of SVM

However, there exist quite many other hyperplanes separating these observed
examples, e.g., H2 and H3 as shown in Figure 1.4. Given potentially an infinite
number of separating hyperplanes, how should we evaluate their strength and thus
choose the strongest separating hyperplane?

In order to answer this question, let us examine the so-called “margin” associated
with a separating hyperplane wT u+b = 0. For a given example u(i), i.e., the point
A = (u(i)1 , . . . ,u(i)n ) in Figure 1.5, we first compute its distance to the separating
hyperplane. Let B be the projection of A to the separating hyperplane, it suffices to
compute the length of the line segment

−→
BA, denoted by d(i) = |−→BA|. Note that the

unit direction of
−→
BA is given by w/‖w‖, and hence the coordinates of B are given by

u(i)−d(i)w/‖w‖. Meanwhile, since B belongs to the separating hyperplane, we have



1.4 Support vector machines 13

wT
(

u(i)−d(i) w
‖w‖

)
+b = 0.

Solving the above equation for d(i), we have

d(i) = wT u(i)+b
‖w‖ . (1.4.1)

In the above derivation, we have implicitly assumed that the point A sits above the
separating hyperplane (i.e., v(i) = 1). In case the point A sits below the hyperplane
(v(i) =−1), then the point B should be written as u(i)+d(i)w/‖w‖, and hence

d(i) =−wT u(i)+b
‖w‖ . (1.4.2)

Putting (1.4.1) and (1.4.2) together, we can represent the distance d(i) by

d(i) = v(i)[wT u(i)+b]
‖w‖ (1.4.3)

for any i = 1, . . . ,N.
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Fig. 1.5: Inspiration of SVM

With the above computation of d(i)’s, we can now define the margin associated
with the separating hyperplane wT u+b by
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d(w,b) := min
i=1,...,N

di ≡ mini=1,...,N v(i)[wT u(i)+b]
‖w‖ . (1.4.4)

The margin d(w,b) provides a way to evaluate the strength of a separating hyperplane.
Intuitively, a larger margin implies that the separating hyperplane can distinguish
these two different classes of examples more significantly.

Therefore, a reasonable goal is to find (w,b) to maximize the margin d(w,b), i.e.,

max
w,b

mini=1,...,N v(i)[wT u(i)+b]
‖w‖ .

Specifically, this will result in a classifier that separates the positive and the negative
training examples with a large “gap”. The above optimization problem can be written
equivalently as

maxw,b,r
r
‖w‖

s.t. v(i)[wT u(i)+b]≥ r, i = 1, . . . ,N.

For many reasons, most importantly for tractability, we wish the formulated opti-
mization problem for machine learning to be convex (see definitions in Chapter 2).
However, neither of these two formulations are convex as their objective functions
are nonconvex. Fortunately, observing that multiplying w,b and r by a scaling factor
does not change the optimal value of the above problem, we can then assume r = 1
and reformulate it as

maxw,b
1
‖w‖

s.t. v(i)[wT u(i)+b]≥ 1, i = 1, . . . ,N,

or equivalently,
minw,b

1
2‖w‖2

s.t. v(i)[wT u(i)+b]≥ 1, i = 1, . . . ,N.
(1.4.5)

The latter is a convex optimization problem as we will see shortly in Chapter 2.
Now we should provide some explanation regarding why the above model is

called support vector machine. Suppose that we have a very large number of ex-
amples, i.e., N is very large. Once we solve (1.4.5) to optimality by identifying the
optimal (w∗,b∗), we will find out that only a small number (out of N) of constraints
of (1.4.5) are active at (w∗,b∗), i.e., only a small number of constraints are satisfied
with equality. The corresponding u(i)’s are then called support vectors. Geometrically,
the support vectors gave the shortest distance to the optimal separating hyperplane
(w∗)T u+ b∗ = 0 among all training examples. If we move the optimal separating
hyperplane along the direction of w∗/‖w∗‖ and stop until some vectors from the train-
ing examples are encoutered, we will find the first set of support vectors. Similarly,
moving the optimal separating hyperplane along −w∗/‖w∗‖, we will obtain another
set of support vectors. These two set of support vectors resides on two hyperplanes
parallel to the optimal separating hyperplane. They define the gap between these two
different classes of training examples, which is exactly twice the objective value of
(1.4.5).
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Fig. 1.6: SVM outliners

The derivation of the SVM as presented so far assumed that the training examples
are linearly separable. However, this might not be the case in practice. Moreover, in
some cases it is not clear that finding a separating hyperplane is exactly what we
want, since that might be susceptible to outliers. To see this, Figure 1.6.a) shows an
optimal margin classifier. However, when a single outlier is added in Figure 1.6.b),
the optimal separating hyperplane has to make a dramatic swing, leading to a much
smaller margin for the resulting classifier.

In order to address these issues, we reformulate (1.4.5) as

minw,b
1
2‖w‖2 +λ∑

N
i=1ξi

s.t. v(i)[wT u(i)+b]≥ 1−ξi, i = 1, . . . ,N,
ξi ≥ 0, i = 1, . . . ,N,

(1.4.6)

for some λ > 0. In the above formulation, we allow the constraints in (1.4.5) to be
violated and then penalize the total amount of violations. Observe that problem (1.4.6)
can be written equivalently as

minw,b
1
2‖w‖2 +λ∑

N
i=1 max{0,1− v(i)[wT u(i)+b]}. (1.4.7)

These formulations are called soft-margin support vector machine.

1.5 Regularization, Lasso and ridge regression

Many supervised machine learning models, including a few problems discussed
above, can be written in the following form:

f ∗ := min
x∈Rn

{
f (x) := ∑

N
i=1L(xT ui,vi)+λ r(x)

}
, (1.5.1)

for some λ ≥ 0, where L(·, ·) and r(·) are called the loss and regularization functions,
respectively.
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For instance, in SVM, we have x = (w,b), L(z,v) = max{0,1− vz} and r(x) =
‖w‖2. In the ordinary least square regression, we have x = θ , L(z,v) = (z− v)2 and
r(θ) = 0. In fact, we can add many different types of regularization to the square
loss function to avoid over-fitting, reduce variance of the prediction error, and handle
correlated predictors.

The two most commonly used penalized models are ridge regression and Lasso
regression. Ridge regression is given in the form of (1.5.1) with L(z,v) = (z−v)2 and
r(x) = ‖x‖2

2, while Lasso regression is represented by (1.5.1) with L(z,v) = (z− v)2

and r(x) = ‖x‖1. Here ‖x‖2
2 = ∑

n
i=1x2

i and ‖x‖1 = ∑
n
i=1|xi|. The elastic net combines

both l1 and l2 penalty and is defined as

λPα(β ) = λ
(
α‖β‖1 +

1
2 (1−α)‖β‖2

2
)
.

Lasso regression leads to a sparse solution when the tuning parameter is suffi-
ciently large. As the tuning parameter value λ is increased, all coefficients are set to
zero. Since reducing parameters to zero removes them from the model, Lasso is a
good selection tool. Ridge regression penalizes the l2 norm of the model coefficients.
It provides greater numerical stability and is easier and faster to compute than Lasso.
Ridge regression reduces coefficient values simultaneously as the penalty is increased
without however setting any of them to zero.

Variable selection is important in numerous modern applications with many
features where the l1 penalty has proven to be successful. Therefore, if the number of
variables is large or if the solution is known to be sparse, we recommend using Lasso,
which will select a small number of variables for sufficiently high λ that could be
crucial to the interpretability of the model. The l2 penalty does not have this effect: it
shrinks the coefficients, but does not set them exactly to zero.

The two penalties also differ in the presence of correlated predictors. The l2
penalty shrinks coefficients for correlated columns towards each other, while the
l1 penalty tends to select only one of them and set the other coefficients to zero.
Using the elastic net argument α combines these two behaviors. The elastic net
both selects variables and preserves the grouping effect (shrinking coefficients of
correlated columns together). Moreover, while the number of predictors that can
enter a Lasso model saturates at min(N,n), where N is the number of observations
and n is the number of variables in the model, the elastic net does not have this
limitation and can fit models with a larger number of predictors.

1.6 Population risk minimization

Let us come back to our motivating example. When Julie examines her decision
process, she observes that her true objective was to design the decision function to
predict her judgement about the restaurant “Bamboo Garden”, rather than just fit the
historical data she collected. In other words, the problem she intended to solve was
not really the one in (1.1.1). Rather, her problem could be better formulated as
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min
w,b

Eu,v[h(u;w,b)− v]2, (1.6.1)

where u and v are random variables denoting Judy’s and Jim’s ratings, and her own
judgement for a restaurant. During the process, she has implicitly assumed that the
optimal solution of (1.1.1) will be a good approximate solution to (1.6.1).

In fact, Julie’s intuition can be proved more rigorously. In stochastic optimization,
(1.1.1) is call the sample average approximation (SAA) problem of (1.6.1). It can be
shown that as N increases, an optimal solution of (1.1.1) will approximately solve
problem (1.6.1). It worth noting that in machine learning, problems (1.6.1) and (1.1.1)
are called population and empirical risk minimization, respectively.

A few problems remain. Firstly, how should we solve problem (1.1.1) efficiently
if both the dimension of examples and the sample size N are very large? Secondly,
should we really need to solve the empirical risk minimization problem? Why should
not we design an algorithm to solve the population risk minimization problem
directly? These are the problems that we will deal with mostly in this book.

1.7 Neural networks

In the past few years, deep learning has generated much excitement in machine learn-
ing, especially in industry, due to many breakthrough results in speech recognition,
computer vision and text processing. For many researchers, deep learning is another
name for a set of algorithms that use a neural network as an architecture. Even though
neural networks have a long history, they became more successful in recent years
due to the availability of inexpensive, parallel hardware (GPUs, computer clusters),
massive amounts of data, and the recent development of efficient optimization algo-
rithms, especially those designed for population risk minimization. In this section,
we will start with the concept of a linear classifier and use that to develop the concept
of neural networks.

Let us continue our discussion about the restaurant example. In the above case,
Julie was lucky because the the examples are linearly separable which means that she
can draw a linear decision function to separate the positive from negative instances.
Her friend Jenny has different food tastes. If we plot Jenny’s data, the graph will look
rather different (see Figure 1.7). Jenny likes some of the restaurants that Judy and
Jim rated poorly. The question is how we can come up with a decision function for
Jenny. By looking at the data, the decision function must be more complex than the
decision we saw before. Our heuristic approach to solve a complex problem is to
decompose it into smaller problems that we can solve. For our particular situation,
we know that if we throw away the “weird” examples from the bottom left corner
of the figure, then the problem becomes simpler. Similarly, if we throw the “weird”
examples on the top right figure, the problem is again also simpler. We solve for
each case using our presumed stochastic optimization algorithm and the decision
functions look like Figure 1.8.
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Fig. 1.7: Visualizing ratings of the restaurants without linear separability

Is it possible to combine these two decision functions into one final decision
function for the original data? Let us suppose, as stated above, that the two decision
functions are h1(u;(w1,w2),b1) and h2(u;(w3,w4),b2). For every example u(i), we
can then compute h1(u(i);(w1,w2),b1) and h2(u(i);(w3,w4),b2). Table 1.3 lays out
the data associated with these decision functions.

Table 1.3: Two separate linear decision functions

Restaurant Judy’s rating Jim’s rating Jenny likes?
Goodfellas h1(u(1)) h2(u(1)) No
Hakkasan h1(u(2)) h2(u(2)) Yes
· · · · · · · · · · · ·

Bamboo Garden h1(u(n+1)) h2(u(n+1)) ?

Now the problem reduces to find a new parameter set to weight these two decision
functions to approximate v. Let’s call these parameters ω , c, and we intend to
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Fig. 1.8: Visualizing ratings of the restaurants without linear separability

find them such that h((h1(u),h2(u));ω,c) can approximate the label v. This can be
formulated, again, as a stochastic optimization problem. In summary, we can find the
decision function for Jenny by using the following two steps:

a) Partition the data into two sets. Each set can be simply classified by a linear
decision. Then use the previous sections to find the decision function for each set,

b) Use the newly-found decision functions and compute the decision values for
each example. Then treat these values as input to another decision function. Use
stochastic optimization to find the final decision function.

Figure 1.9 provides a graphical way to visualize the above process.
What we have just discussed is a special architecture in machine learning known

as “neural networks”. This instance of neural networks has one hidden layer, which
has two “neurons”. The first neuron computes values for function h1 and the second
neuron computes values for function h2. The sigmoid function that maps real value
to bounded values between 0 and 1 is also known as “the nonlinearity” or the
“activation function”. Since we are using sigmoid, the activation function is also
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To find the values of w and b we can try to minimize the following objective function, which is the
sum of di↵erences between the decision function h and the label v:

J(w, b) = [h(u(1); w, b)� v(1)]2 + [h(u(2); w, b)� v(2)]2 + . . . + [h(u(m); w, b)� v(m)]2

=

mX

i=1

[h(u(i); w, b)� v(i)]2.

Hence, the optimization problem can be formulated as minw,b J(w, b). This problem is called the
empirical risk minimization problem. This can be viewed as an approximation to our true objective

min
w,b

Eu,v[h(u; w, b)� v]2 (2.2)

where u and v are random variables denote Judy’s and Jim’s ratings, and my own taste for a
restaurant. (u(i), v(i)), i = 1, . . . , m, are the realizations (or sample) of these random variables. The
latter problem is a typical stochastic optimization problem, and in general hard to optimization to
high accurary. The approach of using empirical risk to approximate the true risk is called sample
average approximation in stochastic optimization area.

Suppose for now that we have an e�cient stochastic optimization solver for problem (2.2). We
will obtain a function h(u; w, b) which can be used to predict whether I like a new restaurant u
or not: h > 0.5 means I will like the movie, otherwise I do not like the movie. The values of u’s
that cause h(u; w, b) to be 0.5 is the “decision boundary.” We can plot this “decision boundary” in
Figure 2. The black line is the “decision boundary.” Any point lying above the decision boundary
is a restaurant that I like, and any point lying below the decision boundary is a restaurant that I do
not like. With this decision boundary, it seems that ?Bamboo Garden? is slightly on the positive
side, which means I may like.

By the way, here is a graphical illustration of the decision function h we just built (u1 and u2

indicate the input data which is the ratings from Judy and Jim respectively): This network means
that to compute the value of the decision function, we need the multiply Judy?s rating with w1,
Jim?s rating with w2, then add two values and b, then apply the sigmoid function.

One can try to plot the shape of the function J . An apparent problem is that J is nonconvex
and thus may have multiple local minimizers. To address this issue, many di↵erent formulations
have been studied in the literature, among which is the well-known support vector machine model.
In this model, we define the a stochastic optimization problem

min
w,b

Eu,v[max{0, v(wT u + b)}] + ⇢kwk22.

Certainly one can also use the classic Ridge regression of

min
w,b

Eu,vE[(wT + b� v)2] + ⇢kwk22,

or the well-known Lasso regression of

min
w,b

Eu,vE[(wT + b� v)2] + ⇢kwk1.

All these problems are convex optimization problems and guaranted to have a global optimal solution.

4

To find the values of w and b we can try to minimize the following objective function, which is the
sum of di↵erences between the decision function h and the label v:

J(w, b) = [h(u(1); w, b)� v(1)]2 + [h(u(2); w, b)� v(2)]2 + . . . + [h(u(m); w, b)� v(m)]2

=

mX

i=1

[h(u(i); w, b)� v(i)]2.

Hence, the optimization problem can be formulated as minw,b J(w, b). This problem is called the
empirical risk minimization problem. This can be viewed as an approximation to our true objective

min
w,b

Eu,v[h(u; w, b)� v]2 (2.2)

where u and v are random variables denote Judy’s and Jim’s ratings, and my own taste for a
restaurant. (u(i), v(i)), i = 1, . . . , m, are the realizations (or sample) of these random variables. The
latter problem is a typical stochastic optimization problem, and in general hard to optimization to
high accurary. The approach of using empirical risk to approximate the true risk is called sample
average approximation in stochastic optimization area.

Suppose for now that we have an e�cient stochastic optimization solver for problem (2.2). We
will obtain a function h(u; w, b) which can be used to predict whether I like a new restaurant u
or not: h > 0.5 means I will like the movie, otherwise I do not like the movie. The values of u’s
that cause h(u; w, b) to be 0.5 is the “decision boundary.” We can plot this “decision boundary” in
Figure 2. The black line is the “decision boundary.” Any point lying above the decision boundary
is a restaurant that I like, and any point lying below the decision boundary is a restaurant that I do
not like. With this decision boundary, it seems that ?Bamboo Garden? is slightly on the positive
side, which means I may like.

By the way, here is a graphical illustration of the decision function h we just built (u1 and u2

indicate the input data which is the ratings from Judy and Jim respectively): This network means
that to compute the value of the decision function, we need the multiply Judy?s rating with w1,
Jim?s rating with w2, then add two values and b, then apply the sigmoid function.

One can try to plot the shape of the function J . An apparent problem is that J is nonconvex
and thus may have multiple local minimizers. To address this issue, many di↵erent formulations
have been studied in the literature, among which is the well-known support vector machine model.
In this model, we define the a stochastic optimization problem

min
w,b

Eu,v[max{0, v(wT u + b)}] + ⇢kwk22.

Certainly one can also use the classic Ridge regression of

min
w,b

Eu,vE[(wT + b� v)2] + ⇢kwk22,

or the well-known Lasso regression of

min
w,b

Eu,vE[(wT + b� v)2] + ⇢kwk1.

All these problems are convex optimization problems and guaranted to have a global optimal solution.

4

To find the values of w and b we can try to minimize the following objective function, which is the
sum of di↵erences between the decision function h and the label v:

J(w, b) = [h(u(1); w, b)� v(1)]2 + [h(u(2); w, b)� v(2)]2 + . . . + [h(u(m); w, b)� v(m)]2

=

mX

i=1

[h(u(i); w, b)� v(i)]2.

Hence, the optimization problem can be formulated as minw,b J(w, b). This problem is called the
empirical risk minimization problem. This can be viewed as an approximation to our true objective

min
w,b

Eu,v[h(u; w, b)� v]2 (2.2)

where u and v are random variables denote Judy’s and Jim’s ratings, and my own taste for a
restaurant. (u(i), v(i)), i = 1, . . . , m, are the realizations (or sample) of these random variables. The
latter problem is a typical stochastic optimization problem, and in general hard to optimization to
high accurary. The approach of using empirical risk to approximate the true risk is called sample
average approximation in stochastic optimization area.

Suppose for now that we have an e�cient stochastic optimization solver for problem (2.2). We
will obtain a function h(u; w, b) which can be used to predict whether I like a new restaurant u
or not: h > 0.5 means I will like the movie, otherwise I do not like the movie. The values of u’s
that cause h(u; w, b) to be 0.5 is the “decision boundary.” We can plot this “decision boundary” in
Figure 2. The black line is the “decision boundary.” Any point lying above the decision boundary
is a restaurant that I like, and any point lying below the decision boundary is a restaurant that I do
not like. With this decision boundary, it seems that ?Bamboo Garden? is slightly on the positive
side, which means I may like.

By the way, here is a graphical illustration of the decision function h we just built (u1 and u2

indicate the input data which is the ratings from Judy and Jim respectively): This network means
that to compute the value of the decision function, we need the multiply Judy?s rating with w1,
Jim?s rating with w2, then add two values and b, then apply the sigmoid function.

w1 , w2

Besides the above formulation using the sigmoid function, we can use many di↵erent models to
define the decision functions, among which is the well-known support vector machine model. In this
model, we define the a stochastic optimization problem

min
w,b

Eu,v[max{0, v(wT u + b)}] + ⇢kwk22.

Certainly one can also use the classic Ridge regression of

min
w,b

Eu,vE[(wT + b� v)2] + ⇢kwk22,

or the well-known Lasso regression of

min
w,b

Eu,vE[(wT + b� v)2] + ⇢kwk1.

All these problems are convex optimization problems and guaranted to have a global optimal solution.

4

To find the values of w and b we can try to minimize the following objective function, which is the
sum of di↵erences between the decision function h and the label v:

J(w, b) = [h(u(1); w, b)� v(1)]2 + [h(u(2); w, b)� v(2)]2 + . . . + [h(u(m); w, b)� v(m)]2

=

mX

i=1

[h(u(i); w, b)� v(i)]2.

Hence, the optimization problem can be formulated as minw,b J(w, b). This problem is called the
empirical risk minimization problem. This can be viewed as an approximation to our true objective

min
w,b

Eu,v[h(u; w, b)� v]2 (2.2)

where u and v are random variables denote Judy’s and Jim’s ratings, and my own taste for a
restaurant. (u(i), v(i)), i = 1, . . . , m, are the realizations (or sample) of these random variables. The
latter problem is a typical stochastic optimization problem, and in general hard to optimization to
high accurary. The approach of using empirical risk to approximate the true risk is called sample
average approximation in stochastic optimization area.

Suppose for now that we have an e�cient stochastic optimization solver for problem (2.2). We
will obtain a function h(u; w, b) which can be used to predict whether I like a new restaurant u
or not: h > 0.5 means I will like the movie, otherwise I do not like the movie. The values of u’s
that cause h(u; w, b) to be 0.5 is the “decision boundary.” We can plot this “decision boundary” in
Figure 2. The black line is the “decision boundary.” Any point lying above the decision boundary
is a restaurant that I like, and any point lying below the decision boundary is a restaurant that I do
not like. With this decision boundary, it seems that ?Bamboo Garden? is slightly on the positive
side, which means I may like.

By the way, here is a graphical illustration of the decision function h we just built (u1 and u2

indicate the input data which is the ratings from Judy and Jim respectively): This network means
that to compute the value of the decision function, we need the multiply Judy?s rating with w1,
Jim?s rating with w2, then add two values and b, then apply the sigmoid function.

w1 , w2

Besides the above formulation using the sigmoid function, we can use many di↵erent models to
define the decision functions, among which is the well-known support vector machine model. In this
model, we define the a stochastic optimization problem

min
w,b

Eu,v[max{0, v(wT u + b)}] + ⇢kwk22.

Certainly one can also use the classic Ridge regression of

min
w,b

Eu,vE[(wT + b� v)2] + ⇢kwk22,

or the well-known Lasso regression of

min
w,b

Eu,vE[(wT + b� v)2] + ⇢kwk1.

All these problems are convex optimization problems and guaranted to have a global optimal solution.

4

Sig.

Sig.

c

Table 2: Two separate linear decision functions

Restaurant Judy’s rating Jim’s rating Jenny likes?

Goodfellas h1(u(1)) h2(u(1)) No
Hakkasan h1(u(2)) h2(u(2)) Yes

· · · · · · · · · · · ·
Bamboo Garden h1(u(n + 1)) h2(u(n + 1)) ?

where x is the reconstructed image, kDxk2,1 is the discrete form of the TV semi-norm, A is a given
structure matrix (depending on the physics of the data acquisition), b represents the observed data,
and X := {x 2 <n : l⇤  x(i)  u⇤, 8i = 1, . . . , n}. For simplicity, we consider x as a n-vector
form of a two-dimensional image. Problem (??) can be reformulated as the following saddle problem
problem:

min
x2X

max
y2Y

{1

2
kAx� bk2 + �hDx, yi}, (2.6)

where Y := {y 2 <2n : kyk2,1 := maxi=1,...,n kyik2  1}, and kyik2 is the Euclidean norm of yi in
R2. We often call (??) as a structured convex programming problem since it consists of a certain bi-
linear saddle point structure. We will discuss some recent progresses for solving this class of convex
optimization problems later if time allowed.

3 Nonlinear Deep Learning Models

In the past few years, Deep Learning has generated much excitement in Machine Learning and indus-
try thanks to many breakthrough results in speech recognition, computer vision and text processing.
For many researchers, Deep Learning is another name for a set of algorithms that use a neural
network as an architecture. Even though neural networks have a long history, they became more
successful in recent years due to the availability of inexpensive, parallel hardware (GPUs, computer
clusters) and massive amounts of data. In this section, we will start with the concept of a linear
classifier and use that to develop the concept of neural networks.

Let us continue our discussion about the restaurant example. In the above case, I was lucky
because the the examples are linearly separable: I can draw a linear decision function to separate
the positive and the negative instances. My friend Jenny has di↵erent movie tastes. If we plot her
data, the graph will look rather di↵erent (see Figure ??). Jenny likes some of the movies that Judy
and Jim rated poorly. The question is how we can come up with a decision function for Jenny. From
looking at the data, the decision function must be more complex than the decision we saw before.
My experience tells me that one way to solve a complex problem is to decompose it into smaller
problems that we can solve. We know that if we throw away the “weird” examples from the bottom
left corner of the figure, the problem is simple. Similarly, if we throw the “weird” examples on the
top right figure, the problem is again also simple. I solve for each case using our presumed stochastic
optimization algorithm and the decision functions look like Figure ??.

Is it possible to combine these two decision functions into one final decision function for the
original data? Let’s suppose, as stated above, the two decision functions are h1(u; (w1, w2), b1)
and h2(u; (w3, w4), b2). For every example u(i), we can then compute h1(u(i); (w1, w2), b1) and
h2(u(i); (w3, w4), b2). If we lay out the data in a table, it would look like Table ??.
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Figure 4: Visualizing ratings of the restaurants without linear separability

Now, once again, the problem becomes finding a new parameter set to weigh these two decision
functions to approximate v. Let’s call these parameters !, c, and we want to find them such that
h((h1(u), h2(u));!, c) can approximate the label v. This can be formulated, again, as a stochastic
optimization problem. In summary, we can find the decision function for Susan by following two
steps:

1. Partition the data into two sets. Each set can be simply classified by a linear decision. Then
use the previous sections to find the decision function for each set,

2. Use the newly-found decision functions and compute the decision values for each example.
Then treat these values as input to another decision function. Use stochastic optimization to
find the final decision function.

A graphical way to visualize the above process is the following figure:

4 Basic convexity analysis

The central objects of our study on stochastic optimization (convex or not) are convex functions and
convex sets in Rn.

!1, !2.
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!1, !2, b1, b2, h(u; w, b,!, c).
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Fig. 1.9: A simple Neural network

called “sigmoid activation function”. There exist many other types of activation
functions. The parameters inside the network, such as w, ω are called “weights”
whereas b, c are called “biases”. If we have a more complex function to approximate,
we may need to have a deeper network, i.e., one with more hidden layers and each
layer with more than two neurons.

Let us get back to our problem of finding a good decision function for Jenny. It
seems that in the above steps, we cheated a little bit when we divided the dataset
into two sets because we looked at the data and decided that the two sets should be
partitioned that way. Is there any way that such a step can be automated? It turns out
that the natural way is to find the parameters ω , c, w and b all at once on the complex
dataset rather than doing the aforementioned two steps sequentially. To see this more
clearly, let us write down how we will compute h(u):

h(u) = g(ω1h1(u;w1,w2,b1)+ω2h2(u,w3,w4,b2)+ c)

= g(ω1g(w1u1 +w2u2 +b1)+ω2g(w3u1 +w4u2 +b2)+ c).
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We will find all these parameters ω1,ω2,c,w1,w2,w3,w4,b1 and b2 at the same time
by solving

min
ω1,ω2,c,w1,w2,w3,w4,b1,b2

Eu,v[(h(u)− v)2].

This problem turns out to be a nonconvex stochastic optimization problem. The big
question remains: how we solve this problem efficiently and whether we can provide
any guarantees to our solution procedure?

1.8 Exercises and notes

Exercises.

1. Consider the following loss function for logistic regression:

L(θ) = 1
N ∑

N
i=1 log

(
1+ e−u(i)θ T v(i)

)
= 1

N ∑
N
i=1 log

(
hθ (v(i)u(i))

)
,

where hθ (x) = g(θ T x) and g(z) = 1/(1+ e−z). Find the Hessian H for this func-
tion and show that zT Hz≥ 0 for any vector z.

2. Consider the poisson distribution parameterized by λ :

p(v;λ ) = e−λ λ y

y! .

Please show that the Poisson distribution is in the exponential family. If you would
like to design a generalized linear model, what would be the decision function?
How would you formulate the maximum log-likelihood for a given set of training
examples {(u(i),v(i))}?

3. Let u and v be given and denote x≡ (w1,w2,b1,w3,w4,b2,ω1,ω2,c). Also let us
denote

h(u;x) := g(ω1h1(u;w1,w2,b1)+ω2h2(u,w3,w4,b2)+ c)

= g(ω1g(w1u1 +w2u2 +b1)+ω2g(w3u1 +w4u2 +b2)+ c,

where
g(z) = 1

1+exp(−z) .

and define f (x) = [h(u;x)− v]2

a. Compute the Hessian of f and show that f is not necessarily convex.
b. Compute the gradient of f with respect to x.
c. Discuss how to evaluate the gradient of f efficiently in computer.
d. Derive the conditions under which the gradients of f are Lipschitz continuous,

i.e.,
‖∇ f (x1)−∇ f (x2)‖ ≤ L‖x1− x2‖, ∀x1,x2 ∈ R9,

for some L > 0.
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Notes. Further reading on statistical learning models and deep learning archi-
tectures can be found in [37] and [9], respectively. Some recent online course
materials for machine learning can be found, e.g., on [25].



Chapter 2
Convex Optimization Theory

Many machine learning tasks can be formulated as an optimization problem given in
the form of

min
x∈X

f (x), (2.0.1)

where f , x and X denote the objective function, decision variables and feasible
set, respectively. Unfortunately, to solve an optimization problem is challenging. In
general, we cannot guarantee whether one can find an optimal solution, and if so,
how much computational effort one needs. However, it turns out that we can provide
such guarantees for a special but broad class optimization problems, namely convex
optimization, where X is a convex set and f is a convex function. In fact, many
machine learning models we formulated so far, such as least square linear regression,
logistic regression, and support vector machine, are convex optimization problems.

Our goal in this chapter is to provide a brief introduction to the basic convex
optimization theory, including convex sets, convex functions, strong duality, and KKT
conditions etc. We will also briefly discuss some consequences of these theoretic
results in machine learning, e.g., the representer theorem, Kernel trick, and dual
support vector machine. We include proofs for some important results but the readers
can choose to skip them for the first pass through the text.

2.1 Convex sets

2.1.1 Definition and examples

We begin with the definition of the notion of a convex set.

Definition 2.1. A set X ⊆ Rn is said to be convex if it contains all of its segments,
that is

λx+(1−λ )y ∈ X , ∀(x,y,λ ) ∈ X×X× [0,1].

23
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Note that the point λx+ (1− λ )y is called a convex combination of x and y.
Figure 2.1 show the examples of a convex set (left) and a nonconvex set (right).

Fig. 2.1: Convex vs. nonconvex sets

It is easy to check that the following sets are convex.

a) n-dimensional Euclidean space, Rn. Given x,y ∈ Rn, we must have λx+(1−
λ )y ∈ Rn.

b) Nonnegative orthant, Rn
+ := {x ∈Rn : xi ≥ 0, i = 1, . . . ,n}. Let x,y ∈Rn

+ be given.
Then for any λ ∈ [0,1],

(λx+(1−λ )y)i = λxi +(1−λ )yi ≥ 0.

c) Balls defined by an arbitrary norm, {x ∈ Rn|‖x‖ ≤ 1} (e.g., the l2 norm ‖x‖2 =√
∑

n
i=1x2

i or l1 norm ‖x‖1 = ∑
n
i=1|xi| balls). To show this set is convex, it suffices

to apply the Triangular inequality and the positive homogeneity associated with a
norm. Suppose that ‖x‖ ≤ 1,‖y‖ ≤ 1 and λ ∈ [0,1]. Then

‖λx+(1−λ )y‖ ≤ ‖λx‖+‖(1−λ )y‖= λ‖x‖+(1−λ )‖y‖ ≤ 1.

d) Affine subspace, {x ∈ Rn|Ax = b}. Suppose x,y ∈ Rn, Ax = b and Ay = b. Then

A(λx+(1−λ )y) = λAx+(1−λ )Ay = b.

e) Polyhedron, {x ∈ Rn|Ax≤ b}. For any x,y ∈ Rn such that Ax≤ b and Ay≤ b, we
have

A(λx+(1−λ )y) = λAx+(1−λ )Ay≤ b

for any λ ∈ [0,1].
f) The set of all positive semidefinite matrices Sn

+. Sn
+ consists of all matrices

A ∈ Rn×n such that A = AT and xT Ax≥ 0 for all x ∈ Rn. Now consider A,B ∈ S+
and λ ∈ [0,1]. Then we must have

[λA+(1−λ )B]T = λAT +(1−λ )BT = λA+(1−λ )B.

Moreover, for any x ∈ Rn,

xT (λA+(1−λ )B)x = λxT Ax+(1−λ )xT Bx≥ 0.
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g) Intersections of convex sets. Let Xi, i = 1, . . . ,k, be convex sets. Assume that
x,y ∈ ∩k

i=1Xi, i.e., x,y ∈ Xi for all i = 1, . . . ,k. Then for any λ ∈ [0,1], we have
λx+(1−λ )y ∈ Xi by the convexity of Xi, i = 1, . . . ,k, whence λx+(1−λ )y ∈
∩k

i=1Xi.
h) Weighted sums of convex sets. Let X1, ...,Xk ⊆ Rn be nonempty convex subsets

and λ1, ...,λk be reals. Then the set

λ1X1 + ...+λkXk
≡ {x = λ1x1 + ...+λkxk : xi ∈ Xi,1≤ i≤ k}

is convex. The proof also follows directly from the definition of convex sets.

2.1.2 Projection onto convex sets

In this subsection we define the notion of projection over a convex set, which is
important to the theory and computation of convex optimization.

Definition 2.2. Let X ⊂ Rn be a closed convex set. For any y ∈ Rn, we define the
closest point to y in X as:

ProjX (y) = argminx∈X‖y− x‖2
2. (2.1.2)

ProjX (y) is called the projection of y onto X .

In the above definition, we require the set X to be closed in order to guarantee
the existence of projection. On the other hand, if X is not closed, then the projection
over X is not well-defined. As an example, the projection of the point {2} onto the
interval (0,1) does not exist. The existence of the projection over a closed convex set
is formally stated as follows.

Proposition 2.1. Let X ⊂ Rn be a closed convex set, and y ∈ Rn be given. Then
ProjX (y) must exist.

Proof. Let {xi} ⊆ X be a sequence such that

‖y− xi‖2→ inf
x∈X
‖y− x‖2, i→ ∞.

The sequence {xi} clearly is bounded. Passing to a subsequence, we may assume
that xi→ x̄ as i→ ∞. Since X is closed, we have x̄ ∈ X , and

‖y− x̄‖2 = lim
i→∞
‖y− xi‖2 = inf

x∈X
‖y− x‖2.

The following result further shows that the projection onto a closed convex set X
is unique.
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Proposition 2.2. Let X be a closed convex set, and y ∈ Rn be given. Then ProjX (y)
is unique.

Proof. Let a and b be two closest to y points in X , so that ‖y−a‖2 = ‖y−b‖2 = d.
Since X is convex, the point z = (a+ b)/2 ∈ X . Therefore ‖y− z‖2 ≥ d. We now
have

‖(y−a)+(y−b)‖2
2︸ ︷︷ ︸

=‖2(y−z)‖22≥4d2

+‖(y−a)− (y−b)‖2
2︸ ︷︷ ︸

=‖a−b‖2

= 2‖y−a‖2
2 +2‖y−b‖2

2︸ ︷︷ ︸
4d2

,

whence ‖a−b‖2 = 0. Thus, the closest to y point in X is unique.

In many cases when the set X is relatively simple, we can compute ProjX (y)
explicitly. In fact, in Section 1.4, we computed the distance from a given point y ∈Rn

to a given hyperplane H := {x ∈ Rn|wT x+b = 0} by using projection. Following
the same reasoning (see Figure 2.2.a)), we can write down

ProjH(y) = y− (wT y+b)w
‖w‖22

.

Fig. 2.2: Projection over convex sets

As another example, let us consider the projection of y ∈ Rn onto the standard
Euclidean ball defined as B := {x ∈ Rn|‖x‖2 ≤ 1} (see Figure 2.2.b)). We can easily
see that ProjB(y) =

y
‖y‖2 .

Projection over a convex set will be used extensively as a subroutine for solving
more complicated optimization problems later in this book.
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2.1.3 Separation theorem

One fundamental result in convex analysis is the Separation Theorem. In this section,
we will prove the separation theorem based on the projection onto a closed convex
set and discuss some of its consequences.

We first discuss the separation of a point from a closed convex set.

Theorem 2.1. Let X ⊆ Rn be a nonempty closed convex set, and a point y /∈ X be
given. Then there exists w ∈ Rn, w 6= 0 such that

〈w,y〉< 〈w,x〉, ∀x ∈ X .

Proof. Our proof is based on projecting y onto the set X . In particular, let ProjX (y)
be defined in (2.1.2), we show that the vector w = y− ProjX (y) separates y and
X . Note that w 6= 0 since y /∈ X . Also let x ∈ X be given and denote z = tx+(1−
t)ProjX (y) for any t ∈ [0,1]. Then we must have z ∈ X and hence

‖y−ProjX (y)‖2
2 ≤ ‖y− z‖2 = ‖y− [tx+(1− t)ProjX (y)]‖2

2

= ‖y−ProjX (y)− t(x−ProjX (y))‖2
2 = ‖w− t(x−ProjX (y))‖2

2.

Define φ(t) := ‖y−ProjX (y)− t(x−ProjX (y))‖2
2. It then follows from the above

inequality that φ(0)≤ φ(t) for any t ∈ [0,1]. We have

0≤ φ
′(0) =−2wT (x−ProjX (y)),

which implies that

∀x ∈ X : wT x≤ wT ProjX (y) = wT (y−w) = wT y−‖w‖2
2.

We can generalize the above theorem to separate a closed convex set from another
compact convex set.

Corollary 2.1. Let X1,X2 be two nonempty closed convex sets and X1∩X2 = /0. If X2
is bounded, there exists w ∈ Rn such that

sup
x∈X1

wT x < sup
x∈X2

wT x. (2.1.3)

Proof. The set X1−X2 is convex (the weighted sum of convex sets) and closed (the
difference of a closed with a compact set). Moreover, X1∩X2 = /0 implies 0 /∈ X1−X2.
So by Theorem 2.1, there exists w such that

sup
y∈X1−X2

wT y < wT 0 = 0.

Or equivalently,
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0 > sup
x1∈X1,x2∈X2

wT (x1− x2)

= sup
x1∈X1

wT x1 + sup
x2∈X2

wT (−x2)

= sup
x1∈X1

wT x1− inf
x2∈X2

wT x2.

Since X2 is bounded, the last infimum becomes a min. Moreover, it is finite and can
be moved to the left-hand side.

When X2 is unbounded, Corollary 2.1 may fail. One possible fix is to replace the
strict inequality in (2.1.3) by an inequality. However, this might cause some problems.
For example, consider the two line segments[(−1;0),(0,0)] and [(−1;0),(2,0)]. The
vector w = (0,1) appears to “separate” these two line segments, while apparently
they are not separable.

To address this issue, we say that a linear form wT x properly separates nonempty
sets S and T if and only if

sup
x∈S

wT x ≤ inf
y∈T

wT y

inf
x∈S

wT x < sup
y∈T

wT y (2.1.4)

In this case, the hyperplanes associated with w that separate S and T are exactly the
hyperplanes

{x : wT x−b = 0} with sup
x∈S

wT x≤ b≤ inf
y∈T

wT y.

The proper separation property holds under quite general assumptions on the
intersection X1∩X2. To state this more general result, we need to introduce the notion
of relative interior ri(X), defined as the interior of X when we view it as subset of the
affine subspace it generates. Without specific mention, we assume that the set X is
full dimensional so that int(X) = ri(X).

Theorem 2.2. If the two nonempty convex sets X1 and X2 satisfy ri(X1)∩ ri(X2) = /0,
they can be properly separated.

The above separation theorem can be derived from Theorem 2.1, but requiring us
to establish a few technical results. We will first prove the result about the separability
of a set in Rn.

Lemma 2.1. Every nonempty subset S⊆ Rn is separable: one can find a sequence
{xi} of points from S which is dense in S, i.e., is such that every point x ∈ S is the
limit of an appropriate subsequence of the sequence.

Proof. Let r1,r2, ... be the countable set of all rational vectors in Rn. For every
positive integer t, let Xt ⊂ S be the countable set given by the following construction:
we examine, one after another, at the points r1,r2, ... and for every point rs check
whether there is a point z ∈ S which is at most at the distance 1/t away from rs. If
points z with this property exist, we take one of them and add it to Xt and then pass
to rs+1, otherwise directly pass to rs+1.
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It is clear that every point x ∈ S is at the distance at most 2/t from certain point
of Xt . Indeed, since the rational vectors are dense in Rn, there exists s such that rs is
at the distance ≤ 1

t from x. Therefore, when processing rs, we definitely add to Xt a
point z which is at the distance ≤ 1/t from rs and thus is at the distance ≤ 2/t from x.
By construction, the countable union ∪∞

t=1Xt of countable sets Xt ⊂ S is a countable
set in S, and by the fact that every point x ∈ S is at most 2/t from Xt , this set is dense
in S.

With the help of Lemma 2.1, we can refine the basic separation result stated in
Theorem 2.1 by removing the “closedness” assumption, and using the notion of
proper separation.

Proposition 2.3. Let X ⊆ Rn be a nonempty convex set and y ∈ Rn,y /∈ X be given.
Then there exists w ∈ Rn, w 6= 0 such that

sup
x∈X

wT x ≤ wT y,

inf
x∈X

wT x < wT y.

Proof. First note that we can perform the following simplification.

• Shifting X and {y} by −y (which clearly does not affect the possibility of separat-
ing the sets), we can assume that {0} 6⊂ X .

• Replacing, if necessary, Rn with Lin(X), we may further assume that Rn =Lin(X),
i.e., the linear subspace generated by X .

In view of Lemma 2.1, let {xi ∈ X} be a sequence which is dense in X . Since X is
convex and does not contain 0, we have

0 6∈ Conv({x1, . . . ,xi}) ∀i.

Noting that Conv({x1, . . . ,xi}) are closed convex sets, we conclude from Theorem 2.1
that

∃wi : 0 = wT
i 0 > max

1≤ j≤i
wT

i x j. (2.1.5)

By scaling, we may assume that ‖wi‖2 = 1. The sequence {wi} of unit vectors
possesses a converging subsequence {wis}∞

s=1 and the limit w of this subsequence
is also a unit vector. By (2.1.5), for every fixed j and all large enough s we have
wT

is x j < 0, whence
wT x j ≤ 0 ∀ j. (2.1.6)

Since {x j} is dense in X , (2.1.6) implies that wT x≤ 0 for all x ∈ X , and hence that

sup
x∈X

wT x≤ 0 = wT 0. (2.1.7)

Now, it remains to verify that

inf
x∈X

wT x < wT 0 = 0.
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Assuming the opposite, (2.1.7) would imply that wT x = 0 for all x ∈ X , which is
impossible, since Lin(X) = Rn and f is nonzero.

We can now further show that if two nonempty convex sets (not necessarily
bounded or closed) can be properly separated.

Proposition 2.4. If the two nonempty convex sets X1 and X2 satisfy X1∩X2 = /0, they
can be properly separated.

Proof. Let X̂ = X1−X2. The set X̂ clearly is convex and does not contain 0 (since
X1∩X2 = /0). By Proposition 2.3, X̂ and {0} can be separated: there exists f such
that

sup
x∈X1

wT s− inf
y∈X2

wT y = sup
x∈X1,y∈X2

[wT x−wT y] ≤ 0 = inf
z∈{0}

wT z,

inf
x∈X1

wT x− sup
y∈X2

wT y = inf
x∈X1,y∈X2

[wT x−wT y] < 0 = sup
z∈{0}

wT z,

whence
sup
x∈X1

wT x ≤ inf
y∈X2

wT y,

inf
x∈X1

wT x < sup
y∈X2

wT y.

We are now ready to prove Theorem 2.2, which is even stronger than Proposi-
tion 2.4 in the sense that we only need riX1∩ riX2 = /0. In other words, these two sets
can possibly intersect on their boundaries.
Proof of Theorem 2.2. The sets X ′1 = riX1 and X ′2 = riX2 are convex and nonempty,
and these sets do not intersect. By Proposition 2.4, X ′1 and X ′2 can be separated: for
properly chosen w, one has

sup
x∈X ′1

wT x ≤ inf
y∈X ′2

wT y,

inf
x∈X ′1

wT x < sup
y∈X ′2

wT y.

Since X ′1 is dense in X1 and X ′2 is dense in X2, inf’s and sup’s in the above relations
remain the same when replacing X ′1 with X1 and X ′2 with X2. Thus, w separates X1
and X2.

In fact, we can show the reverse statement of Theorem 2.2 also holds.

Theorem 2.3. If the two nonempty convex sets X1 and X2 can be properly separated,
then ri(X1)∩ ri(X2) = /0.

Proof. We will first need to prove the following claim.
Claim. Let X be a convex set, f (x) = wT x be a linear form and a ∈ riX . Then

wT a = max
x∈X

wT x⇔ f (x) = const ∀x ∈ X .

Indeed, shifting X , we may assume a = 0. Let, on the contrary to what should be
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proved, wT x be non-constant on X , so that there exists y ∈ X with wT y 6= wT a = 0.
The case of wT y > 0 is impossible, since wT a = 0 is the maximum of wT x on X .
Thus, wT y < 0. The line {ty : t ∈ R} passing through 0 and through y belongs to
Aff(X); since 0 ∈ riX , all points z = −εy on this line belong to X , provided that
ε > 0 is small enough. At every point of this type, wT z > 0, which contradicts the
fact that maxx∈X wT x = wT a = 0.

Now let us use the above claim to prove our main result. Let a ∈ riX1 ∩ riX2.
Assume, on contrary to what should be proved, that wT x separates X1, X2, so that

sup
x∈X1

wT x≤ inf
y∈X2

wT y.

Since a ∈ X2, we get wT a≥ supx∈X1
wT x, that is, wT a = maxx∈X1 wT x. By the above

claim, wT x = wT a for all x ∈ X1. Moreover, since a ∈ X1, we get wT a≤ infy∈X2 wT y,
that is, wT a = miny∈T wT y. By the above claim, wT y = wT a for all y ∈ X2. Thus,

z ∈ X1∪X2⇒ wT z≡ wT a,

so that w does not properly separate X1 and X2, which is a contradiction.

As a consequence of Theorem 2.2, we have the following supporting hyperplane
theorem.

Corollary 2.2. Let X ⊆Rn be a convex set, and y be a point from its relative boundary.
Then there exists w ∈ Rn and w 6= 0 such that

〈w,y〉 ≥ sup
x∈X
〈w,x〉, and 〈w,y〉> inf

x∈X
〈w,x〉.

The hyperplane {x|〈w,x〉= 〈w,y〉} is called a supporting hyperplane of X at y.

Proof. Since y is a point from the relative boundary of X , it is outside the relative
interior of X and therefore {x} and riX can be separated by the Separation Theorem.
The separating hyperplane is exactly the desired supporting to X at y hyperplane.

2.2 Convex functions

2.2.1 Defintion and examples

Let X ⊆ Rn be a given convex set. A function f : X → R is said to be convex if it
always lies below its chords, that is

f (λx+(1−λ )y)≤ λ f (x)+(1−λ ) f (y), ∀(x,y,λ ) ∈ X×X× [0,1]. (2.2.8)
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Fig. 2.3: The graph of a convex function

We say a function is strictly convex if (2.2.8) holds with strict inequality for any
x 6= y and λ ∈ (0,1). We say that f is concave if − f is convex, and similarly that f
is strictly concave if − f is strictly concave.

Some examples of convex functions are given as follows.

a) Exponential, f (x) = exp(ax) for any a ∈ R.
b) Negative logarithm, f (x) =− logx with x > 0.
c) Affine functions, f (x) = wT x+b.
d) Quadratic functions, f (x) = 1

2 xT Ax+bT x with A� 0 (positive semidefinite).
e) Norms, f (x) = ‖x‖.
f) Nonnegative weighted sums of convex functions. Let f1, f2, . . . , fk be convex func-

tions and w1,w2, . . . ,wk be nonnegative real numbers. Then f (x) = ∑
k
i=1wi fi(x)

is a convex function.

2.2.2 Differentiable convex functions

Suppose that a function f : X→R is differentiable over its domain. Then f is convex
if and only if

f (y)≥ f (x)+ 〈∇ f (x),y− x〉
for any x,y∈X , where ∇ f denotes the gradients of f . The function f (x)+〈∇ f (x),y−
x〉 is the first-order Taylor approximation of f at the point x. The above first-order
condition for convexity says that f is convex if and only if the tangent line underesti-
mates f everywhere in its domain. Similar to the definition of convexity, f will be
strictly convex if this condition holds with strict inequality, concave if the inequality
is reversed, and strictly concave if the reverse inequality is strict.

Suppose that a function f : X →R is twice differentiable. Then f is convex if and
only its Hessian is positive semidefinite, i.e.,

∇
2 f (x)� 0.

In one dimension, this is equivalent to the condition that the second-order derivative
f ′′(x) is non-negative. Again analogous to both the definition and the first-order
conditions for convexity, f is strictly convex if its Hessian is positive definite, concave
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if the Hessian is negative semidefinite, and strictly concave if the Hessian is negative
definite. The function f is said to be strongly convex modulus µ with respect to the
norm ‖ · ‖ if

f (y)≥ f (x)+ 〈g,y− x〉+ µ

2 ‖y− x‖2

for some µ > 0. Clearly, strong convexity implies strict convexity.

2.2.3 Non-differentiable convex functions

Note that convex functions are not always differentiable everywhere over its domain.
For example, the absolute value function f (x) = |x| is not differentiable when x = 0.
In this subsection, we will introduce an important notion about convex functions, i.e.,
subgradients, to generalize the gradients for differentiable convex functions.

Definition 2.3. g ∈ Rn is a subgradient of f at x ∈ X if for any y ∈ X

f (y)≥ f (x)+ 〈g,y− x〉.

The set of subgradients of f at x is called the subdifferential, denoted by ∂ f (x).

In order to show the existence of the subgradients for a convex function, we need
to use the epigraph of a function f : X → R given by

epi( f ) = {(x, t) ∈ X×R : f (x)≤ t} .

It can be easily shown that f is convex if and only if epi( f ) is a convex set.
The next result establishes the existence of subgradients for convex functions.

Proposition 2.5. Let X ⊆ Rn be convex and f : X → R. If ∀x ∈ X, ∂ f (x) 6= /0 then f
is convex. Moreover, if f is convex then for any x ∈ ri(X), ∂ f (x) 6= /0.

Proof. The first claim is obvious. Let g ∈ ∂ f (λx+(1−λ )y). Then by definition
we have

f (y)≥ f (λx+(1−λ )y)+λ 〈g,y− x〉,
f (x)≥ f (λx+(1−λ )y)+(1−λ )〈g,x− y〉.

Multiplying the first inequality by 1−λ and the second one by λ , and then summing
them up, we show the convexity of f .

We now show that f has subgradients in the interior of X . We will construct such
a subgradient by using a supporting hyperplane to the epigraph of f . Let x ∈ X . Then
(x, f (x))∈ epi( f ). By the convexity of epi( f ) and the separating hyperplane theorem,
there exists (w,v) ∈ Rn×R ((w,v) 6= 0) such that

〈w,x〉+ v f (x)≥ 〈w,y〉+ vt, ∀(y, t) ∈ epi( f ). (2.2.9)



34 2 Convex Optimization Theory

Clearly, by tending t to infinity, we can see that v≤ 0. Now let us assume that x is in
the interior of X . Then for ε > 0 small enough, y = x+ εw ∈ X , which implies that
v 6= 0, since otherwise, we have 0≥ ε‖w‖2

2 and hence w = 0, contradicting with the
fact that (w,v) 6= 0. Letting t = f (y) in (2.2.9), we obtain

f (y)≥ f (x)+ 1
v 〈w,y− x〉,

which implies that w/v is a subgradient of f at x.

Let f be a convex and differentiable function. Then by definition,

f (y)≥ 1
λ
[ f ((1−λ )x+λy)− (1−λ ) f (x)]

= f (x)+ 1
λ
[ f ((1−λ )x+λy)− f (x)] .

Tending λ to 0, we show that ∇ f (x) ∈ ∂ f (x).

Below we provide some basic subgradient calculus for convex functions. Observe
that many of them mimic the calculus for gradient computation.

a) Scaling: ∂ (a f ) = a∂ f provided a > 0. The condition a > 0 makes function f
remain convex.

b) Addition: ∂ ( f1 + f2) = ∂ ( f1)+∂ ( f2).
c) Affine composition: if g(x) = f (Ax+b), then ∂g(x) = AT ∂ f (Ax+b).
d) Finite pointwise maximum: if f (x) = maxi=1,...,m fi(x), then

∂ f (x) = conv
{
∪i: fi(x)= f (x)∂ fi(x)

}
,

which is the convex hull of union of subdifferentials of all active i : fi(x) = f (x)
functions at x.

e) General pointwise maximum: if f (x) = maxs∈S fs(x), then under some regularity
conditions (on S and fs),

∂ f (x) = cl
{

conv
(
∪s: fs(x)= f (x)∂ fs(x)

)}
.

f) Norms: important special case, f (x) = ‖x‖p. Let q be such that 1/p+1/q = 1,
then

∂ f (x) = {y : ‖y‖q ≤ 1andyT x = max{zT x : ‖z‖q ≤ 1}.
Other notions of convex analysis will prove to be useful. In particular the notion

of closed convex functions is convenient to exclude pathological cases: these are
convex functions with closed epigraphs (see Section 2.4 for more details).

2.2.4 Lipschitz continuity of convex functions

Our goal in this section is to show that convex functions are Lipschitz continuous
inside the interior of its domain.
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We will first show that a convex function is locally bounded.

Lemma 2.2. Let f be convex and x0 ∈ intdom f . Then f is locally bounded, i.e.,
∃ε > 0 and M(x0,ε)> 0 such that

f (x)≤M(x0,ε) ∀ x ∈ Bε(x0) := {x ∈ Rn : ‖x− x0‖2 ≤ ε}.

Proof. Since x0 ∈ intdom f , ∃ε > 0 such that the vectors x0± εei ∈ intdom f for
i = 1, . . . ,n, where ei denotes the unit vector along coordinate i. Also let Hε(x0) :=
{x ∈ Rn : ‖x− x0‖∞ ≤ ε} denote the hypercube formed by the vectors x0± εei. It
can be easily seen that Bε(x0)⊆ Hε(x0) and hence that

max
x∈Bε (x0)

f (x)≤ max
x∈Hε (x0)

f (x)≤ max
i=1,...,n

f (x0± εei) =: M(x0,ε).

Next we show that f is locally Lipschitz continuous.

Lemma 2.3. Let f be convex and x0 ∈ intdom f . Then f is locally Lipschitz, i.e.,
∃ε > 0 and M̄(x0,ε)> 0 such that

| f (y)− f (x0)| ≤ M̄(x0,ε)‖x− y‖, ∀y ∈ Bε(x0) := {x ∈ Rn : ‖x− x0‖2 ≤ ε}.
(2.2.10)

Proof. We assume that y 6= x0 (otherwise, the result is obvious). Let α = ‖y−
x0‖2/ε . We extend the line segment connecting x0 and y so that it intersects the ball
Bε(x0), and then obtain two intersection points z and u (see Figure 2.4). It can be
easily seen that

y = (1−α)x0 +αz, (2.2.11)
x0 = [y+αu]/(1+α). (2.2.12)

It then follows from the convexity of f and (2.2.11) that

f (y)− f (x0)≤ α[ f (z)− f (x0)] =
f (z)− f (x0)

ε
‖y− x0‖2

≤ M(x0,ε)− f (x0)
ε

‖y− x0‖2,

where the last inequality follows from Lemma 2.2. Similarly, by the convexity f ,
(2.2.11) and Lemma 2.2, we have

f (x0)− f (y)≤ ‖y− x0‖2
M(x0,ε)− f (x0)

ε
.

Combining the previous two inequalities, we show (2.2.10) holds with M̄(x0,ε) =
[M(x0,ε)− f (x0)]/ε .

The following simple result shows the relation between the Lipschitz continuity
of f and the boundedness of subgradients.

Lemma 2.4. The following statements hold for a convex function f .
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Fig. 2.4: Local Lipschitz continuity of a convex function

a) If x0 ∈ intdom f and f is locally Lipschitz (i.e., (2.2.10) holds), then ‖g(x0)‖ ≤
M̄ε(x0) for any g(x0) ∈ ∂ f (x0).

b) If ∃g(x0)∈ ∂ f (x0) and ‖g(x0)‖2 ≤ M̄ε(x0), then f (x0)− f (y)≤ M̄ε(x0)‖x0−y‖2.

Proof. We first show part a). Let y = x0 + εg(x0)/‖g(x0)‖2. By the convexity of f
and (2.2.10), we have

ε‖g(x0)‖2 = 〈g(x0),y− x0〉 ≤ f (y)− f (x0)≤ M̄ε(x0)‖y− x0‖= εM̄ε(x0),

which implies part a). Part b) simply follows the convexity of f , i.e.,

f (x0)− f (y)≤ 〈 f ′(x0),x0− y〉 ≤ M̄ε(x0)‖x0− y‖2.

Below we state the global Lipschitz continuity of a convex function in its interior
of domain.

Theorem 2.4. Let f be a convex function and let K be a closed and bounded set
contained in the relative interior of the domain dom f of f . Then f is Lipschitz
continuous on K, i.e., there exists constant M such that

| f (x)− f (y)| ≤MK‖x− y‖2 ∀x,y ∈ K. (2.2.13)

Proof. The result directly follows from the local Lipschitz continuity of a convex
function (see Lemmas 2.3 and 2.4) and the boundedness of K.

Remark 2.1. All three assumptions on K, i.e., (a) closedness, (b) boundedness, and
(c) K ⊂ ridom f – are essential, as it is seen from the following three examples:

• f (x) = 1/x, domF = (0,+∞), K = (0,1]. We have (b), (c) but not (a); f is neither
bounded, nor Lipschitz continuous on K.

• f (x) = x2, dom f = R, K = R. We have (a), (c) and not (b); f is neither bounded
nor Lipschitz continuous on K.
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• f (x)=−√x, dom f = [0,+∞), K = [0,1]. We have (a), (b) and not (c); f is not Lip-
schitz continuous on K although is bounded. Indeed, we have limt→+0

f (0)− f (t)
t =

limt→+0 t−1/2 = +∞, while for a Lipschitz continuous f the ratios t−1( f (0)−
f (t)) should be bounded.

2.2.5 Optimality conditions for convex optimization

The following results state the basic optimality conditions for convex optimization.

Proposition 2.6. Let f be convex. If x is a local minimum of f then x is a global
minimum of f . Furthermore this happens if and only if 0 ∈ ∂ f (x).

Proof. It can be easily seen that 0 ∈ ∂ f (x) if and only if x is a global minimum of
f . Now assume that x is a local minimum of f . Then for λ > 0 small enough one has
for any y,

f (x)≤ f ((1−λ )x+λy)≤ (1−λ ) f (x)+λ f (y),

which implies that f (x)≤ f (y) and thus that x is a global minimum of f .

The above result can be easily generalized to the constrained case. Given a convex
set X ⊆ Rn and a convex function f : X → R, we intend to

min
x∈X

f (x).

We first define the indicator function of the convex set X , i.e.,

IX (x) :=

{
0, x ∈ X ,

∞, Otherwise.

By definition of subgradients, we can see that the sudifferential of IX is given by the
normal cone of X , i.e.,

∂ IX (x) = {w ∈ Rn|〈w,y− x〉 ≤ 0,∀y ∈ X}. (2.2.14)

Proposition 2.7. Let f : X → R be a convex function and X be a convex set. Then x∗

is an optimal solution of minx∈X f (x) if and only if there exists g∗ ∈ ∂ f (x∗) such that

〈g∗,y− x∗〉 ≥ 0,∀y ∈ X .

Proof. Clearly the problem is equivalent to minx∈Rn f (x)+ IX (x), where the IX
denotes the indicator function of X . The results then immediately follows from
(2.2.14) and Proposition 2.6.

In particular, if X = Rn, then we must have 0 ∈ ∂ f (x), which reduces to the case
in Proposition 2.6.
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2.2.6 Representer theorem and Kernel

In this subsection, we introduce a very important application of the optimality
condition for convex optimization in machine learning.

Recall that many supervised machine learning models can be written in the
following form:

f ∗ := min
x∈Rn

{
f (x) := ∑

N
i=1L(xT ui,vi)+λ r(x)

}
, (2.2.15)

for some λ ≥ 0. For the sake of simplicity we assume that r(x) = ‖x‖2
2/2. It turns out

that under these assumptions, we can always write the solutions to problem (2.2.15)
as a linear combination of the input variables ui’s as shown in the following statement.

Theorem 2.5. The optimal solution of (2.2.15) with r(x) = ‖x‖2
2/2 can be written as

x∗ = ∑
N
i=1αiu(i)

for some real-valued weights αi.

Proof. Let L′(z,v) denote a subgradient of L w.r.t. z. Then by the chain rule of
subgradient computation, the sugradients of f can be written in the form of

f ′(x) = ∑
N
i=1L′(xT u(i))u(i)+λx.

Noting that 0 ∈ ∂ f (x∗) and letting wi = L′(xT u(i)), there must exist wi’s such that

x =− 1
λ

∑
N
i=1wiu(i).

The result then follows by setting αi =−1/(λwi).

This result has some important consequence in machine learning. For any inner
product of θ T u in machine learning models, we can replace it with

θ
T u = uT

θ = ∑
N
i=1αi(u(i))T u(i),

and then view these αi, i = 1, . . . ,N, as unknown variables (or parameters).
More generally, we may consider a nonlinear transformation of our original input

variables u. Recall in our regression example in Chapter 1, we have an input variable
u, i.e., the rating of a friend (say Judy), and we can consider regression using the
features u, u2 and u3 to obtain a cubic function. We can use φ(u) to define such a
nonlinear mapping from the original input to a new feature space.

Rather than learning the parameters associated with the original input variables u,
we may instead learn using these expanded features φ(u). To do so, we simply need
to go over our previous models, and replace u everywhere in it with φ(u).

Since the model can be written entirely in terms of the inner products 〈u,z〉, we
can replace all those inner products with 〈φ(u),φ(z)〉. Given a feature mapping φ ,
let us define the so-called kernel
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K(u,z) = φ(u)T
φ(z).

Then, we replace everywhere we previously had 〈u,z〉 with K(u,z). In particular, we
can write the new objective function as

Φ(α) = f (x) = ∑
N
i=1L(xT u(i),v(i))+ λ

2 ‖x‖2
2

= ∑
N
i=1L

(
φ(u(i))T

∑
N
j=1α jφ(u( j)),vi

)
+ λ

2 ‖∑N
j=1α jφ(u( j))‖2

2

= ∑
N
i=1L

(
φ(u(i))T

∑
N
j=1α jφ(u( j)),vi

)
+ λ

2 ∑
N
i=1∑

N
j=1αiα jφ(u(i))T

φ(u( j))

= ∑
N
i=1L

(
∑

N
j=1α jK(u(i),u( j)),vi

)

+ λ

2 ∑
N
i=1∑

N
j=1αiα jK(u(i),u( j)).

In this way, we can write the objective function in terms of the Kernel matrix

K = {K(u(i),v( j))}N
i, j=1.

Even more interestingly, in many cases, we do not need to compute the nonlinear
mapping φ(u) explicitly for every u, since the Kernel might be easier to compute
than φ . One commonly used Kernel is the Gaussian or Radial Basis Function (RBF)
kernel given by

K(u,z) = exp
(

1
−2τ2 ‖u− z‖2

2

)

applicable to data in any dimension and the other one is the the min-kernel given by
K(x,z) = min(x,z) applicable to data in R.

2.3 Lagrange duality

In this section, we consider differentiable convex optimization problems of the form

f ∗ ≡minx∈X f (x)
s.t. gi(x)≤ 0, i = 1, . . . ,m,

h j(x) = 0, j = 1, . . . , p,
(2.3.16)

where X ⊆ Rn is a closed convex set, f : X → R and gi : X → R are differentiable
convex functions, and h j : Rn → R are affine functions. Our goal is to introduce
Lagrange duality and a few optimality conditions for these convex optimization
problems with functional constraints.
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2.3.1 Lagrange function and duality

We define the Lagrangian function L for (2.3.16) as

L(x,λ ,y) = f (x)+∑
m
i=1λigi(x)+∑

p
j=1y jh j(x),

for some λi ∈R+, i= 1, . . . ,m, and y j ∈R, j = 1, . . . , p. These λi’s and y j’s are called
dual variables or Lagrange multipliers.

Intuitively, the Lagrangian function L can be viewed as a relaxed version of
the objective function in the original problem (2.3.16) by allowing violation of the
constraints (hi(x)≤ 0 and g j(x) = 0).

Let us consider the minimization of the L(x,λ ,y) w.r.t. x. Suppose that λ ≥ 0 and
y ∈ Rp are given. Let us define

φ(λ ,y) := min
x∈X

L(x,λ ,y).

Clearly, for any feasible point x to (2.3.16) (i.e., x ∈ X , gi(x)≤ 0, and h j(x) = 0), we
have

L(x,λ ,y) = f (x)+∑
m
i=1λigi(x)+∑

p
j=1y jh j(x)

= f (x)+∑
m
i=1λigi(x)≤ f (x).

In particular, letting x = x∗ be the optimal solution of (2.3.16), we must have

φ(λ ,y)≤ f ∗.

In other words, φ(λ ,y) gives us a lower bound on the optimal value f ∗. In order to
obtain the strongest lower bound, we intend to maximize φ(λ ,y) w.r.t. λ ≥ 0 and
y ∈ Rp, and thus define the Lagrange dual as

φ
∗ ≡ max

λ≥0,y

{
φ(λ ,y) := min

x∈X
L(x,λ ,y)

}
. (2.3.17)

By construction, we must have
φ
∗ ≤ f ∗.

This relation is the so-called weak duality. What is more interesting is that un-
der certain conditions, we have φ ∗ = f ∗ as stated in Theorem 2.6. The proof of
this result, however, is more involved. Hence, we provide this proof separately in
Subsection 2.3.2.

Theorem 2.6. Suppose that (2.3.16) is below bounded and that there exists x̄ ∈ intX
s.t. g(x̄)< 0 and h(x̄) = 0. Then the Lagrange dual is solvable and we must have

φ
∗ = f ∗.
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The above theorem says that as long as the primal problem (2.3.16) has a strictly
feasible solution (called Slater condition), the optimal value for the Lagrange dual
must be equal to the optimal value of the primal. This result is called strong duality.
In practice, nearly all convex problems satisfy this type of constraint qualification,
and hence the primal and dual problems have the same optimal value.

2.3.2 Proof of strong duality

In this subsection, we provide a proof for the strong duality for convex optimization.
The proof follows from the separation theorem and the consequent convex theorem
on alternatives. For the sake of simplicity, we focus on the case when there exist only
nonlinear inequality constraints. The readers can easily adapt the proof to the case
when affine constraints do exist, or even further refine the results if there only exist
affine constraints.

Before proving Theorem 2.6, we will first establish the Convex Theorem on
Alternative (CTA). Consider a system of constraints on x

f (x) < c,
g j(x) ≤ 0, j = 1, ...,m,

x ∈ X ,
(I)

along with system of constraints on λ :

inf
x∈X

[ f (x)+∑
m
j=1λ jg j(x)] ≥ c,

λ j ≥ 0, j = 1, ...,m.
(II)

We first discuss the trivial part of the CTA.

Proposition 2.8. If (II) is solvable, then (I) is insolvable.

What is more interesting is that the reverse statement is also true under the slater
condition.

Proposition 2.9. If (I) is insolvable and the subsystem

g j(x) < 0, j = 1, ...,m,
x ∈ X

is solvable, then (II) is solvable.

Proof. Assume that (I) has no solutions. Consider two sets S and T in Rm+1:

S :=
{

u ∈ Rm+1 : u0 < c,u1 ≤ 0, ...,um ≤ 0
}
,

T :=





u ∈ Rm+1 : ∃x ∈ X :

f (x) ≤ u0
g1(x) ≤ u1
..........

gm(x) ≤ um




.
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First observe that S and T are nonempty convex sets. Moreover, S and T do not
intersect (otherwise (I) would have a solution). By Theorem 2.2, S and T can be
separated: ∃(a0, ...,am) 6= 0 such that

inf
u∈T

aT u≥ sup
u∈S

aT u

or equivalently,

inf
x∈X

inf
u0 ≥ f (x)
u1 ≥ g1(x)

...
um ≥ gm(x)

[a0u0 +a1u1 + ...+amum] ≥ sup
u0 < c
u1 ≤ 0

...
um ≤ 0

[a0u0 +a1u1 + ...+amum].

In order to bound the RHS, we must have a≥ 0, whence

inf
x∈X

[a0 f (x)+a1g1(x)+ ...+amgm(x)]≥ a0c. (2.3.18)

Finally, we observe that a0 > 0. Indeed, otherwise 0 6= (a1, ...,am)≥ 0 and

inf
x∈X

[a1g1(x)+ ...+amgm(x)]≥ 0,

while ∃x̄ ∈ X : g j(x̄) < 0 for all j. Now, dividing both sides of (2.3.18) by a0, we
have

inf
x∈X

[
f (x)+∑

m
j=1

(
a j
a0

)
g j(x)

]
≥ c.

By setting λ j = a j/a0 we obtain the result.

We are now ready to prove the strong duality.
Proof of Theorem 2.6. The system

f (x)< f ∗, g j(x)≤ 0, j = 1, ...,m, x ∈ X

has no solutions, while the system

g j(x)< 0, j = 1, ...,m, x ∈ X

has a solution. By CTA,

∃λ ∗ ≥ 0 : f (x)+∑ jλ
∗
j g j(x)≥ f ∗ ∀x ∈ X ,

whence
φ(λ ∗)≥ f ∗.

Combined with Weak Duality, the above inequality says that

f ∗ = φ(λ ∗) = φ
∗.
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2.3.3 Saddle points

Now let us examine some interesting consequences of strong duality. In particular,
we can derive a few optimality conditions for convex optimization in order to check
whether an x∗ ∈ X is optimal to (2.3.16) or not.

The first one is given in the form of a pair of saddle points.

Theorem 2.7. Let x∗ ∈ X be given.

a) If x∗ can be extended, by a λ ∗ ≥ 0 and y∗ ∈ Rp, to a saddle point of the Lagrange
function on X×{λ ≥ 0}:

L(x,λ ∗,y∗)≥ L(x∗,λ ∗,y∗)≥ L(x∗,λ ,y) ∀(x ∈ X ,λ ≥ 0,y ∈ Rp),

then x∗ is optimal for (2.3.16).
b) If x∗ is optimal for (2.3.16) which is convex and satisfies the Slater condition, then

x∗ can be extended, by a λ ∗ ≥ 0 and y∗ ∈ Rp, to a saddle point of the Lagrange
function on X×{λ ≥ 0}×Rp.

Proof. We first prove part a). Clearly,

sup
λ≥0,y

L(x∗,λ ,y) =
{
+∞, x∗ is infeasible
f (x∗), otherwise

Thus, λ ∗ ≥ 0, L(x∗,λ ∗,y∗)≥ L(x∗,λ ,y) ∀λ ≥ 0∀y is equivalent to

g j(x∗)≤ 0∀ j, λ
∗
i gi(x∗) = 0∀i, h j(x∗) = 0∀ j.

Consequently, L(x∗,λ ∗,y∗) = f (x∗), hence

L(x,λ ∗,y∗)≥ L(x∗,λ ∗,y∗) ∀x ∈ X

reduces to
L(x,λ ∗,y∗)≥ f (x∗) ∀x.

Since for λ ≥ 0 and y, one has f (x)≥L(x,λ ,y) for all feasible x, the above inequality
then implies that

x is feasible ⇒ f (x)≥ f (x∗).

We now show part b). By Lagrange Duality, ∃λ ∗ ≥ 0, y∗:

f (x∗) = φ(λ ∗,y∗)≡ inf
x∈X

[
f (x)+∑iλ

∗
i gi(x)+∑ jy

∗
jh j(x)

]
. (2.3.19)

Since x∗ is feasible, we have
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inf
x∈X

[
f (x)+∑iλ

∗
i gi(x)+∑ jy

∗
jh j(x)

]
≤ f (x∗)+∑iλ

∗
i gi(x∗)≤ f (x∗).

By (2.3.19), the last ”≤ ” here should be ” = ”. This identity, in view of the fact that
λ ∗ ≥ 0, is possible if and only if λ ∗j g j(x∗) = 0∀ j.T here f ore,wehave

f (x∗) = L(x∗,λ ∗,y∗)≥ L(x∗,λ ,y) ∀λ ≥ 0,∀y ∈ Rp,

where the last inequality follows from the definition of L (or weak duality). Now
(2.3.19) reads L(x,λ ∗,y∗)≥ f (x∗) = L(x∗,λ ∗,y∗).

2.3.4 Karush-Kuhn-Tucker conditions

We are now ready to derive the Karush-Kuhn-Tucker (KKT) optimality conditions
for convex programming.

Theorem 2.8. Let (2.3.16) be a convex program, let x∗ be its feasible solution, and
let the functions f , g1,...,gm be differentiable at x∗. Then

a) Exist Lagrange multipliers λ ∗ ≥ 0 and y∗ such that

∇ f (x∗)+∑
m
i=1λ ∗i ∇gi(x∗)+∑

p
i=1y∗j∇h j(x∗) ∈ N∗X (x

∗)
λ ∗i gi(x∗) = 0, i≤ m [complementary slackness]
h j(x∗) = 0, j ≤ p

is sufficient for x∗ to be optimal.
b) If (2.3.16) satisfies restricted Slater condition: ∃x̄ ∈ rintX : gi(x̄) ≤ 0,h j(x̄) = 0

for all constraints and g j(x̄) < 0 for all nonlinear constraints, then the KKT is
necessary and sufficient for x∗ to be optimal.

Proof. We first prove part a). Indeed, complementary slackness plus λ ∗ ≥ 0 ensure
that

L(x∗,λ ∗,y∗)≥ L(x∗,λ ,y) ∀λ ≥ 0,∀y ∈ Rp.

Further, L(x,λ ∗,y∗) is convex in x ∈ X and differentiable at x∗ ∈ X , so that (a)
implies that

L(x,λ ∗,y∗)≥ L(x∗,λ ∗,y∗) ∀x ∈ X .

Thus, x∗ can be extended to a saddle point of the Lagrange function and therefore is
optimal for (2.3.16).

We now show that part b) holds. By Saddle Point Optimality condition, from
optimality of x∗ it follows that ∃λ ∗ ≥ 0 and y∗ ∈ Rp such that (x∗,λ ∗,y∗) is a saddle
point of L(x,λ ,y) on X×{λ ≥ 0}×Rp. This is equivalent to h j(x∗) = 0,

λ
∗
i gi(x∗) = 0 ∀i,

and
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min
x∈X

L(x,λ ∗,y∗) = L(x∗,λ ∗,y∗).

Since the function L(x,λ ∗,y∗) is convex in x ∈ X and differentiable at x∗ ∈ X , the
last identity implies a).

Let us look at one example.

Example 2.1. Assuming ai > 0, p≥ 1, show that the solution of the problem

min
x

{
∑i

ai
xi

: x > 0,∑ix
p
i ≤ 1

}

is given by

x∗i =
a1/(p+1)

i(
∑ ja

p/(p+1)
j

)1/p .

Proof. Assuming x∗ > 0 is a solution such that ∑i(x∗i )
p = 1, the KKT conditions

read
∇x

{
∑i

ai
xi
+λ (∑ix

p
i −1)

}
= 0⇔ ai

x2
i
= pλxp−1

i

∑ix
p
i = 1

whence xi = c(λ )a1/(p+1)
i . Since ∑ix

p
i should be 1, we get

x∗i =
a1/(p+1)

i(
∑ ja

p/(p+1)
j

)1/p .

This point is feasible, problem is convex, KKT at the pointis satisfied⇒ x∗ is optimal.

By examining the KKT conditions, we can obtain explicits solutions for many
simple convex optimization problems, which can be used as subproblems in iterative
algorithms for solving more complicated convex or even nonconvex optimization
problems.

2.3.5 Dual support vector machine

In this subsection, we discuss one interesting application of the optimality conditions
for convex programming in support vector machines.

Recall that the support vector machine can be formulated as

minw,b
1
2‖w‖2

s.t. v(i)(wT u(i)+b)≥ 1, i = 1, . . . ,m.

We can write the constraints equivalently as

gi(w,b) =−v(i)(wT u(i)+b)+1≤ 0.
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Thus Lagrangian function L for our problem is given by

L(w,b,λ ) = 1
2‖w‖2−∑

N
i=1λi[v(i)(wT u(i)+b)−1].

For fixed λi’s, the problem is unconstrained. Let us minimize L(w,b,λ ) w.r.t. w and
b. Setting the derivatives of L w.r.t. w and b to zero, i.e.,

∇wL(w,b,λ ) = w−∑
N
i=1λiv(i)u(i) = 0,

we have
w = ∑

m
i=1λiv(i)u(i). (2.3.20)

Moreover, we have
∇bL(w,b,λ ) = ∑

m
i=1λiv(i) = 0. (2.3.21)

Plugging the above definition of w into L(w,b,λ ), we obtain

L(w,b,λ ) = ∑
N
i=1λi− 1

2 ∑
N
i, j=1v(i)v( j)

λiλ j(u(i))T u( j)−b∑
m
i=1λiv(i).

Since by (2.3.21), the last term must be zero, we have

L(w,b,λ ) = ∑
N
i=1λi− 1

2 ∑
N
i, j=1v(i)v( j)

λiλ j(u(i))T u( j).

Therefore, we can write the dual SVM problem as

maxλ ∑
N
i=1λi− 1

2 ∑
N
i, j=1v(i)v( j)λiλ j(u(i))T u( j)

s.t. λi ≥ 0, i = 1, . . . ,m
∑

N
i=1λiv(i) = 0.

Once we find the optimal λ ∗, we can use (2.3.20) to compute optimal w∗. Moreover,
with optimal w∗, we can easily solve the primal problem to find the intercept term b
as

b∗ =−max
i:v(i)=−1

w∗T v(i)+min
i:v(i)=1

w∗T v(i)

2

It is also interesting to observe that the dual problem only depends on the inner
product and we can generalize it easily by using the Kernel trick.

2.4 Legendre-Fenchel conjugate duality

2.4.1 Closure of convex functions

We can extend the domain of a convex function f : X → R to the whole space
Rn by setting f (x) = +∞ for any x /∈ X . In view of the definition of a convex
function in (2.2.8), and our discussion about the epigraphs in Section 2.2, a function
f : Rn→ R∪{+∞} is convex if and only if its epigraph
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epi( f ) = {(x, t) ∈ Rn+1 : f (x)≤ t}

is a nonempty convex set.
As we know, closed convex sets possess many nice topological properties. For

example, a closed convex set is comprised of the limits of all converging sequences of
elements. Moreover, by the Separation Theorem, a closed and nonempty convex set
X is the intersection of all closed half-spaces containing X . Among these half-spaces,
the most interesting ones are the supporting hyperplanes touching X on the relative
boundary.

In functional Language, the “closedness” of epigraph corresponds to a special
type of continuity, i.e., the lower semicontinuity. Let f : Rn→ R∪{+∞} be a given
function (not necessarily convex). We say that f is lower semicontinuous at a point x̄,
if for every sequence of points {xi} converging to x̄ one has

f (x̄)≤ lim inf
i→∞

f (xi).

Of course, liminf of a sequence with all terms equal to +∞ is +∞. f is called lower
semicontinuous, if it is lower semicontinuous at every point.

A trivial example of a lower semicontinuous function is a continuous one. Note,
however, that a semicontinuous function is not necessarily continuous. What it is
obliged, is to make only “jumps down”. For example, the function

f (x) =

{
0, x 6= 0
a, x = 0

is lower semicontinuous if a≤ 0 ("jump down at x = 0 or no jump at all"), and is not
lower semicontinuous if a > 0 ("jump up").

The following statement links lower semicontinuity with the geometry of the
epigraph.

Proposition 2.10. A function f defined on Rn and taking values from R∪{+∞} is
lower semicontinuous if and only if its epigraph is closed (e.g., due to its emptiness).

Proof. We first prove the “only if” part (from lower semicontinuity to closed
epigrpah). Let (x, t) be the limit of the sequence {xi, ti} ⊂ epi f . Then we have
f (xi)≤ ti. Thus the following relation holds: t = limi→∞ ti ≥ limi→∞ f (xi)≥ f (x).

We now show the “if” part (from closed epigraph to lower semicontinuity). Sup-
pose for contradiction that f (x) > γ > limi→∞ f (xi) for some constant γ , where xi
converges to x. Then there exists a subsequence {xik} such that f (xik) ≤ γ for all
ik. Since the epigraph is closed then x must belong to this set, which implies that
f (x)≤ γ , which is a contradiction.

As an immediate consequence of Proposition 2.10, the upper bound

f (x) = sup
α∈A

fα(x)
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of arbitrary family of lower semicontinuous functions is lower semicontinuous.
Indeed, the epigraph of the upper bound is the intersection of the epigraphs of the
functions forming the bound, and the intersection of closed sets always is closed.

Now let us look at convex lower semicontinuous functions. According to our
general convention, “convex” means “satisfying the convexity inequality and finite at
least at one point”, or, which is the same, “with convex nonempty epigraph”; and as
we just have seen, “lower semicontinuous” means “with closed epigraph”. Thus, we
are interested in functions with closed convex nonempty epigraphs. For simplicity,
we will call these functions proper.

Similar to the fact that a closed convex set is intersection of closed half-spaces,
we can provide an outer description of a proper convex function. More specifically,
we can show that a proper convex function f is the upper bound of all its affine
minorants given in the form of t ≥ dT x− a. Moreover, at every point x̄ ∈ ridom f
from the relative interior of the domain f , f is even not the upper bound, but
simply the maximum of its minorants: there exists an affine function fx̄(x) which is
≤ f (x) everywhere in Rn and is equal to f at x = x̄. This is exactly the first-order
approximation f (x̄)+ 〈g(x̄),x− x̄〉 given by the definition of subgradients.

Fig. 2.5: Example for an upper semi-continuous function. The domain of this function
is [0,+∞), and it “jumps up” at 0. However the function is still convex.

Now, what if the convex function is not lower semicontinuous (see Figure 2.5)? A
similar question also arises about convex sets – what to do with a convex set which is
not closed? To deal with these convex sets, we can pass from the set to its closure and
thus get a “normal” object which is very “close” to the original one: the “main part”
of the original set – its relative interior – remains unchanged, and the “correction”
adds to the set something relatively small – the relative boundary. The same approach
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works for convex functions: if a convex function f is not proper (i.e., its epigraph,
being convex and nonempty, is not closed), we can “correct” the function – replace
it with a new function with the epigraph being the closure of epi( f ). To justify this
approach, we, of course, should be sure that the closure of the epigraph of a convex
function is also an epigraph of such a function.

Thus, we conclude that the closure of the epigraph of a convex function f is the
epigraph of certain function, let it be called the closure cl f of f . Of course, this
latter function is convex (its epigraph is convex – it is the closure of a convex set),
and since its epigraph is closed, cl f is proper. The following statement gives direct
description of cl f in terms of f :

(i) For every x one has cl f (x) = lim
r→+0

inf
x′:‖x′−x‖2≤r

f (x′). In particular,

f (x)≥ cl f (x)

for all x, and
f (x) = cl f (x)

whenever x ∈ ridom f , same as whenever x 6∈ cldom f . Thus, the “correction”
f 7→ cl f may vary f only at the points from the relative boundary of dom f ,

dom f ⊂ domcl f ⊂ cldom f ,

hence
ridom f = ridomcl f .

(ii)The family of affine minorants of cl f is exactly the family of affine minorants of
f , so that

cl f (x) = sup{φ(x) : φ is an affine minorant of f},
due to the fact that cl f is proper and is therefore the upper bound of its affine
minorants, and the sup in the right hand side can be replaced with max whenever
x ∈ ridomcl f = ridom f .

2.4.2 Conjugate functions

Let f be a convex function. We know that f “basically” is the upper bound of
all its affine minorants. This is exactly the case when f is proper, otherwise the
corresponding equality takes place everywhere except, perhaps, some points from
the relative boundary of dom f . Now, when an affine function dT x−a is an affine
minorant of f ? It is the case if and only if

f (x)≥ dT x−a

for all x or, which is the same, if and only if
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a≥ dT x− f (x)

for all x. We see that if the slope d of an affine function dT x−a is fixed, then in order
for the function to be a minorant of f we should have

a≥ sup
x∈Rn

[dT x− f (x)].

The supremum in the right hand side of the latter relation is certain function of d;
this function is called the Legendre-Fenchel conjugate of f and is denoted f ∗:

f ∗(d) = sup
x∈Rn

[dT x− f (x)].

Geometrically, the Legendre-Fenchel transformation answers the following question:
given a slope d of an affine function, i.e., given the hyperplane t = dT x in Rn+1, what
is the minimal “shift down” of the hyperplane which places it below the graph of f ?

From the definition of the conjugate it follows that this is a proper function. Indeed,
we loose nothing when replacing supx∈Rn [dT x− f (x)] by supx∈dom f [d

T x− f (x)],
so that the conjugate function is the upper bound of a family of affine functions.
Since this bound is finite at least at one point (namely, at every d coming form
affine minorant of f ; we know that such a minorant exists), it is a convex lower
semicontinuous function, as claimed.

The most elementary (and the most fundamental) fact about the conjugate function
is its symmetry.

Proposition 2.11. Let f be a convex function. Then ( f ∗)∗ = cl f . In particular, if f
is proper, then ( f ∗)∗ = f .

Proof. The conjugate function of f ∗ at the point x is, by definition,

sup
d∈Rn

[xT d− f ∗(d)] = sup
d∈Rn,a≥ f ∗(d)

[dT x−a];

the second sup here is exactly the supremum of all affine minorants of f (this is the
origin of the Legendre-Fenchel transformation: a≥ f ∗(d) if and only if the affine
form dT x−a is a minorant of f ). And we already know that the upper bound of all
affine minorants of f is the closure of f .

The Legendre-Fenchel transformation is a very powerful tool – this is a “global”
transformation, so that local properties of f ∗ correspond to global properties of f .

• d = 0 belongs to the domain of f ∗ if and only if f is below bounded, and if it is
the case, then f ∗(0) =− inf f ;

• if f is proper, then the subgradients of f ∗ at d = 0 are exactly the minimizers of f
on Rn;

• dom f ∗ is the entire Rn if and only if f (x) grows, as ‖x‖2→ ∞, faster than ‖x‖2:
there exists a function r(t)→ ∞, as t→ ∞ such that

f (x)≥ r(‖x‖2) ∀x,
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etc. Thus, whenever we can compute explicitly the Legendre-Fenchel transformation
of f , we get a lot of “global” information on f .

Unfortunately, the more detailed investigation of the properties of Legendre-
Fenchel transformation is beyond our scope. Below we simply list several simple
facts and examples:

• From the definition of Legendre transformation,

f (x)+ f ∗(d)≥ xT d ∀x,d.

Specifying here f and f ∗, we get certain inequality, e.g., the following one:
[Young’s Inequality] if p and q are positive reals such that 1

p +
1
q = 1, then

|x|p
p + |d|

q

q ≥ xd ∀x,d ∈ R

• The Legendre-Fenchel transformation of the function

f (x)≡−a

is the function which is equal to a at the origin and is +∞ outside the origin;
similarly, the Legendre-Fenchel transformation of an affine function d̄T x−a is
equal to a at d = d̄ and is +∞ when d 6= d̄;

• The Legendre-Fenchel transformation of the strictly convex quadratic form

f (x) = 1
2 xT Ax

(A is positive definite symmetric matrix) is the quadratic form

f ∗(d) = 1
2 dT A−1d

• The Legendre-Fenchel transformation of the Euclidean norm

f (x) = ‖x‖2

is the function which is equal to 0 in the closed unit ball centered at the origin and
is +∞ outside the ball.

2.5 Exercises and notes

Exercises.

1. Determine whether the following sets are convex or not.

a. {x ∈ R2 : x1 + i2x2 ≤ 1, i = 1, ...,10}.
b. {x ∈ R2 : x2

1 +2ix1x2 + i2x2
2 ≤ 1, i = 1, ...,10}.

c. {x ∈ R2 : x2
1 + ix1x2 + i2x2

2 ≤ 1, i = 1, ...,10}.
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d. {x ∈ R2 : x2
1 +5x1x2 +4x2

2 ≤ 1}.
e. {x ∈ R2 : exp{x1} ≤ x2}.
f. {x ∈ R2 : exp{x1} ≥ x2}.
g. {x ∈ Rn : ∑

n
i=1x2

i = 1}.
2. Assume that X = {x1, ...,xk} and Y = {y1, ...,ym} are finite sets in Rn, with

k +m ≥ n+ 2, and all the points x1, ...,xk,y1, ...,ym are distinct. Assume that
for any subset S ⊂ X ∪Y comprised of n+2 points the convex hulls of the sets
X ∩S and Y ∩S do not intersect. Then the convex hulls of X and Y also do not
intersect. (Hint: Assume on contrary that the convex hulls of X and Y intersect, so that

∑
k
i=1λixi = ∑

m
j=1µ jy j (∗)

for certain nonnegative λi, ∑iλi = 1, and certain nonnegative µ j , ∑ jµ j = 1, and look at the
expression of this type with the minimum possible total number of nonzero coefficients λi, µ j .)

3. Prove that the following functions are convex on the indicated domains:

a. x2

y on {(x,y) ∈ R2 | y > 0},
b. ln(exp{x}+ exp{y}) on the 2D plane.

4. A function f defined on a convex set Q is called log-convex on Q, if it takes real
positive values on Q and the function ln f is convex on Q. Prove that

a. a log-convex on Q function is convex on Q,
b. the sum (more generally, linear combination with positive coefficients) of two

log-convex functions on Q also is log-convex on the set.

5. Show the following statements related to the computation of subgradients.

a. The subgraident of f (x) =
√

x does not exist at x = 0.
b. The subdifferential of f (x) = |x| is given by [−1,1].
c. Let u and v be given. What is the sub-differential of f (w,b) = max{0,v(wT u+

b)}+ρ‖w‖2
2 at w and b.

d. The subdifferential of f (x) = ‖x‖ is given by ∂ f (0) = {x ∈ Rn|‖x‖ ≤ 1} and
∂ f (x) = {x/‖x‖} for x 6= 0.

6. Find the minimizer of a linear function

f (x) = cT x

on the set
Vp = {x ∈ Rn | ∑

n
i=1|xi|p ≤ 1},

where p, 1 < p < ∞, is a parameter. What happens with the solution when the
parameter becomes 0.5?

7. Let a1, ...,an > 0, α,β > 0. Solve the optimization problem

min
x

{
∑

n
i=1

ai
xα

i
: x > 0,∑ix

β

i ≤ 1
}
.

8. Consider the optimization problem
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max
x,y
{ f (x,y) = ax+by+ ln(lny− x)+ ln(y) : (x,y) ∈ X = {y > exp{x}}} ,

where a,b ∈ R are parameters. Is the problem convex? What is the domain in
space of parameters where the problem is solvable? What is the optimal value? Is
it convex in the parameters?

9. Let a1, ...,an be positive reals, and let 0 < s < r be two reals. Find maximum and
minimum of the function

∑
n
i=1ai|xi|r

on the surface
∑

n
i=1|xi|s = 1.

Notes. Further readings on convex analysis and convex optimization theory can be
found on the monographs [41, 96], classic textbooks [10, 13, 80, 86, 88, 97, 68], and
online course materials [75].





Chapter 3
Deterministic Convex Optimization

In this chapter, we study algorithms for solving convex optimization problems. We
will focus on algorithms that have been applied or have the potential to be applied
for solving machine learning and other data analysis problems. More specifically,
we will discuss first-order methods which have been proven effective for large-scale
optimization. These methods also form the basis for other computationally efficient
methods, e.g., stochastic and randomized methods to be discussed in later chapters.

3.1 Subgradient descent

We start with the simplest gradient descent method to minimize a differentiable
convex function f . Starting from an initial point x1 ∈ Rn, the gradient descent
method updates the search point xt according to

xt+1 = xt − γt∇ f (xt), t = 1,2, . . . , (3.1.1)

where γt > 0 is a certain stepsize at the t-th iteration. The rationale behind (3.1.1) is
to move a small step along the direction (also known as the steepest descent direction)
that minimizes the local first-order Taylor approximation of f .

We need to make two essential modifications to the gradient descent method in
order to solve a general convex optimization problem given by

f ∗ := min
x∈X

f (x). (3.1.2)

Here X ⊆ Rn is a closed convex set and f : X → R is a proper convex function.
Without specific mention, we assume that the set of optimal solutions of (3.1.2)
is nonempty and x∗ is an arbitrary solution of (3.1.2). Firstly, since the objective
function f is not necessarily differentiable, it makes sense to replace ∇ f (xt) in (3.1.1)
with a subgradient g(xt) ∈ ∂ f (xt). Secondly, the recursion in (3.1.1) applies only to
unconstrained problems. For the constrained case when X 6= Rn, the search point

55
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xt+1 defined in (3.1.1) may fall outside the feasible set X . Hence, it is necessary to
“push” xt+1 back to X by using projection. Incorporating these enhancements, we
update xt according to

xt+1 := argminx∈X‖x− (xt − γtg(xt))‖2, t = 1,2, . . . , (3.1.3)

for some g(xt) ∈ ∂ f (xt) and γt > 0.
The projected subgradient iteration in (3.1.3) admits some natural explanation

from the proximity control point of view. Indeed, (3.1.3) can be written equivalently
as

xt+1 = argminy∈X
1
2‖x− (xt − γtg(xt))‖2

2

= argminx∈X γt〈g(xt),x− xt〉+ 1
2‖x− xt‖2

2

= argminx∈X γt [ f (xt)+ 〈g(xt),x− xt〉]+ 1
2‖x− xt‖2

2

= argminx∈X γt〈g(xt),x〉+ 1
2‖x− xt‖2

2. (3.1.4)

This implies that we would like to minimize the linear approximation f (xt) +
〈g(xt),x− xt〉 of f (x) over X , without moving too far away from xt so as to have
‖x−xt‖2

2 small. The parameter γt > 0 balances these two terms, and its selection will
depend on the properties of the objective function f , e.g., the differentiability of f ,
the Lipschitz continuity of its gradients and so forth.

3.1.1 General nonsmooth convex problems

We will first consider a general convex function f which is Lipschitz continuous over
X , i.e., ∃M > 0 such that

| f (x)− f (y)| ≤M‖x− y‖2 ∀x,y ∈ X . (3.1.5)

Observe that this assumption is not too restrictive in view of Theorem 2.4.
The following lemma provides an important characterization for xt+1 by using

the representation in (3.1.4).

Lemma 3.1. Let xt+1 be defined in (3.1.3). For any y ∈ X, we have

γt〈g(xt),xt+1− x〉+ 1
2‖xt+1− xt‖2

2 ≤ 1
2‖x− xt‖2

2− 1
2‖x− xt+1‖2

2.

Proof. Denote φ(x) = γt〈g(xt),x〉+ 1
2‖x− xt‖2

2. By the strong convexity of φ , we
have

φ(x)≥ φ(xt+1)+ 〈φ ′(xt+1),x− xt+1〉+ 1
2‖x− xt+1‖2

2.
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Moreover, by the first-order optimality condition of (3.1.4), we have 〈φ ′(xt+1),x−
xt+1〉 ≥ 0 for any x ∈ X . The result immediately follows by combining these two
inequalities.

The following theorem describes some general convergence properties for the
subgradient descent method. Note that in our convergence analysis for first-order
methods, we often use the following simple inequality

bt− at2

2 ≤ b2

2a ,∀a > 0,b ∈ R, t ∈ R. (3.1.6)

Theorem 3.1. Let xt , t = 1, . . . ,k, be generated by (3.1.3). Under Assumption (3.1.5),
we have

∑
k
t=sγt [ f (xt)− f (x)]≤ 1

2

[
‖x− xs‖2

2 +M2
∑

k
t=sγ

2
t

]
,∀x ∈ X . (3.1.7)

Proof. By the convexity of f and Lemma 3.1,

γt [ f (xt)− f (x)]≤ γt〈g(xt),xt − x〉
≤ 1

2‖x− xt‖2
2− 1

2‖x− xt+1‖2
2 + γt〈g(xt),xt − xt+1〉− 1

2‖xt+1− xt‖2
2

≤ 1
2‖x− xt‖2

2− 1
2‖x− xt+1‖2

2 +
γ2
t
2 ‖g(xt)‖2

2

≤ 1
2‖x− xt‖2

2− 1
2‖x− xt+1‖2

2 +
γ2
t
2 M2,

where the third inequality follows from the Cauchy-Swartz inequality and (3.1.6).
The result then immediately follows by summing up the above inequality from t = s
to k.

We now provide a simple specific choice for the stepsizes γt .

Corollary 3.1. Let us denote

D2
X ≡ DX ,‖·‖22/2 := max

x1,x2∈X

‖x1−x2‖22
2 . (3.1.8)

Suppose that the number of iterations k is fixed and

γt =

√
2D2

X
kM2 , t = 1, . . . ,k.

Then
f (x̄k

1)− f ∗ ≤
√

2MDX
2
√

k
, ∀k ≥ 1,

where
x̄k

s =
(

∑
k
t=sγt

)−1
∑

k
t=s(γtxt). (3.1.9)

Proof. By Theorem 3.1 and the fact that f (x̄k
s)≤ (∑k

t=sγt)
−1

∑
k
t=s f (xt), we have

f (x̄k
s)≤ (2∑

k
t=sγt)

−1
[
‖x∗− xs‖2

2 +M2
∑

k
t=sγ

2
t

]
. (3.1.10)
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If γt = γ , t = 1, . . . ,k, we have

f (x̄k
1)− f ∗ ≤ 1

2

(
2
kγ

D2
X +M2

γ

)

The result follows by minimizing the right-hand side (RHS) of above inequality w.r.t.
γ .

We can also use variable stepsizes without fixing the number of iterations k a
priori.

Corollary 3.2. If

γt =

√
2D2

X
tM2 , t = 1, . . . ,k,

then f (x̄k
dk/2e)− f ∗ ≤O(1)(MDX/

√
k) for any k ≥ 3, where O(1) denotes an abso-

lute constant and x̄k
dk/2e is defined in (3.1.9).

Proof. It suffices to bound the RHS of (3.1.10) by using the following bounds:

∑
k
t=dk/2eγt = ∑

k
t=dk/2e

√
2D2

X
tM2 ≥

√
2DX
M

∫ k+1

(k+1)/2
t−1/2dt

≥
√

2DX
M (1− 1√

2
)(k+1)1/2,∀k ≥ 1.

∑
k
t=dk/2eγ

2
t =

2D2
X

M2 ∑
k
t=dk/2e

1
t ≤

2D2
X

M2

∫ k

dk/2e−1

1
t ≤

2D2
X

M2 ln k
dk/2e−1

≤ 2D2
X

M2 ln3,∀k ≥ 3.

Observe that in (3.1.9), we define the output solution as the weighted average of
the iterates {xk}. However, we can define the output solution x̂k ∈ {x1, . . . ,xk} as the
best solution found so far in the trajectory, i.e.,

f (x̂k) = min
i=1,...,k

f (xi). (3.1.11)

We can easily see that all the results stated in Theorem 3.1 and Corollaries 3.1 and
3.2 still hold with with this different selection of output solution. Moreover, it is
worth noting that the definition of the diameter DX in (3.1.8) depends on the norm
‖ · ‖2. We will discuss later how to generalize such a characteristic of the feasible set
X .

3.1.2 Nonsmooth strongly convex problems

In this subsection, we assume that f , in addition to (3.1.5), is strongly convex, i.e.,
∃µ > 0 s.t.
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f (y)≥ f (x)+ 〈g(x),y− x〉+ µ

2 ‖y− x‖2
2,∀x,y ∈ X , (3.1.12)

where g(x) ∈ ∂ f (x).

Theorem 3.2. Let xt , t = 1, . . . ,k, be generated by (3.1.3). Under Assumptions (3.1.5)
and (3.1.12), if for some wt ≥ 0,

wt (1−µγt )
γt

≤ wt−1
γt−1

, (3.1.13)

then

∑
k
t=1wt [ f (xt)− f (x)]≤ w1(1−µγ1)

2γ1
‖x∗− x1‖2

2− wk
2γk
‖x− xk+1‖2

2 +M2
∑

k
t=1wtγt .

(3.1.14)

Proof. By the strong convexity of f and Lemma 3.1,

f (xt)− f (x)≤ 〈g(xt),xt − x〉− µ

2 ‖x− xt‖2
2

≤ 1−µγt
2γt
‖x− xt‖2

2− 1
2γt
‖x− xt+1‖2

2 + 〈g(xt),xt − xt+1〉− 1
2γt
‖xt+1− xt‖2

2

≤ 1−µγt
2γt
‖x− xt‖2

2− 1
2γt
‖x− xt+1‖2

2 +
γt
2 ‖g(xt)‖2

2

≤ 1−µγt
2γt
‖x− xt‖2

2− 1
2γt
‖x− xt+1‖2

2 +
γt
2 M2,

where the last inequality follows from the Cauchy-Swartz inequality and (3.1.6).
Summing up these inequalities with weight wt , we obtain (3.1.14).

Below we provide a specific selection of {γk} and {wk}.
Corollary 3.3. If

γt =
2
µt and wt = t,∀t ≥ 1, (3.1.15)

then
f (x̄k

1)− f (x)+ µk
2(k+1)‖xk+1− x‖2 ≤ 4M2

µ(k+1) , ∀x ∈ X .

where x̄k
1 is defined in (3.1.9).

Proof. It can be easily seen that

wt (1−µγt )
γt

= µt(t−2)
2 and wt−1

γt−1
= µ(t−1)2

2

and hence that (3.1.13) holds. It then follows from (3.1.14) and (3.1.15) that

∑
k
t=1t[ f (xt)− f (x)]≤− µ

4 ‖x1− x‖2− µk2

4 ‖xk+1− x‖2 + 2kM2

µ
.

Using the definition of x̄k in (3.1.9) and the convexity of f , we conclude that

f (x̄k
1)− f (x)≤ 2

k(k+1) (−
µ

4 ‖x1− x‖2− µk2

4 ‖xk+1− x‖2 + 2kM2

µ
).
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In view of Corollary 3.3, we can bound both the functional optimality gap f (x̄k
1)−

f (x∗) and the distance to the optimal solution ‖xk+1− x‖2 by O(1/k). Similarly to
the general convex case, we can use the x̂k in (3.1.11) in place of x̄k

1 as the output
solution.

3.1.3 Smooth convex problems

In this subsection, we consider differentiable convex functions f with Lipschitz
continuous gradients, i.e.,

‖∇ f (x)−∇ f (y)‖2 ≤ L‖x− y‖2, ∀x,y ∈ X . (3.1.16)

These functions are referred to as smooth convex function in this text. Since f is
differentiable, we can set the subgradient g(xt) = ∇ f (xt) in (3.1.3), and the resulting
algorithm is often called projected gradient method.

We first prove a convenient representation about smoothness. Observe that this
result does not depend on the convexity of f .

Lemma 3.2. For any x,y ∈ X, we have

f (y)− f (x)−〈 f ′(x),y− x〉 ≤ L
2‖y− x‖2

2. (3.1.17)

Proof. For all x,y ∈ X , we have

f (y) = f (x)+
∫ 1

0
〈 f ′(x+ τ(y− x)),y− x〉dτ

= f (x)+ 〈 f ′(x),y− x〉+
∫ 1

0
〈 f ′(x+ τ(y− x))− f ′(x),y− x〉dτ.

Therefore,

f (y)− f (x)−〈 f ′(x),y− x〉

=
∫ 1

0
〈 f ′(x+ τ(y− x))− f ′(x),y− x〉dτ

≤
∫ 1

0
‖ f ′(x+ τ(y− x))− f ′(x)‖2‖y− x‖2dτ

≤
∫ 1

0
τL‖y− x‖2

2dτ = L
2‖y− x‖2

2.

Our next result shows that the function values at the iterates xt , t ≥ 1, are mono-
tonically non-increasing.

Lemma 3.3. Let {xt} be generated by (3.1.3). If (3.1.16) holds and

γt ≤ 2
L , (3.1.18)
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then
f (xt+1)≤ f (xt), ∀t ≥ 1.

Proof. By the optimality condition of (3.1.3), we have

〈γtg(xt)+ xt+1− xt ,x− xt+1〉 ≥ 0, ∀x ∈ X .

Letting x = xt in the above relation, we obtain

γt〈g(xt),xt+1− xt〉 ≤ −‖xt+1− xt‖2
2. (3.1.19)

It then follows from (3.1.17) and the above relation that

f (xt+1)≤ f (xt)+ 〈g(xt),xt+1− xt〉+ L
2‖xt+1− xt‖2

2

≤ f (xt)−
(

1
γt
− L

2

)
‖xt+1− xt‖2

2 ≤ f (xt).

We are now ready to establish the main convergence properties for the projected
gradient method applied to smooth convex optimization problems.

Theorem 3.3. Let {xt} be generated by (3.1.3). If (3.1.16) holds and

γt = γ ≤ 1
L ,∀t ≥ 1, (3.1.20)

then
f (xk+1)− f (x)≤ 1

2γk‖x− x1‖2
2, ∀x ∈ X .

Proof. By (3.1.17), we have

f (xt+1)≤ f (xt)+ 〈g(xt),xt+1− xt〉+ L
2‖xt+1− xt‖2

2

≤ f (xt)+ 〈g(xt),x− xt〉+ 〈g(xt),xt+1− x〉+ L
2‖xt+1− xt‖2

2. (3.1.21)

It then follows from the above inequality, the convexity of f and Lemma 3.1 that

f (xt+1)≤ f (x)+ 1
2γt

(
‖x− xt‖2

2−‖x− xt+1‖2
2−‖xt − xt+1‖2

2
)
+ L

2‖xt+1− xt‖2
2

≤ f (x)+ 1
2γ

(
‖x− xt‖2

2−‖x− xt+1‖2
2
)
,

where the last inequality follows from (3.1.20). Summing up the above inequalities
from t = 1 to k, and using Lemma 3.3, we have

k[ f (xk+1)− f (x)]≤ ∑
k
t=1[ f (xt+1)− f (x)]≤ 1

2γ
‖x− x1‖2

2.

In view of Theorem 3.3, one may choose γ = 1/L and then the rate of convergence
of the projected gradient method becomes f (xk+1)− f ∗ ≤ L/(2k).
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3.1.4 Smooth and strongly convex problems

In this section, we discuss the convergence properties of the projected gradient
method when the objective function f is smooth and strongly convex.

Theorem 3.4. Let {xt} be generated by (3.1.3). Assume (3.1.12) and (3.1.16) hold,
and let γt = γ = 1/L, t = 1, . . . ,k. Then,

‖x− xk+1‖2
2 ≤ (1− µ

L )
k‖x− x1‖2

2. (3.1.22)

Proof. It follows from (3.1.21), the strong convexity of f and Lemma 3.1 that

f (xt+1)≤ f (x)− µ

2 ‖x− xt‖2
2 +

1
2γt

(
‖x− xt‖2

2−‖x− xt+1‖2
2−‖xt − xt+1‖2

2
)

+ L
2‖xt+1− xt‖2

2

≤ f (x)+ 1−µγ

2γ
‖x− xt‖2

2− 1
2γ
‖x− xt+1‖2

2.

Using the above relation, the facts γ = 1/L and f (xt)− f (x∗)≥ 0, we have

‖xt+1− x∗‖2
2 ≤ (1− µ

L )‖xt − x∗‖2
2,

which clearly implies (3.1.22).

In order to find a solution x̄ ∈ X such that ‖x̄− x∗‖2 ≤ ε , it suffices to have

(1− µ

L )
k‖x− x1‖2

2 ≤ ε ⇐⇒ k log(1− µ

L )≤ log ε

‖x−x1‖22

⇐⇒ k ≥ 1
− log(1− µ

L )
log ‖x−x1‖22

ε

⇐= k ≥ L
µ

log ‖x−x1‖22
ε

, (3.1.23)

where the last inequality follows from the fact that − log(1−α) ≥ α for any α ∈
[0,1).

3.2 Mirror descent

The subgradient descent method is intrinsically linked to the Euclidean structure
of Rn. More specifically, the construction of the method relies on the Euclidean
projection (see (3.1.3)), and the quantities DX and M used in the efficiency estimate
(see Corollary 3.1) are defined in terms of the Euclidean norm. In this section we
develop a substantial generalization of the subgradient descent method allowing to
adjust, to some extent, the method to the possibly non-Euclidean geometry of the
problem in question. We shall see in the mean time that we can gain a lot, both
theoretically and numerically, from such an adjustment.
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Let ‖ · ‖ be a (general) norm on Rn and ‖x‖∗ = sup‖y‖≤1〈x,y〉 be its dual norm.
We say that a function ν : X → R is a distance generating function modulus σν > 0
with respect to ‖ · ‖, if ν is convex and continuous on X , the set

Xo =
{

x ∈ X : there exists p ∈ Rn such that x ∈ argminu∈X [pT u+ν(u)]
}

is convex (note that Xo always contains the relative interior of X), and restricted to
Xo, ν is continuously differentiable and strongly convex with parameter σν with
respect to ‖ · ‖, i.e.,

(x′− x)T (∇ν(x′)−∇ν(x))≥ σν‖x′− x‖2, ∀x′,x ∈ Xo. (3.2.1)

The simplest example of a distance generating function is ν(x) = ‖x‖2
2/2 (modulus 1

with respect to ‖ · ‖2, Xo = X). Associated with the distance generating function, we
define the prox-function (or Bregman’s distance) V : Xo×X → R+ as follows

V (x,z) = ν(z)− [ν(x)+∇ν(x)T (z− x)]. (3.2.2)

Note that V (x, ·) is nonnegative and is strongly convex modulus σν with respect to
the norm ‖ · ‖. Also by the strong convexity of ν , we have

V (x,z)≥ σν

2 ‖x− z‖2. (3.2.3)

In case ν(x) = ‖x‖2
2/2, we have V (x,z) = ‖z− x‖2

2/2.
Without loss of generality, we assume that the strong convexity modulus σν of ν is

given by 1. Indeed, if σν 6= 1, we can always choose ν/σν as the distance generating
function and define its associated prox-function. The following quantity DX > 0 will
be used frequently in the complexity analysis of first-order and stochastic algorithms.

D2
X ≡ D2

X ,ν := max
x1,x∈X

V (x1,x). (3.2.4)

Clearly, the definition of DX ,ν generalizes the definition of DX ,‖·‖22/2 in (3.1.8) with

ν(x) = ‖x‖2
2/2.

With the definition of the prox-function, we modify the subgradient iteration in
(3.1.4) to

xt+1 = argminx∈X γt〈g(xt),x〉+V (xt ,x), t = 1,2, . . . . (3.2.5)

This implies that we would like to minimize a linear approximation of f , but do not
move too far away from xt in terms of V (xt ,x). It can be easily seen that (3.1.4) is a
special case of (3.2.5) with V (xt ,x) = ‖x− xt‖2

2/2. The following lemma character-
izes the updated solution xt+1 in (3.2.5).

Lemma 3.4. Let xt+1 be defined in (3.2.5). For any y ∈ X, we have

γt〈g(xt),xt+1− x〉+V (xt ,xt+1)≤V (xt ,x)−V (xt+1,x).

Proof. By the optimality condition of (3.2.5),
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〈γtg(xt)+∇V (xt ,xt+1),x− xt〉 ≥ 0, ∀x ∈ X ,

where ∇V (xt ,xt+1) denotes the gradient of V (xt , ·) at xt+1. Using the definition of
the prox-function (3.2.2), it is easy to verify that

V (xt ,x) =V (xt ,xt+1)+ 〈∇V (xt ,xt+1),x− xt+1〉+V (xt+1,x), ∀x ∈ X . (3.2.6)

The result then immediately follows by combining the above two relations.

With the help of Lemma 3.4, we can easily establish some general convergence
properties for the mirror descent method. In order to provide an efficiency estimate
that does not rely on the Euclidean structure, we assume that the subgradients of f
satisfy

‖g(xt)‖∗ ≤M, ∀t ≥ 1.

Theorem 3.5. Let xt , t = 1, . . . ,k, be generated by (3.2.5) and define x̄k
s as in (3.1.9).

Then
f (x̄k

s)− f ∗ ≤
(

∑
k
t=sγt

)−1 [
V (xs,x∗)+ 1

2 M2
∑

k
t=sγ

2
t

]
,

where x∗ denotes an arbitrary solution of (3.1.2).

Proof. By the convexity of f and Lemma 3.4,

γt [ f (xt)− f (x)]≤ γt〈g(xt),xt − x〉
≤V (xt ,x)−V (xt+1,x)+ γt〈g(xt),xt − xt+1〉−V (xt ,xt+1)

Note that by the strong convexity of ν , the Cauchy-Swartz inequality and the fact
that bt−at2/2≤ b2/(2a) for any a > 0, we have

γt〈g(xt),xt − xt+1〉−V (xt ,xt+1)≤ γt〈g(xt),xt − xt+1〉− 1
2‖xt+1− xt‖2

≤ γ
2
t ‖g(xt)‖2

∗ ≤ 1
2 γ

2
t M2.

Combining the above two relations, we conclude

γt [ f (xt)− f (x)]≤V (xt ,x)−V (xt+1,x)+ 1
2 γ

2
t M2.

The result then immediately follows by summing up the above inequality from t = s
to k, and using the fact that f (x̄k

s)≤ (∑k
t=sγt)

−1
∑

k
t=s f (xt).

We now provide a simple specific choice for the stepsizes γt .

Corollary 3.4. Let the number of iterations k be fixed and assume that

γt =

√
2D2

X
kM2 , t = 1, . . . ,k.

Then
f (x̄1,k)− f ∗ ≤

√
2MDX√

k
, ∀k ≥ 1.
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Proof. The proof is almost identical to that for Corollary 3.1 and hence the details
are skipped.

We can also use variable stepsizes without fixing the number of iterations k a
priori.

Excercise 1 Show that if

γt =
DX

M
√

t
, t = 1,2, ...,

then f (x̄dk/2e,k)− f ∗ ≤ O(1)(MDX√
k
), where O(1) denotes an absolute constant.

Comparing the results obtained in Corollaries 3.1 and 3.4, we see that for both the
subgradient and mirror descent methods, the inaccuracy in terms of the objective of
the approximate solution is bounded by O(k−1/2). A benefit of the mirror descent
over the subgradient descent algorithm is its potential possibility to reduce the
constant factor hidden in O(·) by adjusting the norm ‖ ·‖ and the distance generating
function ν(·) to the geometry of the problem.

Example 3.1. Let X = {x ∈Rn : ∑
n
i=1xi = 1, x≥ 0} be a standard simplex. Consider

two setups for the mirror descent method:
— Euclidean setup, where ‖ · ‖= ‖ · ‖2 and ν(x) = 1

2‖x‖2
2

— `1-setup, where ‖x‖= ‖x‖1 := ∑
n
i=1|xi| and ν is the entropy

ν(x) = ∑
n
i=1xi lnxi. (3.2.7)

The Euclidean setup leads to the subgradient descent method which is easily imple-
mentable (computing the projection subprobem in (3.1.4) requires O(n lnn) opera-
tions) and guarantees that

f (x̄k
1)− f (x∗)≤ O(1)M̄k−1/2, (3.2.8)

provided that the constant M̄ = maxx∈X ‖g(x)‖ is known and the stepsizes in Corol-
lary 3.1 are used (note that the Euclidean diameter of X is of order of 1). The `1-setup
corresponds to Xo = {x ∈ X : x > 0}, DX =

√
lnn, x1 = argminX ω = n−1(1, ...,1)T ,

σν = 1 and ‖x‖∗ = ‖x‖∞ ≡ maxi |xi|. The associated mirror descent is easily im-
plementable: the prox-function here is V (x,z) = ∑

n
i=1zi ln zi

xi
, and the subproblem

x+ = argminz∈X
[
yT (z− x)+V (x,z)

]
can be computed in O(n) operations according

to the explicit formula:

x+i =
xie−yi

∑
n
k=1xke−yk

, i = 1, ...,n.

The efficiency estimate guaranteed with the `1-setup is

f (x̃k
1)− f (x∗)≤O(1)

√
lnnM̄∗k−1/2, (3.2.9)
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provided that the constant M̄∗ = maxx∈X ‖g(x)‖∗ is known and the constant stepsizes
in Corollary 3.4 are used. To compare (3.2.9) and (3.2.8), observe that M̄∗ ≤ M̄,
and the ratio M̄∗/M̄ can be as small as n−1/2. Thus, the efficiency estimate for the
`1-setup never is much worse than the estimate for the Euclidean setup, and for large
n can be far better than the latter estimate:

√
1

lnn ≤ M̄√
lnnM̄∗

≤
√

n
lnn , k = 1,2, ...,

both the upper and the lower bounds being achievable. Thus, when X is a standard
simplex of large dimension, we have strong reasons to prefer the `1-setup to the usual
Euclidean one.

It should be noted that the mirror descent method will exhibit stronger rate of
convergence when applied to strongly convex or smooth problems. We leave the
development of these results as an exercise (see Section 3.10).

3.3 Accelerated gradient descent

In this subsection, we discuss an important improvement to the gradient descent
method, namely the accelerated (or fast) gradient method applied to smooth convex
optimization problems. Note that in this discussion, we incorporate the idea of mirror-
descent method into the accelerated gradient method by using the prox-function
discussed in the previous subsection.

In particular, we assume that given an arbitrary norm ‖ · ‖ (‖ · ‖∗ denotes its
conjugate),

‖∇ f (x)−∇ f (y)‖∗ ≤ L‖x− y‖, ∀x,y ∈ X . (3.3.1)

Similar to (3.1.17), we can show that for any x,y ∈ X , we have

f (y)− f (x)−〈 f ′(x),y− x〉 ≤ L
2‖y− x‖2. (3.3.2)

Moreover, we assume that for some µ ≥ 0,

f (y)≥ f (x)+ 〈 f ′(x),y− x〉+µV (x,y), ∀x,y ∈ X . (3.3.3)

If µ = 0, (3.3.3) is implied by the convexity of f . If µ > 0, it generalizes the definition
of strong convexity in terms of Bregman’s distance.

In fact, there exist many variants of the accelerated gradient method. Below we
study one of its simplest variants. Given (xt−1, x̄t−1) ∈ X×X , we set

xt = (1−qt)x̄t−1 +qtxt−1, (3.3.4)
xt = argminx∈X{γt [〈 f ′(xt),x〉+µV (xt ,x)]+V (xt−1,x)}, (3.3.5)
x̄t = (1−αt)x̄t−1 +αtxt , (3.3.6)



3.3 Accelerated gradient descent 67

for some qt ∈ [0,1], γt ≥ 0, and αt ∈ [0,1] . In comparison with the gradient descent
method, the accelerated gradient descent method builds up a lower approximation of
the objective function, defined by

f (xt)+ 〈 f ′(xt),x− xt〉+µV (xt ,x),

at the search point xt , which is different from the other search point xt used for prox-
imity control (see (3.3.5)). Moreover, we compute the output solution x̄t as a convex
combination of the sequence {xt}. Note that we have not specified the parameters
{qt}, {γt} and {αt} yet. In fact, the selection of these parameters will depend on
the problem classes to be solved. We will discuss this issue after establishing some
generic convergence properties of this method.

The first technical result below characterizes the solution of the projection (or
prox-mapping) step (3.3.5). It is worth noting that the function ν is not necessarily
strongly convex.

Lemma 3.5. Let the convex function p : X → R, the points x̃, ỹ ∈ X and the scalars
µ1,µ2 ≥ 0 be given. Let ν : X → R be a differentiable convex function and V (x,z)
be defined in (3.2.2). If

û ∈ Argmin{p(u)+µ1V (x̃,u)+µ2V (ỹ,u) : u ∈ X},

then for any u ∈ X, we have

p(û)+µ1V (x̃, û)+µ2V (ỹ, û)≤ p(u)+µ1V (x̃,u)+µ2V (ỹ,u)− (µ1 +µ2)V (û,u).

Proof. The definition of û and the fact V (x̃, ·) is a differentiable convex function
imply that, for some p′(û) ∈ ∂ p(û), we have

〈p′(û)+µ1∇V (x̃, û)+µ2∇V (ỹ, û),u− û〉 ≥ 0, ∀u ∈ X ,

where ∇V (x̃, û) denotes the gradient of V (x̃, ·) at û. Using the definition of V (x,z) in
(3.2.2), it is easy to verify that

V (x̃,u) =V (x̃, û)+ 〈∇V (x̃, û),u− û〉+V (û,u), ∀u ∈ X .

Using the above two relations and the assumption that p is convex, we then conclude
that

p(u)+µ1V (x̃,u)+µ2V (ỹ,u) = p(u)+µ1[V (x̃, û)+ 〈∇V (x̃, û),u− û〉+V (û,u)]

+µ2[V (ỹ, û)+ 〈∇V (ỹ, û),u− û〉+V (û,u)]

≥ p(û)+µ1V (x̃, û)+µ2V (ỹ, û)

+〈p′(û)+µ1∇V (x̃, û)+µ2∇V (ỹ, û),u− û〉
+(µ1 +µ2)V (û,u)

≥ [p(û)+µ1V (x̃, û)+µ2V (ỹ, û)]+(µ1 +µ2)V (û,u).
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Proposition 3.1 below describes some important recursion of the accelerated
gradient descent method.

Proposition 3.1. Let (xt ,xt , x̄t)∈X×X×X be generated by the accelerated gradient
method in (3.3.4)-(3.3.6). If

αt ≥ qt , (3.3.7)
L(αt−qt )

1−qt
≤ µ, (3.3.8)

Lqt (1−αt )
1−qt

≤ 1
γt
, (3.3.9)

then for any x ∈ X,

f (x̄t)− f (x)+αt(µ + 1
γt
)V (xt ,x)≤ (1−αt)[ f (x̄t−1)− f (x)]+ αt

γt
V (xt−1,x).

(3.3.10)

Proof. Denote dt = x̄t − xt . It follows from (3.3.4) and (3.3.6) that

dt = (qt −αt)x̄t−1 +αtxt −qtxt−1

= αt

[
xt − αt−qt

αt (1−qt )
xt − qt (1−αt )

αt (1−qt )
xt−1

]
, (3.3.11)

which, in view of the convexity of ‖ · ‖2 and (3.3.7), implies that

‖dt‖2 ≤ αt

[
αt−qt
1−qt
‖xt − xt‖2 + qt (1−αt )

1−qt
‖xt − xt−1‖2

]
.

Using the above relation and (3.3.2), we have

f (x̄t)≤ f (xt)+ 〈 f ′(xt), x̄t − xt〉+ L
2‖dt‖2

= (1−αt)[ f (xt)+ 〈 f ′(xt), x̄t−1− xt〉]+αt [ f (xt)+ 〈 f ′(xt),xt − xt〉]+ L
2‖dt‖2

≤ (1−αt) f (x̄t−1)

+αt

[
f (xt)+ 〈 f ′(xt),xt − xt〉+ L(αt−qt )

2(1−qt )
‖xt − xt‖2 + Lqt (1−αt )

2(1−qt )
‖xt − xt−1‖2

]

≤ (1−αt) f (x̄t−1)

+αt

[
f (xt)+ 〈 f ′(xt),xt − xt〉+µV (xt ,xt)+

1
γt

V (xt−1,xt)
]
, (3.3.12)

where the last inequality follows from (3.2.3), (3.3.8) and (3.3.9). Now using the
above inequality, the definition of xt in (3.3.5), and Lemma 3.5, we conclude

f (x̄t)≤ (1−αt) f (x̄t−1)+αt [ f (xt)+ 〈 f ′(xt),x− xt〉+µV (xt ,x)]

+ αt
γt

V (xt−1,x)−αt(µ + 1
γt
)V (xt ,x)

≤ (1−αt) f (x̄t−1)+αt f (x)+ αt
γt

V (xt−1,x)−αt(µ + 1
γt
)V (xt ,x),
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where the last inequality follows from (3.3.3). Subtracting f (x) from both sides of
the above inequality and rearranging the terms, we obtain the result.

Below we discuss the convergence of the accelerated gradient descent method for
smooth convex function which are not necessarily strongly convex (i.e., µ = 0).

Theorem 3.6. Let (xt ,xt , x̄t) ∈ X×X×X be generated by the accelerated gradient
descent method in (3.3.4)-(3.3.6). If

αt = qt , (3.3.13)

Lαt ≤ 1
γt
, (3.3.14)

γt (1−αt )
αt

≤ γt−1
αt−1

, (3.3.15)

for any t = 1, . . . ,k, then we have

f (x̄k)− f (x∗)+ αk
γk

V (xk,x∗)≤ αkγ1(1−α1)
γkα1

[ f (x̄0)− f (x∗)]+ αk
γk

V (x0,x∗). (3.3.16)

In particular, if
qt = αt =

2
t+1 and γt =

t
2L ,

for any t = 1, . . . ,k, then

f (x̄k)− f (x∗)≤ 4L
k(k+1)V (x0,x∗).

Proof. Using the fact that µ = 0, (3.3.13) and (3.3.14), we can easily see that
(3.3.7)-(3.3.9) hold. It then follows from (3.3.10) that

γt
αt
[ f (x̄t)− f (x∗)]+V (xt ,x∗)≤ γt (1−αt )

αt
[ f (x̄t−1)− f (x∗)]+V (xt−1,x∗)

≤ γt−1
αt−1

[ f (x̄t−1)− f (x∗)]+V (xt−1,x∗),

where the last inequality follows from (3.3.15) and the fact that f (x̄t−1)− f (x∗)≥ 0.
Summing up these inequalities and rearranging the terms, we obtain (3.3.16).

It follows from the previous result that in order to find a solution x̄ ∈ X such
that f (x̄)− f (x∗)≤ ε , the number of iteration performed by the accelerated gradient
method can be bounded by O(1/

√
ε). This bound turns out to be optimal for solving

a general class of large-scale smooth convex optimization problems. One way to
improve this complexity bound is to consider more specialized problems. Below we
introduce a substantially improved result for the smooth and strongly convex case,
i.e., µ > 0.

Theorem 3.7. Let (xt ,xt , x̄t) ∈ X×X×X be generated by the accelerated gradient
descent method in (3.3.4)-(3.3.6). If αt = α , γt = γ and qt = q, t = 1, . . . ,k, satisfy
(3.3.7)-(3.3.9) and

1
γ(1−α) ≤ µ + 1

γ
, (3.3.17)

then for any x ∈ X,
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f (x̄k)− f (x)+α(µ + 1
γ
)V (xk−1,x)≤ (1−α)k[ f (x̄0)− f (x)+α(µ + 1

γ
)V (x1,x)].

(3.3.18)
In particular, if

α =
√

µ

L ,q = α−µ/L
1−µ/L , and γ = α

µ(1−α) , (3.3.19)

then for any x ∈ X,

f (x̄k)− f (x)+α(µ+ 1
γ
)V (xk−1,x)≤

(
1−
√

µ

L

)k

[ f (x̄0)− f (x)+α(µ+ 1
γ
)V (x1,x)].

(3.3.20)

Proof. The result in (3.3.18) follows directly from (3.3.10) and (3.3.17). Moreover,
we can easily check that the parameters in (3.3.19) satisfy (3.3.7)-(3.3.9) and (3.3.17)
with equality, which implies (3.3.20).

Using a similar reasoning to (3.1.23), we can see that the total number of iterations
performed by the accelerated gradient method to solve strongly convex problems
can be bounded by O(

√
L/µ log1/ε) in order to find a point x̄ ∈ X such that f (x̄)−

f (x∗)≤ ε .

We now turn our attention to a relatively easy extension of the accelerated gradient
descent method for solving a certain class of nonsmooth optimization problems given
by

min
x∈X

{
f (x) := f̂ (x)+F(x)

}
. (3.3.21)

Here f̂ is a simple (not necessarily smooth) convex function and F is a smooth
convex function with Lipschitz continuous gradients. Moreover, we assume that the
Lipschitz constant of ∇F is given by L and that for some µ ≥ 0,

F(y)≥ F(x)+ 〈F ′(x),y− x〉+µV (x,y), ∀x,y ∈ X . (3.3.22)

In order to solve the above composite problem, we only need to slightly modify
(3.3.4)-(3.3.6) as follows.

xt = (1−qt)x̄t−1 +qtxt−1, (3.3.23)

xt = argminx∈X{γt [〈 f ′(xt),x〉+µV (xt ,x)+ f̂ (x)]+V (xt−1,x)}, (3.3.24)
x̄t = (1−αt)x̄t−1 +αtxt . (3.3.25)

Hence, the difference exists in that we keep f̂ inside the subproblem (3.3.24).

Corollary 3.5. The performance guarantees stated in Theorems 3.6 and 3.7 still
hold for the above variant of accelerated gradient descent method applied to (3.3.21).

Proof. It suffices to show that Proposition 3.1 holds. First note that relation (3.3.12)
still holds with f replaced by F , i.e.,
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F(x̄t)≤ (1−αt)F(x̄t−1)

+αt

[
F(xt)+ 〈F ′(xt),xt − xt〉+µV (xt ,xt)+

1
γt

V (xt−1,xt)
]
.

Moreover, by convexity of f̂ , we have f̂ (x̄t)≤ (1−αt) f̂ (x̄t−1)+αt f̂ (xt). Adding up
the previous two relations, using the definition of xt in (3.3.24), and Lemma 3.5, we
conclude

f (x̄t)≤ (1−αt) f (x̄t−1)

+αt

[
F(xt)+ 〈F ′(xt),xt − xt〉+µV (xt ,xt)+ f̂ (xt)+

1
γt

V (xt−1,xt)
]

≤ (1−αt) f (x̄t−1)+αt [F(xt)+ 〈F ′(xt),x− xt〉+µV (xt ,x)+ f̂ (x)]

+ αt
γt

V (xt−1,x)−αt(µ + 1
γt
)V (xt ,x)

≤ (1−αt) f (x̄t−1)+αt f (x)+ αt
γt

V (xt−1,x)−αt(µ + 1
γt
)V (xt ,x),

where the last inequality follows from (3.3.22). Subtracting f (x) from both sides of
the above inequality and rearranging the terms, we obtain the result.

3.4 Game interpretation for accelerated gradient descent

In this subsection, we intend to provide some intuition that might help us to better
understand the accelerated gradient descent method.

First let us consider the smooth case without the strong convexity assumption, i.e.,
µ = 0 in (3.3.3). Let J f be the conjugate function of f , i.e., J f (y) = max〈y,x〉− f (x).
Since f is convex and smooth, it is proper and the conjugate of J f is given by
(J f )

∗ = f . We can then rewrite (3.1.2) equivalently as

min
x∈X

max
y

{
〈x,y〉− J f (y)

}
. (3.4.1)

This saddle point reformulation admits some natural buyer-supplier game interpre-
tation. In particular, the dual variables y can be viewed as the prices for a list of
products, and x are the order quantities for the buyer. The supplier’s goal is to specify
the prices to maximize the profit 〈x,y〉− J f (y) while the buyer intends to minimize
the cost given by 〈x,y〉 by determining the order quantities x. Given an initial pair of
order quantities and product prices (x0,y0) ∈ X×Rn, we need to design an iterative
algorithm to play this game so that the buyer and supplier can achieve the equilibrium
as soon as possible.

Next we describe the supplier and buyer’s strategies to play this game iteratively,
and then demonstrate that the accelerated gradient descent method can be viewed as
a special case of this procedure. Let V be the prox-function defined in (3.2.2) and
define

W (y1,y2) := J f (y2)− J f (y1)−〈J′f (y1),y2− y1〉. (3.4.2)
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The supplier and buyer will iteratively perform the following three steps.

x̃t = xt−1 +λt(xt−1− xt−2), (3.4.3)
yt = argminy〈−x̃t ,y〉+ J f (y)+ τtW (yt−1,y), (3.4.4)

xt = argminx∈X 〈yt ,x〉+ηtV (xt−1,x). (3.4.5)

In (3.4.3), the supplier predicts the demand by using historical data xt−1 and xt−2. In
(3.4.4), the supplier intends to maximize the profit without moving too far away from
yt−1 in terms of W (yt−1,y). Then in (3.4.5) the buyer determines the order quantity
by minimizing the cost without moving too far way from xt−1 in terms of V (xt−1,x).

It is interesting to notice that problem (3.4.4) is equivalent to the computation of
gradients.

Lemma 3.6. Let x̃ ∈ X and y0 be given. Also for any τ > 0, let us denote z =
[x̃+ τJ′f (y0)]/(1+ τ). Then we have

∇ f (z) = argminy
{
〈−x̃,y〉+ J f (y)+ τtW (y0,y)

}
.

Proof. In view of the definition of W (y0,y), we have

argminy
{
〈−x̃,y〉+ J f (y)+ τtW (y0,y)

}

= argmin
y

{
−〈x̃+ τJ′f (y0),y〉+(1+ τ)J f (y)

}

= argmax
y

{
〈z,y〉− J f (y)

}
= ∇ f (z).

In view of the above result, if

J′f (yt−1) = xt−1, (3.4.6)

xt =
1

1+τt

(
x̃t + τtxt−1

)
, (3.4.7)

then

yt = argminy
{
−〈xt ,y〉+ J f (y)

}
= ∇ f (xt). (3.4.8)

Moreover, by the optimality condition of (3.4.8), we must have xt = J′f (yt) for
some J′f (yt) ∈ ∂J f (yt). Therefore, we can show that (3.4.6), (3.4.7) and (3.4.8) hold
by induction, under the assumption that J′f (y0) = x0. The latter assumption can
be satisfied by setting y0 = ∇ f (x0). Using these observations, we can reformulate
(3.4.3)-(3.4.5) as

xt =
1

1+τt

(
x̃t + τtxt−1

)

= 1
1+τt

[
τtxt−1 +(1+λt)xt−1−λtxt−2

]
, (3.4.9)

xt = argminx∈X 〈∇ f (xt),x〉+ηtV (xt−1,x). (3.4.10)
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Now we will show that the above definition of xt and xt will be equivalent to those
in the accelerated gradient descent method (3.3.4)-(3.3.6). It can be seen from (3.3.4)
and (3.3.6) that

xt = (1−qt) [(1−αt−1)x̄t−1]+qtxt−1

= (1−qt)
[

1−αt−1
1−qt−1

(xt−1−qt−1xt−1)+αt−1xt−1

]
+qtxt−1

=
(1−qt )(1−αt−1)

1−qt−1
xt−1 +[(1−qt)αt−1 +qt ]xt−1− qt−1(1−qt )(1−αt−1)

1−qt−1
xt−2. (3.4.11)

In particular, if qt = αt as in the smooth case, the above relation can be further
simplified to

xt = (1−αt)xt−1 +[(1−αt)αt−1 +αt ]xt−1−αt−1(1−αt)xt−2,

which is equivalent to (3.4.9) if

τt =
1−αt

αt
and λt =

αt−1(1−αt )
αt

.

Now let us consider the strongly convex case with µ > 0. In order to provide a
game interpretation, we define

f̃ (x) = f (x)−µν(x).

By (3.3.3), the function f̃ (x) must be a convex function. Indeed, for any x,y ∈ X ,

f̃ (y)− f̃ (x)−〈∇ f̃ (x),y− x〉= f (y)− f (x)−〈∇ f (x),y− x〉−µV (x,y)≥ 0.

We can then rewrite (3.1.2) as

min
x∈X

µν(x)+ f̃ (x),

or equivalently,
min
x∈X

µν(x)+max
y

{
〈x,y〉− J f̃ (y)

}
, (3.4.12)

where J f̃ denotes the conjugate function of f̃ . Accordingly, we define the iterative
game between the supplier and buyer as follows.

x̃t = xt−1 +λt(xt−1− xt−2), (3.4.13)
yt = argminy〈−x̃t ,y〉+ J f̃ (y)+ τtW (yt−1,y), (3.4.14)

xt = argminx∈X 〈yt ,x〉+µν(x)+ηtV (xt−1,x). (3.4.15)

In (3.4.13), the supplier predicts the demand by using historical data xt−1 and xt−2.
In (3.4.14), the supplier still intends to maximize the profit without moving too far
away from yt−1 in terms of W (yt−1,y), but the local cost function changes to J f̃ (y).
Then in (3.4.15) the buyer determines the order quantity by minimizing the local
cost 〈yt ,x〉+ µν(x) without moving too far away from xt−1 in terms of V (xt−1,x).
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Similar to (3.4.9) and (3.4.10), we can show that

xt =
1

1+τt

[
τtxt−1 +(1+λt)xt−1−λtxt−2

]
, (3.4.16)

xt = argminx∈X 〈∇ f̃ (xt),x〉+µν(x)+ηtV (xt−1,x)

= argminx∈X 〈∇ f (xt)−µ∇ν(xt),x〉+µw(x)+ηtV (xt−1,x)

= argminx∈X 〈∇ f (xt),x〉+µV (xt ,x)+ηtV (xt−1,x). (3.4.17)

By properly choosing τt , λt , qt and αt , we can show these steps are equivalent to
(3.3.4) and (3.3.5).

3.5 Smoothing scheme for nonsmooth problems

In this section, we consider the convex programming problem of

f ∗ ≡min
x∈X

{
f (x) := f̂ (x)+F(x)

}
, (3.5.1)

where f̂ : X → R is a simple Lipschitz continuous convex function and

F(x) := max
y∈Y
{〈Ax,y〉− ĝ(y)} . (3.5.2)

Here, Y ⊆ Rm is a compact convex set, ĝ : Y → R is a continuous convex function
on Y and A denotes a linear operator from Rn to Rm. Observe also that problem
(3.5.1)-(3.5.2) can be written in an adjoint form:

max
y∈Y
{g(y) :=−ĝ(y)+G(y)} , G(y) := min

x∈X

{
〈Ax,y〉+ f̂ (x)

}
. (3.5.3)

While the function F given by (3.5.2) is a nonsmooth convex function in general, it
can be closely approximated by a class of smooth convex functions defined as follows.
Let ω(y) be a distance-generating function of Y with modulus 1 and prox-center
cω = argminy∈Y ω(y). Also let us denote

W (y)≡W (cω ,y) := ω(y)−ω(cω)−〈∇ω(cω),y− cω〉,

and, for some η > 0,

Fη(x) := max
y
{〈Ax,y〉− ĝ(y)−η W (y) : y ∈ Y} , (3.5.4)

fη(x) := f̂ (x)+Fη(x). (3.5.5)

Then we have, for every x ∈ X ,

Fη(x)≤ F(x)≤ Fη(x)+η D2
Y , (3.5.6)
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and, as a consequence,

fη(x)≤ f (x)≤ fη(x)+η D2
Y , (3.5.7)

where DY ≡ DY,ω is defined in (3.2.4). Moreover, we can show that Fη is a smooth
convex function.

Lemma 3.7. Fη(·) has Lipschitz-continuous gradient with constant

Lη ≡L (Fη) := ‖A‖2
η

, (3.5.8)

where ‖A‖ denote the operator norm of A.

Proof. Let x1,x2 ∈ Y be given, and denote

y1 = argmaxy {〈Ax1,y〉− ĝ(y)−η W (y) : y ∈ Y} , (3.5.9)

y2 = argmaxy {〈Ax2,y〉− ĝ(y)−η W (y) : y ∈ Y} . (3.5.10)

The gradients of Fη at x1 and x2, by implicit function theorem, are given by AT y1
and AT y2, respectively. By the optimality conditions for (3.5.9) and (3.5.10), we have

〈Ax1− ĝ′(y1)−η [∇ω(y1)−∇ω(cω)],y− y1〉 ≤ 0, (3.5.11)
〈Ax2− ĝ′(y2)−η [∇ω(y2)−∇ω(cω)],y− y2〉 ≤ 0, (3.5.12)

for any y∈Y and some ĝ′(y1)∈ ∂ ĝ(y1) and ĝ′(y2)∈ ∂ ĝ(y2). Letting y= y2 and y= y1
in (3.5.11) and (3.5.12) respectively, and summing up the resulting inequalities, we
obtain

−〈A(x1− x2),y1− y2〉+ 〈η∇ω(y1)−∇ω(y2),y1− y2〉 ≤ 0.

Using the above inequality and the strong convexity of ω , we conclude

η‖y1− y2‖2 ≤ η〈∇ω(y1)−∇ω(y2),y1− y2〉
≤ −〈A(x1− x2),y1− y2〉 ≤ ‖A‖‖x1− x2‖‖y1− y2‖,

which implies that ‖y1− y2‖ ≤ ‖A‖‖x1− x2‖/η and hence that

‖∇Fη(x1)−∇Fη(x2)‖= ‖AT (y1− y2)‖ ≤ ‖A‖2‖x1− x2‖/η .

Since Fη is a smooth convex function and f̂ is a simple convex function, we can
apply the accelerated gradient descent method in (3.3.23)-(3.3.25) to solve

f ∗η := min
x∈X

fη(x). (3.5.13)

Then, in view of Theorem 3.6 and Corollary 3.5, after performing the algorithm for
at most
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⌈

2
√

2Lη D2
X

ε

⌉
(3.5.14)

iterations, we will be able to find a solution x̄ ∈ X such that fη(x̄)− f ∗η ≤ ε

2 . Noting
that by (3.5.7), f (x̄)≤ fη(x̄)+η D2

Y and f ∗ ≥ f ∗η , we then conclude that

f (x̄)− f ∗ ≤ ε

2 +η D2
Y .

If one choose η > 0 small enough, e.g.,

η = ε

2D2
Y
,

then we will have
f (x̄)− f ∗ ≤ ε

and the total number of iterations in (3.5.14) will reduce to
⌈

4‖A‖DX DY
ε

⌉
.

Observe that in the above discussion, we have assumed f̂ to be relatively simple.
Of course this does not have to be true. For example, if f̂ itself is a smooth convex
function and its gradients are L̂-Lipschitz continuous, then we can apply the acceler-
ated gradient descent method in (3.3.23)-(3.3.25) (rather than (3.3.23)-(3.3.25)) to
solve (3.5.13). This method will require us to compute the gradient of both f̂ and Fη

at each iteration. Then it is not difficult to show that the total number of iterations
peformed by this method for finding a solution x̄ ∈ X such that f (x̄)− f ∗ can be
bounded by

O

{√
L̂D2

X
ε

+ ‖A‖DX DY
ε

}
.

It is worth noting that this bound can be substantially improved, in terms of the total
number of gradient computations of ∇ f̂ . We will have some further discussions for
this type of improvement in Section 8.2.

3.6 Primal-dual method for saddle-point optimization

In this subsection, we continue our discussion about the following more general (than
(3.5.1)) bilinear saddle point optimization problem:

min
x∈X

{
f̂ (x)+max

y∈Y
〈Ax,y〉− ĝ(y)

}
. (3.6.1)

Here X ⊆Rn and Y ⊆Rm are closed convex sets, A∈Rn×m denotes a linear mapping
from Rn to Rm, and f̂ : X → R and ĝ : X → R are convex functions satisfying
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f̂ (y)− f̂ (x)−〈 f̂ ′(x),y− x〉 ≥ µpV (x,y), ∀x,y ∈ X , (3.6.2)
ĝ(y)− ĝ(x)−〈ĝ′(x),y− x〉 ≥ µdW (x,y), ∀x,y ∈ Y, (3.6.3)

for some µp ≥ 0 and µd ≥ 0, where V and W , respectively, denote the prox-functions
associated with distances generating functions ν and ω in the primal and dual spaces,
i.e.,

V (x,y) := ν(y)−ν(x)−〈ν ′(x,y),y− x〉, (3.6.4)
W (x,y) := ω(y)−ω(x)−〈ω ′(x,y),y− x〉. (3.6.5)

For the sake of simplicity, we assume that both ν and ω have modulus 1 w.r.t. the
respective norms in the primal and dual spaces. Without specific mention, we assume
that the set of optimal primal and dual solutions of (3.6.1) is nonempty, and that
z∗ := (x∗,y∗) is an optimal pair of primal and dual solutions of (3.6.1).

As discussed in the previous subsection, problem (3.6.1) covers the optimization
problem (3.1.2) as a special case. As another example, we can write the Lagrangian
dual of

min
x∈X
{ f (x) : Ax = b} (3.6.6)

in the form of (3.6.1) by dualizing the linear constraint Ax = b.
Denote z≡ (x,y) and z̄≡ (x̄, ȳ) and define

Q(z̄,z) := f̂ (x̄)+ 〈Ax̄,y〉− ĝ(y)− [ f̂ (x)+ 〈Ax, ȳ〉− ĝ(ȳ)]. (3.6.7)

Note that by definition z̄ is a saddle point if and only if ∀z = (x,y) ∈ Z,

f̂ (x̄)+ 〈Ax̄,y〉− ĝ(y)≤ f̂ (x̄)+ 〈Ax̄, ȳ〉− ĝ(ȳ)≤ [ f̂ (x)+ 〈Ax, ȳ〉− ĝ(ȳ)].

It then follows that z̄ ∈ Z ≡ X×Y is a pair of saddle points if and only if Q(z̄,z)≤ 0
for any z ∈ Z, or equivalent, Q(z, z̄)≥ 0 for any z ∈ Z.

The smoothing scheme described in Section 3.5 can be viewed as an indirect
approach for solving bilinear saddle point problems. Below we describe a direct
primal-dual method for solving the saddle point problem (3.6.1). This method gener-
alizes the game interpretation of the accelerated gradient descent method discussed
in Section 3.4. Given (xt−2,xt−1,yt−1) ∈ X×X×Y , this algorithm updates xt and yt
according to

x̃t = xt−1 +λt(xt−1− xt−2), (3.6.8)
yt = argminy〈−Ax̃t ,y〉+ ĝ(y)+ τtW (yt−1,y), (3.6.9)

xt = argminx∈X 〈yt ,Ax〉+ f̂ (x)+ηtV (xt−1,x). (3.6.10)

Clearly, the accelerated gradient descent method in (3.4.3)-(3.4.5) can be viewed as
a special case of the above primal-dual method applied to problem (3.4.12).

We first state a simple relation based on the optimality condtions for (3.6.9) and
(3.6.10).
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Lemma 3.8. Assume that φ : X → R satisfies

φ(y)≥ φ(x)+ 〈φ ′(x),y− x〉+µV (x,y), ∀x,y ∈ X (3.6.11)

for some µ ≥ 0. If
x̄ = argmin{φ(x)+V (x̃,x)}, (3.6.12)

then
φ(x̄)+V (x̃, x̄)+(µ +1)V (x̄,x)≤ φ(x)+V (x̃,x),∀x ∈ X .

Proof. It follows from the definition of V that V (x̃,x) =V (x̃, x̄)+ 〈∇V (x̃, x̄),x−
x̄〉+V (x̄,x). Using this relation, (3.6.11) and the optimality condition for problem
(3.6.12), we have

φ(x)+V (x̃,x) = φ(x)+ [V (x̃, x̄)+ 〈∇V (x̃, x̄),x− x̄〉+V (x̄,x)]

≥ φ(x̄)+ 〈φ ′(x̄),y− x̄〉+µV (x̄,x)

+ [V (x̃, x̄)+ 〈∇V (x̃, x̄),x− x̄〉+V (x̄,x)]

≥ φ(x̄)+V (x̃, x̄)+(µ +1)V (x̄,x),∀x ∈ X .

We now prove some general convergence properties of the primal-dual method.

Theorem 3.8. If

γtλt = γt−1, (3.6.13)
γtτt ≤ γt−1(τt−1 +µd), (3.6.14)
γtηt ≤ γt−1(ηt−1 +µp), (3.6.15)

τtηt−1 ≥ λt‖A‖2, (3.6.16)

for any t ≥ 2, then

∑
k
t=1γtQ(zt ,z)≤ γ1η1V (x0,x)− γk(ηk +µp)V (xk,x)

+ γ1τ1W (y0,y)− γk

(
τk +µd− ‖A‖

2

ηk

)
W (yk,y). (3.6.17)

Moreover, we have

γk

(
τk +µd− ‖A‖

2

ηk

)
W (yk,y∗)≤ γ1η1V (x0,x∗)+ γ1τ1W (y0,y∗), (3.6.18)

γk

(
ηk− ‖A‖2

τk+µd

)
V (xk−1,xk)≤ γ1η1V (x0,x∗)+ γ1τ1W (y0,y∗). (3.6.19)

Proof. It follows from Lemma 3.8 applied to (3.6.9) and (3.6.10) that

〈−Ax̃t ,yt − y〉+ ĝ(yt)− ĝ(y)≤ τt [W (yt−1,y)−W (yt−1,yt)]− (τt +µd)W (yt ,y),

〈A(xt − x),yt〉+ f̂ (xt)− f̂ (x)≤ ηt [V (xt−1,x)−V (xt−1,xt)]− (ηt +µp)V (xt ,x).
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Summing up these inequalities and using the definition of the gap function Q, we
have

Q(zt ,z)+ 〈A(xt − x̃t),yt − y〉 ≤ ηt [V (xt−1,x)−V (xt−1,xt)]− (ηt +µp)V (xt ,x)

+ τt [W (yt−1,y)−W (yt−1,yt)]− (τt +µd)W (yt ,y).

Noting that by (3.4.13), we have

〈A(xt − x̃t),yt − y〉= 〈A(xt − xt−1),yt − y〉−λt〈A(xt−1− xt−2),yt − y〉
= 〈A(xt − xt−1),yt − y〉−λt〈A(xt−1− xt−2),yt−1− y〉
+λt〈A(xt−1− xt−2),yt−1− yt〉.

Combining the above two relations, multiplying both sides by γt ≥ 0 and summing
up the resulting inequality , we have

∑
k
t=1γtQ(zt ,z)+∑

k
t=1γt [〈A(xt − xt−1),yt − y〉−λt〈A(xt−1− xt−2),yt−1− y〉]

≤ ∑
k
t=1γt [ηtV (xt−1,x)− (ηt +µp)V (xt ,x)]+∑

k
t=1γt [τtW (yt−1,y)− (τt +µd)W (yt ,y)]

−∑
k
t=1γt [τtW (yt−1,yt)+ηtV (xt−1,xt)+λt〈A(xt−1− xt−2),yt−1− yt〉].

The above inequality, in view of (3.6.13)-(3.6.15) and the fact that x0 = x−1, then
implies that

∑
k
t=1γtQ(zt ,z)≤ γ1η1V (x0,x)− γk(ηk +µp)V (xk,x)+ γ1τ1W (y0,y)− γk(τk +µd)W (yk,y)

−∑
k
t=1γt [τtW (yt−1,yt)+ηtV (xt−1,xt)+λt〈A(xt−1− xt−2),yt−1− yt〉]

− γk〈A(xk− xk−1),yk− y〉.

Also note that by (3.6.13) and (3.6.16), we have

−∑
k
t=1γt [τtW (yt−1,yt)+ηtV (xt−1,xt)+λt〈A(xt−1− xt−2),yt−1− yt〉]

≤−∑
k
t=2[

γt τt
2 ‖yt−1− yt‖2 +

γt−1ηt−1
2 ‖xt−2− xt−1‖2− γtλt‖A‖‖xt−1− xt−2‖‖yt−1− yt‖]

− γkηkV (xk−1,xk)

≤−γkηkV (xk−1,xk).

Combining the above two inequalities, we obtain

∑
k
t=1γtQ(zt ,z)≤ γ1η1V (x0,x)− γk(ηk +µp)V (xk,x)+ γ1τ1W (y0,y)

− γk(τk +µd)W (yk,y)− γkηkV (xk−1,xk)

− γk〈A(xk− xk−1),yk− y〉. (3.6.20)

The result in (3.6.17) then follows from the above inequality and the fact that by
(3.6.16),
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− (τk +µd)W (yk,y)−ηkV (xk−1,xk)−〈A(xk− xk−1),yk− y〉
≤ −(τk +µd)W (yk,y)− ηk

2 ‖xk− xk−1‖2 +‖A‖‖xk− xk−1‖‖yk− y‖
≤ −(τk +µd)W (yk,y)+

‖A‖2
2ηk
‖yk− y‖2

≤−
(

τk +µd− ‖A‖
2

ηk

)
W (yk,y).

Fixing z = z∗ in the above inequality and using the fact that Q(zt ,z∗)≥ 0, we obtain
(3.6.18). Finally, (3.6.19) follows from similar ideas and a different bound

− (τk +µd)W (yk,y)−ηkV (xk−1,xk)−〈A(xk− xk−1),yk− y〉
≤ − τk+µd

2 ‖yk− y‖2
2−ηkV (xk−1,xk)+‖A‖‖xk− xk−1‖‖yk− y‖2

≤−ηkV (xk−1,xk)+
‖A‖2

2(τk+µd)
‖xk− xk−1‖2

≤−
(

ηk− ‖A‖2
τk+µd

)
V (xk−1,xk).

Based on Theorem 3.8, we will provide different ways to specify the algorithmic
parameters {τt}, {ηt} and {γt} for solving different classes of problems.

3.6.1 General bilinear saddle point problems

In this subsection, we assume that the parameters µp = µd = 0 in (3.6.2). Moreover,
for the sake of simplicity, we assume that both the primal and dual feasible sets X
and Y are bounded. Discussions about primal-dual type method for solving problems
with unbounded feasible sets can be found later in Subsection 3.6.4 and Section 4.4.

Given z̄ ∈ Z, we define the primal-dual gap as

max
z∈Z

Q(z̄,z). (3.6.21)

Our goal is to show that the primal-dual gap evaluated at the output solution

z̄k =
∑

k
t=1(γt zk)

∑
k
t=1γt

(3.6.22)

will converge to zero by properly specifying the algorithmic parameters. We use the
following quantities in the convergence analysis of the primal dual method:

D2
X ≡ D2

X ,ν := max
x0,x∈X

V (x0,x) and D2
Y ≡ D2

Y,ω = max
y0,y∈Y

W (y0,y). (3.6.23)

Corollary 3.6. If γt = 1, τt = τ , ηt = η , λt = 1 and τη ≥ ‖A‖2 for any t = 1, . . . ,k,
then

max
z∈Z

Q(z̄k,z)≤ 1
k (ηD2

X + τD2
Y ).
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Proof. We can easily check that all the condtions (3.6.13)-(3.6.16) hold. It then
follows from (3.6.17) that

∑
k
t=1Q(zt ,z)≤ ηV (x0,x)+ τW (y0,y). (3.6.24)

Dividing both sides by k and using the convexity of Q(z̄k,z) w.r.t. z̄k, we have

Q(z̄k,z)≤ 1
k [ηV (x0,x)+ τW (y0,y)].

The result then follows by maximizing both sides of the above inequality w.r.t. z ∈ Z.

It can be seen from the above result that the best selection of τ and η is given by

η = ‖A‖DY
DX

and τ = ‖A‖DX
DY

.

With such a selection, the rate of convergence of the primal-dual method reduces to

max
z∈Z

Q(z̄k,z)≤ ‖A‖DX DY
k .

3.6.2 Smooth bilinear saddle point problems

In this subsection, we first assume that µp = 0 but µd > 0. We call these problems
smooth bilinear saddle point problems because the objective function in (3.6.1) is
a differentiable convex function with Lipschitz continuous gradient. We will show
that by properly specifying algorithmic parameters, the primal-dual method will
exhibit an O(1/k2) rate of convergence. For the sake of simplicity, we assume that
the primal feasible region X is bounded.

Corollary 3.7. If γt = t, τt = µd(t−1)/2, ηt = 2‖A‖2/(µdt) and λt = (t−1)/t, then

max
z∈Z

Q(z̄k,z)≤ 4‖A‖2D2
X

µdk(k+1) .

where z̄k is defined in (3.6.22)

Proof. Observe that all the condtions (3.6.13)-(3.6.16) hold. It then follows from
(3.6.17) that

∑
k
t=1γtQ(zt ,z)≤ γ1η1V (x0,x) =

2‖A‖2V (x0,x)
µd

. (3.6.25)

Dividing both sides by ∑t γt and using the convexity of Q(z̄k,z) w.r.t. z̄k, we have

Q(z̄k,z)≤ 4‖A‖2V (x0,x)
µdk(k+1) .
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The result then follows by maximizing both sides of the above inequality w.r.t. z ∈ X .

Next, we assume that µp > 0 but µd = 0. Moreover, for the sake of simplicity, we
assume that the dual feasible set Y is bounded. Similar to the previous corollary, we
can show the following result.

Corollary 3.8. If γt = t +1, τt = 4‖A‖2/[µp(t +1)], ηt = µpt/2 and λt = t/(t +1),
then

max
z∈Z

Q(z̄k,z)≤ 2
k(k+3)

[
µpD2

X +
4‖A‖2D2

Y
µp

]
.

Proof. Observe that all the conditions (3.6.13)-(3.6.16) hold. It then follows from
(3.6.17) that

∑
k
t=1γtQ(zt ,z)≤ γ1η1V (x0,x)+ γ1τ1W (y0,y)

≤ µpV (x0,x)+
4‖A‖2W (y0,y)

µp
. (3.6.26)

Dividing both sides by ∑t γt and using the convexity of Q(z̄k,z) w.r.t. z̄k, we have

Q(z̄k,z)≤ 2
k(k+3)

[
µpV (x0,x)+

4‖A‖2W (y0,y)
µp

]
.

The result then follows by maximizing both sides of the above inequality w.r.t. z ∈ X .

3.6.3 Smooth and strongly convex bilinear saddle point problems

In this subsection, we assume that µp > 0 and µd > 0. We call these problems smooth
and strongly convex bilinear saddle point problems because the objective function in
(3.6.1) is both smooth and strongly convex.

Corollary 3.9. Assume that

‖A‖2 ≥ µpµd and λ = 1−
√

µpµd
‖A‖2 .

If γt = λ−t , τt = µdλ/(1−λ ), ηt = µpλ/(1−λ ) and λt = λ , then

µp
1−λ

V (xk,x∗)+µdW (yk,y∗)≤ λ k

1−λ
[µpV (x0,x∗)+µdW (y0,y∗)] .

Proof. Observe that all the condtions (3.6.13)-(3.6.16) hold. It then follows from
(3.6.17) (with z = z∗) and Q(zt ,z∗)≥ 0 that

0≤ ∑
k
t=1γtQ(zt ,z∗)≤ γ1τ1W (y0,y∗)− γkµdW (yk,y∗)

+ γ1η1V (x0,x∗)− γk(ηk +µp)V (xk,x∗),
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which clearly implies the result.

3.6.4 Linearly constrained problems

In this subsection, we analyze the convergence of the primal-dual method applied to
the linear constrained problem (3.6.6). For the sake of simplicity, let us assume that
b = 0. We can then apply this algorithm with f̂ (x) = f (x) and ĝ(x) = 0 to the saddle
point reformulation of (3.6.6) given by

min
x∈X

max
y
{ f (x)+ 〈Ax,y〉} . (3.6.27)

Since the dual feasible set is unbounded, we set the dual prox-funciton to
W (yt−1,y) = ‖y− yt−1‖2

2/2 and restate the algorithm as follows.

x̃t = xt−1 +λt(xt−1− xt−2), (3.6.28)

yt = argminy{〈−Ax̃t ,y〉+ τt
2 ‖y− yt−1‖2

2}= yt−1 +
1
τt

Ax̃t , (3.6.29)

xt = argminx∈X 〈yt ,Ax〉+ f (x)+ηtV (xt−1,x). (3.6.30)

Moreover, the dual feasible set of (3.6.27) is unbounded, we have to modify the
convergence analysis given in the previous subsections.

We first prove a general convergence result for the above algorithm without
specifying any algorithmic parameters.

Theorem 3.9. Suppose that the conditions in (3.6.13)-(3.6.16) hold (with µd = 0). If,
in addition,

γ1τ1 = γkτk, (3.6.31)

τkηk ≥ ‖A‖2. (3.6.32)

then

f (x̄k)− f (x∗)≤ 1

∑
k
t=1γt

[
γ1η1V (x0,x∗)+

γ1τ1
2 ‖y0‖2

2
]
, (3.6.33)

‖Ax̄k‖2 ≤ 1

∑
k
t=1γt

{
γ1τ1
√

ηk+γk‖A‖
√

τk√
γk(ηkτk−‖A‖2)

√
2γ1η1V (x0,x∗)

+

[
γ1τ1
√

ηk+γk‖A‖
√

τk√
γk(ηkτk−‖A‖2)

√
γ1τ1 + γ1τ1

]
‖y0− y∗‖2

}
. (3.6.34)

Proof. It follows from (3.6.31) and (3.6.32) that
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γ1τ1W (y0,y)− γkτkW (yk,y)− γkηkV (xk−1,xk)− γk〈A(xk− xk−1),yk− y〉
≤ γ1τ1

2 ‖y− y0‖2
2− γkτk

2 ‖y− yk‖2
2− γkηk

2 ‖xk− xk−1‖2− γk〈A(xk− xk−1),yk− y〉
= γ1τ1

2 ‖y0‖2
2− γkτk

2 ‖yk‖2
2− γkηk

2 ‖xk− xk−1‖2− γk〈A(xk− xk−1),yk〉
+ 〈γ1τ1(yk− y0)+ γkA(xk− xk−1),y〉

≤ γ1τ1
2 ‖y0‖2

2 + 〈γ1τ1(yk− y0)+ γkA(xk− xk−1),y〉,

which, in view of (3.6.20), then implies that

∑
k
t=1γtQ(zt ,z)≤ γ1η1V (x0,x)− γk(ηk +µp)V (xk,x)

+ γ1τ1
2 ‖y0‖2

2 + 〈γ1τ1(yk− y0)+ γkA(xk− xk−1),y〉.

Fixing x = x∗ and noting that Ax∗ = 0, we have Q(zt ,(x∗,y)) = f (xt)− f (x∗) +
〈Axt ,y〉. Using the previous two relations, we obtain

∑
k
t=1γt [ f (xt)− f (x∗)]+ 〈∑k

t=1(γtAxt)− γ1τ1(yk− y0)− γkA(xk− xk−1),y〉
≤ γ1η1V (x0,x∗)− γk(ηk +µp)V (xk,x∗)+

γ1τ1
2 ‖y0‖2

2, (3.6.35)

for any y, which implies

∑
k
t=1(γtAxt)− γ1τ1(yk− y0)− γkA(xk− xk−1) = 0,

since otherwise the left-hand side of (3.6.35) can be unbounded. Using the above
two observations and the convexity of f , we have

f (x̄k)− f (x∗)≤ 1

∑
k
t=1γt

∑
k
t=1γt [ f (xt)− f (x∗)]≤ γτ

∑
k
t=1γt

[
γ1η1V (x0,x∗)+

γ1τ1
2 ‖y0‖2

2
]
,

‖Ax̄k‖2 =
1

∑
k
t=1γt

∑
k
t=1(γtAxt) =

1

∑
k
t=1γt

[γ1τ1(yk− y0)+ γkA(xk− xk−1)]

≤ 1

∑
k
t=1γt

[γ1τ1‖yk− y0‖2 + γk‖A‖‖xk− xk−1‖] . (3.6.36)

Also by (3.6.18) and (3.6.19), we have

‖yk− y∗‖2
2 ≤ ηk

γk(ηkτk−‖A‖2)
[
2γ1η1V (x0,x∗)+ γ1τ1‖y0− y∗‖2

2
]
,

‖xk− xk−1‖2 ≤ τk
γk(ηkτk−‖A‖2)

[
2γ1η1V (x0,x∗)+ γ1τ1‖y0− y∗‖2

2
]
,

which implies that
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γ1τ1‖yk− y0‖2 + γk‖A‖‖xk− xk−1‖
≤ γ1τ1(‖yk− y∗‖2 +‖y0− y∗‖2)+ γk‖A‖‖xk− xk−1‖
≤ γ1τ1

[√
ηk

γk(ηkτk−‖A‖2)

(√
2γ1η1V (x0,x∗)+

√
γ1τ1‖y0− y∗‖2

)
+‖y0− y∗‖2

]

+ γk‖A‖
√

τk
γk(ηkτk−‖A‖2)

(√
2γ1η1V (x0,x∗)+

√
γ1τ1‖y0− y∗‖2

)

=
γ1τ1
√

ηk+γk‖A‖
√

τk√
γk(ηkτk−‖A‖2)

[√
2γ1η1V (x0,x∗)+

√
γ1τ1‖y0− y∗‖2

]
+ γ1τ1‖y0− y∗‖2.

Using this relation in (3.6.36), we obtain (3.6.34).

Let us first consider the case when f is a general convex function which is not nec-
essarily strongly convex. The proof of this result directly follows from Theorem 3.9.

Corollary 3.10. If γt = 1, τt = τ , ηt = η , λt = 1 and τη ≥ ‖A‖2 for any t = 1, . . . ,k,
then

f (x̄k)− f (x∗)≤ 1
k

[
ηV (x0,x∗)+ τ

2‖y0‖2
2
]
,

‖Ax̄k‖2 ≤ 1
k

[
τ
√

η+‖A‖√τ

ητ−‖A‖2
√

2ηV (x0,x∗)+
(

τ
√

ητ+‖A‖τ
ητ−‖A‖2 + τ

)
‖y0− y∗‖2

]
.

In particular, if η = 2‖A‖ and τ = ‖A‖, then

f (x̄k)− f (x∗)≤ ‖A‖k
[
2V (x0,x∗)+ 1

2‖y0‖2] ,

‖Ax̄k‖2 ≤ 2(
√

2+1)
k

√
V (x0,x∗)+

‖A‖+
√

2+1
k ‖y0− y∗‖.

Next we consider the case when f is strongly convex with modulus µp.

Corollary 3.11. If γt = t+1, τt = 4‖A‖2/[µp(t+1)], ηt = µpt/2 and λt = t/(t+1),
then for any k ≥ 2,

f (x̄k)− f (x∗)≤ 2
k(k+3)

[
µpV (x0,x∗)+

2‖A‖2
µp
‖y0‖2

2

]
,

‖Ax̄k‖2 ≤ 2
k(k+3)

[
2(2+

√
3)‖A‖

√
2V (x0,x∗)+ 4(3+

√
3)‖A‖2‖y0−y∗‖2

µp

]
.

Proof. Note that ∑
k
t=1γt = k(k+3)/2. Also observe that

ηkτk−‖A‖2 = 2k‖A‖2
k+1 −‖A‖2 = (k−1)‖A‖2

k+1

and hence that

γ1τ1
√

ηk+γk‖A‖
√

τk√
γk(ηkτk−‖A‖2)

=
4‖A‖
√

k/2+2‖A‖
√

k+1√
µp(k−1)

≤ 2‖A‖√
µp
(2+
√

3),∀k ≥ 2.

The results then follows from (3.6.33) and (3.6.34), the selection of γt ,τt and ηt , and
the previous bounds.
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3.7 Alternating direction method of multipliers

In this section, we discuss a popular primal-dual type method called the alternating
direction method of multipliers (ADMM) for solving a special class of linearly
constrained convex optimization problems.

Consider the problem of

min
x∈X ,y∈Y

{ f (x)+g(y) : Ax+By = b} , (3.7.1)

where X ⊆ Rp and Y ⊆ Rq are closed convex sets, the vector b ∈ Rm and matrices
A ∈ Rm×p and B ∈ Rm×q are given. Moreover, we assume that the optimal solution
(x∗,y∗) exist, along with an arbitrary dual multiplier λ ∗ ∈ Rm associated with the
linear constraint Ax+By = b. This problem can be viewed as a special case of
problem (3.6.6).

ADMM maintains the updating of both the primal and dual variables (xt ,yt ,λt).
Given (yt−1,λt−1) ∈ Y ×Rm and some penalty parameter ρ > 0, this algorithm
computes (xt ,yt ,λt) according to

xt = argminx∈X f (x)+ 〈λt−1,Ax+Byt−1−b〉+ ρ

2 ‖Ax+Byt−1−b‖2, (3.7.2)

yt = argminy∈Y g(y)+ 〈λt−1,Axt +By−b〉+ ρ

2 ‖Axt +By−b‖2, (3.7.3)

λt = λt−1 +ρ(Axt +Byt −b). (3.7.4)

For notational convenience, let us denote zt ≡ (xt ,yt ,λt), z≡ (x,y,λ ), and let the
primal-dual gap function Q be defined in (3.6.7), i.e.,

Q(zt ,z) = f (xt)+g(yt)+ 〈λ ,Axt +Byt −b〉
− [ f (x)+g(y)+ 〈λt ,Ax+By−b〉]. (3.7.5)

Moreover, we denote an arbitrary pair of primal-dual solution of (3.7.1) by z∗ =
(x∗,y∗,λ ∗).

Theorem 3.10. Let zt , t = 1, . . . ,k, be the sequence generated by ADMM with some
ρ > 0, and define z̄k = ∑

k
t=1zt/k. Then we have

f (x̄k)+g(ȳk)− f (x∗)−g(y∗)≤ 1
2k

[
1
ρ
‖λ0‖2

2 +ρ‖B(y0− y∗)‖2
2

]
, (3.7.6)

‖Ax̄k +Bȳk−b‖2 ≤ 1
k

(
2
ρ
‖λ0−λ

∗‖2 +‖B(y0− y∗)‖2

)
. (3.7.7)

Proof. In view of the optimality condtions of (3.7.2) and (3.7.3), we have

f (xt)− f (x)+ 〈λt−1 +ρ(Axt +Byt−1−b),A(xt − x)〉 ≤ 0,
g(yt)−g(y)+ 〈λt−1 +ρ(Axt +Byt −b),B(yt − y)〉 ≤ 0,

which together with (3.7.4) then imply that
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f (xt)− f (x)≤−〈λt +ρB(yt−1− yt),A(xt − x)〉,
g(yt)−g(y)≤−〈λt ,B(yt − y)〉.

Using these two relations and (3.7.5), we have

Q(zt ,z)≤−〈λt +ρB(yt−1− yt),A(xt − x)〉−〈λt ,B(yt − y)〉
+ 〈λ ,Axt +Byt −b〉−〈λt ,Ax+By−b〉

= 〈λ −λt ,Axt +Byt −b〉+ρ〈B(yt − yt−1,A(xt − x)〉
= 〈λ −λt ,

1
ρ
(λt −λt−1)〉+ρ〈B(yt − yt−1),A(xt − x)〉.

Noting that

2〈λ −λt ,λt −λt−1〉= ‖λ −λt−1‖2
2−‖λ −λt‖2

2−‖λt−1−λt‖2
2,

and

2〈B(yt − yt−1),A(xt − x)〉
= ‖Ax+Byt−1−b‖2

2−‖Ax+Byt −b‖2
2 +‖Axt +Byt −b‖2

2−‖Axt +Byt−1−b‖2
2

= ‖Ax+Byt−1−b‖2
2−‖Ax+Byt −b‖2

2 +
1

ρ2 ‖λt−1−λt‖2
2−‖Axt +Byt−1−b‖2

2,

we conclude that

Q(zt ,z)≤ 1
2ρ

(
‖λt−1−λ‖2

2−‖λt −λ‖2
2
)

+ ρ

2

(
‖Ax+Byt−1−b‖2

2−‖Ax+Byt −b‖2
2−‖Axt +Byt−1−b‖2

2
)
.

Summing up the above inequality from t = 1, . . . ,k, we obtain

∑
k
t=1Q(zt ,z)≤ 1

2ρ

(
‖λ0−λ‖2

2−‖λk−λ‖2
2
)

+ ρ

2

(
‖B(y0− y)‖2

2−‖B(yk− y)‖2
2
)
. (3.7.8)

Setting z = z∗ in the above inequality and using the fact that Q(z̄k,z∗)≥ 0, we can
see that

‖λk−λ
∗‖2

2 ≤ ‖λ0−λ
∗‖2

2 +ρ
2‖B(y0− y∗)‖2

2

and hence that

‖λk−λ0‖2 ≤ ‖λ0−λ
∗‖2 +‖λk−λ

∗‖2 ≤ 2‖λ0−λ
∗‖2 +ρ‖B(y0− y∗)‖2. (3.7.9)

Moreover, letting z = (x∗,y∗,λ ) in (3.7.8), and noting that

1
k ∑

k
t=1Q(zt ,(x∗,y∗,λ ))≥ Q(z̄k,(x∗,y∗,λ ))

= f (x̄k)+g(ȳk)− f (x∗)−g(y∗)+ 〈λ ,Ax̄k +Bȳk−b〉,

and that
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1
2

(
‖λ0−λ‖2

2−‖λk−λ‖2
2
)
= 1

2

(
‖λ0‖2

2−‖λk‖2
2
)
−〈λ ,λ0−λk〉,

we have

f (x̄k)+g(ȳk)− f (x∗)−g(y∗)+ 〈λ ,Ax̄k +Bȳk−b+ 1
ρk (λ0−λk)〉

≤ 1
2k

[
1
ρ

(
‖λ0‖2

2−‖λk‖2
2
)
+ρ

(
‖B(y0− y∗)‖2

2−‖B(yk− y∗)‖2
2
)]

≤ 1
2k

[
1
ρ
‖λ0‖2

2 +ρ‖B(y0− y∗)‖2
2

]
.

for any λ ∈ Rm. This relation implies that Ax̄k +Bȳk− b+ 1
ρk (λ0− λk) = 0, and

hence that (3.7.6) holds. (3.7.7) also directly follows from the previous observation
and (3.7.9).

In comparison with the primal-dual method, the selection of the algorithmic
parameter in the ADMM method seems to be simpler. Moreover, the rate of con-
vergence of ADMM depends only on the norm of one part of the constraint matrix,
i.e., ‖B‖ rather than ‖[A,B]‖. However, this method requires the solution of more
complicated subproblems and it is not straightforward to generalize this algorithm
for solving problems with more than two blocks of variables.

3.8 Mirror-prox method for variational inequalities

This section focuses on variational inequality (VI) that can be used to model a
wide range of optimization, equilibrium and complementarity problems. Given an
nonempty closed convex set X ⊆Rn and a continuous map F : X→Rn, the variational
inequality problem, denoted by VI(X ,F), is to find x∗ ∈ X satisfying

〈F(x∗),x− x∗〉 ≥ 0 ∀x ∈ X . (3.8.1)

Such a point x∗ is often called a strong solution of VI(X ,F). In particular, if F is
given by the gradient of f , then (3.8.1) is exactly the first-order necessary optimality
condition of minx∈X f (x).

One important class of VI problems is called monotone VI for which the operator
F(·) is monotone, i.e.,

〈F(x)−F(y),x− y〉 ≥ 0 ∀x,y ∈ X . (3.8.2)

These monotone VIs cover convex optimization problems as a special case. They
also cover the following saddle point problems

min
x∈X

max
y∈Y

F(x,y)

where F is convex w.r.t. x and concave w.r.t. y.
A related notion is a weak solution of VI(X ,F), i.e., a point x∗ ∈ X such that
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〈F(x),x− x∗〉 ≥ 0 ∀x ∈ X . (3.8.3)

Note that if F(·) is monotone and continuous, a weak solution of VI(X ,F) must be a
strong solution and vise versa.

In this section, we focus on the mirror-prox method for solving these VI problems.
The mirror-prox method evolves from Korpelevich’s extragradient method. We
assume that a distance generating function ν with modulus 1 and its associated
prox-function V : Xo×X → R+ are given. The basic scheme of the mirror-prox
method can be described as follows.

Input: Initial point x1 ∈ X and stepsizes {γk}k≥1.
0) Set k = 1.
1) Compute

yk = argminx∈X
{
〈γkF(xk,x〉+V (xk,x)

}
, (3.8.4)

xk+1 = argminx∈X
{
〈γkF(yk),x〉+V (xk,x)

}
. (3.8.5)

2) Set k = k+1 and go to Step 1.

We now add a few remarks about the above mirror-prox method. Firstly, observe
that under the Euclidean case when ‖ ·‖= ‖ ·‖2 and ν(x) = ‖x‖2/2, the computation
of (yt ,xt), t ≥ 1, is the same as Korpelevich’s extragradient or Euclidean extragra-
dient method. Secondly, the above method is slightly different that Nemirovski’s
mirror-prox method for solving monotone VI problems which can possibly skip
the extragradient step (3.8.5) depending on the progress of the algorithm. We will
establish the convergence of the mirror-prox method for solving different types of
VIs.

3.8.1 Monotone variational inequalities

In this subsection, we present the basic scheme of the mirror-prox method for solving
VI, and discuss its convergence properties for solving monotone VIs.

We now show an important recursion of the mirror-prox method for VI(X ,F),
which holds for VI problems which are not necessarily monotone.

Lemma 3.9. Let x1 ∈ X be given and the pair (yk,xk+1) ∈ X × X be computed
according to (3.8.4)-(3.8.5). Then for any x ∈ X, we have

γk〈F(yk),yk−x〉− γ2
k
2 ‖F(xk)−F(yk)‖2

∗+V (xk,yk)≤V (xk,x)−V (xk+1,x). (3.8.6)

Proof. By (3.8.4) and Lemma 3.5 (with p(·) = γk〈F(xk), ·〉, x̃ = xk and û = yk),
we have

γk〈F(xk),yk− x〉+V (xk,yk)+V (yk,x)≤V (xk,x), ∀x ∈ X .
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Letting x = xk+1 in the above inequality, we obtain

γk〈F(xk),yk− xk+1〉+V (xk,yk)+V (yk,xk+1)≤V (xk,xk+1). (3.8.7)

Moreover, by (3.8.5) and Lemma 3.5 (with p(·) = γk〈F(yk), ·〉, x̃ = xk and û = xk+1),
we have

γk〈F(yk),xk+1− x〉+V (xk,xk+1)+V (xk+1,x)≤V (xk,x), ∀x ∈ X .

Replacing V (xk,xk+1) in the above inequality with the bound in (3.8.7) and noting
that 〈F(yk),xk+1− x〉= 〈F(yk),yk− x〉−〈F(yk),yk− xk+1〉, we have

γk〈F(yk),yk− x〉+ γk〈F(xk)−F(yk),yk− xk+1〉
+V (xk,yk)+V (yk,xk+1)+V (xk+1,x)≤V (xk,x).

Moreover, by using the Cauchy-Schwarz inequality and the strong convexity of ν ,
we have

γk〈F(xk)−F(yk),yk− xk+1〉+V (xk,yk)+V (yk,xk+1)

≥ −γk‖F(xk)−F(yk)‖∗‖yk− xk+1‖+V (xk,yk)+V (yk,xk+1)

≥ −γk‖F(xk)−F(yk)‖∗ [2V (yk,xk+1)]
1/2 +V (xk,yk)+V (yk,xk+1)

≥ − γ2
k
2 ‖F(xk)−F(yk)‖2

∗+V (xk,yk),

where the last inequality follows from Young’s inequality. Combining the above two
conclusions we arrive at relation (3.8.20).

We define a termination criterion to characterize the weak solutions of VI problems
as follows:

g(x̄) := sup
x∈X
〈F(x), x̄− x〉. (3.8.8)

Note that we must have g(x̄)≥ 0 by setting x = x̄ in the right hand side of the above
definition. Hence, g(x̄) measures how much the condition in (3.8.3) is violated. It
should be noted that the mirror-prox method can also generate a solution that approx-
imately satisfies the stronger criterion in (3.8.1). We will discuss the computation of
strong solutions in next subsection.

For the sake of simplicity, we focus on the case when F is Lipschitz continuous,
i.e.,

‖F(x)−F(y)‖∗ ≤ L‖x− y‖, ∀x,y ∈ X . (3.8.9)

Note however, this algorithm can also be applied more general problems for which
F is Hölder continuous, locally Lipschitz continuous, continuous or bounded. We
leave the extension to these cases as an exercise.

Theorem 3.11. Let x1 ∈ X be given and the pair (yk,xk+1) ∈ X ×X be computed
according to (3.8.4)-(3.8.5). Also let us denote
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ȳk := ∑
k
t=1(γt yt )

∑
k
t=1γt

. (3.8.10)

If (3.8.9) holds and
γk =

1
L , k = 1,2, . . . , (3.8.11)

then we have
g(ȳk)≤ LD2

X
k ,k ≥ 1, (3.8.12)

where DX and g are defined in (3.2.4) and (3.8.8), respectively.

Proof. Note that by the monotonicity of F , i.e., (3.8.2), we have 〈F(yk),yk− x〉 ≥
〈F(x),yk− x〉 for any x ∈ X . Moreover, by the Lipschitz continuity of F , i.e., (3.8.9),
and the strong convexity of ν we have

− γ2
k
2 ‖F(xk)−F(yk)‖2

∗+V (xk,yk)≥ Lγ2
k

2 ‖xk− yk‖2 +‖xk− yk‖2 ≥ 0.

Using these relations in (3.8.6), we conclude that

γk〈F(x),yk− x〉 ≤V (xk,x)−V (xk+1,x),∀x ∈ X and k ≥ 1.

Summing up these relations and then maximizing both sides w.r.t. x, we obtain
(3.8.12).

Theorem 3.11 establishes the rate of convergence for the mirror-prox method for
solving monotone VIs. In next subsection we will discuss its convergence for solving
a class of VI problems which are not necessarily monotone.

3.8.2 Generalized monotone variational inequalities

We study in this subsection a class of generalized monotone VI (GMVI) problems
which satisfy for any x∗ ∈ X∗

〈F(x),x− x∗〉 ≥ 0 ∀x ∈ X . (3.8.13)

Clearly, condition (3.8.13) is satisfied if F(·) is monotone Moreover, this assumption
holds if F(·) is pseudo-monotone, i.e.,

〈F(y),x− y〉 ≥ 0 =⇒ 〈F(x),x− y〉 ≥ 0. (3.8.14)

As an example, F(·) is pseudo-monotone if it is the gradient of a real-valued differ-
entiable pseudo-convex function. It is also not difficult to construct VI problems that
satisfy (3.8.13), but their operator F(·) is neither monotone nor pseudo-monotone
anywhere. One set of simple examples are given by all the functions F : R→ R
satisfying
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F(x)





= 0, x = x0;
≥ 0, x≥ x0;
≤ 0, x≤ x0.

(3.8.15)

These problems, although satisfying (3.8.13) with x∗ = x0, can be neither monotone
nor pseudo-monotone.

In this subsection, we introduce a termination criterion for solving VI associated
with the prox-mapping by first providing a simple characterization of a strong solution
to VI(X ,F).

Lemma 3.10. A point x ∈ X is a strong solution of VI(X ,F) if and only if

x = argminz∈X 〈γF(x),z〉+V (x,z) (3.8.16)

for some γ > 0.

Proof. (3.8.16) holds if and only if

〈γF(x)+∇ν(x)−∇ν(x),z− x〉 ≥ 0, ∀z ∈ X , (3.8.17)

or equivalently, 〈γF(x),z−x〉 ≥ 0 for any z ∈ X , which, in view of the fact that γ > 0
and definition (3.8.1), implies that x is a strong solution of VI(X ,F).

Motivated by Lemma 3.10, we can define the residual function for a given x ∈ X
as follows.

Definition 3.1. Let ‖·‖ be a given norm in Rn, ν(·) be a distance generating function
modulus 1 w.r.t. ‖ · ‖ and

x+ := argminz∈X
{
〈γF(x),z〉+V (x,z)

}

for some positive constant γ . Then we define the residual Rγ(·) at the point x ∈ X as

Rγ(x)≡ PX (x,F(x),γ) := 1
γ

[
x− x+

]
. (3.8.18)

Observe that in the Euclidean setup where ‖ · ‖= ‖ · ‖2 and ν(x) = ‖x‖2
2/2, the

residual Rγ(·) in (3.8.18) reduces to

Rγ(x) = 1
γ
[x−ΠX (x− γF(x))] , (3.8.19)

where ΠX (·) denotes the metric projection over X . In particular, if F(·) is the gradient
of a real-valued differentiable function f (·), the residual Rγ(·) in (3.8.19) is often
called the projected gradient of f (·) at x.

The following two results are immediate consequences of Lemma 3.10 and
Definition 3.1.

Lemma 3.11. A point x ∈ X is a strong solution of VI(X ,F) if and only if ‖Rγ(x)‖=
0 for some γ > 0.
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Lemma 3.12. Suppose that xk ∈ X, γk ∈ (0,∞), k = 1,2, . . ., and

yk = argminz∈X
{
〈γkF(xk),z〉+V (xk,z)

}

satisfy the following conditions:

i) limk→∞ V (xk,yk) = 0;
ii) There exists K ∈ N and γ∗ > 0 such that γk ≥ γ∗ for any k ≥ K.

Then we have limk→∞ ‖Rγk(xk)‖ = 0. If in addition, the sequence {xk} is bounded,
there exists an accumulation point x̃ of {xk} such that x̃ ∈ X∗, where X∗ denotes the
solution set of VI(X ,F).

Proof. It follows from the strong convexity of ν and condition i) that limk→∞ ‖xk−
yk‖ = 0. This observation, in view of Condition ii) and Definition 3.1, then im-
plies that limk→∞ ‖Rγk(xk)‖ = 0. Moreover, if {xk} is bounded, there exist a sub-
sequence {x̃i} of {xk} obtained by setting x̃i = xni for n1 ≤ n2 ≤ . . ., such that
limi→∞ ‖x̃i− x̃‖ = 0. Let {ỹi} be the corresponding subsequence in {yk}, i.e., yi =
argminz∈X

{
〈γniF(xni),z〉+V (xni ,z)

}
, and γ̃i = γni . We have limi→∞ ‖x̃i− ỹi‖ = 0.

Moreover, by (3.8.17), we have

〈F(x̃i)+
1
γ̃i
[∇ν(ỹi)−∇ν(x̃i)] ,z− ỹi〉 ≥ 0, ∀z ∈ X , ∀i≥ 1.

Tending i to +∞ in the above inequality, and using the continuity of F(·) and ∇ν(·),
and condition ii), we conclude that 〈F(x̃),z− x̃〉 ≥ 0 for any z ∈ X .

We now specialize Lemma 3.9 for solving GMVIs.

Lemma 3.13. Let x1 ∈ X be given and the pair (yk,xk+1) ∈ X ×X be computed
according to (3.8.4)-(3.8.5). Also let X∗ denote the solution set of VI(X ,F). Then,
the following statements hold:

a) There exists x∗ ∈ X∗ such that

− γ2
k
2 ‖F(xk)−F(yk)‖2

∗+V (xk,yk)≤V (xk,x∗)−V (xk+1,x∗); (3.8.20)

b) If F(·) is Lipschitz continuous (i.e., condition (3.8.9) holds), then we have
(
1−L2

γ
2
k
)

V (xk,yk)≤V (xk,x∗)−V (xk+1,x∗). (3.8.21)

Proof. We first show part a). Fixing x = x∗ in (3.8.6) and using the fact that
〈F(yk),yk− x∗〉 ≥ 0 due to (3.8.13), we obtain the result.

Now, it follows from the assumption (3.8.9) and the strong convexity of ν that

‖F(xk)−F(yk)‖2
∗ ≤ L2‖xk− yk‖2 ≤ 2L2V (yk,xk).

Combining the previous observation with (3.8.20), we obtain (3.8.21).

We are now ready to establish the complexity of the mirror descent method for
solving GMVI problems.
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Theorem 3.12. Suppose that F(·) is Lipschitz continuous (i.e., condition (3.8.9)
holds) and that the stepsizes γk are set to

γk =
α√
2L
, k ≥ 1. (3.8.22)

Also let Rγ be defined in (3.8.18). For any k ∈ N, there exists i≤ k such that

‖Rγi(xi)‖2 ≤ 8L2

α3kV (x1,x∗), k ≥ 1. (3.8.23)

Proof. Using (3.8.21) and (3.8.22), we have

1
2V (xk,yk)≤V (xk,x∗)−V (xk+1,x∗), k ≥ 1.

Also it follows from the strong convexity of ν and definition (3.8.18) that

V (xk,yk)≥ α

2 ‖xk− yk‖2 =
αγ2

k
2 ‖Rγk(xk)‖2. (3.8.24)

Combining the above two observations, we obtain

γ
2
k ‖Rγk(xk)‖2 ≤ 4

α
[V (xk,x∗)−V (xk+1,x∗)] ,k ≥ 1.

By summing up these inequalities we arrive at

k

∑
i=1

γ
2
i min

i=1,...,k
‖Rγi(xi)‖2 ≤

k

∑
i=1

γ
2
i ‖Rγi(xi)‖2 ≤ 4

α
V (x1,x∗), k ≥ 1,

which implies that

min
i=1,...,k

‖Rγi(xi)‖2 ≤ 4
α ∑

k
i=1 γ2

i
V (x1,x∗). (3.8.25)

Using the above inequality and (3.8.22), we obtain the bound in (3.8.23).

In view of Theorem 3.12, the mirror-prox method can be applied to solve the
GMVI problems which are not necessarily monotone. Moreover, the rate of conver-
gence for computing an approximate strong solution, in terms of mini=1,...,k Rγi , can
be bounded by O(1/

√
k)

3.9 Accelerated level method

In this section, we discuss an important class of first-order methods, i.e., bundle-level
methods for large-scale convex optimization. These methods have been regarded
as one of the most efficient first-oder optimization methods in practice as they can
utilize historical first-order information through the cutting plane model. While other
first-order methods discussed in the previous sections usually require us to estimate
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quite a few problem parameters (e.g., L and DX ), the bundle-level type methods
we present in this section do not require much problem information, but can still
attain the best performance guarantees for solving a few different classes of convex
optimization problems.

3.9.1 Nonsmooth, smooth and weakly smooth problems

Consider the convex programming (CP)

f ∗ := min
x∈X

f (x), (3.9.1)

where X is a convex compact set and f : X → R is a closed convex function. In the
classic black-box setting, f is represented by a first-order oracle which, given an input
point x ∈ X , returns f (x) and f ′(x) ∈ ∂ f (x), where ∂ f (x) denotes the subdifferential
of f at x ∈ X . Moreover, we assumes

f (y)− f (x)−〈 f ′(x),y− x〉 ≤ M
1+ρ
‖y− x‖1+ρ , ∀x,y ∈ X . (3.9.2)

for some M > 0, ρ ∈ [0,1] and f ′(x) ∈ ∂ f (x). Clearly, this class of problems cover
both nonsmooth (ρ = 0), smooth (ρ = 1) problems, as well as weakly smooth CP
problems, i.e., problems with Hölder continuous gradient when ρ ∈ (0,1).

Let us first provide a brief introduction to the classical cutting plane method for
solving (3.9.1). The basic idea of this type of method is to construct lower and upper
bounds on f ∗ and to guarantee that the gap between these bounds converges to 0.

While the upper bound of f ∗ is given by the objective value of a feasible solution,
we need to discuss how to compute lower bounds on f ∗. Given a sequence of search
points x1,x2, . . . ,xk ∈ X , an important construct, the cutting plane model, of the
objective function f of problem (3.9.1) is given by

mk(x) := max{h(xi,x) : 1≤ i≤ k} , (3.9.3)

where
h(z,x) := f (z)+ 〈 f ′(z),x− z〉. (3.9.4)

In the cutting plane method, we approximate f by mk and update the search points
according to

xk+1 ∈ Argminx∈X mk(x). (3.9.5)

Hence, xk+1 defines a new feasible solution in the next iteration, and the updated
model mk(xk+1) provides an improved lower bound on f ∗. However, this scheme
converges slowly, both theoretically and practically.

To improve the basic scheme of the cutting plane method, we need to introduce
a new way to construct the lower bounds of f ∗ by utilizing the (approximate) level
sets of f . Let E f (l) denote the level set of f given by
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E f (l) := {x ∈ X : f (x)≤ l} . (3.9.6)

Also for some z ∈ X , let h(z,x) be the cutting plane defined in (3.9.4) and denote

h̄ := min
{

h(z,x) : x ∈ E f (l)
}
. (3.9.7)

Then, it is easy to verify that

min{l, h̄} ≤ f (x), ∀x ∈ X . (3.9.8)

Indeed, if l ≤ f ∗, then E f (l) = /0, h̄ =+∞ and min{l, h̄}= l. Hence (3.9.8) is obvi-
ously true. Now consider the case l > f ∗. Clearly, for an arbitrary optimal solution
x∗ of (3.9.1), we have x∗ ∈ E f (l). Moreover, by (3.9.4), (3.9.7) and the convexity
of f , we have h̄≤ h(z,x)≤ f (x) for any x ∈ E f (l). Hence, h̄≤ f (x∗) = f ∗ and thus
(3.9.8) holds.

Note, however, that to solve problem (3.9.7) is usually as difficult as to solve the
original problem (3.9.1). To compute a convenient lower bound of f ∗, we replace
E f (l) in (3.9.7) with a convex and compact set X ′ satisfying

E f (l)⊆ X ′ ⊆ X . (3.9.9)

The set X ′ will be referred to as a localizer of the level set E f (l). The following
result shows the computation of a lower bound on f ∗ by solving such a relaxation of
(3.9.7).

Lemma 3.14. Let X ′ be a localizer of the level set E f (l) for some l ∈ R and h(z,x)
be defined in (3.9.4). Denote

h := min
{

h(z,x) : x ∈ X ′
}
. (3.9.10)

We have
min{l,h} ≤ f (x), ∀x ∈ X . (3.9.11)

Proof. Note that if X ′ = /0 (i.e., (3.9.10) is infeasible), then h =+∞. In this case,
we have E f (l) = /0 and f (x)≥ l for any x ∈ X . Now assume that X ′ 6= /0. By (3.9.7),
(3.9.9) and (3.9.10), we have h≤ h̄, which together with (3.9.8), then clearly imply
(3.9.11).

We will also employ some ideas from the accelerated gradient descent method to
guarantee fast convergence of level methods. In particular, we will use three different
sequences, i.e., {xl

k},{xk} and {xu
k} for updating the lower bound, search points, and

upper bound respectively. Similar to the mirror descent method, we assume that a
distance generating function ν with modulus 1 is given.

We are now ready to describe a gap reduction procedure, denoted by GAPL, which,
for a given search point p and a lower bound lb on f ∗, computes a new search
point p+ and a new lower bound lb+ satisfying f (p+)− lb+ ≤ q [ f (p)− lb] for
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some q ∈ (0,1). Note that the value of q will depend on the two algorithmic input
parameters: β ,θ ∈ (0,1).

The APL gap reduction procedure: (p+, lb+) = GAPL(p, lb,β ,θ)

0) Set xu
0 = p, f 0 = f (xu

0), f
0
= lb and l = β f

0
+(1−β ) f 0. Also let x0 ∈ X and

the initial localizer X ′0 be arbitrarily chosen, say x0 = p and X ′0 = X . Set the
prox-function V (x0,x) = ν(x)− [ν(x0)+ 〈ν ′(x0),x− x0〉]. Also let k = 1.

1) Update lower bound: set xl
k =(1−αk)xu

k−1+αkxk−1, h(xl
k,x)= f (xl

k)+〈 f ′(xl
k),x−

xl
k〉,

hk := min
x∈X ′k−1

{
h(xl

k,x)
}
, and f

k
:= max

{
f

k−1
,min{l,hk}

}
. (3.9.12)

If f
k
≥ l−θ(l− f

0
), then terminate the procedure with p+ = xu

k−1 and lb+ = f
k
.

2) Update prox-center: set

xk := argminx∈X ′k−1

{
V (x0,x) : h(xl

k,x)≤ l
}
. (3.9.13)

3) Update upper bound: set f̄k = min{ f̄k−1, f (αkxk +(1−αk)xu
k−1)}, and choose xu

k
such that f (xu

k) = f̄k. If f k ≤ l +θ( f 0− l), then terminate the procedure with
p+ = xu

k and lb+ = f
k
.

4) Update localizer: choose an arbitrary X ′k such that Xk ⊆ X ′k ⊆ Xk, where

Xk :=
{

x ∈ X ′k−1 : h(xl
k,x)≤ l

}
,

Xk := {x ∈ X : 〈ν ′(xk)−ν ′(x0),x− xk〉 ≥ 0} . (3.9.14)

6) Set k = k+1 and go to step 1.

We now add a few comments about procedure GAPL described above. Firstly, note
that the level l used in (3.9.13) is fixed throughout the procedure. Also, the two
parameters (i.e., β and θ ) are fixed a priori, say, β = θ = 0.5.

Secondly, procedure GAPL can be terminated in either step 1 or 3. If it terminates
in step 1, then we say that significant progress has been made on the lower bound f

k
.

Otherwise, if it terminates in step 3, then significant progress has been made on the
upper bound f k.

Thirdly, observe that in step 4 of procedure GAPL, we can choose any set X ′k
satisfying Xk ⊆ X ′k ⊆ Xk (the simplest way is to set X ′k = Xk or X ′k = Xk). While the
number of constraints in Xk increases with k, the set Xk has only one more constraint
than X . By choosing X ′k between these two extremes, we can control the number of
constraints in subproblems (3.9.12) and (3.9.13). Hence, even though the iteration
cost of procedure GAPL can be higher than projected gradient descent type methods,
it is still controllable to a certain extent.

We summarize below a few more observations regarding the execution of proce-
dure GAPL.
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Lemma 3.15. The following statements hold for procedure GAPL.

a) {X ′k}k≥0 is a sequence of localizers of the level set E f (l).
b) f

0
≤ f

1
≤ . . .≤ f

k
≤ f ∗ and f 0 ≥ f 1 ≥ . . .≥ f k ≥ f ∗ for any k ≥ 1.

c) Problem (3.9.13) is always feasible unless the procedure terminates.
d) /0 6=Xk ⊆Xk for any k≥ 1 and hence Step 4 is always feasible unless the procedure

terminates.
e) Whenever the procedure terminates, we have f (p+)− lb+ ≤ q [ f (p)− lb], where

q≡ q(β ,θ) := 1− (1−θ)min{β ,1−β}. (3.9.15)

Proof. We first show part a). Firstly, noting that E f (l) ⊆ X ′0, we can show that
E f (l)⊆ X ′k, k ≥ 1, by using induction. Suppose that X ′k−1 is a localizer of the level
set E f (l). Then, for any x ∈ E f (l), we have x ∈ X ′k−1. Moreover, by the definition of
h, we have h(xl

k,x)≤ f (x)≤ l for any x ∈ E f (l). Using these two observations and
the definition of Xk in (3.9.14), we have E f (l)⊆ Xk, which, in view of the fact that
Xk ⊆ X ′k, implies E f (l)⊆ X ′k, i.e., X ′k is a localizer of E f (l).

We now show part b). The first relation follows from Lemma 5.7, (3.9.12), and
the fact that X ′k, k ≥ 0, are localizers of E f (l) due to part a). The second relation of
part b) follows immediately from the definition of f k, k ≥ 0.

To show part c), suppose that problem (3.9.13) is infeasible. Then, by the definition
of hk in (3.9.12), we have hk > l, which implies f

k
≥ l, which in turn implies that

the procedure should have terminated in step 1 at iteration k.
To show part d), note that by part c), the set Xk is nonempty. Moreover, by

the optimality condition of (3.9.13) and the definition of Xk in (3.9.14), we have
〈∇ν(xk),x− xk〉 ≥ 0 for any x ∈ Xk, which then implies that Xk ⊆ Xk.

We now provide the proof of part e). Suppose first that the procedure terminates in
step 1 of the k-th iteration. We must have f

k
≥ l−θ(l− f

0
). By using this condition,

and the facts that f (p+)≤ f 0 (see part b) and l = β f
0
+(1−β ) f 0, we obtain

f (p+)− lb+ = f (p+)− f
k
≤ f 0− [l−θ(l− f

0
)]

= [1− (1−β )(1−θ)]( f 0− f
0
). (3.9.16)

Now suppose that the procedure terminates in step 3 of the k-th iteration. We must
have f k ≤ l +θ( f 0− l). By using this condition, and the facts that lb+ ≥ f

0
(see

Lemma 3.15.b) and l = β f
0
+(1−β ) f 0, we have

f (p+)− lb+ = f k− lb+ ≤ l +θ( f 0− l)− f
0
= [1− (1−θ)β ]( f 0− f

0
).

Part e) then follows by combining the above two relations.

By showing how the gap between the upper bound (i.e., f (xu
k)) and the level

l decreases with respect to k, we will establish in Theorem 3.13 some important
convergence properties of procedure GAPL. Before that we first need to show two
technical results.
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Lemma 3.16. Let (xk−1,xu
k−1) ∈ X ×X be given at the k-th iteration, k ≥ 1, of an

iterative scheme and denote xl
k = αkxk−1 +(1−αk)xu

k−1. Also let h(z, ·) be defined
in (3.9.4) and suppose that the pair of new search points (xk, x̃u

k) ∈ X×X satisfy that,
for some l ∈ R and αk ∈ (0,1],

h(xl
k,xk)≤ l, (3.9.17)

x̃u
k = αtxk +(1−αk)xu

k−1. (3.9.18)

Then,

f (x̃u
k)≤ (1−αk) f (xu

k−1)+αkl + M
1+ρ
‖αk(xk− xk−1)‖1+ρ . (3.9.19)

Proof. It can be easily seen from (3.9.18) and the definition of xl
k that

x̃u
k− xl

k = αk(xk− xk−1). (3.9.20)

Using this observation, (3.9.2), (3.9.4), (3.9.17), (3.9.18) and the convexity of f , we
have

f (x̃u
k)≤ h(xl

k, x̃
u
k)+

M
1+ρ
‖x̃u

k− xl
k‖1+ρ

= (1−αk)h(xl
k,x

u
k−1)+αkh(xl

k,xk)+
M

1+ρ
‖x̃u

k− xl
k‖1+ρ

= (1−αk)h(xl
k,x

u
k−1)+αkh(xl

k,xk)+
M

1+ρ
‖αk(xk− xk−1)‖1+ρ

≤ (1−αk) f (xu
k−1)+αkh(xl

k,xk)+
M

1+ρ
‖αk(xk− xk−1)‖1+ρ

≤ (1−αk) f (xu
k−1)+αkl + M

1+ρ
‖αk(xk− xk−1)‖1+ρ ,

where the three inequalities follow from (3.9.2) and (3.9.4), the convexity, and
(3.9.17), respectively, while the three identities follow from (3.9.18) and (3.9.20),
respectively.

Lemma 3.17. Let wk ∈ (0,1], k = 1,2, . . ., be given. Also let us denote

Wk :=
{

1, k = 1,
(1−wk)Wk−1, k ≥ 2. (3.9.21)

Suppose that Wk > 0 for all k ≥ 2 and that the sequence {δk}k≥0 satisfies

δk ≤ (1−wk)δk−1 +Bk, k = 1,2, . . . . (3.9.22)

Then, we have δk ≤Wk(1−w1)δ0 +Wk∑
k
i=1(Bi/Wi).

Proof. Dividing both sides of (3.9.22) by Wk, we obtain

δ1
W1
≤ (1−w1)δ0

W1
+ B1

W1

and
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δk
Wk
≤ δk−1

Wk−1
+ Bk

Wk
, ∀k ≥ 2.

The result then immediately follows by summing up the above inequalities and
rearranging the terms.

We are now ready to analyze the convergence behavior of the APL gap reduction
procedure. Note that the following quantities will be used in our analysis:

γk(λ ) :=
{

1 k = 1,
(1−λαk)γk−1(λ ) k ≥ 2, (3.9.23)

Γk(λ ,ρ) :=
{

γ1(λ )
−1

α
1+ρ

1 ,γ2(λ )
−1

α
1+ρ

2 , . . . ,γk(λ )
−1

α
1+ρ

k

}
. (3.9.24)

Theorem 3.13. Let αk ∈ (0,1], k = 1,2, . . ., be given. Also let (xl
k,xk,xu

k) ∈ X ×
X ×X, k ≥ 1, be the search points, l be the level and V be the prox-function in
procedure GAPL. Then, we have

f (xu
k)− l ≤ (1−α1)γk(1) [ f (xu

0)− l]
+ M

1+ρ
[2V (x0,xk)]

(1+ρ)/2
γk(1)‖Γk(1,ρ)‖2/(1−ρ)

(3.9.25)

for any k ≥ 1, where ‖ · ‖p denotes the lp norm, γk(·) and Γk(·, ·), respectively, are
defined in (3.9.23) and (3.9.24). In particular, if αk ∈ (0,1], k = 1,2, . . ., are chosen
such that for some c > 0,

α1 = 1 and γk(1)‖Γk(1,ρ)‖2/(1−ρ) ≤ ck−(1+3ρ)/2, (3.9.26)

then the number of iterations performed by procedure GAPL can be bounded by

KAPL(∆0) :=

⌈(
2cMD1+ρ

X
βθ(1+ρ)∆0

)2/(1+3ρ)
⌉
, (3.9.27)

where ∆0 = f 0− f
0

and dX is defined in (3.2.4).

Proof. We first show that the prox-centers {xk} in procedure GAPL are “close” to
each other in terms of ∑

k
i=1‖xi−1−xi‖2. Observe that the function V (x0,x) is strongly

convex with modulus 1, x0 = argminx∈X V (x0,x) and V (x0,x0) = 0. Hence, we have,

1
2‖x1− x0‖2 ≤V (x0,x1). (3.9.28)

Moreover, by (3.9.14), we have 〈∇V (x0,xk),x− xk〉 ≥ 0 for any x ∈ Xk, which
together with the fact that X ′k ⊆ Xk then imply that 〈∇V (x0,xk),x− xk〉 ≥ 0 for any
x ∈ X ′k. Using this observation, the fact that xk+1 ∈ X ′k due to (3.9.13), and the strong
convexity of V (x0, ·), we have

1
2‖xk+1− xk‖2 ≤V (x0,xk+1)−V (x0,xk)−〈∇V (x0,xk),xk+1− xk〉

≤V (x0,xk+1)−V (x0,xk)
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for any k ≥ 1. Summing up the above inequalities with (3.9.28), we arrive at

1
2 ∑

k
i=1‖xi− xi−1‖2 ≤V (x0,xk). (3.9.29)

Next, we establish a recursion for procedure GAPL. Let us denote x̃u
k ≡ αkxk +

(1−αk)xu
k−1, γk ≡ γk(1) and Γk ≡ Γk(1,ρ). By the definitions of xu

k and x̃u
k , we have

f (xu
k)≤ f (x̃u

k). Also by (3.9.13), we have h(xl
k,x)≤ l. Using these observations and

Lemma 3.16, we have

f (xu
k)≤ f (x̃u

k)≤ (1−αk) f (xu
k−1)+αkl + M

1+ρ
‖αk(xk− xk−1)‖1+ρ

for any k ≥ 1. Subtracting l from both sides of the above inequality, we obtain

f (xu
k)− l ≤ (1−αk)[ f (xu

k−1)− l]+ M
1+ρ
‖αk(xk− xk−1)‖1+ρ , (3.9.30)

for any k ≥ 1. Using the above inequality and Lemma 3.17 (with δk = f (xu
k)− l,

wk = 1−αk, Wk = γk and Bk = M‖αk(xk− xk−1)‖1+ρ/(1+ρ)), we obtain

f (xu
k)− l ≤ (1−α1)γk[ f (xu

0)− l]+ M
1+ρ

γk∑
k
i=1γ

−1
i ‖αi(xi− xi−1)‖1+ρ

≤ (1−α1)γk[ f (xu
0)− l]+ M

1+ρ
‖Γk‖2/(1−ρ)

[
∑

k
i=1‖xi− xi−1‖2

](1+ρ)/2
,

for any k ≥ 1, where the last inequality follows from Hölder’s inequality. The above
conclusion together with (3.9.29) then imply that (3.9.25) holds.

Now, denote K = KAPL(ε) and suppose that condition (3.9.26) holds. Then by
(3.9.25), (3.9.26), and (3.2.4), we have

f (xu
K)− l ≤ cM

1+ρ
[2V (x0,xK)]

(1+ρ)/2 K−(1+3ρ)/2 ≤ 2cM
1+ρ

D1+ρ

X K−(1+3ρ)/2

≤ θβ∆0 = θ( f 0− l),

where the last equality follows from the fact that l = β f
0
+(1−β ) f 0 = f 0−β∆0.

Hence, procedure GAPL must terminate in step 3 of the K-th iteration.

In view of Theorem 3.13, we discuss below a few possible selections of {αk},
which satisfy condition (3.9.26) and thus guarantee the termination of procedure GAPL.
It is worth noting that these selections of {αk} do not rely on any problem parameters,
including M, ρ and DX , nor on any other algorithmic parameters, such as β and θ .

Proposition 3.2. Let γk(·) and Γk(·, ·), respectively, be defined in (3.9.23) and
(3.9.24).

a) If αk = 2/(k+1), k = 1,2, . . ., then αk ∈ (0,1] and relation (3.9.26) holds with
c = 21+ρ 3−(1−ρ)/2.

b) If αk, k = 1,2, . . ., are recursively defined by

α1 = γ1 = 1, γk = α
2
k = (1−αk)γk−1, ∀k ≥ 2, (3.9.31)
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then we have αk ∈ (0,1] for any k ≥ 1. Moreover, condition (3.9.26) is satisfied
with c = 4

3(1−ρ)/2 .

Proof. We first show part a). Denoting γk ≡ γk(1) and Γk ≡ Γk(1,ρ), by (3.9.23)
and (3.9.24), we have

γk =
2

k(k+1) and γ
−1
k α

1+ρ

k =
( 2

k+1

)ρ
k ≤ 2ρ k1−ρ . (3.9.32)

Using (3.9.32) and the simple observation that ∑
k
i=1i2 = k(k+1)(2k+1)/6≤ k(k+

1)2/3, we have

γk‖Γk‖2/(1−ρ) ≤ γk

[
∑

k
i=1
(
2ρ i1−ρ

)2/(1−ρ)
](1−ρ)/2

= 2ρ
γk

(
∑

k
i=1i2

)(1−ρ)/2

≤ 2ρ
γk

[
k(k+1)2

3

](1−ρ)/2
=
(

21+ρ 3−(1−ρ)/2
)[

k−(1+ρ)/2(k+1)−ρ

]

≤
(

21+ρ 3−(1−ρ)/2
)

k−(1+3ρ)/2.

We now show that part b) holds. Note that by (3.9.31), we have

αk =
1
2

(
−γk−1 +

√
γ2

k−1 +4γk−1

)
, k ≥ 2, (3.9.33)

which clearly implies that αk > 0, k ≥ 2. We now show that αk ≤ 1 and γk ≤ 1 by
induction. Indeed, if γk−1 ≤ 1, then by (3.9.33), we have

αk ≤ 1
2

(
−γk−1 +

√
γ2

k−1 +4γk−1 +4
)
= 1.

The previous conclusion, together with the fact that α2
k = γk due to (3.9.31), then

also imply that γk ≤ 1. Now let us bound 1/
√

γk for any k ≥ 2. First observe that by
(3.9.31) we have, for any k ≥ 2,

1√
γk
− 1√

γk−1
=
√

γk−1−
√

γk√
γk−1γk

=
γk−1−γk√

γk−1γk(
√

γk−1+
√

γk)
=

αkγk−1
γk−1
√

γk+γk
√

γk−1
.

Using the above identity, (3.9.31) and the fact that γk ≤ γk−1 due to (3.9.31), we
conclude that

1√
γk
− 1√

γk−1
≥ αk

2
√

γk
= 1

2 and 1√
γk
− 1√

γk−1
≤ αk√

γk
= 1,

which, in view of the fact that γ1 = 1, then implies that (k+ 1)/2 ≤ 1/
√

γk ≤ k.
Using the previous inequality and (3.9.31), we conclude that

γk ≤ 4
(k+1)2 , γ

−1
k α

1+ρ

k = (
√

γk)
−(1−ρ) ≤ k1−ρ ,

and
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γk‖Γk‖2/(1−ρ) ≤ γk

[
∑

k
i=1i2

](1−ρ)/2
≤ γk

(∫ k+1

0
u2 du

)(1−ρ)/2

≤ 4
3(1−ρ)/2 (k+1)−(1+3ρ)/2 ≤ 4

3(1−ρ)/2 k−(1+3ρ)/2.

In view of Lemma 3.15.e) and the termination criterion of procedure GAPL, each
call to this procedure can reduce the gap between a given upper and lower bound
on f ∗ by a constant factor q (see (3.9.15)). In the following APL method, we will
iteratively call procedure GAPL until a certain accurate solution of problem (3.9.1) is
found.

The APL method:

Input: initial point p0 ∈ X , tolerance ε > 0 and algorithmic parameters β ,θ ∈
(0,1).

0) Set p1 ∈ Argminx∈X h(p0,x), lb1 = h(p0, p1) and ub1 = f (p1). Let s = 1.
1) If ubs− lbs ≤ ε , terminate;
2) Set (ps+1, lbs+1) = GAPL(ps, lbs,β ,θ) and ubs+1 = f (ps+1);
3) Set s = s+1 and go to step 1.

Whenever s increments by 1, we say that a phase of the APL method occurs.
Unless explicitly mentioned otherwise, an iteration of procedure GAPL is also referred
to as an iteration of the APL method. The main convergence properties of the above
APL method are summarized as follows.

Theorem 3.14. Let M, ρ , DX and q be defined in (3.9.2), (3.2.4) and (3.9.15), re-
spectively. Suppose that αk ∈ (0,1], k = 1,2, . . ., in procedure GAPL are chosen such
that condition (3.9.26) holds for some c > 0.

a) The number of phases performed by the APL method does not exceed

S̄(ε) :=
⌈

max
{

0, log1/q
2MD1+ρ

X
(1+ρ)ε

}⌉
. (3.9.34)

b) The total number of iterations performed by the APL method can be bounded by

S̄(ε)+ 1
1−q2/(1+3ρ)

(
2cMD1+ρ

X
βθ(1+ρ)ε

)2/(1+3ρ)

. (3.9.35)

Proof. Denote δs ≡ ubs− lbs, s≥ 1. Without loss of generality, we assume that
δ1 > ε , since otherwise the statements are obviously true. By Lemma 3.15.e) and the
origin of ubs and lbs, we have

δs+1 ≤ qδs, s≥ 1. (3.9.36)

Also note that, by (3.9.2), (3.2.4) and the definition of p1 in the APL method, we
have
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δ1 = f (p1)−h(p0, p1) = f (p1)−
[

f (p0)+ 〈 f ′(p0), p1− p0〉
]

≤ M‖p1−p0‖1+ρ

1+ρ
≤ 2MD1+ρ

X
1+ρ

. (3.9.37)

The previous two observations then clearly imply that the number of phases per-
formed by the APL method is bounded by (3.9.34).

We now bound the total number of iterations performed by the APL method.
Suppose that procedure GAPL has been called s̄ times for some 1 ≤ s̄ ≤ S̄(ε). It
follows from (3.9.36) that δs > εqs−s̄, s = 1, . . . , s̄, since δs̄ > ε due to the origin of s̄.
Using this observation, we obtain

∑
s̄
s=1δ

−2/(1+3ρ)
s < ∑

s̄
s=1

q2(s̄−s)/(1+3ρ)

ε2/(1+3ρ) = ∑
s̄−1
t=0

q2t/(1+3ρ)

ε2/(1+3ρ) ≤ 1
(1−q2/(1+3ρ))ε2/(1+3ρ) .

Moreover, by Theorem 3.13, the total number of iterations performed by the APL
method is bounded by

∑
s̄
s=1KAPL(δs)≤ s̄+∑

s̄
s=1

(
cMD1+ρ

X
βθ(1+ρ)δs

)2/(1+3ρ)

Our result then immediately follows by combining the above two inequalities.

Clearly, in view of Theorem 3.14, the APL method can achieve the O(1/ε2)
and O(1/

√
ε) iteration complexity for nonsmooth and smooth convex optimization,

respectively. It also achieve the best possible complexity bounds for weakly smooth
problems. What is interesting is that this algorithm does not require the input of
any smoothness information, such as, whether the problem is smooth, nonsmooth or
weakly smooth, as well as the specific values of Lipschitz constant and smoothness
level. In addition, its iteration cost is more or less controllable depending on how
much historical first-order information to be used.

3.9.2 Saddle point problems

In this subsection, we consider the bilinear saddle point problem (3.5.1) that we have
studied in Section 3.5. As shown in Section 3.5, the nonsmooth function F in (3.5.2)
can be approximated by the smooth convex function Fη given by (3.5.4).

Since Fη is a smooth convex function, we can apply an smooth convex optimiza-
tion method, e.g., the accelerated gradient method to minx∈X fη(x), for a properly
chosen η > 0. It has been shown that one can obtain an ε-solution of problem (3.5.1)-
(3.5.2) in at most O(1/ε) iterations. However, this approach would require us to
input a number of problem parameters (e.g., ‖A‖ and DY ) or algorithmic parameters
(e.g., the number of iterations or target accuracy).

Our goal in this section is to present a completely problem parameter-free smooth-
ing technique, namely: the uniform smoothing level (USL) method, obtained by
properly modifying the APL method in Section 3.9.1. In the USL method, the
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smoothing parameter η is adjusted dynamically during their execution rather than
being fixed in advance. Moreover, an estimate on the value of DY can be provided
automatically. We start by describing the USL gap reduction procedure, denoted
by GUSL, which will be iteratively called by the USL method. Specifically, for a
given search point p, a lower bound lb on f ∗ and an initial estimate D̃ on DY , pro-
cedure GUSL will either compute a new search point p+ and a new lower bound lb+

satisfying f (p+)− lb+ ≤ q [ f (p)− lb] for some q ∈ (0,1), or provide an updated
estimate D̃+ on DY in case the current estimate D̃ is not accurate enough.

The USL gap reduction procedure: (p+, lb+, D̃+) = GUSL(p, lb, D̃,β ,θ)

0) Set xu
0 = p, f 0 = f (xu

0), f
0
= lb, l = β f

0
+(1−β ) f 0, and

η := θ( f 0− l)/(2D̃). (3.9.38)

Also let x0 ∈ X and the initial localizer X ′0 be arbitrarily chosen, say x0 = p and
X ′0 = X . Set the prox-function d(x) = ν(x)− [ν(x0)+ 〈ν ′(x0),x− x0〉]. Set k = 1.

1) Update lower bound: set xl
k = (1−αk)xu

k−1 +αkxk−1 and

h(xl
k,x) = hη(xl

k,x) := f̂ (x)+Fη(xl
k)+ 〈∇Fη(xl

k),x− xl
k〉. (3.9.39)

Compute f
k

according to (3.9.12). If f
k
≥ l − θ(l − f

0
), then terminate the

procedure with p+ = xu
k−1, lb+ = f

k
, and D̃+ = D̃;

2) Update prox-center: set xk according to (3.9.13);
3) Update upper bound: set f̄k = min{ f̄k−1, f (αkxk +(1−αk)xu

k−1)}, and choose xu
k

such that f (xu
k) = f̄k. Check the following two possible termination criterions:

3a)if f k ≤ l + θ( f 0− l), terminate the procedure with p+ = xu
k , lb+ = f

k
and

D̃+ = D̃,
3b)Otherwise, if fη(xu

k)≤ l + θ

2 ( f 0− l), terminate the procedure with p+ = xu
k ,

lb+ = f
k

and D̃+ = 2D̃;

4) Update localizer: choose an arbitrary X ′k such that Xk ⊆ X ′k ⊆ Xk, where Xk and
Xk are defined in (3.9.14);

6) Set k = k+1 and go to Step 1.

We notice that there are a few essential differences between procedure GUSL
described above and procedure GAPL in Section 3.9.1. Firstly, in comparison with
procedure GAPL, procedure GUSL needs to use one additional input parameter, namely
D̃, to define η (see (3.9.38)) and hence the approximation function fη in (3.5.5).

Secondly, we use the support functions hη(xl
k,x) of fη(x) defined in (3.9.39)

procedure GUSL rather than the cutting planes of f (x) in procedure GAPL. Notice that
by (3.9.39), the convexity of Fη and the first relation in (3.5.6), we have

hη(xl
k,x)≤ f̂ (x)+Fη(x)≤ f̂ (x)+F(x) = f (x), (3.9.40)

which implies that the functions hη(xl
k,x) underestimate f everywhere on X . Hence,

f
k

computed in step 1 of this procedure are indeed lower bounds of f ∗.
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Thirdly, there are three possibles ways to terminate procedure GUSL. Similarly to
procedure GAPL, if it terminates in step 1 and step 3a, then we say that significant
progress has been made on the lower and upper bounds on f ∗, respectively. The
new added termination criterion in step 3b will be used only if the value of D̃ is not
properly specified. We formalize these observations in the following simple result.

Lemma 3.18. The following statements hold for procedure GUSL.

a) If the procedure terminates in step 1 or step 3a, we have f (p+)− lb+ ≤ q[ f (p)−
lb], where q is defined in (3.9.15);

b) If the procedure terminates in step 3b, then D̃ < DY .

Proof. The proof of part a) is the same as that of Lemma 3.15.e) and we only need
to show part b). Observe that whenever step 3b occurs, we have f k > l +θ( f 0− l)
and fη(xu

k)≤ l + θ

2 ( f 0− l). Hence,

f (xu
k)− fη(xu

k) = f k− fη(xu
k)>

θ

2 ( f 0− l),

which, in view of the second relation in (3.5.7), then implies that ηDY > θ( f 0− l)/2.
Using this observation and (3.9.38), we conclude that D̃ < DY .

We observe that all the results in Lemma 3.15.a-d) regarding the execution of
procedure GAPL also hold for procedure GUSL. In addition, similar to Theorem 3.13,
we establish below some important convergence properties of procedure GUSL by
showing how the gap between f (xu

k) and the level l decreases.

Theorem 3.15. Let αk ∈ (0,1], k = 1,2, . . ., be given. Also let (xl
k,xk,xu

k)∈X×X×X,
k ≥ 1, be the search points, l be the level and V (x0, ·) be the prox-function, η be the
smoothing parameter (see (3.9.38)) in procedure GUSL. Then, we have

fη(xu
k)− l ≤ (1−α1)γk(1) [ fη(xu

0)− l]+ ‖A‖
2V (x0,xk)

η
γk(1)‖Γk(1,ρ)‖∞, (3.9.41)

for any k ≥ 1, where ‖ · ‖∞ denotes the l∞ norm, γk(·) and Γk(·, ·), respectively, are
defined in (3.9.23) and (3.9.24). In particular, if αk ∈ (0,1], k = 1,2, . . ., are chosen
such that condition (3.9.26) holds with ρ = 1 for some c > 0, then the number of
iterations performed by procedure GAPL can be bounded by

KUSL(∆0, D̃) :=
⌈

2‖A‖
√

cDX D̃
βθ∆0

⌉
, (3.9.42)

where DX is defined in (3.2.4).

Proof. Note that, by (3.9.40) and (3.5.5), we have hη(z,x)≤ fη(x) for any z,x∈ X .
Moreover, by (3.5.5), (3.9.39) and the fact that Fη has Lipschitz continuous gradients
with constant Lη , we obtain

fη(x)−hη(z,x) = Fη(x)− [Fη(z)+ 〈∇Fη(z),x− z〉]≤ Lη

2 ‖x− z‖2 = ‖A‖2
2η
‖x− z‖2,
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for any z,x ∈ X , where the last inequality follows from the smoothness of Fη . In view
of these observations, (3.9.41) follows from an argument similar to the one used in
the proof of (3.9.25) with f = fη , M = Lη and ρ = 1.

Now using (3.2.4), (3.9.26) (with ρ = 1), (3.9.38) and (3.9.41), we obtain

fη(xu
k)− l ≤ ‖A‖2V (x0,xk)

η
γk(1)‖Γk(1,ρ)‖∞ ≤ c‖A‖2V (x0,xk)

ηk2

≤ c‖A‖2DX
ηk2 = 2c‖A‖2DX D̃

θ( f 0−l)k2 .

Denoting K = KUSL(∆0, D̃) and noting that ∆0 = f 0− f
0
= ( f 0− l)/β , we conclude

from the previous inequality that fη(xu
K)− l ≤ θ( f 0− l)/2. This result together

with (3.5.7) imply that, if D̃≥ DY , then f (xu
K)− l ≤ fη(xu

K)− l +ηDY ≤ θ( f 0− l).
In view of these two observations and the termination criterions used in step 3,
procedure GUSL must terminate in at most KAPL(∆0, D̃) iterations.

In view of Lemma 3.18, each call to procedure GUSL can reduce the gap between
a given upper and lower bound on f ∗ by a constant factor q, or update the estimate
on DY by a factor of 2. In the following USL method, we will iteratively call
procedure GUSL until a certain accurate solution is found.

The USL method:

Input: p0 ∈ X , tolerance ε > 0, initial estimate Q1 ∈ (0,DY ] and algorithmic
parameters β ,θ ∈ (0,1).

1) Set

p1 ∈ Argminx∈X
{

h0(p0,x) := f̂ (x)+F(p0)+ 〈F ′(p0),x− p0〉
}
, (3.9.43)

lb1 = h0(p0, p1) and ub1 := min{ f (p1), f (p̃1)}. Let s = 1.
2) If ubs− lbs ≤ ε , terminate;
3) Set (ps+1, lbs+1,Qs+1) = GUSL(ps, lbs,Qs,β ,θ) and ubs+1 = f (ps+1);
4) Set s = s+1 and go to step 1.

We now make a few remarks about the USL method described above. Firstly, each
phase s, s≥ 1, of the USL method is associated with an estimation Qs on DY , and
Q1 ∈ (0,DY ] is a given input parameter. Note that such a Q1 can be easily obtained by
the definition of DY . Secondly, we differentiate two types of phases: a phase is called
significant if procedure GUSL terminates in step 1 or step 3a, otherwise, it is called
non-significant. Thirdly, In view of Lemma 3.18.b), if phase s is non-significant, then
we must have Qs ≤DY . In addition, using the previous observation, and the facts that
Q1 ≤ DY and that Qs can be increased by a factor of 2 only in the non-significant
phases, we must have Qs ≤ 2DY for all significant phases.

Before establishing the complexity of the above USL method, we first present
a technical result which will be used to provide a convenient estimate on the gap
between the initial lower and upper bounds on f ∗.

Proposition 3.3. Let F be defined in (3.5.2) and v be a prox-function of Y with
modulus 1. We have
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F(x0)−F(x1)−〈F ′(x1),x0− x1〉 ≤ 2
(
2‖A‖2DY

)1/2 ‖x0− x1‖, ∀x0,x1 ∈ Rn,
(3.9.44)

where F ′(x1) ∈ ∂F(x1) and DY is defined in (3.2.4).

Proof. We first need to provide some characterization for the subgradients of F .
Let F and Fη be defined in (3.5.2) and (3.5.4), respectively. Also let us denote, for
any η > 0 and x ∈ X ,

ψx(z) := Fη(x)+ 〈∇Fη(x),z− x〉+ Lη

2 ‖z− x‖2 +ηDY , (3.9.45)

where DY and Lη are defined in (3.2.4) and (3.5.8), respectively. Clearly, in view of
(3.9.2) and (3.5.6), ψx is a majorant of both Fη and F . For a given x ∈ X , let Zx be
the set

Zx := {z ∈ Rn|ψx(z)+ 〈∇ψx(z),x− z〉= F(x)}, (3.9.46)

where ∇ψx(z) = ∇Fη(x)+Lη(z− x). Equivalently, we have

Zx :=
{

z ∈ Rn : ‖z− x‖2 = 2
Lη

[ηDY +Fη(x)−F(x)]
}
. (3.9.47)

Clearly, by the first relation in (3.5.6)

‖z− x‖2 ≤ 2ηDY
Lη

, ∀z ∈ Zx. (3.9.48)

Moreover, for any given x ∈ Rn and p ∈ Rn, there exists z ∈ Zx such that

〈F ′(x), p〉 ≤ 〈∇ψx(z), p〉= 〈∇Fη(x)+Lη(z− x), p〉. (3.9.49)

where F ′(x) ∈ ∂F(x). Indeed, let us denote

t = 1
‖p‖

{
2

Lη
[ηDY +Fη(x)−F(x)]

}1/2

and z0 = x+ t p. Clearly, in view of (3.9.47), we have z0 ∈ Zx. By convexity of F , the
fact that F(z0)≤ ψx(z0), and (3.9.46), we have

F(x)+ 〈F ′(x), t p〉 ≤ F(x+ t p) ≤ ψx(z0) = F(x)+ 〈∇ψx(z0),z0− x〉
= F(x)+ t〈∇ψx(z0), p〉,

which clearly implies the result in (3.9.49).
Now we are ready to prove our main conclusion. First note that by the convexity

of F , we have

F(x0)−
[
F(x1)+ 〈F ′(x1),x0− x1

]
〉 ≤ 〈F ′(x0),x0− x1〉+ 〈F ′(x1),x1− x0〉.

Moreover, by (3.9.49), ∃z0 ∈ Zx0 and z1 ∈ Zx1 s.t.
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〈F ′(x0),x0− x1〉+ 〈F ′(x1),x1− x0〉
≤ 〈∇Fη(x0)−∇Fη(x1),x0− x1〉+Lη〈z0− x0− (z1− x1),x0− x1〉
≤ Lη‖x0− x1‖2 +Lη(‖z0− x0‖+‖z1− x1‖)‖x0− x1‖

≤ Lη‖x0− x1‖2 +2Lη

(
2ηDY
Lη

)1/2
‖x0− x1‖

= ‖A‖2
η
‖x0− x1‖2 +2

(
2‖A‖2DY

)1/2 ‖x0− x1‖,

where the last inequality and equality follow from (3.9.48) and (3.5.8), respectively.
Combining the above two relations, we have

F(x0)−
[
F(x1)+ 〈F ′(x1),x0− x1〉

]
≤ ‖A‖2

η
‖x0− x1‖2 +2

(
2‖A‖2DY

)1/2 ‖x0− x1‖.

The result now follows by tending η to +∞ in the above relation.

We are now ready to show the main convergence results for the USL method.

Theorem 3.16. Suppose that αk ∈ (0,1], k = 1,2, . . ., in procedure GUSL are chosen
such that condition (3.9.26) holds with ρ = 1 for some c> 0. The following statements
hold for the USL method applied to problem (3.5.1)-(3.5.2).

a) The number of non-significant phases is bounded by S̃F(Q1) := dlogDY/Q1e, and
the number of significant phases is bounded by

SF(ε) :=
⌈

max
{

0, log1/q

(
4‖A‖√DX DY

ε

)}⌉
. (3.9.50)

b) The total number of gap reduction iterations performed by the USL method does
not exceed

SF(ε)+ S̃F(Q1)+
c̃∆̄F

ε
, (3.9.51)

where c̃ := 2[
√

2/(1−q)+
√

2+1]
√

c/βθ .

Proof. Denote δs ≡ ubs− lbs, s≥ 1. Without loss of generality, we assume that
δ1 > ε , since otherwise the statements are obviously true. The first claim in part a)
immediately follows from the facts that a non-significant phase can occur only if
Q1 ≤ DY due to Lemma 3.18.b) and that Qs, s≥ 1, is increased by a factor of 2 in
each non-significant phase. In order to show the second claim in part a), we first
bound the initial optimality gap ub1− lb1. By the convexity of F , (3.5.5) and (3.9.43),
we can easily see that lb1 ≤ f ∗. Moreover, we conclude from (3.5.5), (3.9.44) and
(3.9.43) that

ub1− lb1 ≤ f (p1)− lb1 = F(p1)−F(p0)−〈F ′(p0), p1− p0〉
≤ 2

(
2‖A‖2DY

)1/2 ‖p1− p0‖ ≤ 4‖A‖
√

DX DY ,

where the last inequality follows from the fact that ‖p1− p0‖ ≤
√

2DX . Using this
observation and Lemma 3.18.a), we can easily see that the number of significant
phases is bounded by SF(ε).
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We now show that part b) holds. Let B = {b1,b2, . . . ,bk} and N = {n1,n2, . . . ,nm},
respectively, denote the set of indices of the significant and non-significant phases.
Note that δbt+1 ≤ qδbt , t ≥ 1, and hence that δbt ≥ qt−kδbk > εqt−k, 1≤ t ≤ k. Also
observe that Qbt ≤ 2DY (see the remarks right after the statement of the USL method).
Using these observations and Theorem 3.15, we conclude that the total number of
iterations performed in the significant phases is bounded by

∑
k
t=1KUSL(δbt ,Qbt ) ≤ ∑

k
t=1KUSL(εqt−k,2DY )≤ k+ 2‖A‖

βθε

√
C1DX DY ∑

k
t=1qk−t

≤ SF + 2‖A‖
βθ(1−q)ε

√
2C1DX DY , (3.9.52)

where the last inequality follows from part a) and the observation that ∑
k
t=1qk−t ≤

1/(1−q). Moreover, note that ∆nr > ε for any 1≤ r ≤ m and that Qnr+1 = 2Qnr for
any 1≤ r ≤ m. Using these observations and Theorem 3.15, we conclude that the
total number of iterations performed in the non-significant phases is bounded by

∑
m
r=1KUSL(δnr ,Qnr) ≤ ∑

m
r=1KUSL(ε,Qnr)≤ m+ 2‖A‖

βθ ε

√
C1DX Q1∑

m
r=12(r−1)/2

≤ S̃F + 2‖A‖
βθ ε

√
C1DX Q1

S̃F

∑
r=1

2(r−1)/2

≤ S̃F + 2‖A‖
(
√

2−1)βθ ε

√
C1DX DY . (3.9.53)

Combining (3.9.52) and (3.9.53), we obtain (3.9.51).

It is interesting to observe that, if Q1 = DY , then there are no non-significant
phases and the number of iterations performed by the USL method is simply bounded
optimally by (3.9.52). In this case, we do not need to compute the value of fη(xu

k)
in step 3b. It is interesting to note that, in view of Theorem 3.16, the USL method
still achieves the optimal complexity bound in (3.9.51) even without a good initial
estimate on DY .

3.10 Exercises and notes

1. Let {xt} be the sequence generated by the mirror descent method (3.2.5) applied
to (3.1.2).

a. Assume the gradient ‖g(xt)‖∗ ≤M,

f (y)≥ f (x)+ 〈g(x),y− x〉+µV (x,y),∀x,y ∈ X (3.10.1)

and γt = 2/(µt) for some µ > 0. Provide a bound on ‖xt−x∗‖2 and f (x̄t
1)− f ∗

where x∗ is the optimal solution of (3.1.2) and x̄k
1 is defined in (3.1.9).

b. Please derive the selection of stepsizes {γt} and the rate of convergence for
mirror descent method applied to smooth convex optimization problems for
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which
‖∇ f (x)−∇ f (y)‖∗ ≤ L‖x− y‖,∀x,y ∈ X .

What if the problem is also strongly convex, i.e., (3.10.1) holds?

2. Show that if we replace step (3.3.6) in the accelerated gradient descent method
((3.3.4)-(3.3.6)) by

x̄t = argminx∈X{ f (xt)+ 〈 f (xt),x− xt〉+ L
2‖x− xt‖2},

the algorithm still converges with similar performance guarantees as in Theo-
rems 3.6 and 3.7.

3. In the game interpretation of accelerated gradient descent method, please specify
the selection of τt ,λt ,qt and αt so that (3.4.16) and (3.4.17) are equivalent to
(3.3.5) and (3.3.6)

4. In the smoothing scheme for solving saddle point problems, let us define

Fη(x) := max
y
{〈Ax,y〉− ĝ(y)+η(D2

Y −W (y))}.

Moreover, let us modify the accelerated gradient descent method in (3.3.23)-
(3.3.25) as follows:

xt = (1−qt)x̄t−1 +qtxt−1, (3.10.2)

xt = argminx∈X{γt [〈∇Fηt (xt),x〉+µV (xt ,x)+ f̂ (x)]+V (xt−1,x)}, (3.10.3)
x̄t = (1−αt)x̄t−1 +αtxt . (3.10.4)

Show that if ηt in (3.10.3) is set to

η = ‖A‖DX
t , t = 1,2 . . . ,

then by using the above algorithm one can find an ε-solution of (3.5.1), i.e., a
point x̄ ∈ X such that f (x̄)− f ∗ ≤ ε , in at most

O( ‖A‖DX DY
ε

)

iterations.
5. Consider the saddle point problem in (3.6.1), i.e., f ∗ = minx∈X f (x) with

f (x) = f̂ (x)+max
y∈Y
〈Ax,y〉− ĝ(y).

Als let Q(z̄,z) be defined in (3.6.7).

a. Show that z̄ ∈ Z is a saddle point of (3.6.1) if and only if Q(z̄,z)≤ 0 for any
z ∈ Z.

b. Show that f (x̄)− f ∗ ≤maxz∈Z Q(z̄,z).
c. Show that 0≤ f ∗−minx∈X{ f̂ (x)+ 〈Ax, ȳ〉− ĝ(ȳ)} ≤maxz∈Z Q(z̄,z).
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6. Consider the linear constrained convex optimization problem in (3.7.1). Establish
the rate of convergence of the following preconditioned ADMM method obtained
by replacing (3.7.2) with

xt = argminx∈X { f (x)+ 〈λt−1,Ax+Byt−1−b〉+ρ〈Axt−1 +Byt−1−b,Ax〉
+η

2 ‖x− xt−1‖2}

for some η > 0.
7. Consider the variational inequality problem in (3.8.1). Establish the rate of con-

vergence of the mirror-prox method in (3.8.4) and (3.8.5) under the following
situation.

a. The operator is monotone, i.e., (3.8.2) holds, is Hölder continuous, i.e.,

‖F(x)−F(y)‖∗ ≤ L‖x− y‖v,∀x,y ∈ X (3.10.5)

for some v ∈ [0,1] and L≥ 0.
b. The operator is not monotone, but satisfies (3.8.3). Moreover, it satisfies (3.10.5)

for some v ∈ (0,1] and L≥ 0.

8. Describe a variant of the APL method discussed in Section 3.9.1 with the pa-
rameter αk = 1 in the APL gap reduction procedure, and establish its rate of
convergence when applied to solve problem 3.9.1.

Notes. The rate of convergence for subgradient descent for solving was first estab-
lished in [78]. The mirror descent method was first introduced by Nemirovski and
Yudin in [78] and later simplified in [4]. Nesterov first introduced the accelerated
gradient descent method in [79] and different variants of this method can be found,
e.g., in [80, 6, 82, 83, 56]. The game interpretation of the accelerated gradient de-
scent method and the relationship between this method and primal-dual method
were introduced in Lan and Zhou [62]. Nesterov [82] first presented he smoothing
scheme for solving bilinear saddle point problems and all the primal-dual method for
solving these problems was first introduced by Chambolle and Pock in [15]. Chen,
Lan and Ouyang [18], and Dang and Lan [21] presented the generalization of the
primal-dual method, e.g., to the non-Euclidean setting and smooth and/or strongly
convex bilinear saddle point problem. Boyd et. al. provides a comprehensive survey
on ADMM in [14]. The rate of convergence analysis of ADMM was first presented
by [73, 39], and the rate of convergence for different variants of ADMM, in terms of
their primal optimality gap and feasibility violation, was established in [87]. Inspired
by the smoothing scheme for solving bilinear saddle point problem, Nemirovski
developed the mirror-prox method for solving variation inequalities in [76]. This
method evolves from Korpelevish’s extragradient method [49], see also [26] for a
comprehensive treatment for variational inequalties and complementarity problems.
The complexity of the mirror-prox method for solving the generalized monotone
variational inequalities problems was established in [22]. Lan [53] first presented
the accelerated prox-level and uniform smoothing level method for solving different
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classes of convex optimization problems, see [65, 48, 7, 8] for earlier developments
of bundle-level type methods.





Chapter 4
Stochastic Convex Optimization

In this chapter, we focus on stochastic convex optimization problems which have
found wide applications in machine learning. We will first study two classic methods,
i.e., stochastic mirror descent and accelerated stochastic gradient descent methods.
We will then present stochastic optimization methods for solving general convex
concave saddle point, stochastic bilinear saddle point, and stochastic variational
inequality problems. Finally, we discuss how to incorporate randomized block de-
composition into stochastic optimization methods.

4.1 Stochastic mirror descent

We consider the following optimization problem

f ∗ ≡min
x∈X

{
f (x) := E[F(x,ξ )]

}
, (4.1.1)

where X ⊂Rm is a nonempty bounded closed convex set, ξ is a random vector whose
probability distribution P is supported on set Ξ ⊂Rd and F : X×Ξ →R. We assume
that for every ξ ∈ Ξ the function F(·,ξ ) is convex on X , and that the expectation

E[F(x,ξ )] =
∫

Ξ
F(x,ξ )dP(ξ ) (4.1.2)

is well defined and finite valued for every x ∈ X . It follows that function f (·) is
convex and finite valued on X . Moreover, we assume that f (·) is continuous on
X . Clearly, continuity of f (·) follows from convexity if f (·) is finite valued and
convex on a neighborhood of X . With these assumptions, (4.1.1) becomes a convex
programming problem. A basic difficulty of solving stochastic optimization problem
(4.1.1) is that the multidimensional integral (expectation) (4.1.2) cannot be computed
with a high accuracy for dimension d, say, greater than 5. The aim of this section is

115
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to introduce one computational approach based on Monte Carlo sampling techniques.
To this end we make the following assumptions.

Assumption 1 It is possible to generate an iid sample ξ1,ξ2, ..., of realizations of
the random vector ξ .

Assumption 2 There is a mechanism, a stochastic first-order oracle (SFO) which
for every given x ∈ X and ξ ∈ Ξ returns a stochastic subgradient – a vector G(x,ξ )
such that g(x) := E[G(x,ξ )] is well defined.

Throughout this section, we assume that the stochastic subgradient G satisfies the
following assumptions.

Assumption 3 For any x ∈ X, we have

a) E[G(x,ξt)]≡ f ′(x) ∈ ∂Ψ(x), (4.1.3)
b) E

[
‖G(x,ξt)− f ′(x)‖2

∗
]
≤ σ

2. (4.1.4)

Recall that if F(·,ξ ), ξ ∈ Ξ , is convex and f (·) is finite valued in a neighborhood
of a point x, then

∂ f (x) = E [∂xF(x,ξ )] . (4.1.5)

In that case we can employ a measurable selection G(x,ξ )∈ ∂xF(x,ξ ) as a stochastic
subgradient.

The stochastic mirror descent method, also referred to as mirror descent stochastic
approximation, is obtained by replacing the exact subgradient g(xt) in (3.2.5) with
a stochastic subgradient Gt := G(xt ,ξt) returned by the stochastic oracle. More
specifically, it updates xt according to

xt+1 = argminx∈X γt〈Gt ,x〉+V (xt ,x), t = 1,2, . . . . (4.1.6)

Here V denotes the prox-function associated with the distance generating function ν .
For the sake of simplicity, we assume that the modulus σν of ν is given by 1 (see
Section 3.2). We will establish the convergence of this stochastic optimization under
different assumptions about the objective function f .

4.1.1 General nonsmooth convex functions

In this subsection, we assume that the objective function f has bounded subgradients
such that

‖g(x)‖∗ ≤M, ∀x ∈ X . (4.1.7)

This assumption implies that f is Lipschitz continuous over X in view of Lemma 2.4.
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It can be easily seen that the result in Lemma 3.4 holds with gt replaced by Gt . By
using this result, we can establish the convergence properties for the above stochastic
mirror descent method.

Theorem 4.1. Let xt , t = 1, . . . ,k, be generated by (4.1.6) and define x̄k
s as in (3.1.9).

Then

E[ f (x̄k
s)]− f ∗ ≤

(
∑

k
t=sγt

)−1 [
E[V (xs,x∗)]+(M2 +σ

2)∑k
t=sγ

2
t

]
, (4.1.8)

where x∗ denotes an arbitrary solution of (4.1.1) and the expectation is taken w.r.t.
ξ1, . . . ,ξk.

Proof. Let us denote δt = Gt − gt , t = 1, . . . ,k. By the convexity of f and
Lemma 3.4,

γt [ f (xt)− f (x)]≤ γt〈Gt ,xt − x〉− γt〈δt ,xt − x〉
≤V (xt ,x)−V (xt+1,x)+ γt〈Gt ,xt − xt+1〉−V (xt ,xt+1)

− γt〈δt ,xt − x〉
≤V (xt ,x)−V (xt+1,x)+ γ

2
t ‖Gt‖2

∗− γt〈δt ,xt − x〉,

where the last inequality follows from the strong convexity of ν , the Cauchy-Swartz
inequality and the fact that bt−at2/2≤ b2/(2a) for any a > 0. The previous conclu-
sion together with the fact that

‖Gt‖2
∗ ≤ 2(‖gt‖2

∗+‖δ‖2
∗)≤ 2(M2 +‖δ‖2

∗) (4.1.9)

due to (4.1.7) then imply that

γt [ f (xt)− f (x)]≤V (xt ,x)−V (xt+1,x)+2γ
2
t (M

2 +‖δ‖2
∗)− γt〈δt ,xt − x〉.

Summing up these inequalities and using the fact that f (x̄k
s)≤ (∑k

t=sγt)
−1

∑
k
t=s f (xt),

we obtain

f (x̄k
s)]− f ∗ ≤

(
∑

k
t=sγt

)−1
[V (xs,x∗)−V (xk+1,x∗)

+2∑
k
t=sγ

2
t (M

2 +‖δt‖2
∗)−∑

k
t=sγt〈δt ,xt − x〉

]
. (4.1.10)

The result then follows by taking expectation on both sides of the above inequality.

Assuming that the total number of steps k is given in advance and optimizing the
right hand side of (4.1.8), we arrive at the constant stepsize policy

γt =
DX√

k(M2+σ2)
, t = 1, ...,k, (4.1.11)

where DX is defined in (3.2.4), and the associated efficiency estimate
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E
[

f (x̃k
1)− f (x∗)

]
≤ 2DX

√
M2+σ2

k . (4.1.12)

Certainly we can allow different stepsize strategy similar to the deterministic mirror
descent method discussed in the previous chapter.

So far, all our efficiency estimates were upper bounds on the expected non-
optimality, in terms of the objective, of approximate solutions generated by the
algorithms. Here we complement these results with bounds on probabilities of large
deviations. Observe that by Markov inequality, (4.1.12) implies that

Prob
{

f (x̃k
1)− f (x∗)> ε

}
≤ 2DX

√
M2+σ2

ε
√

k
, ∀ε > 0. (4.1.13)

This implies that in order to find an (ε,Λ)-solution of (4.1.1), i.e., a point x̄ ∈ X s.t.
Prob

{
f (x̃k

1)− f (x∗)> ε)
}
< Λ for some Λ ∈ (0,1), one needs to run the stochastic

mirror descent method for
O
{

D2
X (M

2+σ2)

Λ 2ε2

}
(4.1.14)

iterations. It is possible, however, to obtain much finer bounds on deviation proba-
bilities when imposing more restrictive assumptions on the distribution of G(x,ξ ).
Specifically, assume the following “light-tail” assumption.

Assumption 4 For any x ∈ X, we have

E
[
exp{‖G(x,ξt)−g(x)‖2

∗/σ
2}
]
≤ exp{1}. (4.1.15)

It can be easily seen that Assumption 4 implies Assumption 3(b). Indeed, if a ran-
dom variable Y satisfies E[exp{Y/a}]≤ exp{1} for some a > 0, then by Jensen’s in-
equality exp{E[Y/a]} ≤ E[exp{Y/a}]≤ exp{1}, and therefore E[Y ]≤ a. Of course,
condition (4.1.15) holds if ‖G(x,ξ )−g(x)‖∗ ≤ σ for all (x,ξ ) ∈ X×Ξ .

Now let us state the following well-known result for the martingale sequence.

Lemma 4.1. Let ξ[t] ≡ {ξ1,ξ2, . . . ,ξt} be a sequence of iid random variables, and
ζt = ζt(ξ[t]) be deterministic Borel functions of ξ[t] such that E|ξ[t−1]

[ζt ] = 0 a.s. and

E|ξ[t−1]
[exp{ζ 2

t /σ2
t }]≤ exp{1} a.s., where σt > 0 are deterministic. Then

∀λ ≥ 0 : Prob
{

∑
N
t=1ζt > λ

√
∑

N
t=1σ2

t

}
≤ exp{−λ

2/3}.

Proof. For simplicity, let us denote the conditional expectation E|ξ[t−1]
by E|t−1. Let

us set ζ̄t = ζt/σt . We have exp{x} ≤ x+ exp{9x2/16} for all x, so that E|t−1[ζ̄t ] =

0 and E|t−1[exp{ζ̄ 2
t }] ≤ exp{1} a.s. In view of these relations and the moment

inequality, we have

∀λ ∈ [0,4/3] : E|t−1
[
exp{λ ζ̄t}

]
≤ E|t−1

[
exp{(9λ

2/16)ζ̄ 2
t }
]
≤ exp{9λ

2/16}.
(4.1.16)

Besides this, we have λx≤ 3
8 λ 2 + 2

3 x2, whence
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E|t−1
[
exp{λ ζ̄t}

]
≤ exp{3λ

2/8}E|t−1
[
exp{2ζ̄

2
t /3}

]
≤ exp{2

3
+3λ

2/8}.

Combining the latter inequality with (4.1.16), we get

∀λ ≥ 0 : E|t−1
[
exp{λ ζ̄t}

]
≤ exp{3λ

2/4},

or, which is the same,

∀ν ≥ 0 : E|t−1 [exp{νζt}]≤ exp{3ν
2
σ

2
t /4}

Now, since ζτ is a deterministic function of ξ τ , we have the recurrence

∀ν ≥ 0 : E [exp{ν∑
t
τ=1ζτ}] = E

[
exp{ν∑

t−1
τ=1ζτ}E|t−1exp{νζτ}

]

≤ exp{3ν2σ2
τ /4}E

[
exp{ν∑

t−1
τ=1ζτ}

]
,

whence
∀ν ≥ 0 : E

[
exp{ν∑

N
t=1ζt}

]
≤ exp{3ν

2
∑

N
t=1σ

2
t /4}.

Applying Chebyshev inequality, we get for a positive λ

Prob
{

∑
N
t=1ζt > λ

√
∑

N
t=1σ2

t

}

≤ inf
ν≥0

exp
{

3ν
2
∑

N
t=1σ

2
t /4
}

exp
{
−λν

√
∑

N
t=1σ2

t

}

= exp
{
−λ

2/3
}
.

Proposition 4.1. In the case of Assumption 4, for the constant stepsizes (4.1.11) one
has that for any λ ≥ 0 the following holds

Prob
{

f (x̃k
1)− f (x∗)> 3DX√

k

(√
M2 +σ2 +λσ

)}
≤ exp{−λ}+ exp{−λ 2/3}.

Proof. Let ζt = γt〈δt ,x∗−xt〉. Clearly, {ζt}t≥1 is a martingale sequence. Moreover,
it follows from the definition of DX and (4.1.15) that

E|ξ[t−1]

[
exp{ζ 2

t /(γtDX σ)2}
]
≤ E|ξ[t−1]

[
exp{(γtDX‖δt‖∗)2/(γtDX σ)2}

]
≤ exp(1),

The previous two observations, in view of Lemma 4.1, then imply that

∀λ ≥ 0 : Prob
{

∑
k
t=sζt > λDX σ

√
∑

k
t=sγ

2
t

}
≤ exp{−λ

2/3}. (4.1.17)

Now observe that under Assumption 4,

E|ξt−1

[
exp{‖δt‖2

∗/σ
2}
]
≤ exp{1}.
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Setting θt = γ2
t /∑

k
t=sγ

2
t , we have

exp
{

∑
k
t=sθt(‖δt‖2

∗/σ
2)
}
≤ ∑

k
t=sθtexp{‖δt‖2

∗/σ
2},

whence, taking expectations,

E
[
exp
{

∑
k
t=sγ

2
t ‖δt‖2

∗/
(

σ
2
∑

k
t=sγ

2
t

)}]
≤ exp{1}.

It then follows from Markov’s inequality that

∀λ ≥ 0 : Prob
{

∑
k
t=sγ

2
t ‖δt‖2

∗ > (1+λ )σ2
∑

k
t=sγ

2
t

}
≤ exp{−λ}. (4.1.18)

Using (4.1.17) and (4.1.18) in (4.1.10), we conclude that

Prob
{

f (x̄k
s)]− f ∗ >

(
∑

k
t=sγt

)−1 [
D2

X +2∑
k
t=sγ

2
t [M

2 +(1+λ )σ2]

+λDX σ

√
∑

k
t=sγ

2
t

]}
≤ exp{−λ}+ exp{−λ

2/3}. (4.1.19)

The result immediately follows from the above inequality and (4.1.11).

In view of Proposition 4.1, if Assumption 4 holds, then the number of iterations
performed by the stochastic mirror descent method to find an (ε,Λ)-solution of
(4.1.1) can be bounded by

O
{

D2
X (M

2+σ2) log(1/Λ)

ε2

}
.

4.1.2 Smooth convex problems

In this section, we still consider problem (4.1.1), but assume that f : X → R is a
convex function with Lipschitz continuous gradient, that is,

‖∇ f (x)−∇ f (x′)‖∗ ≤ L‖x− x′‖, ∀x,x′ ∈ X . (4.1.20)

We first derive the rate of convergence for a direct application of the stochastic
mirror descent to smooth stochastic convex optimization problem mentioned above.
Note that

‖∇ f (xt)‖2
∗ ≤

(
‖∇ f (x1)+∇ f (xt)−∇ f (x1)‖2

∗
)

≤ 2‖∇ f (x1)‖2
∗+2‖∇ f (xt)−∇ f (x1)‖2

∗
≤ 2‖∇ f (x1)‖2

∗+2L2‖xt − x1‖2

≤ 2‖∇ f (x1)‖2
∗+2L2D2

X . (4.1.21)
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We can easily see from the above inequality and (4.1.12) that the rate of convergence
for a direct application of the stochastic mirror descent algorithm is bounded by

O(1)
[

DX (‖∇ f (x1)‖∗+LDX+σ)√
k

]
. (4.1.22)

One problem associated with the above method exists in that it does not explore
the smoothness properties of f . We will see that a sharper rate of convergence can be
obtained by exploiting the smoothness of f , coupled with a different convergence
analysis. We will also slightly modify the way to compute the output solution as
follows:

xav
t+1 =

(
∑

t
τ=1γτ

)−1
∑

t
τ=1γτ xt+1. (4.1.23)

More specifically, the sequence {xav
t }t≥2 is obtained by averaging the iterates xt , t ≥ 2

with their corresponding weights γt−1, while the one in the original stochastic mirror
descent is obtained by taking the average of the whole trajectory xt , t ≥ 1 with weights
γt . Note however that, if the constant stepsizes are used, i.e., γt = γ,∀ t ≥ 1, then
the averaging step stated above is exactly the same as the one stated in the original
stochastic mirror descent method up to shifting one iterate.

The following lemma establishes an important recursion for the above stochastic
mirror descent algorithm for smooth optimization problems.

Lemma 4.2. Assume that the stepsizes γt satisfy Lγt < 1, t ≥ 1. Also let δt :=
G(xt ,ξt)−g(xt), where g(xt) = E[G(xt ,ξt)] = ∇ f (xt). Then, we have

γt [ f (xt+1)− f (x)]+V (xt+1,x)≤V (xt ,x)+∆t(x), ∀x ∈ X , (4.1.24)

where
∆t(x) := γt〈δt ,x− xt〉+ ‖δt‖2∗γ2

t
2(1−Lγt )

. (4.1.25)

Proof. Denoting dt := xt+1 − xt , due to the strong-convexity of ν , we have
‖dt‖2/2≤V (xt ,xt+1), which together with (3.1.17), then imply that

γt f (xt+1)≤ γt [ f (xt)+ 〈g(xt),dt〉+ L
2‖dt‖2]

= γt [ f (xt)+ 〈g(xt),dt〉]+ 1
2‖dt‖2− 1−Lγt

2 ‖dt‖2

≤ γt [ f (xt)+ 〈g(xt),dt〉]+V (xt ,xt+1)− 1−Lγt
2 ‖dt‖2

= γt [ f (xt)+ 〈Gt ,dt〉]− γt〈δt ,dt〉+V (xt ,xt+1)− 1−Lγt
2 ‖dt‖2

≤ γt [ f (xt)+ 〈Gt ,dt〉]+V (xt ,xt+1)− 1−Lγt
2 ‖dt‖2 +‖δt‖∗γt‖dt‖

≤ γt [ f (xt)+ 〈Gt ,dt〉]+V (xt ,xt+1)+
‖δt‖2∗γ2

t
2(1−Lγt )

. (4.1.26)

Moreover, it follows from Lemma 3.4 with gt replaced by Gt that
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γt f (xt)+ [γt〈Gt ,xt+1− xt〉+V (xt ,xt+1)]

≤ γt f (xt)+ [γt〈Gt ,x− xt〉+V (xt ,x)−V (xt+1,x)]

= γt [ f (xt)+ 〈g(xt),x− xt〉]+ γt〈δt ,x− xt〉+V (xt ,x)−V (xt+1,x)

≤ γt f (x)+ γt〈δt ,x− xt〉+V (xt ,x)−V (xt+1,x),

where the last inequality follows from the convexity of f (·). Combining the above
two conclusions and rearranging the terms, we obtain (4.1.24).

We are now ready to describe the general convergence properties of the above
stochastic mirror descent algorithm without specifying the stepsizes γt .

Theorem 4.2. Assume that the stepsizes γt satisfy 0 < γt ≤ 1/(2L), ∀ t ≥ 1. Let
{xav

t+1}t≥1 be the sequence computed according to (4.1.23) by the modified stochastic
mirror descent algorithm.

a) Under Assumption 3,

E
[

f (xav
k+1)− f ∗

]
≤ K0(k), ∀k ≥ 1, (4.1.27)

where
K0(k) :=

(
∑

k
t=1γt

)−1 [
D2

X +σ
2
∑

k
t=1γ

2
t

]
.

b) Under Assumptions 3 and 4, ∀λ > 0,k ≥ 1,

Prob
{

f (xav
k+1)− f ∗ > K0(k)+λK1(k)

}
≤ exp{−λ

2/3}+ exp{−λ}, (4.1.28)

where

K1(k) :=
(

∑
k
t=1γt

)−1
[

DX σ

√
∑

k
t=1γ2

t +σ
2
∑

k
t=1γ

2
t

]
.

Proof. Summing up (4.1.24) from t = 1 to k, we have

∑
k
t=1 [γt( f (xt+1)− f ∗)] ≤ V (x1,x∗)−V (xt+1,x∗)+∑

k
t=1∆t(x∗)

≤ V (x1,x∗)+∑
k
t=1∆t(x∗)≤ D2

X +∑
k
t=1∆t(x∗),

which, in view of the fact that

f (xav
t+1)≤ (∑k

t=1γt)
−1

∑
k
t=1γt f (xt+1),

then implies that
(

∑
k
t=1γt

)[
f (xav

t+1)− f ∗
]
≤ D2

X +∑
k
t=1∆t(x∗). (4.1.29)

Denoting ζt := γt〈δt ,x∗− xt〉 and observing that

∆t(x∗) = ζt +
γ2
t ‖δt‖2∗

2(1−Lγt )
,

we then conclude from (4.1.29) that



4.1 Stochastic mirror descent 123
(

∑
k
t=1γt

)[
f (xav

t+1)− f ∗
]
≤ D2

X +∑
k
t=1

[
ζt +

γ2
t ‖δt‖2∗

2(1−Lγt )

]

≤ D2
X +∑

k
t=1
(
ζt + γ

2
t ‖δt‖2

∗
)
, (4.1.30)

where the last inequality follows from the assumption that γt ≤ 1/(2L).
Note that the pair (xt ,xav

t ) is a function of the history ξ[t−1] := (ξ1, ...,ξt−1) of the
generated random process and hence is random. Taking expectations of both sides of
(4.1.30) and noting that under assumption I, E[‖δt‖2

∗]≤ σ2, and

E|ξ[τ−1]
[ζt ] = 0, (4.1.31)

we obtain (
∑

k
t=1γt

)
E
[

f (xav
t+1)− f ∗

]
≤ D2

X +σ
2
∑

k
t=1γ

2
t ,

which clearly implies part a).

The proof of Part b) is similar to that of Proposition 4.1 and hence the details are
skipped.

We now describe the selection of the stepsizes for the modified stochastic mirror
descent. For the sake of simplicity, let us suppose that the number of iterations
for the above algorithm is fixed in advance, say equal to k, and that the constant
stepsize policy is applied, i.e., γt = γ, t = 1, · · · ,k, for some γ < 1/(2L) (note that
the assumption of constant stepsizes does not hurt the efficiency estimate). We then
conclude from Theorem 4.2 that the obtained solution xav

k+1 = k−1
∑

k
t=1xt+1 satisfies

E
[

f (xav
k+1)− f ∗

]
≤ D2

X
kγ

+ γσ
2.

Minimizing the right-hand-side of the above inequality with respect to γ over the
interval (0,1/(2L)], we conclude that

E
[

f (xav
k+1)− f ∗

]
≤ K∗0 (k) := 2LD2

X
k + 2DX σ√

k
, (4.1.32)

by choosing γ as

γ = min

{
1

2L ,

√
D2

X
kσ2

}
.

Moreover, with this choice of γ , we have

K1(k) = DX σ√
k
+ γσ

2 ≤ 2DX σ√
k
,

hence, bound (4.1.28) implies that

Prob
{

f (xav
k+1)− f ∗ > 2LD2

X
k + 2(1+λ )DX σ√

k

}
≤ exp{−λ

2/3}+ exp{−λ}



124 4 Stochastic Convex Optimization

for any λ > 0.

It is interesting to compare the rate of convergence (4.1.32) obtained for the
modified stochastic mirror descent and the one stated in (4.1.22) for a direction
application of the original stochastic mirror descent. Clearly, the latter one is always
worse than the former one. Moreover, in the range

L≤
√

kσ2

DX
, (4.1.33)

the first component in (4.1.32) (for abbreviation, the L-component) merely does not
affect the error estimate (4.1.32). Note that the range stated in (4.1.33) extends as N
increases, meaning that, if k is large, the Lipschitz constant of f does not affect the
complexity of finding good approximate solutions. In contrast, this phenomenon does
not appear in the error estimate (4.1.22) derived for the original stochastic mirror
descent algorithm which employs a simple stepsizes strategy without taking into
account the structure of the objective function f .

It should be noted that the stochastic mirror descent is a direct descendant of the
mirror descent algorithm. It is well-known that algorithms of these types are not
optimal for smooth convex optimization. We will study a stochastic version of the
optimal methods for smooth convex optimization in Section 4.2. In fact, we will
show that these methods are also optimal for solving nonsmooth problem by properly
specifying stepsizes.

4.1.3 Accuracy certificates

In this subsection, we discuss one way to estimate lower and upper bounds for the op-
timal value of problem (4.1.1) when running the stochastic mirror descent algorithm.
For the sake of simplicity, we focus on general nonsmooth convex programming
problems with bounded subgradients, i.e., (4.1.7) holds. Discussions about accuracy
certificates for smooth problems will be presented in Subsection 4.2.4.

Let k be the total number of steps and denote

νt := γt

∑
k
i=1γi

, t = 1, ...,k, and x̃k := ∑
k
t=1νtxt . (4.1.34)

Consider the functions

f k(x) := ∑
k
t=1νt

[
f (xt)+g(xt)

T (x− xt)
]
,

f̂ k(x) := ∑
k
t=1νt [F(xt ,ξt)+G(xt ,ξt)

T (x− xt)],

and define
f k
∗ := min

x∈X
f k(x) and f ∗k := ∑

k
t=1νt f (xt). (4.1.35)
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Since νt > 0 and ∑
k
t=1νt = 1, it follows by convexity of f (·) that the function f k(·)

underestimates f (·) everywhere on X , and hence f k
∗ ≤ f ∗. Since x̃k ∈ X we also

have that f ∗ ≤ f (x̃k), and by convexity of f (·) that f (x̃k) ≤ f ∗k. That is, for any
realization of the random sample ξ1, ...,ξk we have that

f k
∗ ≤ f ∗ ≤ f (x̃k)≤ f ∗k. (4.1.36)

It follows from (4.1.36) that E[ f k
∗ ]≤ f ∗ ≤ E[ f ∗k] as well.

The bounds f k
∗ and f ∗k are unobservable since the values f (xt) are not known

exactly. Therefore we consider their computable counterparts

f k = min
x∈X

f̂ k(x) and f k
= ∑

k
t=1νtF(xt ,ξt). (4.1.37)

The bound f k can be easily calculated while running the stochastic mirror descent
procedure. The bound f k involves solving the optimization problem of minimizing a
linear objective function over set X .

Since xt is a function of ξ[t−1] = (ξ1, ...,ξt−1), and ξt is independent of ξ[t−1], we
have that

E
[

f k]
= ∑

k
t=1νtE

{
E[F(xt ,ξt)|ξ[t−1]]

}
= ∑

k
t=1νtE [ f (xt)] = E[ f ∗k]

and

E
[

f k] = E
[
E
{

minx∈X
[
∑

k
t=1νt [F(xt ,ξt)+G(xt ,ξt)

T (x− xt)]
]∣∣ξ[t−1]

}]

≤ E
[
minx∈X

{
E
[
∑

k
t=1νt [F(xt ,ξt)+G(xt ,ξt)

T (x− xt)]
]∣∣ξ[t−1]

}]

= E
[
minx∈X f k(x)

]
= E

[
f k
∗
]
.

It follows that
E
[

f k]≤ f ∗ ≤ E
[

f k]
. (4.1.38)

That is, on average f k and f k give, respectively, a lower and an upper bound for the
optimal value of problem (4.1.1).

Our goal in the remaining part of this subsection it to understand how good
the bounds f k and f k are. In the sequel, we denote ∆t := F(xt ,ξt)− f (xt) and
δt := G(xt ,ξt)−g(xt). Since xt is a function of ξ[t−1] and ξt is independent of ξ[t−1],
we have that the conditional expectations

E|t−1 [∆t ] = 0 and E|t−1 [δt ] = 0, (4.1.39)

and hence the unconditional expectations E [∆t ] = 0 and E [δt ] = 0 as well.
We make the following assumptions about the ∆t .

Assumption 5 There exists a positive constant Q such that for any t ≥ 0:

E
[
∆

2
t
]
≤ Q2. (4.1.40)

We first need to show the following simple result.
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Lemma 4.3. Let ζ1, ...,ζ j be a sequence of elements of Rn. Define the sequence
vt , t = 1,2, ... in Xo as follows: v1 ∈ Xo and

vt+1 = argminx∈X {〈ζt ,x〉+V (vt ,x)} .

Then for any x ∈ X the following inequalities hold

〈ζt ,vt − x〉 ≤V (vt ,x)−V (vt+1,x)+
‖ζt‖2∗

2 , (4.1.41)

∑
j
t=1〈ζt ,vt − x〉 ≤V (v1,x)+ 1

2 ∑
j
t=1‖ζt‖2

∗. (4.1.42)

Proof. By Lemma 3.4, we have

〈ζt ,vt+1− x〉+V (vt ,vt+1)≤V (vt ,x)−V (vt+1,x),

which in view of the fact that

〈ζt ,vt − vt+1〉−V (vt ,vt+1)≤ 〈ζt ,vt − vt+1〉− 1
2‖vt+1− vt‖2 ≤ 1

2‖ζt‖2
∗,

then implies (4.1.41). Summing up (4.1.41) from t = 1 to j, we conclude (4.1.42)
due to V (v,x)≥ 0 for any v ∈ Zo,x ∈ Z.

We are now ready to bound the expected gap between the aforementioned upper
and lower bounds for the optimal value of problem (4.1.1).

Theorem 4.3. Suppose that Assumption 1 holds. Then

E
[

f ∗k− f k
∗
]
≤ 4D2

X+(2M2+3σ2)∑
k
t=1γ2

t

2∑
k
t=1γt

, (4.1.43)

E
[∣∣ f k− f ∗k

∣∣
]
≤ Q

√
∑

k
t=1ν2

t , (4.1.44)

E
[∣∣ f k− f k

∗
∣∣
]
≤ D2

X+(M2+σ2)∑
k
t=1γ2

t

∑
k
t=1γt

+
(
Q+2

√
2DX σ

)√
∑

k
t=1ν2

t . (4.1.45)

In particular, in the case of constant stepsize policy (4.1.11) we have

E
[

f ∗k− f k
∗
]
≤ 7DX

√
M2+σ2

2
√

k
,

E
[∣∣ f k− f ∗k

∣∣
]
≤ Qk−1/2,

E
[∣∣ f k− f k

∗
∣∣]≤ 2DX

√
M2+σ2
√

k
+
(
Q+2

√
2DX σ

)
k−1/2.

(4.1.46)

Proof. If in Lemma 4.3 we take v1 := x1 and ζt := γtG(xt ,ξt), then the corre-
sponding iterates vt coincide with xt . Therefore, we have by (4.1.41) and since
V (x1,u)≤ D2

X that

∑
k
t=1γt(xt −u)TG(xt ,ξt)≤ D2

X +2−1
∑

k
t=1γ

2
t ‖G(xt ,ξt)‖2

∗, ∀u ∈ X . (4.1.47)
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It follows that for any u ∈ X :

∑
k
t=1νt

[
− f (xt)+(xt −u)Tg(xt)

]
+∑

k
t=1νt f (xt)

≤ D2
X+2−1∑

k
t=1γ2

t ‖G(xt ,ξt )‖2∗
∑

k
t=1γt

+∑
k
t=1νtδ

T
t (xt −u).

Since

f ∗k− f k
∗ = ∑

k
t=1νt f (xt)+max

u∈X
∑

k
t=1νt

[
− f (xt)+(xt −u)Tg(xt)

]
,

it follows that

f ∗k− f k
∗ ≤

D2
X+2−1∑

k
t=1γ2

t ‖G(xt ,ξt )‖2∗
∑

k
t=1γt

+max
u∈X

∑
k
t=1νtδ

T
t (xt −u). (4.1.48)

Let us estimate the second term in the right hand side of (4.1.48). Let

u1 = v1 = x1;
ut+1 = argminx∈X {〈−γtδt ,x〉+V (ut ,x)} , t = 1,2, ...,k;
vt+1 = argminx∈X {〈γtδt ,x〉+V (vt ,x)} , t = 1,2, ...k.

(4.1.49)

Observe that δt is a deterministic function of ξ[t], whence ut and vt are deterministic
functions of ξ[t−1]. By using Lemma 4.3 we obtain

∑
k
t=1γtδ

T
t (vt −u)≤ D2

X +2−1
∑

k
t=1γ

2
t ‖δt‖2

∗, ∀u ∈ X . (4.1.50)

Moreover,
δ

T
t (vt −u) = δ

T
t (xt −u)+δ

T
t (vt − xt),

and hence it follows by (4.1.50) that

max
u∈X

∑
k
t=1νtδ

T
t (xt −u)≤ ∑

k
t=1νtδ

T
t (xt − vt)+

D2
X+2−1∑

k
t=1γ2

t ‖δt‖2∗
∑

k
t=1γt

. (4.1.51)

Observe that by similar reasoning applied to −δt in the role of δt we get

max
u∈X

[
−∑

k
t=1νtδ

T
t (xt −u)

]
≤
[
−∑

k
t=1νtδ

T
t (xt −ut)

]
+

D2
X+2−1∑

k
t=1γ2

t ‖δt‖2∗
∑

k
t=1γt

.

(4.1.52)
Moreover, E|t−1 [δt ] = 0 and ut ,vt and xt are functions of ξ[t−1], while E|t−1δt = 0

and hence
E|t−1

[
(xt − vt)

T
δt
]
= E|t−1

[
(xt −ut)

T
δt
]
= 0. (4.1.53)

We also have that E|t−1
[
‖δt‖2

∗
]
≤ σ2 by (4.1.4), it follows from (4.1.51) and (4.1.53)

that

E
[

max
u∈X

∑
k
t=1νtδ

T
t (xt −u)

]
≤ D2

X+2−1σ2∑
k
t=1γ2

t

∑
k
t=1γt

. (4.1.54)
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Therefore, by taking expectation of both sides of (4.1.48) and using (4.1.4), (4.1.9)
together with (4.1.54) we obtain the estimate (4.1.43).

In order to prove (4.1.44) let us observe that f k− f ∗k = ∑
k
t=1νt∆t , and that for

1≤ s < t ≤ k,

E[∆s∆t ] = E{E|t−1[∆s∆t ]}= E{∆sE|t−1[∆t ]}= 0.

Therefore

E
[(

f k− f ∗k
)2
]
= E

[(
∑

k
t=1νt∆t

)2
]
= ∑

k
t=1ν2

t E
[
∆ 2

t
]
= ∑

k
t=1ν2

t E
{
E|t−1

[
∆ 2

t
]}

.

Moreover, by condition (4.1.40) of assumption (A1) we have that E|t−1
[
∆ 2

t
]
≤ Q2,

and hence
E
[(

f k− f ∗k
)2
]
≤ Q2

∑
k
t=1ν

2
t . (4.1.55)

Since
√
E[Y 2]≥ E|Y | for any random variable Y , inequality (4.1.44) follows from

(4.1.55).
Let us now look at (4.1.45). We have

∣∣ f k− f k
∗
∣∣ =

∣∣min
x∈X

f̂ k(x)−min
x∈X

f k(x)
∣∣≤max

x∈X

∣∣ f̂ k(x)− f k(x)
∣∣

≤
∣∣∑k

t=1νt∆t
∣∣+maxx∈X

∣∣∑k
t=1νtδ

T
t (xt − x)

∣∣.
(4.1.56)

We already showed above (see (4.1.55)) that

E
[∣∣∑k

t=1νt∆t
∣∣]≤ Q

√
∑

k
t=1ν2

t . (4.1.57)

Invoking (4.1.51), (4.1.52), we get

maxx∈X
∣∣∑k

t=1νtδ
T
t (xt − x)

∣∣≤
∣∣∑k

t=1νtδ
T
t (xt − vt)

∣∣+
∣∣∑k

t=1νtδ
T
t (xt −ut)

∣∣

+
D2

X+2−1∑
k
t=1γ2

t ‖δt‖2∗
∑

k
t=1γt

.
(4.1.58)

Moreover, for 1 ≤ s < t ≤ k we have that E
[(

δ T
s (xs− vs)

)(
δ T

t (xt − vt)
)]

= 0, and
hence

E
[∣∣∑k

t=1νtδ
T
t (xt − vt)

∣∣2
]
= ∑

k
t=1ν2

t E
[∣∣δ T

t (xt − vt)
∣∣2
]
≤ σ2

∑
k
t=1ν2

t E
[
‖xt − vt‖2

]

≤ 2σ2D2
X ∑

k
t=1ν2

t ,

where the last inequality follows from the strong convex of ν . It follows that

E
[∣∣∣∑k

t=1νtδ
T
t (xt − vt)

∣∣∣
]
≤
√

2DX σ

√
∑

k
t=1ν2

t .

By similar reasons,

E
[∣∣∣∑k

t=1νtδ
T
t (xt −ut)

∣∣∣
]
≤
√

2DX σ

√
∑

k
t=1ν2

t .
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These two inequalities combine with (4.1.57), (4.1.58) and (4.1.56) to imply (4.1.45).
This completes the proof of part (i) of Theorem 4.3.

Theorem 4.3 shows that for large k the online observable random quantities f k

and f k are close to the upper bound f ∗k and lower bound f k
∗ , respectively. Besides

this, on average, f k indeed overestimates f ∗, and f
k

indeed underestimates f ∗. More
specifically, for the constant stepsize policy (4.1.11), we have that all estimates given
in the right hand side of (4.1.46) are of order O(k−1/2). It follows that for the constant
stepsize policy, difference between the upper f k and lower f k bounds converges on
average to zero, with increase of the sample size k, at a rate of O(k−1/2). It is possible
to derive and refine the large-deviation properties of the gap between the lower and
upper bounds, especially if we augmented (4.1.40) with

E
[
exp
{

δ
2
t /Q2)

}]
≤ exp{1}. (4.1.59)

The development will be similar to Theorem 4.2.b) (see Section 4.2.4 for some
related discussions).

Recall that the sample average approximation (SAA) approach also provides a
lower on average bound – the random quantity f̂ k

SAA, which is the optimal value
of the sample average problem (see (4.1.60) below). Suppose the same sample
ξt , t = 1, . . . ,k, is applied for both stochastic mirror descent and SAA methods.
Besides this, assume that the constant stepsize policy is used in the stochastic mirror
descent method, and hence νt = 1/k, t = 1, ..,k. Finally, assume (as it often is the
case) that G(x,ξ ) is a subgradient of F(x,ξ ) in x. By convexity of F(·,ξ ) and since
f k = minx∈X f̂ k(x), we have

f̂ k
SAA := min

x∈X
k−1

∑
k
t=1F(x,ξt)≥min

x∈X
∑

k
t=1νt

(
F(xt ,ξt)+G(xt ,ξt)

T (x− xt)
)
= f k.

(4.1.60)
That is, for the same sample the lower bound f k is smaller than the lower bound
obtained by the SAA method. However, it should be noted that the lower bound
f k is computed much faster than f̂ k

SAA, since computing the latter one amounts to
solving the sample average optimization problem associated with the generated
sample. Moreover, we will discuss in the next subsection how to improve the lower
bound f k. From the computational results, the improved lower bound is comparable
to the one obtained by the SAA method.

Similar to the SAA method, in order to estimate the variability of the lower bound
f k, one can run the stochastic mirror descent method M times, with independent
samples, each of size k, and consequently compute the average and sample variance
of M realizations of the random quantity f k. Alternatively, one can run the stochastic
mirror descent procedure once but with kM iterations, then partition the obtained
trajectory into M consecutive parts, each of size k, for each of these parts calculate
the corresponding stochastic mirror descent lower bound and consequently compute
the average and sample variance of the M obtained numbers. The latter approach
is similar, in spirit, to the batch means method used in simulation output analysis.
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One advantage of this approach is that, as more iterations bering run, the stochastic
mirror-descent method can output a solution x̃kM with much better objective value
than x̃k. However, this method has the same shortcoming as the batch means method,
that is, the correlation among consecutive blocks will result in a biased estimation
for the sample variance.

4.2 Stochastic accelerated gradient descent

In this section, we study a class of stochastic composite optimization problems given
by

Ψ
∗ := min

x∈X
{Ψ(x) := f (x)+h(x)}, (4.2.1)

where X is a closed convex set in Rm, h(x) is a simple convex function with known
structure (e.g., h(x) = 0 or h(x) = ‖x‖1), and f : X → R is a general convex function
such that for some L≥ 0, M ≥ 0 and µ ≥ 0,

µV (x,y)≤ f (y)− f (x)−〈 f ′(x),y−x〉≤ L
2‖y−x‖2+M‖y−x‖, ∀x,y∈X , (4.2.2)

where f ′(x) ∈ ∂ f (x) and ∂ f (x) denotes the subdifferential of f at x. Moreover, we
only have access to stochastic first-order information about f . More specifically,
at the t-th iteration, for a given xt ∈ X , the stochastic first-order oracle (SFO) re-
turns F(xt ,ξt) and G(xt ,ξt) satisfying E[F(xt ,ξt)] = f (xt) and E[G(xt ,ξt)]≡ g(xt)∈
∂ f (xt), where {ξt}t≥1 is a sequence of independently and identically distributed
random variables.

Since the parameters L,M,µ and σ can be zero, problem (4.2.1) described above
covers a wide range of convex programming problems. In particular, if f is a general
Lipschitz continuous function with constant M, then relation (4.2.2) holds with L = 0.
If f is a smooth convex function with L-Lipschitz continuous gradient, then (4.2.2)
holds with M = 0. Clearly, relation (4.2.2) also holds if f is given as the summation
of smooth and nonsmooth convex functions. Moreover, f is strongly convex if µ > 0
and problem (4.2.1) covers different classes of deterministic convex programming
problems if σ = 0.

If µ > 0 in (4.2.2), then, by the classic complexity theory for convex programming,
to find an ε-solution of (4.2.1), i.e., a point x̄ ∈ X s.t. E[Ψ(x̄)−Ψ ∗]≤ ε , the number
of calls (or iterations) to SFO cannot be smaller than

O(1)
{√

L
µ

log L‖x0−x∗‖2
ε

+ (M+σ)2

µε

}
, (4.2.3)

where x0 denotes an initial point, x∗ is the optimal solution of problem (4.2.1) and
O(1) represents an absolute constant. Moreover, if µ = 0 in (4.2.2), then by the
complexity theory of convex programming, the number of calls to the SFO cannot
be smaller than
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O(1)
{√

L‖x0−x∗‖2
ε

+ σ2

ε2

}
(4.2.4)

While the terms without involving σ in (4.2.3) and (4.2.4) come from deter-
ministic convex programming, we briefly discuss how the critical terms involving
σ is derived. Let us focus on the term σ2/(µε) in (4.2.3). Consider the problem
of minx

{
Ψ(x) = µ(x−α)2

}
with unknown α . Also suppose that the stochastic

gradient is given by 2µ(x−α − ξ/µ) with ξ ∼ N(0,σ2). Under this setting, our
optimization problem is equivalent to the estimation of the unknown mean α from
the observations of ζ = α +ξ/µ ∼ N(α,σ2/µ2), and the residual is µ times the ex-
pected squared error of recovery of the mean α . By standard statistical reasons, when
the initial range for α is larger than σ/µ , to make this expected squared error smaller
than δ 2 ≡ ε/µ , or equivalently, E[Ψ(x̄)−Ψ∗]≤ ε , the number of observations we
need is at least N = O(1)

(
(σ2/µ2)/δ 2

)
= O(1)

(
σ2/(µε)

)
.

Our goal in this section is to present an optimal stochastic gradient descent type
algorithm, namely the stochastic accelerated gradient descent method, which can
achieve the lower complexity bounds stated in (4.2.3) and (4.2.4) The stochastic
accelerated gradient descent method, also called stochastic accelerated approximation,
is obtained by replacing exact gradients with stochastic gradients in the accelerated
gradient descent method. The basic scheme of this algorithm is described as follows.

xt = (1−qt)x̄t−1 +qtxt−1, (4.2.5)
xt = argmin

x∈X
{γt [〈G(xt ,ξt),x〉+h(x)+µV (xt ,x)]+V (xt−1,x)} , (4.2.6)

x̄t = (1−αt)x̄t−1 +αtxt . (4.2.7)

Observe that while the original accelerated gradient descent method was designed
for solving deterministic convex optimization problems only, by using a novel con-
vergence analysis, we will demonstrate that this algorithm is optimal for not only
smooth, but also general nonsmooth and stochastic optimization problems.

The following result describes some properties of the composite function Ψ .

Lemma 4.4. Let x̄t := (1−αt)x̄t−1+αtxt for some αt ∈ [0,1] and (x̄t−1,xt)∈ X×X.
We have

Ψ(x̄t)≤ (1−αt)Ψ(x̄t−1)+αt [ f (z)+〈 f ′(z),xt−z〉+h(xt)]+
L
2‖x̄t−z‖2+M‖x̄t−z‖,

for any z ∈ X.

Proof. First observe that by the definition of x̄t and the convexity of f , we have

f (z)+ 〈 f ′(z), x̄t − z〉 = f (z)+ 〈 f ′(z),αtxt +(1−αt)x̄t−1− z〉
= (1−αt)[ f (z)+ 〈 f ′(z), x̄t−1− z〉]+αt [ f (z)+ 〈 f ′(z),xt − z〉]
≤ (1−αt) f (x̄t−1)+αt [ f (z)+ 〈 f ′(z),xt − z〉].

Using this observation and (4.2.2), we have



132 4 Stochastic Convex Optimization

f (x̄t)≤ f (z)+ 〈 f ′(z), x̄t − z〉+ L
2‖x̄t − z‖2 +M‖x̄t − z‖

≤ (1−αt) f (x̄t−1)+αt [ f (z)+ 〈 f ′(z),xt − z〉]+ L
2‖x̄t − z‖2 +M‖x̄t − z‖.

Using the convexity of h, we have h(x̄t)≤ (1−αt)h(x̄t−1)+αth(xt). Adding up the
above two inequalities and using the definition of Ψ in (4.2.1), we obtain the result.

In the sequel, we still use δt , t ≥ 1, to denote the error for the computation of the
subgradient of f , i.e.,

δt ≡ G(xt ,ξt)− f ′(xt), ∀ t ≥ 1, (4.2.8)

where f ′(xt) represents an arbitrary element of ∂ f (xt) wherever it appears.
The following proposition establishes a basic recursion for the generic stochastic

accelerated gradient descent method.

Proposition 4.2. Let (xt−1, x̄t−1) ∈ X ×X be given. Also let (xt ,xt , x̄t) ∈ X ×X ×X
be computed according to (4.2.5), (4.2.6) and (4.2.7). If

qt (1−αt )
αt (1−qt )

= 1
1+µγt

, (4.2.9)

1+µγt > Lαtγt , (4.2.10)

then for any x ∈ X, we have

Ψ(x̄t)≤ (1−αt)Ψ(x̄t−1)+αt lΨ (xt ,x)+
αt
γt
[V (xt−1,x)− (1+µγt)V (xt ,x)]+∆t(x),

(4.2.11)

where

lΨ (xt ,x) := f (xt)+ 〈 f ′(xt),x− xt〉+h(x)+µV (x,x), (4.2.12)

∆t(x) := αt γt (M+‖δt‖∗)2

2[1+µγt−Lαt γt ]
+αt〈δt ,x− x+t−1〉, (4.2.13)

x+t−1 := µγt
1+µγt

xt +
1

1+µγt
xt−1. (4.2.14)

Proof. Denote dt := x̄t − xt . By Lemma 4.4 (with z = xt ), we have

Ψ(x̄t)≤ (1−αt)Ψ(x̄t−1)+αt [ f (xt)+ 〈 f ′(xt),xt − xt〉+h(xt)]+
L
2‖dt‖2 +M‖dt‖.

Moreover, by (4.2.6) and Lemma 3.5, we have

γt [〈G(xt ,ξt),xt − xt〉+h(xt)+µV (xt ,xt)]+V (xt−1,xt)

≤ γt [〈G(xt ,ξt),x− xt〉+h(x)+µV (xt ,x)]+V (xt−1,x)− (1+µγt)V (xt ,x)

for any x ∈ X . Using the fact that G(xt ,ξt) = f ′(xt)+δt and combing the above two
inequalities, we obtain
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Ψ(x̄t)≤ (1−αt)Ψ(x̄t−1)+αt [ f (xt)+ 〈 f ′(xt),x− xt〉+h(x)+µV (xt ,x)]

+ αt
γt
[V (xt−1,x)− (1+µγt)V (xt ,x)−V (xt−1,xt)−µγtV (xt ,xt)]

+ L
2‖dt‖2 +M‖dt‖+αt〈δt ,x− xt〉. (4.2.15)

Observing that by (3.3.11), (4.2.9) and (4.2.14), we have

dt = αt [xt − αt−qt
αt (1−qt )

xt − qt (1−αt )
αt (1−qt )

xt−1]

= αt [xt − µγt
1+µγt

xt − 1
1+µγt

xt−1]

= αt [xt − x+t−1]. (4.2.16)

It then follows from this observation, the strong convexity of V , the convexity of
‖ · ‖2, and (4.2.14) that

V (xt−1,xt)+µγtV (xt ,xt)≥ 1
2

[
‖xt − xt−1‖2 +µγt‖xt − xt‖2]

≥ 1+µγt
2 ‖xt − 1

1+µγt
xt−1− µγt

1+µγt
xt‖2 (4.2.17)

= 1+µγt
2 ‖xt − x+t−1‖2

= 1+µγt
2α2

t
‖dt‖2. (4.2.18)

It also follows from (4.2.16) that

αt〈δt ,x− xt〉= 〈δt ,dt〉+αt〈δt ,x− x+t−1〉. (4.2.19)

Using the above two relations in (4.2.15), we have

Ψ(x̄t)≤ (1−αt)Ψ(x̄t−1)+αt [ f (xt)+ 〈 f ′(xt),x− xt〉+h(x)+µV (xt ,x)]

+ αt
γt
[V (xt−1,x)− (1+µγt)V (xt ,x)]

− 1+µγt−Lαt γt
2αt γt

‖dt‖2 +(M+‖δt‖∗)‖dt‖+αt〈δt ,x− x+t−1〉.

The result then immediately follows from the above inequality, the definition of lΨ
and the simple inequality in (3.1.6).

Proposition 4.3 below follows from Proposition 4.2 by taking summation over the
relations in (4.2.11).

Proposition 4.3. Let {x̄t}t≥1 be computed by the stochastic accelerated gradient
descent algorithm. Also assume that {αt}t≥1 and {γt}t≥1 are chosen such that
relations (4.2.9) and (4.2.10) hold. We have

Ψ(x̄k)−Γk∑
k
t=1[

αt
Γt

lΨ (xt ,x)]≤ Γk(1−α1)Ψ(x̄1)+Γk ∑
k
t=1

αt
γtΓt

[V (xτ−1,x)

− (1+µγt)V (xt ,x)]+Γk∑
k
t=1

∆t (x)
Γt

, (4.2.20)

for any x ∈ X and any t ≥ 1,where lΨ (z,x) and ∆t(x) are defined in (4.2.12) and
(4.2.13), respectively, and
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Γt :=
{

1, t = 1,
(1−αt)Γt−1, t ≥ 2. (4.2.21)

Proof. Dividing both sides of relation (4.2.11) by Γt , and using the definition of Γt
in (4.2.21), we have

1
Γt

Ψ(x̄t) ≤ 1
Γt−1

Ψ(x̄t−1)+
αt
Γt

lΨ (xt ,x)+
αt

Γt γt
[V (xt−1,x)− (1+µγt)V (xt ,x)]+

∆t (x)
Γt

.

We obtain the result by summing up over the above inequalities.

Theorem 4.4 below summarizes the main convergence properties of the generic
stochastic accelerated gradient descent method.

Theorem 4.4. Assume that {qt}, {αt} and {γt} are chosen such that α1 = 1 and
relations (4.2.9) and (4.2.10) hold. Also assume that {αt}t≥1 and {γt}t≥1 are chosen
such that

αt
γtΓt
≤ αt−1(1+µγt−1)

γt−1Γt−1
, (4.2.22)

where Γt is defined in (4.2.21).

a) Under Assumption 3, we have

E[Ψ(x̄k)−Ψ
∗]≤ Be(k) := Γk

γ1
V (x0,x∗)+Γk∑

k
t=1

αt γt (M2+σ2)
Γt (1+µγt−Lαt γt )

, (4.2.23)

for any t ≥ 1, where x∗ is an arbitrary optimal solution of (4.2.1).
b) Under Assumption 4, we have

Prob
{

Ψ(x̄k)−Ψ
∗ ≥ Be(k)+λ Bp(k)

}
≤ exp{−λ

2/3}+ exp{−λ}, (4.2.24)

for any λ > 0 and k ≥ 1, where

Bp(k) := σΓkRX (x∗)
(

∑
k
t=1

α2
t

Γ 2
τ

)1/2
+Γk∑

k
t=1

αt γt σ
2

Γt (1+µγt−Lαt γt )
, (4.2.25)

RX (x∗) := max
x∈X
‖x− x∗‖. (4.2.26)

c) If X is compact and the condition (4.2.22) is replaced by

αt
γtΓt
≥ αt−1

γt−1Γt−1
, (4.2.27)

then Parts a) and b) still hold by simply replacing the first term in the definition of
Be(k) with αkDX/γk, where DX is defined in (3.2.4).

Proof. We first show Part a). Observe that by the definition of Γt in (4.2.21) and
the fact that α1 = 1, we have

∑
k
t=1

αt
Γt

= α1
Γ1

+∑
k
t=2

1
Γt

(
1− Γt

Γt−1

)
= 1

Γ1
+∑

k
t=2

(
1
Γt
− 1

Γt−1

)
= 1

Γk
. (4.2.28)

Using the previous observation and (4.2.2), we obtain
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Γk∑
k
t=1

[
αt
Γt

lΨ (xt ,x)
]
≤ Γk∑

k
t=1

[
αt
Γt

Ψ(x)
]
=Ψ(x), ∀x ∈ X . (4.2.29)

Moreover, it follows from the condition (4.2.22) that

Γk∑
k
t=1

αt
γtΓt

[V (xτ−1,x)−V (xt ,x)]≤ Γk
α1

γ1Γ1
V (x0,x) =

Γk
γ1

V (x0,x), (4.2.30)

where the last inequality follows from the facts that Γ1 = 1 and that V (xt ,x) ≥ 0.
Using the fact that V (xt ,x)≥ 0 and replacing the above two bounds into (4.2.20), we
have

Ψ(x̄k)−Ψ(x)≤ Γk
γ1

V (x0,x)− αk(1+µγk)
γk

V (xk,x)+Γk∑
k
t=1

∆t (x)
Γt

, ∀x ∈ X , (4.2.31)

where ∆t(x) is defined in (4.2.13). Observe that the triple (xt ,xt−1, x̄t−1) is a function
of the history ξ[t−1] := (ξ1, ...,ξt−1) of the generated random process and hence
is random. Taking expectations on both sides of (4.2.31) and noting that under
Assumption 1, E[‖δt‖2

∗]≤ σ2, and

E|ξ[t−1]
[〈δt ,x∗− x+t−1〉] = 0, (4.2.32)

we have

E [Ψ(x̄k)−Ψ
∗] ≤ Γk

γ1
V (x0,x∗)+Γk∑

k
t=1

αt γtE[(M+‖δt‖∗)2]
2Γt (1+µγt−Lαt γt )

≤ Γk
γ1

V (x0,x∗)+Γk∑
k
t=1

αt γt (M2+σ2)
Γt (1+µγt−Lαt γt )

.

To show part b), let us denote ζt := Γ
−1

t αt〈δt ,x∗− x+t−1〉. Clearly, from the defi-
nition of RX (x∗) given by (4.2.26), we have ‖x∗− x+t−1‖ ≤ RX (x∗), which together
with Assumption 2 imply that

E|ξ[t−1]

[
exp{ζ 2

t /[Γ
−1

t αtσRX (x∗)]2}
]
≤ E|ξ[t−1]

[
exp{(‖δt‖∗‖x∗− x+t−1‖)2/[σRX (x∗)]2}

]

≤ E|ξ[t−1]

[
exp{(‖δt‖∗)2/σ

2}
]
≤ exp(1).

Moreover, observe that {ζt}t≥1 is a martingale-difference. Using the previous two
observations and Lemma 4.1, we have

∀λ ≥ 0 : Prob
{

∑
k
t=1ζt > λ σRX (x∗)

[
∑

k
t=1(Γ

−1
t αt)

2
]1/2

}
≤ exp{−λ

2/3}.
(4.2.33)

Also observe that under Assumption 2, E|ξ[t−1]

[
exp{‖δt‖2

∗/σ2}
]
≤ exp{1}. Set-

ting
π

2
t = α2

t
Γt (µ+γt−Lα2

t )
and θt =

π2
t

∑
k
t=1π2

t
,

we have
exp
{

∑
k
t=1θt(‖δt‖2

∗/σ
2)
}
≤ ∑

k
t=1θtexp{‖δt‖2

∗/σ
2},



136 4 Stochastic Convex Optimization

whence, taking expectations,

E
[
exp
{

∑
k
t=1π

2
t ‖δt‖2

∗/
(
σ

2
∑

t
t=1π

2
t
)}]
≤ exp{1}.

It then follows from Markov’s inequality that

∀λ ≥ 0 : Prob
{

∑
t
t=1π

2
t ‖δt‖2

∗ > (1+λ )σ2
∑

k
t=1π

2
t

}
≤ exp{−λ}. (4.2.34)

Combining (4.2.31), (4.2.33), and (4.2.34), and rearranging the terms, we obtain
(4.2.24).

Finally, observing that by the condition (4.2.27), the fact that V (u,x)≥ 0 and the
definition of DX ,

Γk∑
k
t=1

αt
γtΓt

[V (xt−1,x)−V (xt ,x)]

≤ Γk

[
α1

γ1Γ1
DX +∑

k
t=2

(
αt

γtΓt
− αt−1

γt−1Γt−1

)
DX − αk

γkΓk
V (xk,x)

]

≤ αk
γk

DX − αk
γk

V (xk,x)≤ αk
γk

DX , (4.2.35)

we can show part c) similarly to part a) and part b) by replacing the bound in (4.2.30)
with the one given above.

4.2.1 Problems without strong convexity

In this subsection, we consider problem (4.2.1), but now the objective function f
is not necessarily strongly convex. We present the stochastic accelerated gradient
descent methods for solving these problems by setting µ = 0 and properly choosing
the stepsize parameters {αt}t≥1 and {γt}t≥1 in the generic algorithmic framework.

Observe that, if µ is set to 0, then by (4.2.9) we have qt = αt . Hence the identities
(4.2.5) and (4.2.6), respectively, reduce to

xt = (1−αt)x̄t−1 +αtxt−1, (4.2.36)
xt = argmin

x∈X
{γt [〈G(xt ,ξt),x〉+h(x)]+V (xt−1,x)} . (4.2.37)

We will study and compare two stochastic accelerated gradient descent algorithms,
each of them employed with a different stepsize policy to choose {αt}t≥1 and {γt}t≥1.

The first stepsize policy and its associated convergence results stated below follows
as an immediate consequence of Theorem 4.4.

Proposition 4.4. Let

αt =
2

t+1 and γt = γt, ∀ t ≥ 1, (4.2.38)
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for some γ ≤ 1/(4L). Then, under Assumption 3, we have E[Ψ(x̄t)−Ψ ∗]≤ Ce,1(t),
∀t ≥ 1, where

Ce,1(k)≡ Ce,1(x0,γ,k) := 2V (x0,x∗)
γk(k+1) + 4γ(M2+σ2)(k+1)

3 . (4.2.39)

If in addition, Assumption 4 holds, then, ∀λ > 0,∀k ≥ 1,

Prob
{

Ψ(x̄k)−Ψ
∗ > Ce,1(k)+λ Cp,1(k)

}
≤ exp{−λ

2/3}+ exp{−λ}, (4.2.40)

where
Cp,1(k)≡ Cp,1(γ,k) := 2σRX (x∗)√

3k
+ 4σ2γ(k+1)

3 . (4.2.41)

Proof. Clearly, by the definition of Γt in (4.2.21), the stepsize policy (4.2.38), and
the facts that γ ≤ 1/(4L) and µ = 0, we have

Γt =
2

t(t+1) ,
αt
Γt

= t, 1+µγt −Lαtγt = 1− 2γLt
t+1 ≥ 1

2 , ∀t ≥ 1, (4.2.42)

and hence the specification of αt and γt in (4.2.38) satisfies conditions (4.2.10) and
(4.2.22). It can also be easily seen from the previous result and (4.2.38) that

∑
k
t=1

αt γt
Γt (1−Lαt γt )

≤ 2∑
k
t=1γt2 = γk(k+1)(2k+1)

3 ≤ 2γk(k+1)2

3 , (4.2.43)

∑
k
t=1(Γ

−1
t αt)

2 = ∑
k
t=1t2 = k(k+1)(2k+1)

6 ≤ k(k+1)2

3 , (4.2.44)

Now let Be(k) and Bp(k) be defined in (4.2.23) and (4.2.25) respectively. By (4.2.42),
(4.2.43) and (4.2.44), we have

Be(k) ≤ Γk
γ

V (x0,x∗)+
2(M2+σ2)Γkγk(k+1)2

3 = Ce,1(k),

Bp(k) ≤ Γk[σRX (x∗)
(

k(k+1)2

3

)1/2
+ 2σ2γk(k+1)2

3 ] = Cp,1(k),

which, in view of Theorem 4.4, clearly imply our results.

We now briefly discuss how to derive the optimal rate of convergence. Given a
fixed in advance number of iterations k, let us suppose that the stepsize parameters
{αt}k

t=1 and {γt}k
t=1 are set to (4.2.38) with

γ = γ
∗
k = min

{
1

4L ,
[

3V (x0,x∗)
2(M2+σ2)k(k+1)2

]1/2
}
. (4.2.45)

Note that γ∗N in (4.2.45) is obtained by minimizing Ce,1(N) (c.f. (4.2.39)) with respect
to γ over the interval [0,1/(4L)]. Then, it can be shown from (4.2.39) and (4.2.41)
that

Ce,1(x0,γ
∗
k ,k) ≤ 8LV (x0,x∗)

k(k+1) +
4
√

2(M2+σ2)V (x0,x∗)√
3k

=: C∗e,1(N), (4.2.46)

Cp,1(γ
∗
N ,N) ≤ 2σRX (x∗)√

3k
+

2σ
√

6V (x0,x∗)
3
√

k
=: C∗p,1(k). (4.2.47)
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Indeed, let

γ̄ :=
[

3V (x0,x∗)
2(M2+σ2)k(k+1)2

]1/2
.

According to the relation (4.2.45), we have γ∗k ≤min{1/(4L), γ̄}. Using these facts
and (4.2.39) we obtain

Ce,1(x0,γ
∗
k ,k) ≤ 8LV (x0,x∗)

k(k+1) + 2V (x0,x∗)
γ̄k(k+1) + 4γ̄(M2+σ2)(k+1)

3

= 8LV (x0,x∗)
k(k+1) +

4
√

2(M2+σ2)V (x0,x∗)√
3k

.

Also by (4.2.41), we have

Cp,1(k)≤ 2σRX (x∗)√
3k

+ 4σ2 γ̄(k+1)
3 ,

which leads to (4.2.47).
Hence, by Proposition 4.4, we have, under Assumption 3, E[Ψ(x̄k)−Ψ ∗] ≤

C∗e,1(k), which gives us an optimal expected rate of convergence for solving problems
without strong convexity. Moreover, if Assumption 4 holds, then Prob{Ψ(x̄k)−Ψ ∗ ≥
C∗e,1(k)+λC∗p,1(k)} ≤ exp(−λ 2/3)+exp(−λ ). It is worth noting that both C∗p,1 and
C∗e,1 are in the same order of magnitude, i.e., O(1/

√
k ). Observe that we need to

estimate a bound on V (x0,x∗) to implement this stepsize policy since V (x0,x∗) is
usually unknown.

One possible drawback of the stepsize policy (4.2.38) with γ = γ∗k is the need of
fixing k in advance. In Proposition 4.5, we propose an alternative stepsize policy
which does not require to fix the number of iterations k. Note that, to apply this
stepsize policy properly, we need to assume that all the iterates {xk}k≥1 stay in a
bounded set.

Proposition 4.5. Assume that X is compact. Let {x̄t}t≥1 be computed by the stochas-
tic accelerated gradient descent method with

αt =
2

t+1 and 1
γt
= 2L

t + γ
√

t, ∀ t ≥ 1, (4.2.48)

for some γ > 0. Then, under Assumption 3, we have E[Ψ(x̄k)−Ψ ∗]≤Ce,2(k), ∀k≥ 1,
where

Ce,2(k)≡ Ce,2(γ,k) := 4LDX
k(k+1) +

2γDX√
k
+ 4

√
2

3γ
√

k
(M2 +σ

2), (4.2.49)

and DX is defined in (3.2.4). If in addition, Assumption 4 holds, then, ∀λ > 0, ∀k≥ 1,

Prob
{

Ψ(x̄k)−Ψ
∗ > Ce,2(k)+λ Cp,2(k)

}
≤ exp{−λ

2/3}+ exp{−λ}, (4.2.50)

where
Cp,2(k)≡ Cp,2(γ,k) := 2σDX√

3k
+ 4
√

2σ2

3γ
√

k
. (4.2.51)
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Proof. Clearly, by the definition of Γt in (4.2.21), the stepsize policy (4.2.48) and
the fact that µ = 0, we have

Γt =
2

t(t+1) ,
αt

γtΓt
= 2L

t + γ
√

t, 1
γt
−Lαt =

2L
t + γ

√
t− 2L

t+1 ≥ γ
√

t, (4.2.52)

and hence the specification of αt and γt in (4.2.48) satisfies conditions (4.2.10) and
(4.2.27). It can also be easily seen from the previous observations and (4.2.48) that

∑
k
t=1(Γ

−1
t αt)

2 = ∑
k
t=1t2 = k(k+1)(2k+1)

6 ≤ k(k+1)2

3 , (4.2.53)

∑
k
t=1

αt γt
Γt (1−Lαt γt )

= ∑
k
t=1

t
1/γt−Lαt

≤ 1
γ ∑

k
t=1
√

t ≤ 1
γ

∫ k+1

1

√
xdx≤ 2

3γ
(k+1)3/2.

(4.2.54)
Now let B′e(k) be obtained by replacing the first term in the definition of Be(k)
in (4.2.23) with αkDX/γk and Bp(k) be defined in (4.2.25). By (4.2.48), (4.2.52),
(4.2.53) and (4.2.54), we have

B′e(k) ≤ αkDX
γk

+ 2Γk(M2+σ2)
3γ

(k+1)3/2 ≤ Ce,2(k),

Bp(k) ≤ Γk

[
σRX (x∗)

(
k(k+1)2

3

)1/2
+ 2Γkσ2

3γ
(k+1)3/2

]
≤ Cp,2(t),

which, in view of Theorem 4.4.c), then clearly imply our results.

Clearly, if we set γ in the stepsize policy (4.2.48) as

γ = γ̃
∗ :=

[
2
√

2(M2+σ2)
3DX

]1/2
,

then by (4.2.49), we have

E[Ψ(x̄k)−Ψ
∗]≤ 4LV̄ (x∗)

k(k+1) +4
[

2
√

2DX (M2+σ2)
3k

]1/2
=: C∗e,2,

which also gives an optimal expected rate of convergence for problems without
strong convexity. As discussed before, one obvious advantage of the stepsize policy
(4.2.48) with γ = γ̃∗ over the one in (4.2.38) with γ = γ∗k is that the former one does
not require the knowledge of k. Hence, it allows possibly earlier termination of the
algorithm, especially when coupled with the validation procedure. Note however, that
the convergence rate C∗e,1 depends on V (x0,x∗), which can be significantly smaller
than DX in C∗e,2 given a good starting point x0 ∈ X .

4.2.2 Nonsmooth strongly convex problems

The objective of this subsection is to present an stochastic accelerated gradient
descent algorithm for solving strongly convex problems with µ > 0. We start by
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presenting this algorithm with a simple stepsize policy and discussing its convergence
properties. It is worth noting that this stepsize policy does not depend on σ , M and
V (x0,x∗), and hence it is quite convenient for implementation.

Proposition 4.6. Let {x̄t}t≥1 be computed by the stochastic accelerated gradient
descent algorithm with

αt =
2

t+1 ,
1
γt
= µ(t−1)

2 + 2L
t , and qt =

αt
αt+(1−αt )(1+µγt )

∀ t ≥ 1. (4.2.55)

Then under Assumption 3, we have

E[Ψ(x̄k)−Ψ
∗]≤ De(k) := 4LV (x0,x∗)

k(k+1) + 4(M2+σ2)
µ(k+1) , ∀ t ≥ 1. (4.2.56)

If in addition, Assumption 4 holds, then, ∀λ > 0,∀t ≥ 1,

Prob
{

Ψ(x̄k)−Ψ
∗ ≥ De(k)+λDp(k)

}
≤ exp{−λ

2/3}+ exp{−λ}, (4.2.57)

where
Dp(k) := 2σRX (x∗)√

3k
+ 4σ2

µ(k+1) . (4.2.58)

Proof. Clearly, by the definition of Γt in (4.2.21) and the stepsize policy (4.2.55),
we have

Γt =
2

t(t+1) ,
αt
Γt

= t, (4.2.59)

αt
γtΓt

= t
[

µ(t−1)
2 + 2L

t

]
= µt(t−1)

2 +2L,

αt−1(1+µγt−1
γt−1Γt−1

=
αt−1

γt−1Γt−1
+

αt−1µ

Γt−1
= µt(t−1)

2 +2L,

1
γt
+µ−Lαt =

µ(t+1)
2 + 2L

t − 2L
t > µ(t+1)

2 ,

and hence that the specification of qt , αt and γt in (4.2.55) satisfies conditions (4.2.9),
(4.2.10) and (4.2.22). It can also be easily seen from the previous results and (4.2.55)
that (4.2.44) holds and that

∑
k
t=1

αt γt
Γt [1+µγt−Lαt γt ]

= ∑
k
t=1

t
1/γt+µ−Lαt

≤ ∑
t
τ=1

2
µ
≤ 2k

µ
. (4.2.60)

Let Be(k) and Bp(k) be defined in (4.2.23) and (4.2.25), respectively. By (4.2.44),
(4.2.59) and (4.2.60), we have

Be(k) ≤ Γk

[
V (x0,x∗)

γ1
+ 2k(M2+σ2)

µ

]
= De(t),

Bp(k) ≤ Γk

[
σRX (x∗)

(
k(k+1)2

3

)1/2
+ 2kσ2

µ

]
= Dp(k),

which, in view of Theorem 4.4, clearly imply our results.

We now make a few remarks about the results obtained in Proposition 4.6. First, in
view of (4.2.3), the stochastic accelerated gradient descent method with the stepsize
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policy (4.2.55) achieves the optimal rate of convergence for solving nonsmooth
strongly convex problems, i.e., for those problems without a smooth component
(L = 0). It is also nearly optimal for solving smooth and strongly convex problems,
in the sense that the second term 4(M2 +σ2)/[µ(k + 1)] of De(k) in (4.2.56) is
unimprovable. The first term of De(k) (for abbreviation, L-component) depends on the
product of L and V (x0,x∗), which can be as big as LV (x0,x∗)≤ 2(k+1)(M2+σ2)/µ

without affecting the rate of convergence (up to a constant factor 2). Note that in
comparison with (4.2.3), it seems that it is possible to improve the L-component of
De(k). We will show in next subsection an optimal multi-epoch stochastic accelerated
gradient descent algorithm for solving smooth and strongly convex problems which
can substantially reduce the L-component in De(t). Another possible approach is
to use a batch of samples of ξ (with increasing batch size) so that the variance to
estimate the gradients will decrease at every iteration. We will discuss this type of
approach in Subsection 5.2.3.

Second, observe that the bounds De(k) and Dp(k), defined in (4.2.56) and (4.2.58)
respectively, are not in the same order of magnitude, that is, De(k) = O(1/k) and
Dp(k) =O(1/

√
k ). We now discuss some consequences of this fact. By (4.2.56) and

Markov’s inequality, under Assumption 3, we have

Prob{Ψ(x̄k)−Ψ
∗ ≥ λDe(k)} ≤ 1/λ

for any λ > 0 and k ≥ 1. Hence, for a given confidence level Λ ∈ (0,1), one can
easily see that the number of iterations for finding an (ε,Λ)-solution x̄ ∈ X such that
Prob{Ψ(x̄)−Ψ ∗ < ε} ≥ 1−Λ can be bounded by

O

{
1
Λ

(√
LV (x0,x∗)

ε
+ M2+σ2

µε

)}
. (4.2.61)

Moreover, if Assumption 4 holds, then by setting the value of λ in (4.2.57) such
that exp(−λ 2/3)+exp(−λ )≤Λ and using definitions of De and Dp in (4.2.56) and
(4.2.58), we conclude that the number of iterations for finding an (ε,Λ)-solution of
(4.2.1) can be bounded by

O

{√
LV (x0,x∗)

ε
+ M2+σ2

µε
+ σ2

µε
log 1

Λ
+
(

σRX (x∗)
ε

log 1
Λ

)2
}
. (4.2.62)

Note that the above iteration-complexity bound has a significantly worse dependence
on ε than the one in (4.2.61), although it depends only logarithmically on 1/Λ .

4.2.3 Smooth and strongly convex problems

In this subsection, we show that the generic stochastic accelerated gradient descent
method can yield an optimal algorithm for solving strongly convex problems even
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if the problems are smooth. More specifically, we present an optimal algorithm
obtained by properly restarting the algorithms presented in Subsection 4.2.1 for
solving problems without strong convexity. We also discuss how to improve the
large-deviation properties associated with the optimal expected rate of convergence
for solving these strongly convex problems.

A multi-epoch stochastic accelerated gradient descent method

0) Let a point p0 ∈ X , and a bound ∆0 such that Ψ(p0)−Ψ(x∗)≤ ∆0 be given.
1) For s = 1,2, . . .

a) Run Ns iterations of the stochastic accelerated gradient method with x0 = pk−1,
αt = 2/(t +1), qt = αt , and γt = γst, where

Ns =
⌈

max
{

4
√

2L
µ
, 64(M2+σ2)

3µ∆02−(s)

}⌉
, (4.2.63)

γs = min
{

1
4L ,
[

3∆02−(s−1)

2µ(M2+σ2)Ns(Ns+1)2

]1/2
}

; (4.2.64)

b) Set ps = x̄Ns , where x̄Ns is the solution obtained in Step 1.a).

We say that an epoch of the algorithm described above, referred to as the multi-
epoch stochastic accelerated gradient descent method, occurs whenever s increments
by 1. Clearly, the sth epoch of this algorithm consists of Ns iterations of the stochastic
accelerated gradient descent method, which are also called iterations of the multi-
epoch stochastic accelerated gradient descent method for the sake of notational
convenience. The following proposition summarizes the convergence properties of
the multi-epoch algorithm.

Proposition 4.7. Let {ps}s≥1 be computed by the multi-epoch stochastic accelerated
gradient descent method. Then under Assumption 3,

E[Ψ(ps)−Ψ
∗]≤ ∆s ≡ ∆02−s, ∀s≥ 0. (4.2.65)

As a consequence, this multi-epoch algorithm will find a solution x̄ ∈ X of (4.2.1)
such that E[Ψ(x̄)−Ψ ∗]≤ ε for any ε ∈ (0,∆0) in at most S := dlog∆0/εe epochs.
Moreover, the total number of iterations performed by this algorithm to find such a
solution is bounded by O (T1(ε)), where

T1(ε) :=
√

L
µ

max
(

1, log ∆0
ε

)
+ M2+σ2

µε
. (4.2.66)

Proof. We first show that (4.2.65) holds by using induction. Clearly (4.2.65) holds
for s = 0. Assume that for some s≥ 1, E[Ψ(ps−1)−Ψ ∗]≤ ∆s−1 = ∆02−(s−1). This
assumption together with (4.2.2) clearly imply that

E[V (ps−1,x∗)]≤ E
[

Ψ(ps−1)−Ψ∗
µ

]
≤ ∆s−1

µ
. (4.2.67)
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Also note that by the definitions of Ns and ∆s, respectively, in (4.2.63) and (4.2.65),
we have

Q1(Ns) ≡ 8L∆s−1
µNs(Ns+1) ≤

8L∆s−1
µN2

s
= 16L∆s

µN2
s
≤ 1

2 ∆s, (4.2.68)

Q2(Ns) ≡ (M2+σ2)∆s−1
6µNs

≤ ∆ 2
s

64 . (4.2.69)

We then conclude from Proposition 4.4, (4.2.64), (4.2.67), (4.2.68) and (4.2.69) that

E[Ψ(ps)−Ψ
∗] ≤ 2E[V (ps−1,x∗)]

γsNs(Ns+1) + 4γs(M2+σ2)(Ns+1)
3

≤ 2∆s−1
µγsNs(Ns+1) +

4γs(M2+σ2)(Ns+1)
3

≤ max
{

Q1(Ns),4
√

Q2(Ns)
}
+4
√

Q2(Ns)≤ ∆s.

We have thus shown that (4.2.65) holds. Now suppose that that the multi-epoch
stochastic accelerated gradient descent algorithm is run for S epochs. By (4.2.65), we

have E[Ψ(pS)−Ψ ∗]≤ ∆02−S ≤ ∆02
log ε

∆0 = ε. Moreover, it follows from (4.2.63)
that the total number of iterations can be bounded by

∑
S
s=1Ns ≤ ∑

S
s=1

[
4
√

2L
µ
+ 64(M2+σ2)

3µ∆02−s +1
]

= K
(

4
√

2L
µ
+1
)
+ 64(M2+σ2)

3µ∆0
∑

S
s=12s

≤ S
(

4
√

2L
µ
+1
)
+ 64(M2+σ2)

3µ∆0
2S+1

≤
(

4
√

2L
µ
+1
)⌈

log ∆0
ε

⌉
+ 86(M2+σ2)

µε
,

which clearly implies bound (4.2.66).

A few remarks about the results in Proposition 4.7 are in place. First, in view of
(4.2.3), the multi-epoch stochastic accelerated gradient descent method achieves the
optimal expected rate of convergence for solving strongly convex problems. Note
that, since ∆0 only appears inside the logarithmic term of (4.2.66), the selection of
the initial point p0 ∈ X has little affect on the efficiency of this algorithm. Second,
suppose that we run the multi-epoch stochastic accelerated gradient descent method
for KΛ := dlog∆0/(Λε)e epochs for a given confidence level Λ ∈ (0,1). Then, by
(4.2.65) and Markov’s inequality, we have Prob[Ψ(pKΛ

)−Ψ ∗ > ε]≤ E[Ψ(pKΛ
)−

Ψ ∗]/ε ≤ Λ , which implies that the total number of iterations performed by the
multi-epoch stochastic accelerated gradient descent method for finding an (ε,Λ)-
solution of (4.2.1) can be bounded by O (T1(Λε)). Third, similar to the single-epoch
stochastic accelerated gradient descent method, under the stronger Assumption 4,
we can improve the iteration complexity of the multi-epoch stochastic accelerated
gradient descent method for finding an (ε,Λ)-solution of (4.2.1), so that it will
depend on log(1/Λ) rather than 1/Λ . However, such an iteration complexity will
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have a worse dependence on ε in the sense that it will be in the order of 1/ε2 rather
than 1/ε .

Let us suppose now that Assumption 4 holds. We introduce a shrinking multi-
epoch stochastic accelerated gradient descent algorithm which possesses an iteration-
complexity bound linearly dependent on both log(1/Λ) and 1/ε , for finding an
(ε,Λ)-solution of (4.2.1). It is worth noting that the accelerated stochastic gradient
descent algorithms with stepsize policy either (4.2.38) or (4.2.38) can be used here to
update iterate ps of the shrinking multi-epoch stochastic accelerated gradient descent,
although we focus on the former one in this chapter.

The shrinking multi-epoch stochastic accelerated gradient descent:

0) Let a point p0 ∈ X , and a bound ∆0 such that Ψ(p0)−Ψ(x∗)≤ ∆0 be given. Set
S̄ := dlog(∆0/ε)e and λ := λ (S̄)> 0 such that exp{−λ 2/3}+ exp{−λ} ≤Λ/S̄.

1) For s = 1, . . . , S̄

a) Run N̂s iterations of the stochastic accelerated gradient descent algorithm for
applied to minx∈X̂s

{Ψ(x)}, with input x0 = ps−1, αt = 2/(t +1), qt = αt , and
γt = γ̂st, where,

X̂s :=
{

x ∈ X : V (ps−1,x)≤ R̂2
s−1 := ∆0

µ2s−1

}
, (4.2.70)

N̂s =

⌈
max

{
4
√

2L
µ
,

max{256(M2+σ2),288λ 2σ2}
3µ∆02−(s+1)

}⌉
, (4.2.71)

γ̂s = min
{

1
4L ,
[

3∆02−(s−1)

2µ(M2+σ2)Ns(Ns+1)2

]1/2
}

; (4.2.72)

b) Set ps = x̄N̂s
, where x̄N̂s

is the solution obtained in Step 1.a).

Note that in the shrinking multi-epoch stochastic accelerated gradient descent
algorithm, the epoch limit S̄ is computed for a given accuracy ε . The value of S̄ is
then used in the computation of λ (S̄) and subsequently in N̂s and γ̂s (c.f. (4.2.71)
and (4.2.72)). This is in contrast to the multi-epoch stochastic accelerated gradient
descent algorithm without shrinkage, in which the definitions of Ns and γs in (4.2.63)
and (4.2.64) do not depend on the target accuracy ε .

The following result shows some convergence properties of the shrinking multi-
epoch stochastic accelerated gradient descent algorithm.

Lemma 4.5. Let {ps}s≥1 be computed by the shrinking multi-epoch stochastic ac-
celerated gradient descent algorithm. Also for any s≥ 0, let ∆s ≡ ∆02−s and denote
the event As := {Ψ(ps)−Ψ ∗ ≤ ∆s}. Then under Assumption 2,

Prob[Ψ(ps)−Ψ
∗ ≥ ∆s|As−1]≤ Λ

S̄ , ∀1≤ s≤ S̄. (4.2.73)

Proof. By the conditional assumption in (4.2.73), we have Ψ(ps−1)−Ψ ∗ ≤ ∆s−1,
which together with the strong-convexity of f and the definition of R̂s−1 in (4.2.70)
imply that
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V (ps−1,x∗)≤ [Ψ(ps−1)−Ψ∗]
µ

≤ ∆s−1
µ

= R̂2
s−1. (4.2.74)

Hence, the restricted problem minx∈X̂s
{Ψ(x)} has the same solution as (4.2.1). We

then conclude from Proposition 4.4 applied to the previous restricted problem that

Prob[Ψ(ps)−Ψ ∗ > Ĉe,1(N̂s)+λ Ĉp,1(N̂s)|As−1]

≤ exp{−λ 2/3}+ exp{−λ} ≤ Λ

S̄ ,
(4.2.75)

where

Ĉe,1(N̂s) := 2V (ps−1,x∗)
γ̂sN̂s(N̂s+1)

+ 4γ̂s(M2+σ2)(N̂s+1)
3 and Ĉp,1(N̂s) :=

2σRX̂s (x
∗)√

3N̂s
+ 4σ2 γ̂k(N̂s+1)

3 .

Let Q1(·) and Q2(·) be defined in (4.2.68) and (4.2.69), respectively. Note that by the
definition of N̂s in (4.2.71), we have Q1(N̂s)≤ ∆s/4 and Q2(N̂s)≤ ∆ 2

s /256. Using
the previous observations, (4.2.74) and the definition of γ̂s in (4.2.72), we obtain

Ĉe,1(N̂s) ≤ 2∆s−1
µγ̂sN̂s(N̂s+1)

+ 4γ̂s(M2+σ2)(N̂s+1)
3

≤ max
{

Q1(N̂s),4
√

Q2(N̂s)

}
+4
√

Q2(N̂s)≤ ∆k
2 . (4.2.76)

Moreover, note that by the strong convexity of ν , (4.2.70) and (4.2.74), we have
for any x ∈ X̂k,

‖x− pk−1‖ ≤
√

2V (pk−1,x)≤
√

2∆k−1
µ

and
‖x− x∗‖ ≤ ‖x− pk−1‖+‖pk−1− x∗‖ ≤ 2

√
2∆k−1

µ
,

and hence that RX̂k
(x∗) ≤ 2

√
2∆k−1/µ , which together with (4.2.71) and (4.2.72)

then imply that

Ĉp,1(N̂s) ≤ 4σ

√
2∆s−1
3µN̂s

+ 4σ2(N̂s+1)
3

[
3∆02−(s−1)

2µ(M2+σ2)Ns(Ns+1)2

]1/2

≤ 4σ

3

√
6∆s−1
µN̂s

+ 2σ

3

√
6∆s−1
µN̂s

= 2σ

√
6∆k−1
µN̂k
≤
√

∆k−1∆02−(k+1)

2λ
= ∆k

2λ
. (4.2.77)

Combining (4.2.75), (4.2.76) and (4.2.77), we obtain (4.2.73).

The following proposition establishes the iteration complexity of the shrinking
multi-epoch stochastic accelerated gradient descent algorithm.

Proposition 4.8. Let {ps}s≥1 be computed by the shrinking multi-epoch accelerated
stochastic gradient descent algorithm. Then under Assumption 4, we have

Prob[Ψ(pS̄)−Ψ
∗ > ε]≤Λ . (4.2.78)
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Moreover, the total number of iterations performed by the algorithm to find such a
solution is bounded by O (T2(ε,Λ)), where

T2(ε,Λ) :=
√

L
µ

max
(

1, log ∆0
ε

)
+ M2+σ2

µε
+
[
ln log(∆0/ε)

Λ

]2
σ2

µε
. (4.2.79)

Proof. Denote ∆s = ∆02−s. Let As denote the event of {Ψ(ps)−Ψ ∗ ≤ ∆s} and Ās
be its complement. Clearly, we have Prob(A0) = 1. It can also be easily seen that

Prob[Ψ(ps)−> ∆s] ≤ Prob[Ψ(ps)−Ψ
∗ > ∆s|As−1]+Prob[Ās−1]

≤ Λ

S̄ +Prob[Ψ(ps−1)−Ψ
∗ > ∆s−1], ∀1≤ s≤ S̄

where the last inequality follows from Lemma 4.5 and the definition of Ās−1. Sum-
ming up both sides of the above inequality from s = 1 to S̄, we obtain (4.2.78). Now,
by (4.2.71), the total number of stochastic accelerated gradient descent iterations can
be bounded by

∑
S̄
s=1N̂s ≤ ∑

S̄
s=1

{
8
√

L
µ
+

max{256(M2+σ2),288λ 2σ2}
3µ∆02−(s+1) +1

}

= S̄
(

8
√

L
µ
+1
)
+

max{256(M2+σ2),288λ 2σ2}
3µ∆0

∑
S̄
s=12s+1

≤ S̄
(

8
√

L
µ
+1
)
+

max{256(M2+σ2),288λ 2σ2}
3µ∆0

2S̄+2.

Using the above conclusion, the fact that S̄ = dlog(∆0/ε)e, the observation that
λ = O{ln(S̄/Λ)} and (4.2.79), we conclude that the total number of stochastic
accelerated gradient descent iterations is bounded by O (T2(ε,λ )).

While Proposition 4.8 shows the large-deviation properties of the shrinking multi-
epoch stochastic accelerated gradient descent method, we can also derive the expected
rate of convergence for this algorithm. For the sake of simplicity, we only consider
the case when M = 0 and ε > 0 is small enough such that N̂k ≥ λ 2Ns,s = 1, ..., S̄,
where Ns is defined in (4.2.63). Then by using an argument similar to the one used in
the proof of Proposition 4.7, we can show that

E[Ψ(ps)−Ψ
∗] = O

(
∆02−s

λ 2−2−s

)
, s = 1, . . . , S̄.

Using this result and the definition of S̄, we conclude that E[Ψ(pS̄)−Ψ ∗] =
O
(
ε/λ 2−ε/∆0

)
.

4.2.4 Accuracy certificates

In this subsection, we show that one can compute, with little additional computational
effort, certain stochastic lower bounds of the optimal value of (4.2.1) during the
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execution of the accelerated stochastic gradient descent algorithms. These stochastic
lower bounds, when grouped with certain stochastic upper bounds on the optimal
value, can provide online accuracy certificates for the generated solutions.

We start by discussing the accuracy certificates for the generic stochastic acceler-
ated gradient descent algorithm. Let lΨ (z,x) be defined in (4.2.12) and denote

lbt := min
x∈X

{
Ψ t(x) := Γt∑

t
τ=1

[
ατ

Γτ
lΨ (xτ ,x)

]}
. (4.2.80)

By (4.2.29), the function Ψ t(·) underestimates Ψ(·) everywhere on X . Note however
that lbt is unobservable since Ψ t(·) is not known exactly. Along with lbt , let us define

l̃bt = min
x∈X

{
Ψ̃ t(x) := Γt∑

t
τ=1

ατ

Γτ
l̃Ψ (xτ ,ξτ ,x)

}
, (4.2.81)

where
l̃Ψ (z,ξ ,x) := F(z,ξ )+ 〈G(z,ξ ),x− z〉+µV (z,x)+h(x).

In view of the assumption that problem (4.2.6) is easy to solve, the bound l̃bt is easily
computable. Moreover, since xt is a function of ξ[t−1], and ξt is independent of ξ[t−1],
we have that

E
[
l̃bt
]
= E

[
Eξ[t−1]

[
min
x∈X

(
Γt∑

t
τ=1 l̃Ψ (xτ ,ξτ ,x)

)]]

≤ E
[

min
x∈X

Eξ[t−1]

[(
Γt∑

t
τ=1 l̃Ψ (xτ ,ξτ ,x)

)]]

= E
[

min
x∈X

Ψ t(x)
]
= E

[
lbt
]
≤Ψ

∗. (4.2.82)

That is, on average, l̃bt gives a lower bound for the optimal value of (4.2.1). In order
to see how good the lower bound l̃bt is, we estimate the expectations and probabilities
of the corresponding errors in Theorem 4.5. To establish the large-deviation results
for l̃bt , we also need the following assumption for the SFO.

Assumption 6 For any x∈X and t ≥ 1, we have E
[
exp{‖F(x,ξt)− f (x)‖2

∗/Q2}
]
≤

exp{1} for some Q > 0.

Note that while Assumption 2 describes certain “light-tail” assumption about
the stochastic gradients G(x,ξ ), Assumption 6 imposes a similar restriction on the
function values F(x,ξ ). Such an additional assumption is needed to establish the
large deviation properties for the derived stochastic online lower and upper bounds
on Ψ ∗, both of which involve the estimation of function values, i.e., F(xt ,ξt) in
(4.2.81) and F(x̄t ,ξt) in (4.2.91). On the other hand, we do not need to use the
estimation of function values in the stochastic accelerated gradient descent algorithm
in (4.2.5)-(4.2.7).
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Theorem 4.5. Consider the generic stochastic accelerated gradient descent algo-
rithm applied to problem (4.2.1)-(4.2.2). Also assume that {αt}t≥1, {qt}t≥1 and
{γt}t≥1 are chosen such that α1 = 1 and relations (4.2.9), (4.2.10) and (4.2.22) hold.
Let l̃bt be defined in (4.2.81). Then,

a) under Assumption 1, we have, for any t ≥ 2,

E[Ψ(x̄t)− l̃bt ]≤ B̃e(t) := Γt
γ1

max
x∈X

V (x0,x)+Γt∑
t
τ=1

ατ γτ (M2+σ2)
Γτ (1+µγτ−Lατ γτ )

; (4.2.83)

b) if Assumptions 2 and 6 hold, then for any t ≥ 1 and λ > 0,

Prob
{

Ψ(x̄t)− l̃bt > B̃e(t)+λ B̃p(t)
}
≤ 2exp(−λ

2/3)+ exp(−λ ),(4.2.84)

where

B̃p(t) := QΓt

(
∑

t
τ=1

α2
τ

Γ 2
τ

)1/2
+σΓtRX (x∗)

(
∑

t
τ=1

α2
τ

Γ 2
τ

)1/2

+σ2Γt∑
t
τ=1

ατ γτ

Γτ (1+µγτ−Lατ γτ )
,

(4.2.85)

and RX (x∗) is defined in (4.2.26);
c) If X is compact and the condition (4.2.22) is replaced by (4.2.27), then Parts a)

and b) still hold by simply replacing the first term in the definition of B̃e(t) with
αtDX/γt , where DX is defined in (3.2.4).

Proof. Let ζt := F(xt ,ξt)− f (xt), t ≥ 1, and δt be defined in (5.1.101). Noting
that by (4.2.20) and (4.2.30), relation (4.2.81), and the fact that V (xt ,x)≥ 0 due to
(5.1.15), we have

Ψ(x̄t)−Ψ̃ t(x) =Ψ(x̄t)−Γt∑
t
τ=1

ατ

Γτ
[lΨ (xτ ,x)+ζτ + 〈δτ ,x− xτ〉]

≤ Γt ∑
t
τ=1

ατ

γτΓτ
[V (xτ−1,x)−V (xτ ,x)]+Γt∑

t
τ=1

1
Γτ
[∆τ(x)−ατ (ζτ + 〈δτ ,x− xτ〉)]

≤ Γt
γ1

V (x0,x)+Γt∑
t
τ=1

1
Γτ
[∆τ(x)−ατ (ζτ + 〈δτ ,x− xτ〉)]

= Γt
γ1

V (x0,x)+Γt∑
t
τ=1

1
Γτ

[
ατ〈δτ ,xτ − x+

τ−1〉+
ατ γt (M+‖δτ‖∗)2

2(1+µγτ−Lατ γτ )
−ατ ζτ

]
, (4.2.86)

where the last identity follows from (4.2.13). Note that xt and x+t−1 are functions
of ξ[t−1] = (ξ1, ...,ξt−1) and that ξt is independent of ξ[t−1]. The rest of the proof
is similar to the one used in Using arguments similar to the ones in the proof of
Theorem 4.4 and hence the details are skipped.

We now add a few comments about the results obtained in Theorem 4.5. First,
note that relations (4.2.83) and (4.2.84) tells us how the gap between Ψ(x̄t) and l̃bt
converges to zero. By comparing these two relations with (4.2.23) and (4.2.24), we
can easily see that both Ψ(x̄t)− l̃bt and Ψ(x̄t)−Ψ ∗ converge to zero in the same
order of magnitude.

Second, it is possible to specialize the results in Theorem 4.5 for solving different
classes of stochastic convex optimization problems. In particular, Proposition 4.9
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below discusses the lower bounds l̃b∗t for solving strongly convex problems. The
proof of this result is similar to that of Proposition 4.6 and hence the details are
skipped.

Proposition 4.9. Let x̄t be computed by the accelerated stochastic gradient descent
algorithm for solving strongly convex problems with stepsize policy (4.2.55). Also let
l̃bt be defined as in (4.2.81). If µ > 0 in condition (4.2.2), then under Assumption 1,
we have, ∀t ≥ 1,

E[Ψ(x̄t)− l̃bt ]≤ D̃e(t) := 4Lmaxx∈X V (x0,x)
νt(t+1) + 4(M2+σ2)

νµ(t+1) . (4.2.87)

If Assumptions 2 and 6 hold, then, ∀λ > 0,∀t ≥ 1,

Prob
{

Ψ(x̄t)− l̃bt > D̃e(t)+λ D̃p(t)
}
≤ 2exp(−λ

2/3)+ exp(−λ ), (4.2.88)

where
D̃p(t) := Q

(t+1)1/2 +
2σRX (x∗)√

3t
+ 4σ2

νµ(t+1) , (4.2.89)

RX (x∗) is defined in (4.2.26), and Q is from Assumption 6.

Theorem 4.5 presents a way to assess the quality of the solutions x̄t , t ≥ 1, by
computing the gap between Ψ(x̄t) and l̃bt (c.f. (4.2.81)). While l̃bt can be computed
easily, the estimation of of Ψ(x̄t) can be time consuming, requiring a large number
of samples for ξ . In the remaining part of this section, we will briefly discuss how to
enhance these lower bounds with efficiently computable upper bounds on the optimal
value Ψ ∗ so that one can assess the quality of the generated solutions in an online
manner. More specifically, for any t ≥ 1, let us denote

βt := ∑
t
τ=dt/2eτ,

ubt := β
−1
t ∑

t
τ=dt/2eτΨ(x̄τ) and x̄ag

t := β
−1
t ∑

t
τ=dt/2eτ x̄τ . (4.2.90)

Clearly, we have ubt ≥Ψ(x̄ag
t )≥Ψ ∗ due to the convexity of Ψ . Also let us define

ūbt = β
−1
t ∑

t
τ=dt/2eτ{F(x̄τ ,ξτ)+h(x̄τ)}, ∀ t ≥ 1. (4.2.91)

Since Eξτ
[F(x̄τ ,ξτ)] = f (x̄τ), we have E[ūbt ] = ubt ≥Ψ ∗. That is, ūbt , t ≥ 1, on

average, provide online upper bounds on Ψ ∗. Accordingly, we define the new online
lower bounds as

l̄bt = β
−1
t ∑

t
τ=dt/2eτ l̃bτ , ∀ t ≥ 1, (4.2.92)

where l̃bτ is defined in (4.2.81).
To bound the gap between these lower and upper bounds, let B̃e(τ) be defined

in (4.2.83) and suppose that B̃e(t) = O(t−q) for some q ∈ [1/2,1]. In view of Theo-
rem 4.5.a), (4.2.90) and (4.2.92), we have
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E[ūbt − l̄bt ] = β
−1
t ∑

t
τ=dt/2eτ[Ψ(x̄τ)− l̃bτ ]≤ β

−1
t ∑

t
τ=dt/2e[τB̃e(τ)]

= O
(

β
−1
t ∑

t
τ=dt/2eτ

1−q
)
= O(t−q), t ≥ 3,

where the last identity follows from the facts that ∑
t
τ=dt/2eτ

1−q = O(t2−q) and that

βt ≥ 1
2

[
t(t +1)−

( t
2 +1

)( t
2 +2

)]
≥ 1

8

(
3t2−2t−8

)
.

Therefore, the gap between the online upper bound ūbt and lower bound l̄bt converges
to 0 in the same order of magnitude as the one between Ψ(x̄t) and l̃bt . It should be
mentioned that the stochastic upper bound ūbt , on average, overestimates the value
of Ψ(x̄ag

t ) (c.f. (4.2.90)), indicating that one can also use x̄ag
t , t ≥ 1, as the output of

the stochastic accelerated gradient descent algorithm.

4.3 Stochastic convex-concave saddle point problems

We show in this section how the stochastic mirror descent algorithm can be modified
to solve a convex-concave stochastic saddle point problem. Consider the following
minimax (saddle point) problem

min
x∈X

max
y∈Y

{
φ(x,y) := E[Φ(x,y,ξ )]

}
. (4.3.1)

Here X ⊂ Rn and Y ⊂ Rm are nonempty bounded closed convex sets, ξ is a random
vector whose probability distribution P is supported on set Ξ ⊂ Rd and Φ : X×Y ×
Ξ → R. We assume that for every ξ ∈ Ξ , function Φ(x,y,ξ ) is convex in x ∈ X and
concave in y ∈ Y , and for all x ∈ X , y ∈ Y the expectation

E[Φ(x,y,ξ )] =
∫

Ξ

Φ(x,y,ξ )dP(ξ )

is well defined and finite valued. It follows that φ(x,y) is convex in x ∈ X and
concave in y ∈ Y , finite valued, and hence (4.3.1) is a convex-concave saddle point
problem. In addition, we assume that φ(·, ·) is Lipschitz continuous on X ×Y . It
is well known that in the above setting the problem (4.3.1) is solvable, i.e., the
corresponding “primal” and “dual” optimization problems minx∈X [maxy∈Y φ(x,y)]
and maxy∈Y [minx∈X φ(x,y)], respectively, have optimal solutions and equal optimal
values, denoted φ ∗, and the pairs (x∗,y∗) of optimal solutions to the respective
problems form the set of saddle points of φ(x,y) on X×Y .

As in the case of the minimization problem (4.1.1) we assume that neither the
function φ(x,y) nor its sub/supergradients in x and y are available explicitly. However,
we make the following assumption.

Assumption 7 There exists a stochastic first-order oracle which for every given
x ∈ X, y ∈ Y and ξ ∈ Ξ returns value Φ(x,y,ξ ) and a stochastic subgradient, that is,
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(n+m)-dimensional vector

G(x,y,ξ ) =
[

Gx(x,y,ξ )
−Gy(x,y,ξ )

]

such that vector

g(x,y) =
[

gx(x,y)
−gy(x,y)

]
:=
[

E[Gx(x,y,ξ )]
−E[Gy(x,y,ξ )]

]

is well defined, and gx(x,y) ∈ ∂xφ(x,y) and −gy(x,y) ∈ ∂y(−φ(x,y)).

For example, under mild assumptions we can set

G(x,y,ξ ) =
[

Gx(x,y,ξ )
−Gy(x,y,ξ )

]
∈
[

∂xΦ(x,y,ξ )
∂y(−Φ(x,y,ξ ))

]
.

Let ‖ · ‖X be a norm on Rn and ‖ · ‖Y be a norm on Rm, and let ‖ · ‖∗,X and ‖ · ‖∗,Y
stand for the corresponding dual norms. As in Section 4.1, the basic assumption we
make about the stochastic oracle (aside of its unbiasedness which we have already
postulated) is that there exist positive constants M2

X and M2
Y such that

E
[
‖Gx(u,v,ξ )‖2

∗,X
]
≤M2

X and E
[∥∥Gy(u,v,ξ )

∥∥2
∗,Y

]
≤M2

Y , ∀(u,v) ∈ X×Y.
(4.3.2)

4.3.1 General algorithmic framework

We equip X and Y with distance generating functions νX : X → R modulus 1 with
respect to ‖ · ‖X , and νY : Y → R modulus 1 with respect to ‖ · ‖Y . Let DX ≡ DX ,νX

and DY ≡ DY,νY be the respective constants (see Section 3.2). We equip Rn×Rm

with the norm

‖(x,y)‖ :=
√

1
2D2

X
‖x‖2

X + 1
2D2

Y
‖y‖2

Y , (4.3.3)

so that the dual norm is

‖(ζ ,η)‖∗ =
√

2D2
X‖ζ‖2

∗,X +2D2
Y‖η‖2

∗,Y . (4.3.4)

It follows by (4.3.2) that

E
[
‖G(x,y,ξ )‖2

∗
]
≤ 2D2

X M2
X +2D2

Y M2
Y =: M2. (4.3.5)

We use notation z = (x,y) and equip Z := X×Y with the distance generating function
as follows:

ν(z) := νX (x)
2D2

X
+ νY (y)

2D2
Y
.
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It is immediately seen that ν indeed is a distance generating function for Z modulus
1 with respect to the norm ‖ · ‖, and that Zo = Xo×Y o and DZ ≡ DZ,ν = 1. In what
follows, V (z,u) : Zo×Z→ R is the prox-function associated with ν and Z, see (see
Section 3.2).

We are ready now to present the stochastic mirror descent algorithm for solving
general saddle point problems. This is the iterative procedure

z j+1 := argminz∈X
{

γ j{〈G(z j,ξ j),z〉+V (z j,z)
}
, (4.3.6)

where the initial point z1 ∈ Z is chosen to be the minimizer of ν(z) on Z. Moreover,
we define the approximate solution z̃ j of (4.3.1) after j iterations as

z̃ j = (x̃ j, ỹ j) :=
(

∑
j
t=1γt

)−1
∑

j
t=1γtzt . (4.3.7)

Let us analyze the convergence properties of the algorithm. We measure quality
of an approximate solution z̃ = (x̃, ỹ) by the error

εφ (z̃) :=
[

max
y∈Y

φ(x̃,y)−φ∗

]
+

[
φ∗−min

x∈X
φ(x, ỹ)

]
= max

y∈Y
φ(x̃,y)−min

x∈X
φ(x, ỹ).

By convexity of φ(·,y) we have

φ(xt ,yt)−φ(x,yt)≤ gx(xt ,yt)
T (xt − x), ∀x ∈ X ,

and by concavity of φ(x, ·),

φ(xt ,y)−φ(xt ,yt)≤ gy(xt ,yt)
T (y− yt), ∀y ∈ Y,

so that for all z = (x,y) ∈ Z,

φ(xt ,y)−φ(x,yt)≤ gx(xt ,yt)
T (xt − x)+gy(xt ,yt)

T (y− yt) = g(zt)
T (zt − z).

Using once again the convexity-concavity of φ we write

εφ (z̃ j) = max
y∈Y

φ(x̃ j,y)−min
x∈X

φ(x, ỹ j)

≤
[
∑

j
t=1γt

]−1
[

max
y∈Y

∑
j
t=1γtφ(xt ,y)−min

x∈X
∑

j
t=1γtφ(x,yt)

]

≤
(

∑
j
t=1γt

)−1
max
z∈Z

∑
j
t=1γtg(zt)

T (zt − z). (4.3.8)

We now provide a bound on the right-hand side of (4.3.8).

Lemma 4.6. For any j ≥ 1 the following inequality holds

E
[

max
z∈Z

∑
j
t=1γtg(zt)

T (zt − z)
]
≤ 2+ 5

2 M2
∑

j
t=1γ

2
t . (4.3.9)
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Proof. Using (4.1.41) with ζt = γtG(zt ,ξt), we have for any u ∈ Z

γt(zt −u)TG(zt ,ξt)≤V (zt ,u)−V (zt+1,u)+
γ2
t
2 ‖G(zt ,ξt)‖2

∗ (4.3.10)

This relation implies that for every u ∈ Z one has

γt(zt −u)Tg(zt) ≤ V (zt ,u)−V (zt+1,u)

+ γ2
t
2 ‖G(zt ,ξt)‖2

∗− γt(zt −u)T
∆t , (4.3.11)

where ∆t := G(zt ,ξt)−g(zt). Summing up these inequalities over t = 1, ..., j, we get

∑
j
t=1γt(zt −u)Tg(zt) ≤ V (z1,u)−V (zt+1,u)

+∑
j
t=1

γ2
t
2 ‖G(zt ,ξt)‖2

∗−∑
j
t=1γt(zt −u)T

∆t .

Let us also apply Lemma 4.3 to an auxiliary sequence with v1 = z1 and ζt =−γt∆t :

∀u ∈ Z : ∑
j
t=1γt∆

T
t (u− vt)≤V (z1,u)+ 1

2 ∑
j
t=1γ

2
t ‖∆t‖2

∗. (4.3.12)

Observe that

E‖∆t‖2
∗ ≤ 4E‖G(zt ,ξt)‖2

∗ ≤ 4
(
2D2

X M2
X +2D2

Y M2
Y
)
= 4M2,

so that when taking the expectation of both sides of (4.3.12) we get

Esup
u∈Z

(
∑

j
t=1γt∆

T
t (u− vt)

)
≤ 1+2M2

∑
j
t=1γ

2
t (4.3.13)

(recall that V (z1, ·) is bounded by 1 on Z). Now we sum up (4.3.11) from t = 1 to j
to obtain

∑
j
t=1γt(zt −u)Tg(zt)≤V (z1,u)+∑

j
t=1

γ2
t
2 ‖G(zt ,ξt)‖2

∗−∑
j
t=1γt(zt −u)T

∆t

=V (z1,u)+∑
j
t=1

γ2
t
2 ‖G(zt ,ξt)‖2

∗−∑
j
t=1γt(zt − vt)

T
∆t +∑

j
t=1γt(u− vt)

T
∆t .

(4.3.14)

When taking into account that zt and vt are deterministic functions of ξ[t−1] =
(ξ1, ...,ξt−1) and that the conditional expectation of ∆t , ξ[t−1] being given, vanishes,
we conclude that E[(zt − vt)

T ∆t ] = 0. We take now suprema in u ∈ Z and then
expectations on both sides of (4.3.14):
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E
[

sup
u∈Z

∑
j
t=1γt(zt −u)Tg(zt)

]
≤ sup

u∈Z
V (z1,u)+∑

j
t=1

γ2
t
2 E‖G(zt ,ξt)‖2

∗

+sup
u∈Z

∑
j
t=1γt(u− vt)

T
∆t

[by (4.3.13)] ≤ 1+ M2

2 ∑
j
t=1γ

2
t +
[
1+2M2

∑
j
t=1γ

2
t

]

= 2+ 5
2 M2

∑
j
t=1γ

2
t .

and we arrive at (4.3.9).

In order to obtain an error bound for the solution z̃ j it suffices to substitute
inequality (4.3.9) into (4.3.8) to obtain

E[εφ (z̃ j)] ≤
(

∑
j
t=1γt

)−1 [
2+ 5

2 M2
∑

j
t=1γ

2
t

]
.

Let us use the constant stepsize strategy

γt =
2

M
√

5N
, t = 1, ...,N. (4.3.15)

Then εφ (z̃N)≤ 2M
√

5
N , and hence (see definition (4.3.5) of M) we obtain

εφ (z̃N)≤ 2

√
10[αyD2

X M2
X+αxD2

Y M2
Y ]

αxαyN . (4.3.16)

Same as in the minimization case discussed in Section 3.2, we can pass from
constant stepsizes on a fixed “time horizon” to decreasing stepsize policy

γt := 1
(M
√

t) , t = 1,2, ...,

and from the averaging of all iterates to the “sliding averaging”

z̃ j =
(

∑
j
t= j−b j/`cγt

)−1
∑

j
t= j−b j/`cγtzt ,

arriving at the efficiency estimate

ε(z̃ j)≤ O(1) `DZ,ν M√
j , (4.3.17)

where the quantity DZ,ν =
[
2supz∈Zo,w∈Z V (z,w)

]1/2 is assumed to be finite.

We give below a bound on the probabilities of large deviations of the error εφ (z̃N).
The proof of this result is similar to that of Proposition 4.10 and hence details are
skipped.

Proposition 4.10. Suppose that conditions of the bound (4.3.16) are verified and,
further, it holds for all (u,v) ∈ Z that
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E
[
exp
{
‖Gx(u,v,ξ )‖2

∗,X /M2
X

}]
≤ exp{1}, E

[
exp
{∥∥Gy(x,y,ξ )

∥∥2
∗,Y /M2

Y

}]
≤ exp{1}.

(4.3.18)
Then for the stepsizes (4.3.15) one has for any λ ≥ 1 that

Prob
{

εφ (z̃N)>
(8+2λ )

√
5M√

N

}
≤ 2exp{−λ}. (4.3.19)

4.3.2 Minimax stochastic problems

Consider the following minimax stochastic problem

min
x∈X

max
1≤i≤m

{
fi(x) := E[Fi(x,ξ )]

}
, (4.3.20)

where X ⊂Rn is a nonempty bounded closed convex set, ξ is a random vector whose
probability distribution P is supported on set Ξ ⊂Rd and Fi : X×Ξ →R, i = 1, ...,m.
We assume that for a.e. ξ the functions Fi(·,ξ ) are convex and for every x ∈ Rn,
Fi(x, ·) are integrable, i.e., the expectations

E[Fi(x,ξ )] =
∫

Ξ

Fi(x,ξ )dP(ξ ), i = 1, ...,m, (4.3.21)

are well defined and finite valued. To find a solution to the minimax problem (4.3.20)
is exactly the same as to solve the saddle point problem

min
x∈X

max
y∈Y
{φ(x,y) := ∑

m
i=1yi fi(x)} , (4.3.22)

with Y := {y ∈ Rm : y≥ 0, ∑
m
i=1yi = 1}.

Similarly to Assumptions 1 and 2, assume that we cannot compute fi(x) (and
thus φ(x,y)) explicitly, but are able to generate independent realizations ξ1,ξ2, ...
distributed according to P, and for given x ∈ X and ξ ∈ Ξ we can compute Fi(x,ξ )
and its stochastic subgradient Gi(x,ξ ), i.e., such that gi(x) = E[Gi(x,ξ )] is well
defined and gi(x) ∈ ∂ fi(x), x ∈ X , i = 1, ...,m. In other words we have a stochastic
oracle for the problem (4.3.22) such that assumption (A2′) holds, with

G(x,y,ξ ) :=
[

∑
m
i=1yiGi(x,ξ )(

−F1(x,ξ ), ...,−Fm(x,ξ )
)
]
, (4.3.23)

and

g(x,y) := E[G(x,y,ξ )] =
[

∑
m
i=1yigi(x)

(− f1(x), ...,− fm(x))

]
∈
[

∂xφ(x,y)
−∂yφ(x,y)

]
. (4.3.24)

Suppose that the set X is equipped with norm ‖ · ‖X , whose dual norm is ‖ · ‖∗,X ,
and a distance generating function ν modulus 1 with respect to ‖ · ‖X . We equip
the set Y with norm ‖ · ‖Y := ‖ · ‖1, so that ‖ · ‖∗,Y = ‖ · ‖∞, and with the distance
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generating function
νY (y) := ∑

m
i=1yi lnyi,

and hence D2
Y = lnm. Next, following (4.3.3) we set

‖(x,y)‖ :=

√
‖x‖2X
2D2

X
+
‖y‖21
2D2

Y
,

and hence
‖(ζ ,η)‖∗ =

√
2D2

X‖ζ‖2
∗,X +2D2

Y‖η‖2
∞.

Let us assume uniform bounds:

E
[

max
1≤i≤m

‖Gi(x,ξ )‖2
∗,X

]
≤M2

X , E
[

max
1≤i≤m

|Fi(x,ξ )|2
]
≤M2

Y , i = 1, ...,m.

Note that

E
[
‖G(x,y,ξ )‖2

∗
]
= 2D2

X E
[∥∥∑

m
i=1yiGi(x,ξ )

∥∥2
∗,X

]
+2D2

Y E
[
‖F(x,ξ )‖2

∞

]

≤ 2D2
X M2

X +2D2
Y M2

Y = 2D2
X M2

X +2M2
Y lnm =: M2. (4.3.25)

Let us now use the stochastic mirror descent algorithm (4.3.6) and (4.3.7) with the
constant stepsize strategy

γt =
2

M
√

5N
, t = 1,2, ...,N.

When substituting the value of M, we obtain from (4.3.16):

E
[
εφ (z̃N)

]
= E

[
max
y∈Y

φ(x̂N ,y)−min
x∈X

φ(x, ŷN)

]
≤ 2M

√
5
N

≤ 2

√
10[D2

X M2
X+M2

Y lnm]
N . (4.3.26)

Looking at the bound (4.3.26) one can make the following important observation.
The error of the stochastic mirror descent algorithm in this case is “almost indepen-
dent” of the number m of constraints (it grows as O(

√
lnm) as m increases). The

interested reader can easily verify that if a stochastic gradient descent (with Euclidean
distance generating function) were used in the same setting (i.e., the algorithm tuned
to the norm ‖ ·‖y := ‖ ·‖2), the corresponding bound would grow with m much faster
(in fact, our error bound would be O(

√
m) in that case).

Note that properties of the stochastic mirror descent can be used to reduce signifi-
cantly the arithmetic cost of the algorithm implementation. To this end let us look
at the definition (4.3.23) of the stochastic oracle: in order to obtain a realization
G(x,y,ξ ) one has to compute m random subgradients Gi(x,ξ ), i = 1, ...,m, and then
the convex combination ∑

m
i=1yiGi(x,ξ ). Now let η be an independent of ξ and uni-

formly distributed in [0,1] random variable, and let ı(η ,y) : [0,1]×Y → {1, ...,m}
equals to i when ∑

i−1
s=1ys < η ≤ ∑

i
s=1ys. That is, random variable ı̂ = ı(η ,y) takes
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values 1, ...,m with probabilities y1, ...,ym. Consider random vector

G(x,y,(ξ ,η)) :=
[

Gı(η ,y)(x,ξ )
(−F1(x,ξ ), ...,−Fm(x,ξ ))

]
. (4.3.27)

We refer to G(x,y,(ξ ,η)) as a randomized oracle for problem (4.3.22), the
corresponding random parameter being (ξ ,η). By construction we still have
E
[
G(x,y,(ξ ,η))

]
= g(x,y), where g is defined in (4.3.24), and, moreover, the same

bound (4.3.25) holds for E
[
‖G(x,y,(ξ ,η))‖2

∗
]
. We conclude that the accuracy bound

(4.3.26) holds for the error of the stochastic mirror descent algorithm with randomized
oracle. On the other hand, in the latter procedure only one randomized subgradient
Gı̂(x,ξ ) per iteration is to be computed. This simple idea is further developed in
another interesting application of the stochastic mirror descent algorithm to bilinear
matrix games which we discuss next.

4.3.3 Bilinear matrix games

Consider the standard matrix game problem, that is, problem (4.3.1) with

φ(x,y) := yT Ax+bT x+ cT y,

where A ∈ Rm×n, and X and Y are the standard simplices, i.e.,

X :=
{

x ∈ Rn : x≥ 0,∑n
j=1x j = 1

}
, Y :=

{
y ∈ Rm : y≥ 0,∑m

i=1yi = 1
}
.

In the case in question it is natural to equip X (respectively, Y ) with the usual ‖ · ‖1-
norm on Rn (respectively, Rm). We choose entropies as the corresponding distance
generating functions:

νX (x) := ∑
n
i=1xi lnxi, νy(x) := ∑

m
i=1yi lnyi.

As we already have seen, this choice results in D2
X = lnn and D2

Y = lnm. According
to (4.3.3) we set

‖(x,y)‖ :=
√
‖x‖21
2lnn +

‖y‖21
2lnm ,

and thus

‖(ζ ,η)‖∗ =
√

2‖ζ‖2
∞ lnn+2‖η‖2

∞ lnm. (4.3.28)

In order to compute the estimates Φ(x,y,ξ ) of φ(x,y) and G(x,y,ξ ) of g(x,y) =
(b+AT y,−c−Ax) to be used in the stochastic mirror descent iterations (4.3.6), we
use the randomized oracle
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Φ(x,y,ξ ) = cT x+bT y+Aı(ξ1,y)ı(ξ2,x),

G(x,y,ξ ) =
[

c+Aı(ξ1,y)

−b−Aı(ξ2,x)

]
,

where ξ1 and ξ2 are independent uniformly distributed on [0,1] random variables,
ĵ = ı(ξ1,y) and î = ı(ξ2,x) are defined as in (4.3.27), i.e., ĵ can take values 1, ...,m
with probabilities y1, ...,ym and î can take values 1, ...,n with probabilities x1, ...,xn,
and A j, [Ai]T are j-th column and i-th row in A, respectively.

Note that g(x,y) := E
[
G(x,y,( ĵ, î))

]
∈
[

∂xφ(x,y)
∂y(−φ(x,y))

]
. Besides this,

|G(x,y,ξ )i| ≤ max
1≤ j≤m

‖A j +b‖∞, for i = 1, ...,n,

and
|G(x,y,ξ )i| ≤ max

1≤ j≤n
‖A j + c‖∞, for i = n+1, ...,n+m.

Hence, by the definition (4.3.28) of ‖ · ‖∗,

E‖G(x,y,ξ )‖2
∗ ≤ M2 := 2lnn max

1≤ j≤m
‖A j +b‖2

∞ +2lnm max
1≤ j≤n

‖A j + c‖2
∞.

Therefore, the inputs of the stochastic mirror descent algoirthm satisfy the conditions
of validity of the bound (4.3.16) with M as above. Using the constant stepsize
strategy with

γt =
2

M
√

5N
, t = 1, ...,N,

we obtain from (4.3.16):

E
[
εφ (z̃N)

]
= E

[
max
y∈Y

φ(x̃N ,y)−min
x∈X

φ(x, ỹN)

]
≤ 2M

√
5
N . (4.3.29)

We continue with the counterpart of Proposition 4.10 for the Saddle Point Mirror SA
in the setting of bilinear matrix games.

Proposition 4.11. For any Ω ≥ 1 it holds that

Prob
{

εφ (z̃N)> 2M
√

5
N + 4M√

N
Ω

}
≤ exp

{
−Ω

2/2
}
, (4.3.30)

where
M := max

1≤ j≤m
‖A j +b‖∞ + max

1≤ j≤n
‖A j + c‖∞. (4.3.31)

Proof. As in the proof of Proposition 4.10, when setting ΓN = ∑
N
t=1γt and using

the relations (4.3.8), (4.3.12), (4.3.14), combined with the fact that ‖G(z,ξy)‖∗ ≤M,
we obtain
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ΓN εφ (z̃N)≤ 2+∑
N
t=1

γ2
t
2

[
‖G(zt ,ξt)‖2

∗+‖∆t‖2
∗
]
+∑

N
t=1γt(vt − zt)

T
∆t

≤ 2+ 5
2 M2

∑
N
t=1γ

2
t +∑

N
t=1γt(vt − zt)

T
∆t︸ ︷︷ ︸

αN

, (4.3.32)

where the second inequality follows from the definition of ∆t and the fact that
‖∆t‖∗ = ‖G(zt ,ξt)−g(zt)‖∗ ≤ ‖G(zt ,ξt)‖+‖g(zt)‖∗ ≤ 2M.

Note that ζt = γt(vt−zt)
T ∆t is a bounded martingale-difference, i.e., E(ζt |ξ[t−1])=

0, and |ζt | ≤ 4γtM (here M is defined in (4.3.31)). Then by Azuma-Hoeffding’s
inequality for any Ω ≥ 0:

Prob
(

αN > 4ΩM
√

∑
N
t=1γ2

t

)
≤ e−Ω 2/2. (4.3.33)

Indeed, let us denote vt = (v(x)t ,v(y)t ) and ∆t = (∆
(x)
t ,∆

(y)
t ). When taking into account

that ‖v(x)t ‖1 ≤ 1, ‖v(y)t ‖1 ≤ 1, and ‖xt‖1 ≤ 1, ‖yt‖1 ≤ 1, we conclude that

|(vt − zt)
T

∆t | ≤ |(v(x)t − xt)
T

∆
(x)
t |+ |(v(y)t − yt)

T
∆
(y)
t |

≤ 2‖∆ (x)
t ‖∞ +2‖∆ (y)

t ‖∞ ≤ 4 max
1≤ j≤m

‖A j +b‖∞ +4 max
1≤ j≤n

‖A j + c‖∞

= 4M.

We conclude from (4.3.32) and (4.3.33) that

Prob
(

ΓN εφ (z̃N)> 2+ 5
2 M2

∑
N
t=1γ

2
t +4ΩM

√
∑

N
t=1γ2

t

)
≤ e−Ω 2/2,

and the bound (4.3.30) of the proposition can be easily obtained by substituting the
constant stepsizes γt as defined in (4.3.15).

Consider a bilinear matrix game with m = n and b = c = 0. Suppose that we
are interested to solve it within a fixed relative accuracy ρ , that is, to ensure that a
(perhaps random) approximate solution z̃N , we get after N iterations, satisfies the
error bound

εφ (z̃N)≤ ρ max
1≤i, j≤n

|Ai j|

with probability at least 1− δ . According to (4.3.30), to this end one can use the
randomized Saddle Point Mirror SA algorithm (4.3.6), (4.3.7) with

N = O(1) lnn+ln(δ−1)
ρ2 . (4.3.34)

The computational cost of building z̃N with this approach is

O(1) [
lnn+ln(δ−1)]R

ρ2
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arithmetic operations, where R is the arithmetic cost of extracting a column/row
from A, given the index of this column/row. The total number of rows and columns
visited by the algorithm does not exceed the sample size N, given in (4.3.34), so that
the total number of entries in A used in course of the entire computation does not
exceed

M = O(1) n(lnn+ln(δ−1))
ρ2 .

When ρ is fixed and n is large, this is incomparably less that the total number n2 of
entries of A. Thus, the algorithm in question produces reliable solutions of prescribed
quality to large-scale matrix games by inspecting a negligible, as n→ ∞, part of
randomly selected data. Note that randomization here is critical. It is easily seen that
a deterministic algorithm which is capable to find a solution with (deterministic)
relative accuracy ρ ≤ 0.1, has to “see” in the worst case at least O(1)n rows/columns
of A.

4.4 Stochastic accelerated primal-dual method

Let X ⊆ Rn, Y ⊆ Rm be given closed convex sets equipped with their respective
inner product 〈·, ·〉 and norm ‖ · ‖. The basic problem of interest in this section is the
saddle-point problem (SPP) given in the form of:

min
x∈X

{
f (x) := max

y∈Y
f̂ (x)+ 〈Ax,y〉− ĝ(y)

}
. (4.4.1)

Here, f̂ (x) is a general smooth convex function and A is a linear operator such that

f̂ (u)− f̂ (x)−〈∇ f̂ (x),u− x〉 ≤ L f̂
2 ‖u− x‖2, ∀x,u ∈ X ,

‖Au−Ax‖∗ ≤ ‖A‖‖u− x‖, ∀x,u ∈ X ,
(4.4.2)

and ĝ : Y → R is a relatively simple, proper, convex, lower semi-continuous (l.s.c.)
function (i.e., problem (4.4.13) is easy to solve). In particular, if ĝ is the convex
conjugate of some convex function F and Y ≡ Rm, then (4.4.1) is equivalent to the
primal problem:

min
x∈X

f̂ (x)+F(Ax). (4.4.3)

Problems of these types have recently found many applications in data analysis,
especially in imaging processing and machine learning. In many of these applications,
f̂ (x) is a convex data fidelity term, while F(Ax) is a certain regularization, e.g., total
variation, low rank tensor, overlapped group lasso, and graph regularization.

Since the objective function f defined in (4.4.1) is nonsmooth in general, tradi-
tional nonsmooth optimization methods, e.g., subgradient or mirror descent methods,
would exhibit an O(1/

√
N) rate of convergence when applied to (4.4.1), where N

denotes the number of iterations. As discussed in Section 3.5, if X and Y are compact,
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then the rate of convergence of this smoothing scheme applied to (4.4.1) can be
bounded by:

O
( L f̂

N2 +
‖A‖
N

)
, (4.4.4)

which significantly improves the previous bound O(1/
√

N).
While Nesterov’s smoothing scheme or its variants rely on a smooth approxima-

tion to the original problem (4.4.1), primal-dual methods discussed in Section 3.6
work directly with the original saddle-point problem. In Section 3.6, we assume f̂
to be relatively simple so that the subproblems can be solved efficiently. With little
additional effort, one can show that, by linearizing f̂ at each step, this method can
also be applied for a general smooth convex function f̂ and the rate of convergence
of this modified algorithm is given by

O

(
L f̂ +‖A‖

N

)
. (4.4.5)

The rate of convergence in (4.4.4) has a significantly better dependence on L f̂ than
that in (4.4.5). Therefore, Nesterov’s smoothing scheme allows a very large Lipschitz
constant L f̂ (as big as O(N)) without affecting the rate of convergence (up to a
constant factor of 2). This is desirable in many data analysis applications, where L f̂
is usually significantly bigger than ‖A‖.

Similar to Assumptions 1 and 2 made for minimization problems, in the stochastic
setting we assume that there exists a stochastic first-order oracle (SFO) that can
provide unbiased estimators to the gradient operators ∇ f̂ (x) and (−Ax,AT y). More
specifically, at the i-th call to SFO, (xi,yi)∈ X×Y being the input, the oracle will out-
put the stochastic gradient (Ĝ(xi), Âx(xi), Ây(yi)) ≡ (G(xi,ξi),Ax(xi,ξi),Ay(yi,ξi))
such that

E[Ĝ(xi)] = ∇ f̂ (xi), E
[(
−Âx(xi)

Ây(yi)

)]
=

(
−Axi
AT yi

)
. (4.4.6)

Here {ξi ∈ Rd}∞
i=1 is a sequence of i.i.d. random variables. In addition, we assume

that, for some σx, f̂ ,σy,σx,A ≥ 0, the following assumption holds for all xi ∈ X and
yi ∈ Y :

Assumption 8

E[‖Ĝ(xi)−∇ f̂ (xi)‖2
∗]≤ σ

2
x, f̂ ,

E[‖Âx(xi)−Axi‖2
∗]≤ σ

2
y ,

E[‖Ây(yi)−AT yi‖2
∗]≤ σ

2
x,A.

Sometimes we simply denote σx :=
√

σ2
x, f̂

+σ2
x,A for the sake of notational con-

venience. It should also be noted that deterministic SPP is a special case of the above
setting with σx = σy = 0.

We can apply a few stochastic optimization algorithms discussed earlier to solve
the above stochastic SPP. More specifically, the stochastic mirror descent method,
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when applied to the stochastic SPP, will achieve an rate of convergence given by

O
{
(L f̂ +‖A‖+σx +σy)

1√
N

}
. (4.4.7)

Moreover, the accelerated stochastic gradient descent method, when applied to the
aforementioned stochastic SPP, possesses a rate of convergence given by

O
{ L f̂

N2 +(‖A‖+σx +σy)
1√
N

}
, (4.4.8)

which improves the bound in (4.4.55) in terms of its dependence on the Lipschitz
constant L f̂ .

Our goal in this section to further accelerate the primal-dual method discussed
in Section 3.6 to achieve the rate of convergence in (4.4.4) for deterministic SPP
and to deal with unbounded feasible sets X and Y . Moreover, we intend to develop
a stochastic accelerated primal-dual method that can further improve the rate of
convergence stated in (4.4.8). It is worth noting that further improvement of the
complexity bound for SPP, in terms of the number of gradient computations of f̂ ,
will be discussed in Section 8.2.

4.4.1 Accelerated primal-dual method

One possible limitation of primal-dual method in Section 3.6, when applied to prob-
lem (4.4.1) is that both f̂ and ĝ need to be simple enough. To make this algorithm
applicable to more practical problems we consider more general cases, where ĝ is
simple, but f̂ may not be so. In particular, we assume that f̂ is a general smooth
convex function satisfying (4.4.2). In this case, we can replace f̂ by its linear ap-
proximation f̂ (xt)+ 〈∇ f̂ (xt),x− xt〉 and obtain the so-called “linearized primal-dual
method” in Algorithm 4.1 . By some extra effort we can show that, if for t = 1, . . . ,N,
0 < θt = τt−1/τt = ηt−1/ηt ≤ 1, and L f̂ ηt + ‖A‖2ηtτt ≤ 1, then (xN ,yN) has an
O((L f̂ +‖A‖)/N) rate of convergence in the sense of the partial duality gap.

Algorithm 4.1 Linearized primal-dual method for solving deterministic SPP
1: Choose x1 ∈ X , y1 ∈ Y . Set x̄1 = x1.
2: For t = 1, . . . ,N, calculate

yt+1 = argminy∈Y 〈−Ax̄t ,y〉+ ĝ(y)+ 1
2τt
‖y− yt‖2, (4.4.9)

xt+1 = argminx∈X 〈∇ f̂ (xt),x〉+ 〈Ax,yt+1〉+ 1
2ηt
‖x− xt‖2, (4.4.10)

x̃t+1 = θt(xt+1− xt)+ xt+1. (4.4.11)

3: Output xN = 1
N ∑

N
t=1xt , yN = 1

N ∑
N
t=1yt .
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Algorithm 4.2 Accelerated primal-dual method for deterministic SPP
1: Choose x1 ∈ X ,y1 ∈ Y . Set x̄1 = x1, ȳ1 = y1, x̃1 = x1.
2: For t = 1,2, . . . ,N−1, calculate

xt = (1−β
−1
t )x̄t +β

−1
t xt , (4.4.12)

yt+1 = argminy∈Y 〈−Ax̃t ,y〉+ ĝ(y)+ 1
τt

VY (y,yt), (4.4.13)

xt+1 = argminx∈X 〈∇ f̂ (xt),x〉+ 〈x,AT yt+1〉+ 1
ηt

VX (x,xt), (4.4.14)

x̃t+1 = θt+1(xt+1− xt)+ xt+1, (4.4.15)

x̄t+1 = (1−β
−1
t )x̄t +β

−1
t xt+1, (4.4.16)

ȳt+1 = (1−β
−1
t )ȳt +β

−1
t yt+1. (4.4.17)

3: Output xag
N ,yag

N .

In order to further improve the above rate of convergence of Algorithm 4.1, we
propose an accelerated primal-dual (APD) method in Algorithm 4.2 which integrates
the accelerated gradient descent algorithm into the linearized version of the primal
dual method. For any x,u ∈ X and y,v ∈ Y , the functions VX (·, ·) and VY (·, ·) are
Bregman divergences defined as

VX (x,u) := νX (x)−νX (u)−〈∇νX (u),x−u〉, (4.4.18)
VY (y,v) := νY (y)−νY (v)−〈∇νY (v),y− v〉, (4.4.19)

where νX (·) and νY (·) are strongly convex functions with strong convexity parameters
(modulus) 1. We assume that ĝ(y) is a simple convex function, so that the optimization
problem in (4.4.13) can be solved efficiently.

Note that if βt = 1 for all t ≥ 1, then xt = xt , x̄t+1 = xt+1, and Algorithm 4.2
is the same as the linearized version of Algorithm 4.1. However, by specifying a
different selection of βt (e.g., βt = O(t)), we can significantly improve the rate of
convergence of Algorithm 4.2 in terms of its dependence on L f̂ . It should be noted
that the iteration cost for the APD algorithm is about the same as that for Algorithm
4.1.

In order to analyze the convergence of Algorithm 4.2, we use the same notion
as the one we used in the analysis of the primal-dual method in Section 3.6 to
characterize the solutions of (4.4.1). Specifically, denoting Z = X ×Y , for any z̃ =
(x̃, ỹ) ∈ Z and z = (x,y) ∈ Z, we define

Q(z̃,z) :=
[

f̂ (x̃)+ 〈Ax̃,y〉− ĝ(y)
]
−
[

f̂ (x)+ 〈Ax, ỹ〉− ĝ(ỹ)
]
. (4.4.20)

It can be easily seen that z̃ is a solution of problem (4.4.1), if and only if Q(z̃,z)≤ 0
for all z ∈ Z. Therefore, if Z is bounded, it is suggestive to use the gap function

g(z̃) := max
z∈Z

Q(z̃,z) (4.4.21)
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to assess the quality of a feasible solution z̃∈ Z. In fact, we can show that f (x̃)− f ∗ ≤
g(z̃) for all z̃ ∈ Z, where f ∗ denotes the optimal value of problem (4.4.1). However, if
Z is unbounded, then g(z̃) is not well-defined even for a nearly optimal solution z̃∈ Z.
Hence, in the sequel, we will consider the bounded and unbounded case separately,
by employing a slightly different error measure for the latter situation. In particular,
we establish the convergence of Algorithm 4.2 in Theorems 4.6 and 4.7 for the
bounded and unbounded case, respectively.

We need to prove two technical results: Proposition 4.12 shows some important
properties for the function Q(·, ·) in (4.4.20) and Lemma 4.7 establishes a bound on
Q(x̄t ,z). Note that the following quantity will be used in the convergence analysis of
the APD algorithm.

γt =

{
1, t = 1,
θ
−1
t γt−1, t ≥ 2.

(4.4.22)

Proposition 4.12. Assume that βt ≥ 1 for all t. If z̄t+1 = (x̄t+1, ȳt+1) is generated by
Algorithm 4.2, then for all z = (x,y) ∈ Z,

βtQ(z̄t+1,z)− (βt −1)Q(z̄t ,z)

≤ 〈∇ f̂ (xt),xt+1− x〉+ L f̂
2βt
‖xt+1− xt‖2 +[ĝ(yt+1)− ĝ(y)]+ 〈Axt+1,y〉−〈Ax,yt+1〉.

(4.4.23)

Proof. By equations (4.4.12) and (4.4.16), x̄t+1− xt = β
−1
t (xt+1− xt). Using this

observation and the convexity of f̂ (·), we have

βt f̂ (x̄t+1)≤ βt f̂ (xt)+βt〈∇ f̂ (xt), x̄t+1− xt〉+
βt L f̂

2 ‖x̄t+1− xt‖2

= βt f̂ (xt)+βt〈∇ f̂ (xt), x̄t+1− xt〉+
L f̂
2βt
‖xt+1− xt‖2

= βt f̂ (xt)+(βt −1)〈∇ f̂ (xt), x̄t − xt〉+ 〈∇ f̂ (xt),xt+1− xt〉+
L f̂
2βt
‖xt+1− xt‖2

= (βt −1)
[

f̂ (xt)+ 〈∇ f̂ (xt), x̄t − xt〉
]
+
[

f̂ (xt)+ 〈∇ f̂ (xt),xt+1− xt〉
]
+

L f̂
2βt
‖xt+1− xt‖2

= (βt −1)
[

f̂ (xt)+ 〈∇ f̂ (xt), x̄t − xt〉
]
+
[

f̂ (xt)+ 〈∇ f̂ (xt),x− xt〉
]
+ 〈∇ f̂ (xt),xt+1− x〉

+
L f̂
2βt
‖xt+1− xt‖2

≤ (βt −1) f̂ (x̄t)+ f̂ (x)+ 〈∇ f̂ (xt),xt+1− x〉+ L f̂
2βt
‖xt+1− xt‖2.

Moreover, by (4.4.17) and the convexity of ĝ(·), we have

βt ĝ(ȳt+1)−βt ĝ(y)≤ (βt −1)ĝ(ȳt)+ ĝ(yt+1)−βt ĝ(y)

= (βt −1) [ĝ(ȳt)− ĝ(y)]+ ĝ(yt+1)− ĝ(y).

By (4.4.20), (4.4.16), (4.4.17) and the above two inequalities, we obtain
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βtQ(z̄t+1,z)− (βt −1)Q(z̄t ,z)
= βt

{[
f̂ (x̄t+1)+ 〈Ax̄t+1,y〉− ĝ(y)

]
−
[

f̂ (x)+ 〈Ax, ȳt+1〉− ĝ(ȳt+1)
]}

−(βt −1)
{[

f̂ (x̄t)+ 〈Ax̄t ,y〉− ĝ(y)
]
−
[

f̂ (x)+ 〈Ax, ȳt〉− ĝ(ȳt)
]}

= βt f̂ (x̄t+1)− (βt −1) f̂ (x̄t)− f̂ (x)+βt [ĝ(ȳt+1)− ĝ(y)]
−(βt −1) [ĝ(ȳt)− ĝ(y)]+ 〈A(βt x̄t+1− (βt −1)x̄t),y〉−〈Ax,βt ȳt+1− (βt −1)ȳt〉

≤ 〈∇ f̂ (xt),xt+1− x〉+ L f̂
2βt
‖xt+1− xt‖2 + ĝ(yt+1)− ĝ(y)+ 〈Axt+1,y〉−〈Ax,yt+1〉.

Lemma 4.7 establishes a bound for Q(z̄t+1,z) for all z ∈ Z, which will be used in
the proof of both Theorems 4.6 and 4.7.

Lemma 4.7. Let z̄t+1 = (x̄t+1, ȳt+1) be the iterates generated by Algorithm 4.2. As-
sume that the parameters βt ,θt ,ηt , and τt satisfy

β1 = 1, βt+1−1 = βtθt+1, (4.4.24)

0 < θt ≤min{ηt−1
ηt

,
τt−1

τt
}, (4.4.25)

1
ηt
− L f̂

βt
−‖A‖2

τt ≥ 0. (4.4.26)

Then, for any z ∈ Z, we have

βtγtQ(z̄t+1,z)≤ Bt(z,z[t])+ γt〈A(xt+1− xt),y− yt+1〉− γt

(
1

2ηt
− L f̂

2βt

)
‖xt+1− xt‖2,

(4.4.27)
where γt is defined in (4.4.22), z[t] := {(xi,yi)}t+1

i=1 and

Bt(z,z[t]) := ∑
t
i=1

{
γi
ηi
[VX (x,xi)−VX (x,xi+1)]+

γi
τi
[VY (y,yi)−VY (y,yi+1)]

}
.

(4.4.28)

Proof. First of all, we explore the optimality conditions of (4.4.13) and (4.4.14).
Applying Lemma 3.5 to (4.4.13), we have

〈−Ax̃t ,yt+1− y〉+ ĝ(yt+1)− ĝ(y)≤ 1
τt

VY (y,yt)− 1
τt

VY (yt+1,yt)− 1
τt

VY (y,yt+1)

≤ 1
τt

VY (y,yt)− 1
2τt
‖yt+1− yt‖2− 1

τt
VY (y,yt+1),

(4.4.29)

where the last inequality follows from the fact that, by the strong convexity of νY (·)
and (4.4.19),

VY (y1,y2)≥ 1
2‖y1− y2‖2, for all y1,y2 ∈ Y. (4.4.30)

Similarly, from (4.4.14) we can derive that

〈∇ f̂ (xt),xt+1− x〉+ 〈xt+1− x,AT yt+1〉
≤ 1

ηt
VX (x,xt)− 1

2ηt
‖xt+1− xt‖2− 1

ηt
VX (x,xt+1).

(4.4.31)
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Our next step is to establish a crucial recursion of Algorithm 4.2. It follows from
(4.4.23), (4.4.29) and (4.4.31) that

βtQ(z̄t+1,z)− (βt −1)Q(z̄t ,z)

≤ 〈∇ f̂ (xt),xt+1− x〉+ L f̂
2βt
‖xt+1− xt‖2 +[ĝ(yt+1)− ĝ(y)]+ 〈Axt+1,y〉−〈Ax,yt+1〉

≤ 1
ηt

VX (x,xt)− 1
ηt

VX (x,xt+1)−
(

1
2ηt
− L f̂

2βt

)
‖xt+1− xt‖2

+ 1
τt

VY (y,yt)− 1
τt

VY (y,yt+1)− 1
2τt
‖yt+1− yt‖2

−〈xt+1− x,AT yt+1〉+ 〈Ax̃t ,yt+1− y〉+ 〈Axt+1,y〉−〈Ax,yt+1〉.
(4.4.32)

Also observe that by (4.4.15), we have

−〈xt+1− x,AT yt+1〉+ 〈Ax̃t ,yt+1− y〉+ 〈Axt+1,y〉−〈Ax,yt+1〉
= 〈A(xt+1− xt),y− yt+1〉−θt〈A(xt − xt−1),y− yt+1〉
= 〈A(xt+1− xt),y− yt+1〉−θt〈A(xt − xt−1),y− yt〉−θt〈A(xt − xt−1),yt − yt+1〉.

Multiplying both sides of (4.4.32) by γt , using the above identity and the fact that
γtθt = γt−1 due to (4.4.22), we obtain

βtγtQ(z̄t+1,z)− (βt −1)γtQ(z̄t ,z)

≤ γt
ηt

VX (x,xt)− γt
ηt

VX (x,xt+1)+
γt
τt

VY (y,yt)− γt
τt

VY (y,yt+1)

+ γt〈A(xt+1− xt),y− yt+1〉− γt−1〈A(xt − xt−1),y− yt〉

− γt

(
1

2ηt
− L f̂

2βt

)
‖xt+1− xt‖2− γt

2τt
‖yt+1− yt‖2

− γt−1〈A(xt − xt−1),yt − yt+1〉.

(4.4.33)

Now, applying Cauchy-Schwartz inequality to the last term in (4.4.33), using the
notation ‖A‖ in (4.4.2) and noticing that γt−1/γt = θt ≤min{ηt−1/ηt ,τt−1/τt} from
(4.4.25), we have

−γt−1〈A(xt − xt−1),yt − yt+1〉 ≤ γt−1‖A(xt − xt−1)‖∗‖yt − yt+1‖
≤ ‖A‖γt−1‖xt − xt−1‖‖yt − yt+1‖ ≤ ‖A‖

2γ2
t−1τt

2γt
‖xt − xt−1‖2 + γt

2τt
‖yt − yt+1‖2

≤ ‖A‖2γt−1τt−1
2 ‖xt − xt−1‖2 + γt

2τt
‖yt − yt+1‖2.

Noting that θt+1 = γt/γt+1, so by (4.4.24) we have (βt+1−1)γt+1 = βtγt . Combining
the above two relations with inequality (4.4.33), we get the following recursion for
Algorithm 4.2.
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(βt+1−1)γt+1Q(z̄t+1,z)− (βt −1)γtQ(z̄t ,z) = βtγtQ(z̄t+1,z)− (βt −1)γtQ(z̄t ,z)
≤ γt

ηt
VX (x,xt)− γt

ηt
VX (x,xt+1)+

γt
τt

VY (y,yt)− γt
τt

VY (y,yt+1)

+γt〈A(xt+1− xt),y− yt+1〉− γt−1〈A(xt − xt−1),y− yt〉
−γt

(
1

2ηt
− L f̂

2βt

)
‖xt+1− xt‖2 +

‖A‖2γt−1τt−1
2 ‖xt − xt−1‖2,∀t ≥ 1.

Applying the above inequality inductively and assuming that x0 = x1, we conclude
that

(βt+1−1)γt+1Q(z̄t+1,z)− (β1−1)γ1Q(z̄1,z)
≤ Bt(z,z[t])+ γt〈A(xt+1− xt),y− yt+1〉
−γt

(
1

2ηt
− L f̂

2βt

)
‖xt+1− xt‖2−∑

t−1
i=1γi

(
1

2ηi
− L f̂

2βi
− ‖A‖2τi

2

)
‖xi+1− xi‖2,

which, in view of (4.4.26) and the facts that β1 = 1 and (βt+1− 1)γt+1 = βtγt by
(4.4.24), implies (4.4.27).

Theorem 4.6 below describes the convergence properties of Algorithm 4.2 when
Z is bounded. This result follows as an immediate consequence of Lemma 4.7.

Theorem 4.6. Assume that for some DX ,DY > 0:

sup
x1,x2∈X

VX (x1,x2)≤ D2
X and sup

y1,y2∈Y
VY (y1,y2)≤ D2

Y . (4.4.34)

Also assume that the parameters βt ,θt ,ηt ,τt in Algorithm 4.2 are chosen such that
(4.4.24), (4.4.25) and (4.4.26) hold. Then for all t ≥ 1,

g(zag
t+1)≤ 1

βt ηt
D2

X + 1
βt τt

D2
Y . (4.4.35)

Proof. Let Bt(z,z[t]) be defined in (4.4.28). First note that by the definition of
γt in (4.4.22) and relation (4.4.25), we have θt = γt−1/γt ≤ ηt−1/ηt and hence
γt−1/ηt−1 ≤ γt/ηt . Using this observation and (4.4.34), we conclude that

Bt(z,z[t]) =
γ1
η1

VX (x,x1)−∑
t−1
i=1

(
γi
ηi
− γi+1

ηi+1

)
VX (x,xi+1)− γt

ηt
VX (x,xt+1)

+ γ1
τ1

VY (y,y1)−∑
t−1
i=1

(
γi
τi
− γi+1

τi+1

)
VY (y,yi+1)− γt

τt
VY (y,yt+1)

≤ γ1
η1

D2
X −∑

t−1
i=1

(
γi
ηi
− γi+1

ηi+1

)
D2

X − γt
ηt

VX (x,xt+1)

+ γ1
τ1

D2
Y −∑

t−1
i=1

(
γi
τi
− γi+1

τi+1

)
D2

Y − γt
τt

VY (y,yt+1)

= γt
ηt

D2
X − γt

ηt
VX (x,xt+1)+

γt
τt

D2
Y − γt

τt
VY (y,yt+1).

(4.4.36)

Now applying Cauchy-Schwartz inequality to the inner product term in (4.4.27), we
get

γt〈A(xt+1− xt),y− yt+1〉 ≤ ‖A‖γt‖xt+1− xt‖‖y− yt+1‖
≤ ‖A‖2γt τt

2 ‖xt+1− xt‖2 + γt
2τt
‖y− yt+1‖2.

(4.4.37)

Using the above two relations, (4.4.26), (4.4.27) and (4.4.30), we have
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βtγtQ(z̄t+1,z)≤ γt
ηt

D2
X − γt

ηt
VX (x,xt+1)+

γt
τt

D2
Y − γt

τt

(
VY (y,yt+1)− 1

2‖y− yt+1‖2
)

−γt

(
1

2ηt
− L f̂

2βt
− ‖A‖2τt

2

)
‖xt+1− xt‖2 ≤ γt

ηt
D2

X + γt
τt

D2
Y , ∀z ∈ Z,

which together with (4.4.21), then clearly imply (4.4.35).

There are various options for choosing the parameters βt ,ηt ,τt and θt such that
(4.4.24)–(4.4.26) hold. Below we provide such an example.

Corollary 4.1. Suppose that (4.4.34) holds. In Algorithm 4.2, if the parameters are
set to

βt =
t+1

2 , θt =
t−1

t , ηt =
t

2L f̂ +t‖A‖DY /DX
and τt =

DY
‖A‖DX

, (4.4.38)

then for all t ≥ 2,

g(zag
t )≤ 4L f̂ D2

X
t(t−1) +

4‖A‖DX DY
t . (4.4.39)

Proof. It suffices to verify that the parameters in (4.4.38) satisfies (4.4.24)–(4.4.26)
in Theorem 4.6. It is easy to check that (4.4.24) and (4.4.25) hold. Furthermore,

1
ηt
− L f̂

βt
−‖A‖2

τt =
2L f̂ +t‖A‖DY /DX

t − 2L f̂
t+1 −

‖A‖DY
DX
≥ 0,

so (4.4.26) holds. Therefore, by (4.4.35), for all t ≥ 1 we have

g(zag
t ) ≤ 1

βt−1ηt−1
D2

X + 1
βt−1τt−1

D2
Y =

4L f̂ +2(t−1)‖A‖DY /DX

t(t−1) ·D2
X + 2‖A‖DX/DY

t ·D2
Y

=
4L f̂ D2

X
t(t−1) +

4‖A‖DX DY
t .

Clearly, in view of (4.4.4), the rate of convergence of Algorithm 4.2 applied to
problem (4.4.1) is optimal when the parameters are chosen according to (4.4.38).
Also observe that we need to estimate DY/DX to use these parameters. However,
it should be pointed out that replacing the ratio DY/DX in (4.4.38) by any positive
constant only results in an increase in the RHS of (4.4.39) by a constant factor.

Now, we study the convergence properties of the APD algorithm for the case
when Z = X×Y is unbounded, by using a perturbation-based termination criterion
based on the enlargement of a maximal monotone operator. More specifically, it can
be seen that there always exists a perturbation vector v such that

g̃(z̃,v) := max
z∈Z

Q(z̃,z)−〈v, z̃− z〉 (4.4.40)

is well-defined, although the value of g(z̃) in (4.4.21) may be unbounded if Z is
unbounded. In the following result, we show that the APD algorithm can compute
a nearly optimal solution z̃ with a small residue g̃(z̃,v), for a small perturbation
vector v (i.e., ‖v‖ is small). In addition, our derived iteration complexity bounds are
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proportional to the distance from the initial point to the solution set. For the case when
Z is unbounded, we assume that VX (x,xt) = ‖x− xt‖2/2 and VY (y,yt) = ‖y− yt‖2/2
in Algorithm 4.2, where the norms are induced by the inner products.

We will first prove a technical result which specializes the results in Lemma 4.7
for the case when (4.4.24), (4.4.41) and (4.4.42) hold.

Lemma 4.8. Let ẑ=(x̂, ŷ)∈ Z be a saddle point of (4.4.1). If the parameters βt ,θt ,ηt
and τt satisfy (4.4.24),

θt =
ηt−1

ηt
=

τt−1
τt

, (4.4.41)

1
ηt
− L f̂

βt
− ‖A‖2τt

p ≥ 0, (4.4.42)

then for all t ≥ 1,

‖x̂− xt+1‖2 + ηt (1−p)
τt
‖ŷ− yt+1‖2 ≤ ‖x̂− x1‖2 + ηt

τt
‖ŷ− y1‖2, (4.4.43)

g̃(zag
t+1,vt+1)≤ 1

2βt ηt
‖x̄t+1− x1‖2 + 1

2βt τt
‖ȳt+1− y1‖2 =: δt+1, (4.4.44)

where g̃(·, ·) is defined in (4.4.40) and

vt+1 =
(

1
βt ηt

(x1− xt+1),
1

βt τt
(y1− yt+1)− 1

βt
A(xt+1− xt)

)
. (4.4.45)

Proof. It is easy to check that the conditions in Lemma 4.7 are satisfied. By
(4.4.41), (4.4.27) in Lemma 4.7 becomes

βtQ(z̄t+1,z)≤ 1
2ηt
‖x− x1‖2− 1

2ηt
‖x− xt+1‖2 + 1

2τt
‖y− y1‖2− 1

2τt
‖y− yt+1‖2

+ 〈A(xt+1− xt),y− yt+1〉−
(

1
2ηt
− L f̂

2βt

)
‖xt+1− xt‖2.

(4.4.46)

To prove (4.4.43), observe that

〈A(xt+1− xt),y− yt+1〉 ≤ ‖A‖2τt
2p ‖xt+1− xt‖2 + p

2τt
‖y− yt+1‖2 (4.4.47)

where p is the constant in (4.4.42). By (4.4.42) and the above two inequalities, we
get

βtQ(z̄t+1,z)≤ 1
2ηt
‖x− x1‖2− 1

2ηt
‖x− xt+1‖2 + 1

2τt
‖y− y1‖2− 1−p

2τt
‖y− yt+1‖2.

Letting z = ẑ in the above, and using the fact that Q(z̄t+1, ẑ)≥ 0, we obtain (4.4.43).
Now we prove (4.4.44). Noting that

‖x− x1‖2−‖x− xt+1‖2 = 2〈xt+1− x1,x〉+‖x1‖2−‖xt+1‖2

=2〈xt+1− x1,x− x̄t+1〉+2〈xt+1− x1, x̄t+1〉+‖x1‖2−‖xt+1‖2

=2〈xt+1− x1,x− x̄t+1〉+‖x̄t+1− x1‖2−‖x̄t+1− xt+1‖2,

(4.4.48)
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we conclude from (4.4.42) and (4.4.46) that for any z ∈ Z,

βtQ(z̄t+1,z)+ 〈A(xt+1− xt), ȳt+1− y〉
− 1

ηt
〈x1− xt+1, x̄t+1− x〉− 1

τt
〈y1− yt+1, ȳt+1− y〉

≤ 1
2ηt

(
‖x̄t+1− x1‖2−‖x̄t+1− xt+1‖2

)
+ 1

2τt

(
‖ȳt+1− y1‖2−‖ȳt+1− yt+1‖2

)

+〈A(xt+1− xt), ȳt+1− yt+1〉−
(

1
2ηt
− L f̂

2βt

)
‖xt+1− xt‖2

≤ 1
2ηt

(
‖x̄t+1− x1‖2−‖x̄t+1− xt+1‖2

)
+ 1

2τt

(
‖ȳt+1− y1‖2−‖ȳt+1− yt+1‖2

)

+ p
2τt
‖ȳt+1− yt+1‖2−

(
1

2ηt
− L f̂

2βt
− ‖A‖2τt

2p

)
‖xt+1− xt‖2

≤ 1
2ηt
‖x̄t+1− x1‖2 + 1

2τt
‖ȳt+1− y1‖2.

The result in (4.4.44) and (4.4.45) immediately follows from the above inequality
and (4.4.40).

We are now ready to establish the convergence of Algorithm 4.2 when X or Y is
unbounded.

Theorem 4.7. Let {z̄t}= {(x̄t , ȳt)} be the iterates generated by Algorithm 4.2 with
VX (x,xt) = ‖x− xt‖2/2 and VY (y,yt) = ‖y− yt‖2/2. Assume that the parameters
βt ,θt ,ηt and τt satisfy (4.4.24), (4.4.41) and (4.4.42) for all t ≥ 1 and for some
0 < p < 1, then there exists a perturbation vector vt+1 such that

g̃(zag
t+1

,vt+1)≤ (2−p)D2

βt ηt (1−p) =: εt+1 (4.4.49)

for any t ≥ 1. Moreover, we have

‖vt+1‖ ≤ 1
βt ηt
‖x̂− x1‖+ 1

βt τt
‖ŷ− y1‖+

[
1

βt ηt

(
1+
√

η1
τ1(1−p)

)
+ 2‖A‖

βt

]
D, (4.4.50)

where (x̂, ŷ) is a pair of solutions for problem (4.4.1) and

D :=
√
‖x̂− x1‖2 + η1

τ1
‖ŷ− y1‖2. (4.4.51)

Proof. We have established the expression of vt+1 and δt+1 in Lemma 4.8. It
suffices to estimate the bound on ‖vt+1‖ and δt+1. It follows from the definition of D,
(4.4.41) and (4.4.43) that for all t ≥ 1, ‖x̂−xt+1‖≤D and ‖ŷ−yt+1‖≤D

√
τ1

η1(1−p) .

Now by (4.4.45), we have

‖vt+1‖ ≤ 1
βt ηt
‖x1− xt+1‖+ 1

βt τt
‖y1− yt+1‖+ ‖A‖βt

‖xt+1− xt‖
≤ 1

βt ηt
(‖x̂− x1‖+‖x̂− xt+1‖)+ 1

βt τt
(‖ŷ− y1‖+‖ŷ− yt+1‖)

+ ‖A‖
βt

(‖x̂− xt+1‖+‖x̂− xt‖)
≤ 1

βt ηt
(‖x̂− x1‖+D)+ 1

βt τt

(
‖ŷ− y1‖+D

√
τ1

η1(1−p)

)
+ 2‖A‖

βt
D

= 1
βt ηt
‖x̂− x1‖+ 1

βt τt
‖ŷ− y1‖+D

[
1

βt ηt

(
1+
√

η1
τ1(1−p)

)
+ 2‖A‖

βt

]
.
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To estimate the bound of δt+1, consider the sequence {γt} defined in (4.4.22). Using
the fact that (βt+1−1)γt+1 = βtγt due to (4.4.24) and (4.4.22), and applying (4.4.16)
and (4.4.17) inductively, we have

x̄t+1 =
1

βt γt
∑

t
i=1γixi+1, ȳt+1 =

1
βt γt

∑
t
i=1γiyi+1 and 1

βt γt
∑

t
i=1γi = 1. (4.4.52)

Thus x̄t+1 and ȳt+1 are convex combinations of sequences {xi+1}t
i=1 and {yi+1}t

i=1 .
Using these relations and (4.4.43), we have

δt+1 = 1
2βt ηt
‖x̄t+1− x1‖2 + 1

2βt τt
‖ȳt+1− y1‖2

≤ 1
βt ηt

(
‖x̂− x̄t+1‖2 +‖x̂− x1‖2

)
+ 1

βt τt

(
‖ŷ− ȳt+1‖2 +‖ŷ− y1‖2

)

= 1
βt ηt

(
D2 +‖x̂− x̄t+1‖2 + ηt (1−p)

τt
‖ŷ− ȳt+1‖2 + ηt p

τt
‖ŷ− ȳt+1‖2

)

≤ 1
βt ηt

[
D2 + 1

βt γt
∑

t
i=1γi

(
‖x̂− xi+1‖2 + ηt (1−p)

τt
‖ŷ− yi+1‖2 + ηt p

τt
‖ŷ− yi+1‖2

)]

≤ 1
βt ηt

[
D2 + 1

βt γt
∑

t
i=1γi

(
D2 + ηt p

τt
· τ1

η1(1−p)D2
)]

= (2−p)D2

βt ηt (1−p) .

Below we suggest a specific parameter setting which satisfies (4.4.24), (4.4.41)
and (4.4.42).

Corollary 4.2. In Algorithm 4.2, if N is given and the parameters are set to

βt =
t+1

2 , θt =
t−1

t , ηt =
t+1

2(L f̂ +N‖A‖) ,and τt =
t+1

2N‖A‖ (4.4.53)

then there exists vN that satisfies (4.4.49) with

εN ≤
10L f̂ D̂2

N2 + 10‖A‖D̂2

N and ‖vN‖ ≤
15L f̂ D̂

N2 + 19‖A‖D̂
N , (4.4.54)

where D̂ =
√
‖x̂− x1‖2 +‖ŷ− y1‖2.

Proof. For the parameters βt , γt , ηt , and τt in (4.4.53), it is clear that (4.4.24),
(4.4.41) holds. Furthermore, let p = 1/4, for any t = 1, . . . ,N−1, we have

1
ηt
− L f̂

βt
− ‖A‖2τt

p =
2L f̂ +2‖A‖N

t+1 − 2L f̂
t+1 −

2‖A‖2(t+1)
‖A‖N ≥ 2‖A‖N

t+1 −
2‖A‖(t+1)

N ≥ 0,

thus (4.4.42) holds. By Theorem 4.7, inequalities (4.4.49) and (4.4.50) hold. Noting
that ηt ≤ τt , in (4.4.49) and (4.4.50) we have D ≤ D̂, ‖x̂− x1‖+ ‖ŷ− y1‖ ≤

√
2D̂,

hence

‖vt+1‖ ≤
√

2D̂
βt ηt

+
(1+
√

4/3)D̂
βt ηt

+ 2‖A‖D̂
βt

and

εt+1 ≤ (2−p)D̂2

βt ηt (1−p) =
7D̂2

3βt ηt
.
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Also note that by (4.4.53), 1
βN−1ηN−1

=
4(L f̂ +‖A‖N)

N2 =
4L f̂
N2 + 4‖A‖

N . Using these three
relations and the definition of βt in (4.4.53), we obtain (4.4.54) after simplifying the
constants.

It is interesting to notice that, if the parameters in Algorithm 4.2 are set to (4.4.53),
then both residues εN and ‖vN‖ in (4.4.54) reduce to zero with approximately the
same rate of convergence (up to a factor of D̂).

4.4.2 Stochastic bilinear saddle point problems

In order to solve stochastic SPP, i.e., problem (4.4.1) with a stochastic first-order
oracle, we develop a stochastic counterpart of the APD method, namely stochastic
APD and demonstrate that it can actually achieve the rate of convergence given by

O
{
(L f̂ +‖A‖+σx +σy)

1√
N

}
. (4.4.55)

Therefore, this algorithm further improves the error bound in (4.4.8) in terms of
its dependence on ‖A‖. In fact it can be shown that such a rate of convergence is
theoretically not improvable for the stochastic SPP described above unless certain
special properties are assumed.

The stochastic APD method is obtained by replacing the gradient operators −Ax̃t ,
∇ f̂ (xmd

t ) and AT yt+1, used in (4.4.13) and (4.4.14), with the stochastic gradient
operators computed by the SFO, i.e., −Âx(x̃t), Ĝ(xt) an Ây(yt+1), respectively. This
algorithm is formally described as in Algorithm 4.3.

Algorithm 4.3 Stochastic APD method for stochastic SPP
Modify (4.4.13) and (4.4.14) in Algorithm 4.2 to

yt+1 = argminy ∈ Y 〈−Âx(x̃t),y〉+ ĝ(y)+ 1
τt

VY (y,yt), (4.4.56)

xt+1 = argminx ∈ X〈Ĝ(xt),x〉+ 〈x, Ây(yt+1)〉+ 1
ηt

VX (x,xt). (4.4.57)

As noted earlier, one possible way to solve stochastic SPP is to apply the acceler-
ated stochastic gradient descent method to a certain smooth approximation of (4.4.1).
However, the rate of convergence of this approach will depend on the variance of
the stochastic gradients computed for the smooth approximation problem, which
is usually unknown and difficult to characterize. On the other hand, the stochastic
APD method described above works directly with the original problem without
requiring the application of the smoothing technique, and its rate of convergence will
depend on the variance of the stochastic gradient operators computed for the original
problem, i.e., σ2

x, f̂
, σ2

y and σ2
x,A.
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Similarly to Section 4.4.1, we use the two gap functions g(·) and g̃(·, ·), respec-
tively, defined in (4.4.21) and (4.4.40) as the termination criteria for the stochastic
APD algorithm, depending on whether the feasible set Z = X ×Y is bounded or
not. More specifically, we establish the convergence of the stochastic APD method
for case when Z is bounded or unbounded in Theorems 4.8 and 4.9, respectively.
Since the algorithm is stochastic in nature, for both cases we establish its expected
rate of convergence in terms of g(·) or g̃(·, ·), i.e., the “average” rate of convergence
over many runs of the algorithm. In addition, we show that if Z is bounded, then
the convergence of the APD algorithm can be strengthened under the following
“light-tail” assumption on the stochastic first-order oracle.

Assumption 9

E
[
exp{‖∇ f̂ (x)− Ĝ(x)‖2

∗/σ
2
x, f̂ }
]
≤ exp{1},

E
[
exp{‖Ax− Âx(x)‖2

∗/σ
2
y }
]
≤ exp{1}

E
[
exp{‖AT y− Ây(y)‖2

∗/σ
2
x,A}
]
≤ exp{1}.

Let Ĝ(xt), Âx(x̃t) and Ây(yt+1) be the output from the SFO at the t-th iteration of
Algorithm 4.3. We denote

∆
t
x, f̂ := Ĝ(xt)−∇ f̂ (xmd

t ), ∆
t
x,A := Ây(yt+1)−AT yt+1, ∆

t
y :=−Âx(x̃t)+Ax̃t ,

∆
t
x := ∆

t
x, f̂ +∆

t
x,A and ∆

t := (∆ t
x,∆

t
y).

Moreover, for a given z=(x,y)∈ Z, let us denote ‖z‖2 = ‖x‖2+‖y‖2 and its associate
dual norm for ∆ = (∆x,∆y) by ‖∆‖2

∗ = ‖∆x‖2
∗+‖∆y‖2

∗. We also define the Bregman
divergence V (z, z̃) :=VX (x, x̃)+VY (y, ỹ) for z = (x,y) and z̃ = (x̃, ỹ).

We first need to estimate a bound on Q(z̄t+1,z) for all z ∈ Z. This result is analo-
gous to Lemma 4.7 for the deterministic APD method.

Lemma 4.9. Let z̄t = (x̄t , ȳt) be the iterates generated by Algorithm 4.3. Assume that
the parameters βt ,θt ,ηt and τt satisfy (4.4.24), (4.4.25) and

q
ηt
− L f̂

βt
− ‖A‖2τt

p ≥ 0 (4.4.58)

for some p,q ∈ (0,1). Then, for any z ∈ Z, we have

βtγtQ(z̄t+1,z)≤ Bt(z,z[t])+ γt〈A(xt+1− xt),y− yt+1〉

− γt

(
q

2ηt
− L f̂

2βt

)
‖xt+1− xt‖2 +∑

t
i=1Λi(z),

(4.4.59)

where γt and Bt(z,z[t]), respectively, are defined in (4.4.22) and (4.4.28), z[t] =
{(xi,yi)}t+1

i=1 and
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Λi(z) :=− (1−q)γi
2ηi
‖xi+1− xi‖2− (1−p)γi

2τi
‖yi+1− yi‖2− γi〈∆ i,zi+1− z〉. (4.4.60)

Proof. Similar to (4.4.29) and (4.4.31), we conclude from the optimality conditions
of (4.4.56) and (4.4.57) that

〈−Âx(x̃t),yt+1− y〉+ ĝ(yt+1)− ĝ(y)≤ 1
τt

VY (y,yt)− 1
2τt
‖yt+1− yt‖2− 1

τt
VY (y,yt+1),

〈Ĝ(xt),xt+1− x〉+ 〈xt+1− x, Ây(yt+1)〉 ≤ 1
ηt

VX (x,xt)− 1
2ηt
‖xt+1− xt‖2− 1

ηt
VX (x,xt+1).

Now we establish an important recursion for Algorithm 4.3. Observing that
Proposition 4.12 also holds for Algorithm 4.3, and applying the above two inequalities
to (4.4.23) in Proposition 4.12, similar to (4.4.33), we have

βtγtQ(z̄t+1,z)− (βt −1)γtQ(z̄t ,z)

≤ γt
ηt

VX (x,xt)− γt
ηt

VX (x,xt+1)+
γt
τt

VY (y,yt)− γt
τt

VY (y,yt+1)

+ γt〈A(xt+1− xt),y− yt+1〉− γt−1〈A(xt − xt−1),y− yt〉

− γt

(
1

2ηt
− L f̂

2βt

)
‖xt+1− xt‖2− γt

2τt
‖yt+1− yt‖2− γt−1〈A(xt − xt−1),yt − yt+1〉

− γt〈∆ t
x, f̂ +∆

t
x,A,xt+1− x〉− γt〈∆ t

y,yt+1− y〉, ∀z ∈ Z.
(4.4.61)

By Cauchy-Schwartz inequality and (4.4.25), for all p ∈ (0,1),

− γt−1〈A(xt − xt−1),yt − yt+1〉 ≤ γt−1‖A(xt − xt−1)‖∗‖yt − yt+1‖

≤ ‖A‖γt−1‖xt − xt−1‖‖yt − yt+1‖ ≤ ‖A‖
2γ2

t−1τt
2pγt

‖xt − xt−1‖2 + pγt
2τt
‖yt − yt+1‖2

≤ ‖A‖
2γt−1τt−1

2p ‖xt − xt−1‖2 + pγt
2τt
‖yt − yt+1‖2.

(4.4.62)

By (4.4.24), (4.4.60), (4.4.61) and (4.4.62), we can develop the following recursion
for Algorithm 4.3:

(βt+1−1)γt+1Q(z̄t+1,z)− (βt −1)γtQ(z̄t ,z) = βtγtQ(z̄t+1,z)− (βt −1)γtQ(z̄t ,z)
≤ γt

ηt
VX (x,xt)− γt

ηt
VX (x,xt+1)+

γt
τt

VY (y,yt)− γt
τt

VY (y,yt+1)

+γt〈A(xt+1− xt),y− yt+1〉− γt−1〈A(xt − xt−1),y− yt〉
−γt

(
q

2ηt
− L f̂

2βt

)
‖xt+1− xt‖2 +

‖A‖2γt−1τt−1
2p ‖xt − xt−1‖2 +Λt(x), ∀z ∈ Z.

Applying the above inequality inductively and assuming that x0 = x1, we obtain

(βt+1−1)γt+1Q(z̄t+1,z)− (β1−1)γ1Q(z̄1,z)

≤ Bt(z,z[t])+ γt〈A(xt+1− xt),y− yt+1〉− γt

(
q

2ηt
− L f̂

2βt

)
‖xt+1− xt‖2

−∑
t−1
i=1γi

(
q

2ηi
− L f̂

2βi
− ‖A‖2τi

2p

)
‖xi+1− xi‖2 +∑

t
i=1Λi(x), ∀z ∈ Z.
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Relation (4.4.59) then follows immediately from the above inequality, (4.4.24) and
(4.4.58).

We also need the following technical result whose proof is based on Lemma 4.3.

Lemma 4.10. Let ηi,τi and γi, i = 1,2, . . ., be given positive constants. For any
z1 ∈ Z, if we define zv

1 = z1 and

zv
i+1 = argminz=(x,y)∈Z

{
−ηi〈∆ i

x,x〉− τi〈∆ i
y,y〉+V (z,zv

i )
}
, (4.4.63)

then

∑
t
i=1γi〈−∆

i,zv
i − z〉 ≤ Bt(z,zv

[t])+∑
t
i=1

ηiγi
2 ‖∆ i

x‖2
∗+∑

t
i=1

τiγi
2 ‖∆ i

y‖2
∗, (4.4.64)

where zv
[t] := {zv

i }t
i=1 and Bt(z,zv

[t]) is defined in (4.4.28).

Proof. Noting that (4.4.63) implies zv
i+1 = (xv

i+1,y
v
i+1) where

xv
i+1 = argminx=∈X

{
−ηi〈∆ i

x,x〉+VX (x,xv
i )
}

yv
i+1 = argminy ∈ Y

{
−τi〈∆ i

y,y〉+V (y,yv
i )
}
,

from Lemma 4.3 we have

VX (x,xv
i+1)≤VX (x,xv

i )−ηi〈∆ i
x,x− xv

i 〉+
η2

i ‖∆ i
x‖2∗

2 ,

VY (y,yv
i+1)≤VY (y,yv

i )− τi〈∆ i
y,y− yv

i 〉+
τ2

i ‖∆ i
y‖2∗

2

for all i≥ 1. Thus

γi
ηi

VX (x,xv
i+1)≤ γi

ηi
VX (x,xv

i )− γi〈∆ i
x,x− xv

i 〉+ γiηi‖∆ i
x‖2∗

2 ,

γi
τi

VY (y,yv
i+1)≤ γi

τi
VY (y,yv

i )− γi〈∆ i
y,y− yv

i 〉+
γiτi‖∆ i

y‖2∗
2 .

Adding the above two inequalities together, and summing up them from i = 1 to t we
get

0≤ Bt(z,zv
[t])−∑

t
i=1γi〈∆ i,z− zv

i 〉+∑
t
i=1

γiηi‖∆ i
x‖2∗

2 +∑
t
i=1

γiτi‖∆ i
y‖2∗

2 ,

so (4.5.35) holds.

We are now ready to establish the convergence of stochastic APD for the case
when Z is bounded.

Theorem 4.8. Suppose that (4.4.34) holds for some DX ,DY > 0. Also assume that for
all t ≥ 1, the parameters βt ,θt ,ηt and τt in Algorithm 4.3 satisfy (4.4.24), (4.4.25),
and (4.4.58) for some p,q ∈ (0,1). Then,

a) Under assumption 8, for all t ≥ 1,
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E[g(z̄t+1)]≤ Q0(t), (4.4.65)

where

Q0(t) := 1
βt γt

{
4γt
ηt

D2
X + 4γt

τt
D2

Y

}
+ 1

2βt γt
∑

t
i=1

{
(2−q)ηiγi

1−q σ2
x +

(2−p)τiγi
1−p σ2

y

}
.

(4.4.66)
b) Under assumption 11, for all λ > 0 and t ≥ 1,

Prob{g(z̄t+1)> Q0(t)+λQ1(t)} ≤ 3exp{−λ
2/3}+3exp{−λ}, (4.4.67)

where
Q1(t) := 1

βt γt

(
2σxDX +

√
2σyDY

)√
2∑

t
i=1γ2

i

+ 1
2βt γt

∑
t
i=1

[
(2−q)ηiγi

1−q σ2
x +

(2−p)τiγi
1−p σ2

y

]
.

(4.4.68)

Proof. Firstly, applying the bounds in (4.4.36) and (4.4.37) to (4.4.59), we get

βtγtQ(z̄t+1,z)≤ γt
ηt

D2
X − γt

ηt
VX (x,xt+1)+

γt
τt

D2
Y − γt

τt
VY (y,yt+1)+

γt
2τt
‖y− yt+1‖2

− γt

(
q

2ηt
− L f̂

2βt
− ‖A‖2τt

2

)
‖xt+1− xt‖2 +∑

t
i=1Λi(z)

≤ γt
ηt

D2
X + γt

τt
D2

Y +∑
t
i=1Λi(z), ∀z ∈ Z.

(4.4.69)

By (4.4.60), we have

Λi(z) =− (1−q)γi
2ηi
‖xi+1− xi‖2− (1−p)γi

2τi
‖yi+1− yi‖2 + γi〈∆ i,z− zi+1〉

= − (1−q)γi
2ηi
‖xi+1− xi‖2− (1−p)γi

2τi
‖yi+1− yi‖2 + γi〈∆ i,zi− zi+1〉+ γi〈∆ i,z− zi〉

≤ ηiγi
2(1−q)‖∆

i
x‖2
∗+

τiγi
2(1−p)‖∆

i
y‖2
∗ + γi〈∆ i,z− zi〉,

(4.4.70)

where the last relation follows from Young’s inequality. For all i≥ 1, letting zv
1 = z1,

and zv
i+1 as in (4.4.63), we conclude from (4.4.70) and Lemma 4.10 that, ∀z ∈ Z,

∑
t
i=1Λi(z)≤ ∑

t
i=1

{
ηiγi

2(1−q)‖∆
i
x‖2
∗+

τiγi
2(1−p)‖∆

i
y‖2
∗+ γi〈∆ i,zv

i − zi〉+ γi〈−∆
i,zv

i − z〉
}

≤Bt(z,zv
[t])+

1
2 ∑

t
i=1

{
(2−q)ηiγi
(1−q) ‖∆

i
x‖2
∗+

(2−p)τiγi
1−p ‖∆ i

y‖2
∗+ γi〈∆ i,zv

i − zi〉
}

︸ ︷︷ ︸
Ut

,

(4.4.71)

where similar to (4.4.36) we have Bt(z,zv
[t])≤ D2

X γt/ηt +D2
Y γt/τt . Using the above

inequality, (4.4.21), (4.4.34) and (4.4.69), we obtain

βtγtg(z̄t+1)≤ 2γt
ηt

D2
X + 2γt

τt
D2

Y +Ut . (4.4.72)
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Now it suffices to bound the above quantity Ut , both in expectation (part a)) and in
probability (part b)).

We first show part a). Note that by our assumptions on SFO, at iteration i of
Algorithm 4.3, the random noises ∆ i are independent of zi and hence E[〈∆ i,z−zi〉] =
0. In addition, Assumption 8 implies that E[‖∆ i

x‖2
∗]≤ σ2

x, f̂
+σ2

x,A = σ2
x (noting that

∆ i
x, f̂

and ∆ i
x,A are independent at iteration i), and E[‖∆ i

y‖2
∗]≤ σ2

y . Therefore,

E[Ut ]≤ 1
2 ∑

t
i=1

{
(2−q)ηiγiσ

2
x

1−q +
(2−p)τiγiσ

2
y

1−p

}
. (4.4.73)

Taking expectation on both sides of (4.4.72) and using the above inequality, we obtain
(4.4.65).

We now show that part b) holds. Note that by our assumptions on SFO and the
definition of zv

i , the sequences {〈∆ i
x, f̂

,xv
i −xi〉}i≥1 is a martingale-difference sequence.

By the large-deviation theorem for martingale-difference sequence (see Lemma 4.1),
and the fact that

E[exp
{

γ
2
i 〈∆ i

x, f̂ ,x
v
i − xi〉2/

(
2γ

2
i D2

X σ
2
x, f̂

)}
]

≤ E[exp
{
‖∆ i

x, f̂ ‖
2
∗‖xv

i − xi‖2/
(

2D2
X σ

2
x, f̂

)}
]

≤ E[exp
{
‖∆ i

x, f̂ ‖
2
∗VX (xv

i ,xi)/
(

D2
X σ

2
x, f̂

)}
]

≤ E[exp
{
‖∆ i

x, f̂ ‖
2
∗/σ

2
x, f̂

}
]≤ exp{1},

we conclude that

Prob
{

∑
t
i=1γi〈∆ i

x, f̂
,xv

i − xi〉> λ ·σx, f̂ DX

√
2
∑

t

i=1
γ2

i

}
≤ exp{−λ 2/3},∀λ > 0.

By using a similar argument, we can show that, ∀λ > 0,

Prob
{

∑
t
i=1γi〈∆ i

y,y
v
i − yi〉> λ ·σyDY

√
2
∑

t

i=1
γ2

i

}
≤ exp{−λ 2/3},

Prob
{

∑
t
i=1γi〈∆ i

x,A,x− xi〉> λ ·σx,ADX

√
2
∑

t

i=1
γ2

i

}

≤ exp{−λ 2/3}.

Using the previous three inequalities and the fact that σx, f̂ +σx,A ≤
√

2σx, we have,
∀λ > 0,

Prob
{

∑
t
i=1γi〈∆ i,zv

i − zi〉> λ

[√
2σxDX +σyDY

]√
2∑

t
i=1γ2

i

}

≤ Prob
{

∑
t
i=1γi〈∆ i,zv

i − zi〉> λ

[
(σx, f̂ +σx,A)DX +σyDY

]√
2∑

t
i=1γ2

i

}

≤ 3exp{−λ 2/3}.

(4.4.74)
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Now let Si := (2−q)ηiγi/(1−q) and S :=∑
t
i=1Si. By the convexity of exponential

function, we have

E
[
exp
{

1
S ∑

t
i=1Si‖∆ i

x, f̂
‖2
∗/σ2

x, f̂

}]
≤ E

[
1
S ∑

t
i=1Siexp

{
‖∆ i

x, f̂
‖2
∗/σ2

x, f̂

}]
≤ exp{1}.

where the last inequality follows from Assumption 11. Therefore, by Markov’s
inequality, for all λ > 0,

Prob
{

∑
t
i=1

(2−q)ηiγi
1−q ‖∆ i

x, f̂
‖2
∗ > (1+λ )σ2

x, f̂ ∑
t
i=1

(2−q)ηiγi
1−q

}

= Prob
{

exp
{

1
S ∑

t
i=1Si‖∆ i

x, f̂
‖2
∗/σ2

x, f̂

}
≥ exp{1+λ}

}
≤ exp{−λ}.

Using an similar argument, we can show that

Prob
{

∑
t
i=1

(2−q)ηiγi
1−q ‖∆ i

x,A‖2
∗ > (1+λ )σ2

x,A∑
t
i=1

(2−q)ηiγi
1−q

}
≤ exp{−λ},

Prob
{

∑
t
i=1

(2−p)τiγi
1−p ‖∆ i

y‖2
∗ > (1+λ )σ2

y ∑
t
i=1

(2−p)τiγi
1−p

}
≤ exp{−λ}.

Combining the previous three inequalities, we obtain

Prob
{

∑
t
i=1

(2−q)ηiγi
1−q ‖∆ i

x‖2
∗+∑

t
i=1

(2−p)τiγi
1−p ‖∆ i

y‖2
∗ >

(1+λ )
[
σ2

x ∑
t
i=1

(2−q)ηiγi
1−q +σ2

y ∑
t
i=1

(2−p)τiγi
1−p

]}
≤ 3exp{−λ},

(4.4.75)

Our result now follows directly from (4.4.71), (4.4.72), (4.4.74) and (4.4.75).

We provide below a specific choice of the parameters βt , θt , ηt and τt for the
stochastic APD method for the case when Z is bounded.

Corollary 4.3. Suppose that (4.4.34) holds. In Algorithm 4.3, if the parameters are
set to

βt =
t+1

2 , θt =
t−1

t , ηt =
2
√

2DX t
6
√

2L f̂ DX+3
√

2‖A‖DY t+3σxt3/2 and τt =
2
√

2DY
3
√

2‖A‖DX+3σy
√

t
.

(4.4.76)

Then under Assumption 8, (4.4.65) holds, and

Q0(t)≤
12L f̂ D2

X
t(t+1) + 12‖A‖DX DY

t +
6
√

2(σxDX+σyDY )√
t . (4.4.77)

If in addition, Assumption 11 holds, then for all λ > 0, (4.4.67) holds, and

Q1(t)≤ 5
√

2σxDX+4
√

2σyDY√
t . (4.4.78)

Proof. First we check that the parameters in (4.4.76) satisfy the conditions in The-
orem 4.8. The inequalities (4.4.24) and (4.4.25) can be checked easily. Furthermore,
setting p = q = 2/3 we have for all t ≥ 1,
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q
ηt
− L f̂

βt
− ‖A‖2τt

p ≥ 2L f̂ DX+‖A‖DY t
DX t − 2L f̂

t+1 −
‖A‖2DY t
‖A‖DX t ≥ 0,

thus (4.4.58) hold, and hence Theorem 4.8 holds. Now it suffice to show that (4.4.77)
and (4.4.78) hold.

Observe that by (4.4.22) and (4.4.76), we have γt = t. Also, observe that ∑
t
i=1
√

i≤
∫ t+1

1
√

udu≤ 2
3 (t +1)3/2 ≤ 2

√
2

3 (t +1)
√

t, thus

1
γt

∑
t
i=1ηiγi ≤ 2

√
2DX

3σxt ∑
t
i=1

√
i≤ 8DX (t+1)

√
t

9σxt

1
γt

∑
t
i=1τiγi ≤ 2

√
2DY

3σyt ∑
t
i=1

√
i≤ 8DY (t+1)

√
t

9σyt .

Apply the above bounds to (4.4.66) and (4.5.40), we get

Q0(t)≤ 2
t+1

(
6
√

2L f̂ DX+3
√

2‖A‖DY t+3σxt3/2
√

2DX t
·D2

X +
3
√

2‖A‖DX+3σy
√

t√
2DY

·D2
Y

+2σ2
x · 8DX (t+1)

√
t

9σxt +2σ2
y · 4DY (t+1)

√
t

9σyt

)
,

Q1(t)≤ 2
t(t+1)

(√
2σxDX +σyDY

)√
2t(t+1)2

3 + 4σ2
x

t+1 ·
8DX (t+1)

√
t

9σxt

+
4σ2

y
t+1 ·

8DY (t+1)
√

t
9σyt .

Simplifying the above inequalities, we see that (4.4.77) and (4.4.78) hold.

In view of (4.4.77), the stochastic APD method allows us to have very large
Lipschitz constants L f̂ (as big as O(N3/2)) and ‖A‖ (as big as O(

√
N)) without

significantly affecting its rate of convergence.

We now present the convergence results for the stochastic APD method applied
to stochastic saddle-point problems with possibly unbounded feasible set Z. Similar
as proving Theorem 4.7, first we specialize the result of Lemma 3 under (4.4.24),
(4.4.41) and (4.4.58). The following lemma is analogous to Lemma 4.8.

Lemma 4.11. Let ẑ = (x̂, ŷ) ∈ Z be a saddle point of (4.4.1). If VX (x,xt) = ‖x−
xt‖2/2 and VY (y,yt) = ‖y− yt‖2/2 in Algorithm 4.3, and the parameters βt ,θt ,ηt
and τt satisfy (4.4.24), (4.4.41) and (4.4.58), then

‖x̂− xt+1‖2 +‖x̂− xv
t+1‖2 + ηt (1−p)

τt
‖ŷ− yt+1‖2 + ηt

τt
‖ŷ− yv

t+1‖2

≤ 2‖x̂− x1‖2 + 2ηt
τt
‖ŷ− y1‖2 + 2ηt

γt
Ut ,

(4.4.79)

g̃(zag
t+1,vt+1)≤ 1

βt ηt
‖x̄t+1− x1‖2 + 1

βt τt
‖ȳt+1− y1‖2 + 1

βt γt
Ut =: δt+1, (4.4.80)

for all t ≥ 1, where (xv
t+1, yv

t+1), Ut and g̃(·, ·) are defined in (4.4.63), (4.4.71) and
(4.4.40), respectively, and

vt+1 =
(

1
βt ηt

(2x1− xt+1− xv
t+1),

1
βt τt

(2y1− yt+1− yv
t+1)+

1
βt

A(xt+1− xt)
)
.

(4.4.81)
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Proof. Apply (4.4.58), (4.4.47) and (4.4.71) to (4.4.59) in Lemma 3, we get

βtγtQ(z̄t+1,z)≤ B̄(z,z[t])+
pγt
2τt
‖y− yt+1‖2 + B̄(z,zv

[t])+Ut ,

where B̄(·, ·) is defined as

B̄(z, z̃[t]) := γt
2ηt
‖x− x̃1‖2− γt

2ηt
‖x− x̃t+1‖2 + γt

2τt
‖y− ỹ1‖2− γt

2τt
‖y− ỹt+1‖2,

for all z ∈ Z and z̃[t] ⊂ Z thanks to (4.4.41). Now letting z = ẑ, and noting that
Q(z̄t+1, ẑ) ≥ 0, we get (4.4.79). On the other hand, if we only apply (4.4.58) and
(4.4.71) to (4.4.59) in Lemma 3, then we get

βtγtQ(z̄t+1,z)≤ B̄(z,z[t])+ γt〈A(xt+1− xt),y− yt+1〉+ B̄(z,zv
[t])+Ut .

Apply (4.4.41) and (4.4.48) to B̄(z,z[t]) and B̄(z,zv
[t]) in the above inequality, we get

(4.4.80).

With the help of Lemma 4.11, we are ready to prove Theorem 4.9, which summa-
rizes the convergence properties of Algorithm 4.2 when X or Y is unbounded.

Theorem 4.9. Let {z̄t}= {(x̄t , ȳt)} be the iterates generated by Algorithm 4.2 with
VX (x,xt) = ‖x− xt‖2/2 and VY (y,yt) = ‖y− yt‖2/2. Assume that the parameters
βt ,θt ,ηt and τt in Algorithm 4.3 satisfy (4.4.24), (4.4.41) and (4.4.58) for all t ≥ 1
and some p,q ∈ (0,1), then there exists a perturbation vector vt+1 such that

E[g̃(zag
t+1

,vt+1)]≤ 1
βt ηt

(
6−4p
1−p D2 + 5−3p

1−p C2
)
=: εt+1 (4.4.82)

for any t ≥ 1. Moreover, we have

E[‖vt+1‖]≤ 2‖x̂−x1‖
βt ηt

+ 2‖ŷ−y1‖
βt τt

+
√

2D2 +2C2
[

2
βt ηt

+ 1
βt τt

√
τ1
η1

(√
1

1−p +1
)
+ 2‖A‖

βt

]
, (4.4.83)

where (x̂, ŷ) is a pair of solutions for problem (4.4.1), D is defined in (4.4.51) and

C :=

√
∑

t
i=1

η2
i σ2

x
1−q +∑

t
i=1

ηiτiσ
2
y

1−p . (4.4.84)

Proof. Let δt+1 and vt+1 be defined in (4.4.80) and (4.4.81), respectively. Also
let C and D, respectively, be defined in (4.4.84) and (4.4.51). It suffices to estimate
E[‖vt+1‖] and E[δt+1]. First it follows from (4.4.41), (4.4.84) and (4.4.73) that

E[Ut ]≤ γt
ηt

C2. (4.4.85)

Using the above inequality, (4.4.41), (4.4.51) and (4.4.79), we have E[‖x̂−xt+1‖2]≤
2D2 + 2C2 and E[‖ŷ− yt+1‖2] ≤ (2D2 + 2C2)τ1/[η1(1− p)], which, by Jensen’s
inequality, then imply that E[‖x̂ − xt+1‖] ≤

√
2D2 +2C2 and E[‖ŷ− yt+1‖] ≤
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√
2D2 +2C2

√
τ1/[η1(1− p)]. Similarly, we can show that E[‖x̂−xv

t+1‖]≤
√

2D2 +2C2

and E[‖ŷ−yv
t+1‖]≤

√
2D2 +2C2

√
τ1/η1. Therefore, by (4.4.81) and the above four

inequalities, we have

E[‖vt+1‖]
≤ E

[
1

βt ηt

(
‖x1− xt+1‖+‖x1− xv

t+1‖
)
+ 1

βt τt

(
‖y1− yt+1‖+‖y1− yv

t+1‖
)

+ ‖A‖
βt
‖xt+1− xt‖

]

≤ E
[

1
βt ηt

(
2‖x̂− x1‖+‖x̂− xt+1‖+‖x̂− xv

t+1‖
)

+ 1
βt τt

(
2‖ŷ− y1‖+‖ŷ− yt+1‖+‖ŷ− yv

t+1‖
)
+ ‖A‖

βt
(‖x̂− xt+1‖+‖x̂− xt‖)

]

≤ 2‖x̂−x1‖
βt ηt

+ 2‖ŷ−y1‖
βt τt

+
√

2D2 +2C2
[

2
βt ηt

+ 1
βt τt

√
τ1
η1

(√
1

1−p +1
)
+ 2‖A‖

βt

]
,

thus (4.4.83) holds.
Now let us estimate a bound on δt+1. By (4.4.52), (4.4.73), (4.4.79) and (4.4.85),

we have

E[δt+1] = E
[

1
βt ηt
‖x̄t+1− x1‖2 + 1

βt τt
‖ȳt+1− y1‖2

]
+ 1

βt γt
E[Ut ]

≤ E
[

2
βt ηt

(
‖x̂− x̄t+1‖2 +‖x̂− x1‖2

)
+ 2

βt τt

(
‖ŷ− ȳt+1‖2 +‖ŷ− y1‖2

)]
+ 1

βt ηt
C2

= E
[

1
βt ηt

(
2D2 +2‖x̂− x̄t+1‖2 + 2ηt (1−p)

τt
‖ŷ− ȳt+1‖2 + 2ηt p

τt
‖ŷ− ȳt+1‖2

)]
+ 1

βt ηt
C2

≤ 1
βt ηt

[
2D2 +C2 + 2

βt γt
∑

t
i=1γi

(
E
[
‖x̂− xi+1‖2

]
+ ηt (1−p)

τt
E
[
‖ŷ− yi+1‖2

]

+ηt p
τt
E
[
‖ŷ− yi+1‖2

])]

≤ 1
βt ηt

[
2D2 +C2 + 2

βt γt
∑

t
i=1γi

(
2D2 +C2 + ηt p

τt
· τ1

η1(1−p) (2D2 +C2)
)]

= 1
βt ηt

(
6−4p
1−p D2 + 5−3p

1−p C2
)
.

Therefore (4.4.82) holds.

Below we specialize the results in Theorem 4.9 by choosing a set of parameters
satisfying (4.4.24), (4.4.41) and (4.4.58).

Corollary 4.4. In Algorithm 4.3, if N is given and the parameters are set to

βt =
t+1

2 , θt =
t−1

t , ηt =
3t
4η
, and τt =

t
η
, (4.4.86)

where

η = 2L f̂ +2‖A‖(N−1)+ N
√

N−1σ

D̃ for some D̃ > 0, σ =
√

9
4 σ2

x +σ2
y , (4.4.87)

then there exists vN that satisfies (4.4.82) with
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εN ≤
36L f̂ D2

N(N−1) +
36‖A‖D2

N +
σD(18D/D̃+6D̃/D)√

N−1
, (4.4.88)

E[‖vN‖]≤
50L f̂ D

N(N−1) +
‖A‖D(55+4D̃/D)

N + σ(9+25D/D̃)√
N−1

, (4.4.89)

where D is defined in (4.4.51).

Proof. For the parameters in (4.4.86), it is clear that (4.4.24) and (4.4.41) hold.
Furthermore, let p = 1/4, q = 3/4, then for all t = 1, . . . ,N−1, we have

q
ηt
− L f̂

βt
− ‖A‖2τt

p = η

t −
2L f̂
t+1 −

4‖A‖2t
η
≥ 2L f̂ +2‖A‖(N−1)

t − 2L f̂
t −

2‖A‖2t
‖A‖(N−1) ≥ 0,

thus (4.4.58) holds. By Theorem 4.9, we get (4.4.82) and (4.4.83). Note that ηt/τt =
3/4, and

1
βN−1ηN−1

‖x̂− x1‖ ≤ 1
βN−1ηN−1

D, 1
βN−1τN−1

‖ŷ− y1‖

≤ 1
βN−1ηN−1

· ηN−1
τN−1
·
√

4
3 D =

√
3/4D

βN−1ηN−1
,

so in (4.4.82) and (4.4.83) we have

εN ≤ 1
βN−1ηN−1

( 20
3 D2 + 17

3 C2), (4.4.90)

E[‖vN‖]≤ (2+
√

3)D
βN−1ηN−1

+

√
2D2+2C2

(
3+
√

3/4
)

βN−1ηN−1
+ 2‖A‖

√
2D2+2C2

βN−1
. (4.4.91)

By (4.4.84) and the fact that ∑
N−1
i=1 i2 ≤ N2(N−1)/3, we have

C =

√
∑

N−1
i=1

9σ2
x i2

4η2 +∑
N−1
i=1

σ2
y i2

η2 ≤
√

1
3η2 N2(N−1)

(
9σ2

x
4 +σ2

y

)
= σN

√
N−1√

3η

Applying the above bound to (4.4.90) and (4.4.91), and using (4.4.87) and the fact
that
√

2D2 +C2 ≤
√

2D+C, we obtain

εN ≤ 8η

3N(N−1)

(
20
3 D2 + 17σ2N2(N−1)

9η2

)
= 8

3N(N−1)

(
20
3 ηD2 + 17σ2N2(N−1)

9η

)

≤ 320L f̂ D2

9N(N−1) +
320‖A‖(N−1)D2

9N(N−1) + 160N
√

N−1σD2/D̃
9N(N−1) + 136σ2N2(N−1)

27N2(N−1)3/2σ/D̃

≤ 36L f̂ D2

N(N−1) +
36‖A‖D2

N +
σD(18D/D̃+6D̃/D)√

N−1
,

E[‖vN‖]≤ 1
βN−1ηN−1

(
2D+

√
3D+3

√
2D+

√
6D/2+3

√
2C+

√
6C/2

)

+ 2
√

2‖A‖D
βN−1

+ 2
√

2‖A‖C
βN−1

≤ 16L f̂ +16‖A‖(N−1)+8N
√

N−1σ/D̃
3N(N−1)

(
2+
√

3+3
√

2+
√

6/2
)

D

+ 8σ

3
√

N−1

(√
6+
√

2/2
)
+ 4
√

2‖A‖D
N + 4

√
2‖A‖σN

√
N−1

N
√

3N
√

N−1σ/D̃

≤ 50L f̂ D
N(N−1) +

‖A‖D(55+4D̃/D)
N + σ(9+25D/D̃)√

N−1
.
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Observe that the parameter settings in (4.4.86)-(4.4.87) are more complicated
than the ones in (4.4.53) for the deterministic unbounded case. In particular, for
the stochastic unbounded case, we need to choose a parameter D̃ which is not
required for the deterministic case. Clearly, the optimal selection for D̃ minimizing
the RHS of (4.4.88) is given by

√
6D. Note however, that the value of D will be

very difficult to estimate for the unbounded case and hence one often has to resort
to a suboptimal selection for D̃. For example, if D̃ = 1, then the RHS of (4.4.88)
and (4.4.89) will become O(L f̂ D2/N2 +‖A‖D2/N +σD2/

√
N) and O(L f̂ D/N2 +

‖A‖D/N +σD/
√

N), respectively.

4.5 Stochastic accelerated mirror-prox method

Let Rn denote a finite dimensional vector space with inner product 〈·, ·〉 and norm
‖ · ‖ (not necessarily induced by 〈·, ·〉), and Z be a non-empty closed convex set in
Rn. Our problem of interest is to find an u∗ ∈ Z that solves the following monotone
stochastic variational inequality (SVI) problem:

〈Eξ ,ζ [F(u;ξ ,ζ )],u∗−u〉 ≤ 0,∀u ∈ Z. (4.5.1)

Here, the expectation is taken with respect to the random vectors ξ and ζ whose
distributions are supported on Ξ ⊆ Rd and Ξ ′ ⊆ Rd′ , respectively, and F is given by
the summation of three components with different structural properties, i.e.,

F(u;ξ ,ζ ) = G(u;ξ )+H(u;ζ )+ J′(u), ∀u ∈ Z. (4.5.2)

In particular, we assume that J′(u) ∈ ∂J(u) is a subgradient of a relatively simple
and convex function J (see (4.5.9) below), H(u;ζ ) is an unbiased estimator of a
monotone and Lipschitz continuous operator H such that Eζ [H(u;ζ )] = H(u),

〈H(w)−H(v),w− v〉 ≥ 0, and ‖H(w)−H(v)‖∗ ≤M‖w− v‖, ∀w,v ∈ Z, (4.5.3)

where ‖ ·‖∗ denotes the conjugate norm of ‖ ·‖. Moreover, we assume that G(u;ξ ) is
an unbiased estimator of the gradient for a convex and continuously differentiable
function G such that Eξ [G(u;ξ )] = ∇G(u) and

0≤ G(w)−G(v)−〈∇G(v),w− v〉 ≤ L
2‖w− v‖2,∀w,v ∈ Z. (4.5.4)

Observe that u∗ given by (4.5.1) is often called a weak solution for SVI. Recall
that a related notion is a strong SVI solution (see Section 3.8). More specifically,
letting

F(u) := Eξ ,ζ [F(u;ξ ,ζ )] = ∇G(u)+H(u)+ J′(u), (4.5.5)

we say that u∗ is a strong SVI solution if it satisfies
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〈F(u∗),u∗−u〉 ≤ 0,∀u ∈ Z. (4.5.6)

It should be noted that the operator F above might not be continuous. Problems (4.5.1)
and (4.5.6) are also known as the Minty variational inequality and the Stampacchia
variational inequality respectively. For any monotone operator F , it is well-known
that strong solutions defined in (4.5.6) are also weak solutions in (4.5.1), and the
reverse is also true under mild assumptions (e.g., when F is continuous). For example,
for F in (4.5.5), if J = 0, then the weak and strong solutions in (4.5.1) and (4.5.6) are
equivalent. For the sake of notational convenience, we use SV I(Z;G,H,J) or simply
SV I(Z;F) to denote problem (4.5.1).

In this section, we assume that there exist stochastic first-order oracles SFOG and
SFOH that provide random samples of G(u;ξ ) and H(u;ξ ) for any test point u ∈ Z.

Assumption 10 At the i-th call of SFOG and SFOH with input z ∈ Z, the oracles
SFOG and SFOH output stochastic information G(z;ξi) and H(z;ζi) respectively,
such that

E
[
‖G(u;ξi)−∇G(u)‖2

∗
]
≤ σ

2
G and E

[
‖H(u;ζi)−H(u)‖2

∗
]
≤ σ

2
H ,

for some σG,σH ≥ 0, where ξi and ζi are independently distributed random samples.

For the sake of notational convenience, throughout this section we also denote

σ :=
√

σ2
G +σ2

H . (4.5.7)

Assumption 10 basically implies that the variance associated with G(u,ξi) and
H(u,ζi) is bounded. It should be noted that deterministic VIs, denoted by V I(Z;G,H,J),
are special cases of SVIs with σG = σH = 0. The above setting covers as a special
case of the regular SVIs whose operators G(u) or H(u) are given in the form of expec-
tation as shown in (4.5.1). Moreover, it provides a framework to study randomized
algorithms for solving deterministic VI or saddle point problems.

4.5.1 Algorithmic framework

By examining the structural properties (e.g., gradient field G and Lipschitz continuity
of H) of the SVI problems in (4.5.1), we can see that the total number of gradient
and operator evaluations for solving SVI cannot be smaller than

O

(√
L
ε
+ M

ε
+ σ2

ε2

)
. (4.5.8)

This is a lower complexity bound derived based on the following three observations:
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a) If H = 0 and σ = 0, SV I(Z;G,0,0) is equivalent to a smooth optimization problem
minu∈Z G(u), and the complexity for minimizing G(u) cannot be better than
O(
√

L/ε).
b) If G = 0 and σ = 0, the complexity for solving SV I(Z;0,H,0) cannot be better

than O(M/ε).
c) If H = 0, SV I(Z;G,0,0) is equivalent to a stochastic smooth optimization problem,

and the complexity cannot be better than O(σ2/ε2).

The lower complexity bound in (4.5.8) and the three observations stated above
provide some important guidelines to the design of efficient algorithms to solve the
SVI problem with the operator given in (4.5.5). It might seem natural to consider
the more general problem (4.5.6) by combining ∇G(u) and H(u) in (4.5.5) together
as a single monotone operator, instead of separating them apart. Such consideration
is reasonable from a generalization point of view, by noting that the convexity
of function G(u) is equivalent to the monotonicity of ∇G(u), and the Lipschitz
conditions (4.5.3) and (4.5.4) are equivalent to a Lipschitz condition of F(u) in
(4.5.6) with ‖F(w)−F(v)‖∗ ≤ (L+M)‖w− v‖. However, from the algorithmic
point of view, a special treatment of ∇G separately from H is crucial for the design of
accelerated algorithms. By observations b) and c) above, if we consider F := ∇G+H
as a single monotone operator, the complexity for solving SV I(Z;0;F ;0) can not be
smaller than

O
(

L+M
ε

+ σ2

ε2

)
,

which is worse than (4.5.8) in terms of the dependence on L.
In order to achieve the complexity bound in (4.5.8) for SVIs, we incorporate

a multi-step acceleration scheme into the mirror-prox method in Section 3.8, and
introduce a stochastic accelerated mirror-prox (SAMP) method that can exploit the
structural properties of (4.5.1). Specifically, we assume that the following subproblem
can be solved efficiently:

argminu∈Z〈η ,u− z〉+V (z,u)+ J(u). (4.5.9)

Here V (·, ·) is prox-function given by

V (z,u) := ω(u)−ω(z)−〈∇ω(z),u− z〉, ∀u,z ∈ Z. (4.5.10)

Using the aforementioned definition of the prox-mapping, we describe the SAMP
method in Algorithm 4.4.

Observe that in the SAMP algorithm we introduced two sequences, i.e., {wt} and
{w̄t}, that are convex combinations of iterations {wt} and {rt} as long as αt ∈ [0,1]. If
αt ≡ 1, G = 0 and J = 0, then Algorithm 4.4 for solving SV I(Z;0,H,0) is equivalent
to the stochastic version of the mirror-prox method in Section 3.8. Moreover, if the
distance generating function w(·) = ‖ · ‖2

2/2, then iterations (4.5.12) and (4.5.13)
become
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Algorithm 4.4 The stochastic accelerated mirror-prox (SAMP) method
Choose r1 ∈ Z. Set w1 = r1, w̄1 = r1.
For t = 1,2, . . . ,N−1, calculate

wt = (1−αt)w̄t +αt rt , (4.5.11)

wt+1 = argminu∈Zγt [〈H(rt ;ζ2t−1)+G(wt ;ξt),u− rt〉+ J(u)]+V (rt ,u), (4.5.12)

rt+1 = argminu∈Zγt [〈H(wt+1;ζ2t)+G(wt ;ξt),u− rt〉+ J(u)]+V (rt ,u), (4.5.13)

w̄t+1 = (1−αt)w̄t +αt wt+1. (4.5.14)

Output wag
N .

wt+1 = argminu∈Z〈γtH(rt),u− rt〉+ 1
2‖u− rt‖2

2,

rt+1 = argminu∈Z〈γtH(wt+1),u− rt〉+ 1
2‖u− rt‖2

2,

which are exactly the iterates of the extragradient method. On the other hand, if H = 0,
then (4.5.12) and (4.5.13) produce the same optimizer wt+1 = rt+1, and Algorithm
4.4 is equivalent to the stochastic accelerated gradient descent method in Section 4.2.
Therefore, Algorithm 4.4 can be viewed as a hybrid algorithm of the stochastic
mirror-prox method and the stochastic accelerated gradient descent method, which
gives its name stochastic accelerated mirror-prox method. It is interesting to note that
for any t, there are two calls of SFOH but just one call of SFOG.

4.5.2 Convergence analysis

In order to analyze the convergence of Algorithm 4.4, we introduce a notion to
characterize the weak solutions of SV I(Z;G,H,J). For all ũ,u ∈ Z, we define

Q(ũ,u) := G(ũ)−G(u)+ 〈H(u), ũ−u〉+ J(ũ)− J(u). (4.5.15)

Clearly, for F defined in (4.5.5), we have 〈F(u), ũ− u〉 ≤ Q(ũ,u). Therefore, if
Q(ũ,u)≤ 0 for all u ∈ Z, then ũ is a weak solution of SV I(Z;G,H,J). Hence when
Z is bounded, it is natural to use the gap function

g(ũ) := sup
u∈Z

Q(ũ,u) (4.5.16)

to evaluate the accuracy of a feasible solution ũ∈ Z. However, if Z is unbounded, then
g(z̃) may not be well-defined, even when z̃∈ Z is a nearly optimal solution. Therefore,
we need to employ a slightly modified gap function in order to measure the accuracy
of candidate solutions when Z is unbounded. In the sequel, we will consider the
cases of bounded and unbounded Z separately. For both cases we establish the rate
of convergence of the gap functions in terms of their expectation, i.e., the “average”
rate of convergence over many runs of the algorithm. Furthermore, we demonstrate
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that if Z is bounded, then we can also refine the rate of convergence of g(·) in the
probability sense, under the following “light-tail” assumption:

Assumption 11 For any i-th call on oracles SFOH and SFOH with any input u ∈ Z,

E[exp{‖∇G(u)−G(u;ξi)‖2
∗/σ

2
G}]≤ exp{1},

and
E[exp{‖H(u)−H(u;ζi)‖2

∗/σ
2
H}]≤ exp{1}.

Assumption 11 is sometimes called the sub-Gaussian assumption. Many different
random variables, such as Gaussian, uniform, and any random variables with a
bounded support, will satisfy this assumption. It should be noted that Assumption 11
implies Assumption 10 by Jensen’s inequality.

We start with establishing some convergence properties of Algorithm 4.4 when Z
is bounded. It should be noted that the following quantity will be used throughout
the convergence analysis of this paper:

Γt =

{
1, when t = 1
(1−αt)Γt−1, when t > 1.

(4.5.17)

To prove the convergence of the stochastic AMP algorithm, we first present some
technical results. Lemma 1 describe some important properties of the projection (or
prox-mapping) used in (4.5.12) and (4.5.13) of Algorithm 4.4. Lemma 2 provides a
recursion related to the function Q(·, ·) defined in (4.5.15). With the help of Lemmas
1 and 2, we estimate a bound on Q(·, ·) in Lemma 3.

Lemma 1 Given r,w,y ∈ Z and η ,ϑ ∈ Rn that satisfy

w = argminu∈Z〈η ,u− r〉+V (r,u)+ J(u), (4.5.18)
y = argminu∈Z〈ϑ ,u− r〉+V (r,u)+ J(u), (4.5.19)

and

‖ϑ −η‖2
∗ ≤ L2‖w− r‖2 +M2. (4.5.20)

Then, for all u ∈ Z,

〈ϑ ,w−u〉+ J(w)− J(u)≤V (r,u)−V (y,u)−
(

1
2 − L2

2

)
‖r−w‖2 + M2

2 ,

(4.5.21)

and

V (y,w)≤ L2V (r,w)+ M2

2 . (4.5.22)

Proof. Applying Lemma 3.5 to (4.5.18) and (4.5.19), for all u ∈ Z we have
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〈η ,w−u〉+ J(w)− J(u)≤V (r,u)−V (r,w)−V (w,u), (4.5.23)
〈ϑ ,y−u〉+ J(y)− J(u)≤V (r,u)−V (r,y)−V (y,u), (4.5.24)

In particular, letting u = y in (4.5.23) we have

〈η ,w− y〉+ J(w)− J(y)≤V (r,y)−V (r,w)−V (w,y). (4.5.25)

Adding inequalities (4.5.24) and (4.5.25), then

〈ϑ ,y−u〉+ 〈η ,w− y〉+ J(w)− J(u)≤V (r,u)−V (y,u)−V (r,w)−V (w,y),

which is equivalent to

〈ϑ ,w−u〉+ J(w)− J(u)≤ 〈ϑ −η ,w− y〉+V (r,u)−V (y,u)−V (r,w)−V (w,y).

Applying Schwartz inequality and Young’s inequality to the above inequality, and
using the fact that

1
2‖z−u‖2 ≤V (u,z),∀u,z ∈ Z, (4.5.26)

due to the strong convexity of ω(·) in (4.5.10), we obtain

〈ϑ ,w−u〉+ J(w)− J(u)

≤ ‖ϑ −η‖∗‖w− y‖+V (r,u)−V (y,u)−V (r,w)− 1
2‖w− y‖2

≤ 1
2‖ϑ −η‖2

∗+
1
2‖w− y‖2 +V (r,u)−V (y,u)−V (r,w)− 1

2‖w− y‖2

= 1
2‖ϑ −η‖2

∗+V (r,u)−V (y,u)−V (r,w).

(4.5.27)

The result in (4.5.21) then follows immediately from above relation, (4.5.20) and
(4.5.26).

Moreover, observe that by setting u = w and u = y in (4.5.24) and (4.5.27),
respectively, we have

〈ϑ ,y−w〉+ J(y)− J(w)≤V (r,w)−V (r,y)−V (y,w),

〈ϑ ,w− y〉+ J(w)− J(y)≤ 1
2‖ϑ −η‖2

∗+V (r,y)−V (r,w).

Adding the above two inequalities, and using (4.5.20) and (4.5.26), we have

0≤ 1
2‖ϑ−η‖2

∗−V (y,w)≤ L2

2 ‖r−w‖2+ M2

2 −V (y,w)≤ L2V (r,w)+ M2

2 −V (y,w),

and thus (4.5.22) holds.

Lemma 2 For any sequences {rt}t≥1 and {wt}t≥1 ⊂ Z, if the sequences {w̄t} and
{wt} are generated by (4.5.11) and (4.5.14), then for all u ∈ Z,
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Q(w̄t+1,u)− (1−αt)Q(w̄t ,u)

≤ αt〈∇G(wt)+H(wt+1),wt+1−u〉+ Lα2
t

2 ‖wt+1− rt‖2 +αtJ(wt+1)−αtJ(u).
(4.5.28)

Proof. Observe from (4.5.11) and (4.5.14) that w̄t+1−wt = αt(wt+1− rt). This
observation together with the convexity of G(·) imply that for all u ∈ Z,

G(w̄t+1)≤ G(wt)+ 〈∇G(wt), w̄t+1−wt〉+ L
2‖w̄t+1−wt‖2

= (1−αt) [G(wt)+ 〈∇G(wt), w̄t −wt〉]
+αt [G(wt)+ 〈∇G(wt),u−wt〉]
+αt〈∇G(wt),wt+1−u〉+ Lα2

t
2 ‖wt+1− rt‖2

≤ (1−αt)G(w̄t)+αtG(u)+αt〈∇G(wt),wt+1−u〉+ Lα2
t

2 ‖wt+1− rt‖2.

Using the above inequality, (4.5.14), (4.5.15) and the monotonicity of H(·), we have

Q(w̄t+1,u)− (1−αt)Q(w̄t ,u)

= G(w̄t+1)− (1−αt)G(w̄t)−αtG(u)

+ 〈H(u), w̄t+1−u〉− (1−αt)〈H(u), w̄t −u〉
+ J(w̄t+1)− (1−αt)J(w̄t)−αtJ(u)

≤ G(w̄t+1)− (1−αt)G(w̄t)−αtG(u)+αt〈H(u),wt+1−u〉
+αtJ(wt+1)−αtJ(u)

≤ αt〈∇G(wt),wt+1−u〉+ Lα2
t

2 ‖wt+1− rt‖2 +αt〈H(wt+1),wt+1−u〉
+αtJ(wt+1)−αtJ(u).

In the sequel, we will use the following notations to describe the inexactness
of the first order information from SFOH and SFOG. At the t-th iteration, letting
H(rt ;ζ2t−1), H(wt+1;ζ2t) and G(wt ;ξt) be the output of the stochastic oracles, we
denote

∆
2t−1
H := H(rt ;ζ2t−1)−H(rt),

∆
2t
H := H(wt+1;ζ2t)−H(wt+1),

∆
t
G := G(wt ;ξt)−∇G(wt).

(4.5.29)

Lemma 3 below provides a bound on Q(w̄t+1,u) for all u ∈ Z.

Lemma 3 Suppose that the parameters {αt} in Algorithm 4.4 satisfies α1 = 1 and
0≤ αt < 1 for all t > 1. Then the iterates {rt},{wt} and {w̄t} satisfy
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1
Γt

Q(w̄t+1,u)

≤ Bt(u,r[t])−∑
t
i=1

αi
2Γiγi

(
q−Lαiγi−3M2

γ
2
i
)
‖ri−wi+1‖2 +∑

t
i=1Λi(u), ∀u ∈ Z,

(4.5.30)

where Γt is defined in (4.5.17),

Bt(u,r[t]) := ∑
t
i=1

αi
Γiγi

(V (ri,u)−V (ri+1,u)), (4.5.31)

and

Λi(u) := 3αiγi
2Γi

(
‖∆ 2i

H ‖2
∗+‖∆ 2i−1

H ‖2
∗
)
− (1−q)αi

2Γiγi
‖ri−wi+1‖2

− αi
Γi
〈∆ 2i

H +∆
i
G,wi+1−u〉.

(4.5.32)

Proof. Observe from (4.5.29) that

‖H(wt+1;ζ2t)−H(rt ;ζ2t−1)‖2
∗

≤
(
‖H(wt+1)−H(rt)‖∗+‖∆ 2t

H ‖∗+‖∆ 2t−1
H ‖∗

)2

≤ 3
(
‖H(wt+1)−H(rt)‖2

∗+‖∆ 2t
H ‖2
∗+‖∆ 2t−1

H ‖2
∗
)

≤ 3
(
M2‖wt+1− rt‖2 +‖∆ 2t

H ‖2
∗+‖∆ 2t−1

H ‖2
∗
)
.

(4.5.33)

Applying Lemma 1 to (4.5.12) and (4.5.13) (with r = rt ,w = wt+1,y = rt+1,η =
γtH(rt ;ζ2t−1)+ γtG(wt ;ξt), ϑ = γtH(wt+1;ζ2t)+ γtG(wt ;ξt),J = γtJ, L2 = 3M2γ2

t
and M2 = 3γ2

t (‖∆ 2t
H ‖2
∗+‖∆ 2t−1

H ‖2
∗)), and using (4.5.33), we have for any u ∈ Z,

γt〈H(wt+1;ζ2t)+G(wt ;ξt),wt+1−u〉+ γtJ(wt+1)− γtJ(u)

≤ V (rt ,u)−V (rt+1,u)−
(

1
2 −

3M2γ2
t

2

)
‖rt −wt+1‖2 + 3γ2

t
2 (‖∆ 2t

H ‖2
∗+‖∆ 2t−1

H ‖2
∗).

Applying (4.5.29) and the above inequality to (4.5.28), we have

Q(w̄t+1,u)− (1−αt)Q(w̄t ,u)

≤ αt〈H(wt+1;ζ2t)+G(wt ;ξt),wt+1−u〉+αtJ(wt+1)−αtJ(u)

+ Lα2
t

2 ‖wt+1− rt‖2−αt〈∆ 2t
H +∆

t
G,wt+1−u〉

≤ αt
γt
(V (rt ,u)−V (rt+1,u))− αt

2γt

(
1−Lαtγt −3M2

γ
2
t
)
‖rt −wt+1‖2

+ 3αt γt
2

(
‖∆ 2t

H ‖2
∗+‖∆ 2t−1

H ‖2
∗
)
−αt〈∆ 2t

H +∆
t
G,wt+1−u〉.

Dividing the above inequality by Γt and using the definition of Λt(u) in (4.5.32), we
obtain

1
Γt

Q(w̄t+1,u)− 1−αt
Γt

Q(w̄t ,u)

≤ αt
Γt γt

(V (rt ,u)−V (rt+1,u))

− αt
2Γt γt

(
q−Lαtγt −3M2

γ
2
t
)
‖rt −wt+1‖2 +Λt(u).
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Noting the fact that α1 = 1 and (1−αt)/Γt = 1/Γt−1, t > 1, due to (4.5.17), applying
the above inequality recursively and using the definition of Bt(·, ·) in (4.5.31), we
conclude (4.5.30).

We still need the following technical result that helps to provide a bound on the
last stochastic term in (4.5.30) before proving Theorems 5 and 7.

Lemma 4 Let θt ,γt > 0, t = 1,2, . . . , be given. For any w1 ∈ Z and any sequence
{∆ t} ⊂ Rn, if we define wv

1 = w1 and

wv
i+1 = argminu∈Z− γi〈∆ i,u〉+V (wv

i ,u), ∀i > 1, (4.5.34)

then

∑
t
i=1θi〈−∆

i,wv
i −u〉 ≤ ∑

t
i=1

θi
γi
(V (wv

i ,u)−V (wv
i+1,u))+∑

t
i=1

θiγi
2 ‖∆i‖2

∗, ∀u ∈ Z.
(4.5.35)

Proof. Applying Lemma 3.5 to (4.5.34) (with r = wv
i , w = wv

i+1, ζ =−γi∆
i and

J = 0), we have

−γi〈∆ i,wv
i+1−u〉 ≤V (wv

i ,u)−V (wv
i ,w

v
i+1)−V (wv

i+1,u), ∀u ∈ Z.

Moreover, by Schwartz inequality, Young’s inequality and (4.5.26) we have

− γi〈∆ i,wv
i −wv

i+1〉

≤ γi‖∆ i‖∗‖wv
i −wv

i+1‖ ≤
γ2

i
2 ‖∆i‖2

∗+
1
2‖wv

i −wv
i+1‖2 ≤ γ2

i
2 ‖∆i‖2

∗+V (wv
i ,w

v
i+1).

Adding the above two inequalities and multiplying the resulting inequality by θi/γi,
we obtain

−θi〈∆ i,wv
i −u〉 ≤ θiγi

2 ‖∆i‖2
∗+

θi
γi
(V (wv

i ,u)−V (wv
i+1,u)).

Summing the above inequalities from i = 1 to t, we conclude (4.5.35).

With the help of Lemma 3 and 4, we are now ready to prove Theorem 5, which
provides an estimate of the gap function of SAMP in both expectation and probability.

Theorem 5 Suppose that

sup
z1,z2∈Z

V (z1,z2)≤ D2
Z . (4.5.36)

Also assume that the parameters {αt} and {γt} in Algorithm 4.4 satisfy α1 = 1,

q−Lαtγt −3M2
γ

2
t ≥ 0 for some q ∈ (0,1), and αt

Γt γt
≤ αt+1

Γt+1γt+1
, ∀t ≥ 1, (4.5.37)

where Γt is defined in (4.5.17). Then,
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(a) Under Assumption 10, for all t ≥ 1,

E [g(w̄t+1)]≤ Q0(t) := 2αt
γt

D2
Z +
[
4σ

2
H +

(
1+ 1

2(1−q)

)
σ

2
G

]
Γt∑

t
i=1

αiγi
Γi

. (4.5.38)

(b) Under Assumption 11, for all λ > 0 and t ≥ 1,

Prob{g(w̄t+1)> Q0(t)+λQ1(t)} ≤ 2exp{−λ
2/3}+3exp{−λ}, (4.5.39)

where

Q1(t) := Γt(σG +σH)DZ

√
2∑

t
i=1

(
αi
Γi

)2

+
[
4σ

2
H +

(
1+ 1

2(1−q)

)
σ

2
G

]
Γt∑

t
i=1

αiγi
Γi

.

(4.5.40)

Proof. We first provide a bound on Bt(u,r[t]). Since the sequence {ri}t+1
i=1 is in the

bounded set Z, applying (4.5.36) and (4.5.37) to (4.5.31) we have

Bt(u,r[t])

= α1
Γ1γ1

V (r1,u)−∑
t−1
i=1

[
αi

Γiγi
− αi+1

Γi+1γi+1

]
V (rt+1[i],u)− αt

Γt γt
V (rt+1,u)

≤ α1
Γ1γ1

D2
Z−∑

t−1
i=1

[
αi

Γiγi
− αi+1

Γi+1γi+1

]
D2

Z = αt
Γt γt

D2
Z , ∀u ∈ Z,

(4.5.41)

Applying (4.5.37) and the above inequality to (4.5.30) in Lemma 3, we have

1
Γt

Q(w̄t+1,u)≤ αt
Γt γt

D2
Z +∑

t
i=1Λi(u), ∀u ∈ Z. (4.5.42)

Letting wv
1 = w1, defining wv

i+1 as in (4.5.34) with ∆ i = ∆ 2i
H +∆ i

G for all i > 1, we
conclude from (4.5.31) and Lemma 4 (with θi = αi/Γi) that

−∑
t
i=1

αi
Γi
〈∆ 2i

H +∆ i
G,w

v
i −u〉 ≤ Bt(u,wv

[t])+∑
t
i=1

αiγi
2Γi
‖∆ 2i

H +∆ i
G‖2
∗, ∀u ∈ Z.

(4.5.43)

The above inequality together with (4.5.32) and the Young’s inequality yield

∑
t
i=1Λi(u) = −∑

t
i=1

αi
Γi
〈∆ 2i

H +∆
i
G,w

v
i −u〉+∑

t
i=1

3αiγi
2Γi

(
‖∆ 2i

H ‖2
∗+‖∆ 2i−1

H ‖2
∗
)

+∑
t
i=1

αi
Γi

[
− 1−q

2γi
‖ri−wi+1‖2−〈∆ i

G,wi+1− ri〉
]

−∑
t
i=1

αi
Γi
〈∆ i

G,ri−wv
i 〉−∑

t
i=1

αi
Γi
〈∆ 2i

H ,wi+1−wv
i 〉

≤ Bt(u,wv
[t])+Ut ,

(4.5.44)

where
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Ut := ∑
t
i=1

αiγi
2Γi
‖∆ 2i

H +∆
i
G‖2
∗+∑

t
i=1

αiγi
2(1−q)Γi

‖∆ i
G‖2
∗

+∑
t
i=1

3αiγi
2Γi

(
‖∆ 2i

H ‖2
∗+‖∆ 2i−1

H ‖2
∗
)

−∑
t
i=1

αi
Γi
〈∆ i

G,ri−wv
i 〉−∑

t
i=1

αi
Γi
〈∆ 2i

H ,wi+1−wv
i 〉.

(4.5.45)

Applying (4.5.41) and (4.5.44) to (4.5.42), we have

1
Γt

Q(w̄t+1,u)≤ 2αt
γtΓt

D2
Z +Ut , ∀u ∈ Z,

or equivalently,

g(w̄t+1)≤ 2αt
γt

D2
Z +ΓtUt . (4.5.46)

Now it suffices to bound Ut , in both expectation and probability.
We prove part (a) first. By our assumptions on SOG and SOH and in view of

(4.5.12), (4.5.13) and (4.5.34), during the i-th iteration of Algorithm 4.4, the random
noise ∆ 2i

H is independent of wi+1 and wv
i , and ∆ i

G is independent of ri and wv
i , hence

E[〈∆ i
G,ri−wv

i 〉] = E[〈∆ 2i
H ,wi+1−wv

i 〉] = 0. In addition, Assumption 10 implies that
E[‖∆ i

G‖2
∗]≤ σ2

G, E[‖∆ 2i−1
H ‖2

∗]≤ σ2
H and E[‖∆ 2i

H ‖2
∗]≤ σ2

H , where ∆ i
G, ∆

2i−1
H and ∆ 2i

H
are independent. Therefore, taking expectation on (4.5.45) we have

E[Ut ]≤ E
[
∑

t
i=1

αiγi
Γi

(
‖∆ 2i

H ‖2 +‖∆ i
G‖2
∗
)
+∑

t
i=1

αiγi
2(1−q)Γi

‖∆ i
G‖2
∗

+ ∑
t
i=1

3αiγi
2Γi

(
‖∆ 2i

H ‖2
∗+‖∆ 2i−1

H ‖2
∗
)]

= ∑
t
i=1

αiγi
Γi

[
4σ

2
H +

(
1+ 1

2(1−q)

)
σ

2
G

]
.

(4.5.47)

Taking expectation on both sides of (4.5.46), and using (4.5.47), we obtain (4.5.38).
Next we prove part (b). Observe that the sequence {〈∆ i

G,ri−wv
i 〉}i≥1 is a mar-

tingale difference and hence satisfies the large-deviation theorem (see Lemma 4.1).
Therefore using Assumption 11 and the fact that

E
[

exp
{

(αiΓ
−1

i 〈∆ i
G,ri−wv

i 〉)2

2(σGαiΓ
−1

i DZ)2

}]

≤ E
[

exp
{
‖∆ i

G‖2∗‖ri−wv
i ‖2

2σ2
GD2

Z

}]
≤ E

[
exp
{
‖∆ i

G‖2
∗/σ

2
G
}]
≤ exp{1},

we conclude from the large-deviation theorem that

Prob

{
−∑

t
i=1

αi
Γi
〈∆ i

G,ri−wv
i 〉> λσGDZ

√
2∑

t
i=1

(
αi
Γi

)2
}
≤ exp{−λ

2/3}.

(4.5.48)

By using a similar argument we have
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Prob

{
−∑

t
i=1

αi
Γi
〈∆ 2i

H ,wi+1−wv
i 〉> λσHDZ

√
2∑

t
i=1

(
αi
Γi

)2
}
≤ exp{−λ

2/3}.

(4.5.49)

In addition, letting Si = αiγi/(Γi) and S = ∑
t
i=1Si, by Assumption 11 and the

convexity of exponential functions, we have

E
[
exp
{ 1

S ∑
t
i=1Si‖∆ i

G‖2
∗/σ

2
G
}]
≤ E

[ 1
S ∑

t
i=1Siexp

{
‖∆ i

G‖2
∗/σ

2
G
}]
≤ exp{1}.

Noting by Markov’s inequality that P(X > a)≤ E[X ]/a for all nonnegative random
variables X and constants a > 0, the above inequality implies that

Prob
[
∑

t
i=1Si‖∆ i

G‖2
∗ > (1+λ )σ2

GS
]

=Prob
[
exp
{ 1

S ∑
t
i=1Si‖∆ i

G‖2
∗/σ

2
G
}
> exp{1+λ}

]

≤E
[
exp
{ 1

S ∑
t
i=1Si‖∆ i

G‖2
∗/σ

2
G
}]

/exp{1+λ}
≤exp{−λ}.

Recalling that Si = αiγi/(Γi) and S = ∑
t
i=1Si, the above relation is equivalent to

Prob
{(

1+ 1
2(1−q)

)
∑

t
i=1

αiγi
Γi
‖∆ i

G‖2
∗ > (1+λ )σ2

G

(
1+ 1

2(1−q)

)
∑

t
i=1

αiγi
Γi

}

≤ exp{−λ}.
(4.5.50)

Using similar arguments, we also have

Prob
{

∑
t
i=1

3αiγi
2Γi
‖∆ 2i−1

H ‖2
∗ > (1+λ )

3σ2
H

2 ∑
t
i=1

αiγi
Γi

}
≤ exp{−λ}, (4.5.51)

Prob
{

∑
t
i=1

5αiγi
2Γi
‖∆ 2i

H ‖2
∗ > (1+λ )

5σ2
H

2 ∑
t
i=1

αiγi
Γi

}
≤ exp{−λ}. (4.5.52)

Using the fact that ‖∆ 2i
H + ∆

2i−1
G ‖2

∗ ≤ 2‖∆ 2i
H ‖2
∗ + 2‖∆ 2i−1

G ‖2
∗, we conclude from

(4.5.46)–(4.5.52) that (4.5.39) holds.

There are various options for choosing the parameters {αt} and {γt} that satisfy
(4.5.37). In the following corollary, we give one example of such parameter settings.

Corollary 6 Suppose that (4.5.36) holds. If the stepsizes {αt} and {γt} in Algorithm
4.4 are set to:

αt =
2

t+1 and γt =
t

4L+3Mt+β (t+1)
√

t , (4.5.53)

where β > 0 is a parameter. Then under Assumption 10,

E [g(w̄t+1)]≤ 16LD2
Z

t(t+1) +
12MD2

Z
t+1 + σDZ√

t−1

(
4βDZ

σ
+ 16σ

3βDZ

)
=: C0(t), (4.5.54)
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where σ and DZ are defined in (4.5.7) and (4.5.36), respectively. Furthermore, under
Assumption 11,

Prob{g(w̄t+1)> C0(t)+λC1(t)} ≤ 2exp{−λ
2/3}+3exp{−λ}, ∀λ > 0,

where

C1(t) := σDZ√
t−1

(
4
√

3
3 + 16σ

3βDZ

)
. (4.5.55)

Proof. It is easy to check that

Γt =
2

t(t+1) and αt
Γt γt
≤ αt+1

Γt+1γt+1
.

In addition, in view of (4.5.53), we have γt ≤ t/(4L) and γ2
t ≤ 1/(9M2), which

implies

5
6 −Lαtγt −3M2

γ
2
t ≥ 5

6 − t
4 · 2

t+1 − 1
3 ≥ 0.

Therefore the first relation in (4.5.37) holds with constant q = 5/6. In view of
Theorem 5, it now suffices to show that Q0(t)≤ C0(t) and Q1(t)≤ C1(t). Observing
that αt/Γt = t, and γt ≤ 1/(β

√
t), we obtain

∑
t
i=1

αiγi
Γi
≤ 1

β
∑

t
i=1

√
i≤ 1

β

∫ t+1

0

√
tdt = 1

β
· 2(t+1)3/2

3 = 2(t+1)3/2

3β
.

Using the above relation, (4.5.36), (4.5.38), (4.5.40), (4.5.53), and the fact that√
t +1/t ≤ 1/

√
t−1 and ∑

t
i=1i2 ≤ t(t +1)2/3, we have

Q0(t) =
4D2

Z
t(t+1)

(
4L+3Mt +β (t +1)

√
t
)
+ 8σ2

t(t+1)∑
t
i=1

αiγi
Γi

≤ 16LD2
Z

t(t+1) +
12MD2

Z
t+1 +

4βD2
Z√

t + 16σ2√t+1
3β t

≤ C0(t),

and

Q1(t) =
2(σG+σH )

t(t+1) DZ

√
2∑

t
i=1i2 + 8σ2

t(t+1)∑
t
i=1

αiγi
Γi

≤ 2
√

2(σG+σH )DZ√
3t

+ 16σ2√t+1
3β t

≤ C1(t).

We now add a few remarks about the results obtained in Corollary 6. Firstly, in
view of (4.5.8), (4.5.54) and (4.5.55), we can clearly see that the SAMP method
is robust with respect to the estimates of σ and DZ . Indeed, the SAMP method
achieves the optimal iteration complexity for solving the SVI problem as long as
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β = O(σ/DZ). In particular, in this case, the number of iterations performed by
the stochastic AMP method to find an ε-solution of (4.5.1), i.e., a point w̄ ∈ Z s.t.
E[g(w̄)]≤ ε , can be bounded by

O

(√
L
ε
+ M

ε
+ σ2

ε2

)
, (4.5.56)

which implies that this algorithm allows L to be as large as O(ε−3/2) and M to be as
large as O(ε−1) without significantly affecting its convergence properties. Secondly,
for the deterministic case when σ = 0, the complexity bound in (4.5.56) significantly
improves the best-known so-far complexity for solving problem (4.5.1) (see (4.5.8))
in terms of their dependence on the Lipschitz constant L.

In the following theorem, we demonstrate some convergence properties of Algo-
rithm 4.4 for solving the stochastic problem SV I(Z;G,H,J) when Z is unbounded. To
study the convergence properties of SAMP in this case, we use a perturbation-based
termination criterion based on the enlargement of a maximal monotone operator.
More specifically, we say that the pair (ṽ, ũ) ∈ Rn×Z is a (ρ,ε)-approximate solu-
tion of SV I(Z;G,H,J) if ‖ṽ‖ ≤ ρ and g̃(ũ, ṽ)≤ ε , where the gap function g̃(·, ·) is
defined by

g̃(ũ, ṽ) := sup
u∈Z

Q(ũ,u)−〈ṽ, ũ−u〉. (4.5.57)

We call ṽ the perturbation vector associated with ũ. One advantage of employing
this termination criterion is that the convergence analysis does not depend on the
boundedness of Z.

Theorem 7 below describes the convergence properties of SAMP for solving SVIs
with unbounded feasible sets, under the assumption that a strong solution of (4.5.6)
exists.

Theorem 7 Suppose that V (r,z) := ‖z− r‖2/2 for any r ∈ Z and z ∈ Z. If the pa-
rameters {αt} and {γt} in Algorithm 4.4 are chosen such that α1 = 1, and for all
t > 1,

0≤ αt < 1, Lαtγt +3M2
γ

2
t ≤ c2 < q for some c,q ∈ (0,1), and αt

Γt γt
=

αt+1
Γt+1γt+1

,

(4.5.58)
where Γt is defined in (4.5.17). Then for all t ≥ 1 there exists a perturbation vector
vt+1 and a residual εt+1 ≥ 0 such that g̃(w̄t+1,vt+1)≤ εt+1. Moreover, for all t ≥ 1,
we have

E[‖vt+1‖]≤ αt
γt

(
2D+2

√
D2 +C2

t

)
, (4.5.59)

E[εt+1]≤ αt
γt

[
(3+6θ)D2 +(1+6θ)C2

t
]
+

18α2
t σ2

H
γ2
t

∑
t
i=1γ

3
i , (4.5.60)

where
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D := ‖r1−u∗‖, (4.5.61)

u∗ is a strong solution of SV I(Z;G,H,J),

θ = max
{

1, c2

q−c2

}
and Ct =

√[
4σ2

H +
(

1+ 1
2(1−q)

)
σ2

G

]
∑

t
i=1γ2

i . (4.5.62)

Proof. Let Ut be defined in (4.5.45). Firstly, applying (4.5.58) and (4.5.44) to
(4.5.30) in Lemma 3, we have

1
Γt

Q(w̄t+1,u) (4.5.63)

≤ Bt(u,r[t])− αt
2Γt γt

∑
t
i=1
(
q− c2)‖ri−wi+1‖2 +Bt(u,wv

[t])+Ut , ∀u ∈ Z. (4.5.64)

In addition, applying (4.5.58) to the definition of Bt(·, ·) in (4.5.31), we obtain

Bt(u,r[t]) =
αt

2Γt γt
(‖r1−u‖2−‖rt+1−u‖2) (4.5.65)

= αt
2Γt γt

(‖r1− w̄t+1‖2−‖rt+1− w̄t+1‖2 +2〈r1− rt+1, w̄t+1−u〉).
(4.5.66)

By using a similar argument and the fact that wv
1 = w1 = r1, we have

Bt(u,wv
[t]) =

αt
2Γt γt

(‖r1−u‖2−‖wv
t+1−u‖2) (4.5.67)

= αt
2Γt γt

(‖r1− w̄t+1‖2−‖wv
t+1− w̄t+1‖2 +2〈r1−wv

t+1, w̄t+1−u〉).
(4.5.68)

We then conclude from (4.5.63), (4.5.66), and (4.5.68) that

Q(w̄t+1,u)−〈vt+1, w̄t+1−u〉 ≤ εt+1, ∀u ∈ Z, (4.5.69)

where

vt+1 :=αt
γt
(2r1− rt+1−wv

t+1) (4.5.70)

and

εt+1 := αt
2γt

(
2‖r1− w̄t+1‖2−‖rt+1− w̄t+1‖2−‖wv

t+1− w̄t+1‖2

− ∑
t
i=1
(
q− c2)‖ri−wi+1‖2)+ΓtUt .

(4.5.71)

It is easy to see that the residual εt+1 is positive by setting u = w̄t+1 in (4.5.69).
Hence g̃(w̄t+1,vt+1)≤ εt+1. To finish the proof, it suffices to estimate the bounds for
E[‖vt+1‖] and E[εt+1]. Observe that by (4.5.2), (4.5.6), (4.5.15) and the convexity of
G and J, we have

Q(w̄t+1,u∗)≥ 〈F(u∗), w̄t+1−u∗〉 ≥ 0, (4.5.72)
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where the last inequality follows from the assumption that u∗ is a strong solution
of SV I(Z;G,H,J). Using the above inequality and letting u = u∗ in (4.5.63), we
conclude from (4.5.65) and (4.5.67) that

2‖r1−u∗‖2−‖rt+1−u∗‖2−‖wv
t+1−u∗‖2−∑

t
i=1
(
q− c2)‖ri−wi+1‖2 + 2Γt γt

αt
Ut

≥ 2γt
αt

Q(w̄t+1,u∗)≥ 0.

By the above inequality and the definition of D in (4.5.61), we have

‖rt+1−u∗‖2 +‖wv
t+1−u∗‖2 +∑

t
i=1
(
q− c2)‖ri−wi+1‖2 ≤ 2D2 + 2Γt γt

αt
Ut .

(4.5.73)

In addition, applying (4.5.58) and the definition of Ct in (4.5.62) to (4.5.47), we
have

E[Ut ]≤ ∑
t
i=1

αt γ
2
i

Γt γt

[
4σ

2
H +

(
1+ 1

2(1−q)

)
σ

2
G

]
= αt

Γt γt
C2

t . (4.5.74)

Combining (4.5.73) and (4.5.74), we have

E[‖rt+1−u∗‖2]+E[‖wv
t+1−u∗‖2]+∑

t
i=1
(
q− c2)E[‖ri−wi+1‖2]≤ 2D2 +2C2

t .
(4.5.75)

We are now ready to prove (4.5.59). Observe from the definition of vt+1 in (4.5.70)
and the definition of D in (4.5.61) that ‖vt+1‖ ≤ αt(2D+ ‖wv

t+1− u∗‖+ ‖rt+1−
u∗‖)/γt , using the previous inequality, Jensen’s inequality, and (4.5.75), we obtain

E[‖vt+1‖]≤ αt
γt
(2D+

√
E[(‖rt+1−u∗‖+‖wv

t+1−u∗‖)2])

≤ αt
γt
(2D+

√
2E[‖rt+1−u∗‖2 +‖wv

t+1−u∗‖2])≤ αt
γt
(2D+2

√
D2 +C2

t ).

Our remaining goal is to prove (4.5.60). By (4.5.14) and (4.5.17), we have

1
Γt

w̄t+1 =
1

Γt−1
w̄t +

αt
Γt

wt+1, ∀t > 1.

Using the assumption that w̄1 = w1, we obtain

w̄t+1 = Γt∑
t
i=1

αi
Γi

wi+1, (4.5.76)

where by (4.5.17) we have

Γt∑
t
i=1

αi
Γi
= 1. (4.5.77)

Therefore, w̄t+1 is a convex combination of iterates w2, . . . ,wt+1. Also, by a similar
argument in the proof of Lemma 3, applying Lemma 1 to (4.5.12) and (4.5.13) (with
r = rt ,w = wt+1,y = rt+1,η = γtH(rt ;ζ2t−1) + γtG(wt ;ξt),ϑ = γtH(wt+1;ζ2t) +
γtG(wt ;ξt),J = γtJ, L = 3M2γ2

t and M2 = 3γ2
t (‖∆ 2t

H ‖2
∗ + ‖∆ 2t−1

H ‖2
∗)), and using



4.5 Stochastic accelerated mirror-prox method 199

(4.5.22) and (4.5.33), we have

1
2‖rt+1−wt+1‖2 ≤ 3M2γ2

t
2 ‖rt −wt+1‖2 + 3γ2

t
2 (‖∆ 2t

H ‖2
∗+‖∆ 2t−1

H ‖2
∗)

≤ c2

2 ‖rt −wt+1‖2 + 3γ2
t

2 (‖∆ 2t
H ‖2
∗+‖∆ 2t−1

H ‖2
∗),

where the last inequality follows from (4.5.58).
Now using (4.5.71), (4.5.76), (4.5.77), the above inequality, and applying Jensen’s

inequality, we have

εt+1−ΓtUt ≤ αt
γt
‖r1− w̄t+1‖2

= αt
γt

∥∥∥r1−u∗+Γt ∑
t
i=1

αi
Γi
(u∗− rt+1[i])+Γt ∑

t
i=1

αi
Γi
(rt+1[i]−wt+1[i])

∥∥∥
2

≤ 3αt
γt

[
D2 +Γt∑

t
i=1

αi
Γi

(
‖ri+1−u∗‖2 +‖wi+1− ri+1‖2)]

≤ 3αt
γt

[
D2 +Γt∑

t
i=1

αi
Γi

(
‖ri+1−u∗‖2 + c2‖wi+1− ri‖2

+3γ
2
i (‖∆ 2i

H ‖2
∗+‖∆ 2i−1

H ‖2
∗)‖
)]

.

(4.5.78)

Noting that by (4.5.62) and (4.5.73),

Γt ∑
t
i=1

αi
Γi
(‖ri+1−u∗‖2 + c2‖wi+1− ri‖2)

≤ Γt ∑
t
i=1

αiθ
Γi
(‖ri+1−u∗‖2 +(q− c2)‖wi+1− ri‖2)

≤ Γt ∑
t
i=1

αiθ
Γi
(2D2 + 2Γiγi

αi
Ui) = 2θD2 +2θΓt ∑

t
i=1 γiUi,

and that by (4.5.58),

Γt ∑
t
i=1

3αiγ
2
i

Γi
(‖∆ 2i

H ‖2
∗+‖∆ 2i−1

H ‖2
∗)

= Γt ∑
t
i=1

3αt γ
3
i

Γt γt
(‖∆ 2i

H ‖2
∗+‖∆ 2i−1

H ‖2
∗) =

3αt
γt

∑
t
i=1 γ3

i (‖∆ 2i
H ‖2
∗+‖∆ 2i−1

H ‖2
∗),

we conclude from (4.5.74), (4.5.78) and Assumption 10 that

E[εt+1]≤ ΓtE[Ut ]+
3αt
γt

[
D2 +2θD2 +2θΓt ∑

t
i=1 γiE[Ui]+

6αt σ
2
H

γt
∑

t
i=1 γ3

i

]

≤ αt
γt

C2
t +

3αt
γt

[
(1+2θ)D2 +2θΓt ∑

t
i=1

αi
Γi

C2
i +

6αt σ
2
H

γt
∑

t
i=1 γ3

i

]
.

Finally, observing from (4.5.62) and (4.5.77) that

Γt ∑
t
i=1

αi
Γi

C2
i ≤C2

t Γt ∑
t
i=1

αi
Γi
=C2

t ,

we conclude (4.5.60) from the above inequality.
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Below we give an example of parameters αt and γt that satisfies (4.5.58).

Corollary 8 Suppose that there exists a strong solution of (4.5.1). If the maximum
number of iterations N is given, and the stepsizes {αt} and {γt} in Algorithm 4.4 are
set to

αt =
2

t+1 and γt =
t

5L+3MN+βN
√

N−1
, (4.5.79)

where σ is defined in Corollary 6, then there exists vN ∈ Rn and εN > 0, such that
g̃(w̄t [][N],vN)≤ εN ,

E[‖vN‖]≤ 40LD
N(N−1) +

24MD
N−1 + σ√

N−1

(
8βD

σ
+5
)
, (4.5.80)

and

E[εN ]≤ 90LD2

N(N−1) +
54MD2

N−1 + σD√
N−1

(
18βD

σ
+ 56σ

3βD + 18σ

βDN

)
. (4.5.81)

Proof. Clearly, we have Γt = 2/[t(t +1)], and hence (4.5.17) is satisfied. Moreover,
in view of (4.5.79), we have

Lαtγt +3M2
γ

2
t ≤ 2L

5L+3MN + 3M2N2

(5L+3MN)2

= 10L2+6LMN+3M2N2

(5L+3MN)2 < 5
12 < 5

6 ,

which implies that (4.5.58) is satisfied with c2 = 5/12 and q = 5/6. Observing from
(4.5.79) that γt = tγ1, setting t = N−1 in (4.5.62) and (4.5.79), we obtain

αN−1
γN−1

= 2
γ1N(N−1) and C2

N−1 = 4σ
2

∑
N−1
i=1 γ2

1 i2 ≤ 4σ2γ2
1 N2(N−1)

3 , (4.5.82)

where CN−1 is defined in (4.5.62). Applying (4.5.82) to (4.5.59) we have

E[‖vN‖]≤ 2
γ1N(N−1) (4D+2CN−1)≤ 8D

γ1N(N−1) +
8σ√

3(N−1)

≤ 40LD
N(N−1) +

24MD
N−1 + σ√

N−1

(
8βD

σ
+5
)
.

In addition, using (4.5.60), (4.5.82), and the facts that θ = 1 in (4.5.62) and

∑
N−1
i=1 γ3

i = γ3
1 N2(N−1)2/4,

we have



4.6 Stochastic block mirror descent method 201

E[εN−1]≤ 2
γ1N(N−1) (9D2 +7C2

N−1)+
72σ2

H
γ2

1 N2(N−1)2 ·
γ3

1 N2(N−1)2

4

≤ 18D2

γ1N(N−1) +
56σ2γ1N

3 +18σ
2
Hγ1

≤ 90LD2

N(N−1) +
54MD2

N−1 + 18βD2
√

N−1
+ 56σ2

3β
√

N−1
+

18σ2
H

βN
√

N−1

≤ 90LD2

N(N−1) +
54MD2

N−1 + σD√
N−1

(
18βD

σ
+ 56σ

3βD + 18σ

βDN

)
.

Several remarks are in place for the results obtained in Theorem 7 and Corollary
8. Firstly, similarly to the bounded case (see the remark after Corollary 6), one may
want to choose β in a way such that the right hand side of (4.5.80) or (4.5.81) is
minimized, e.g., β = O(σ/D). However, since the value of D will be very difficult
to estimate for the unbounded case and hence one often has to resort to a suboptimal
selection for β . For example, if β = σ , then the RHS of (4.5.80) and (4.5.81) will
become O(LD/N2 +MD/N +σD/

√
N) and O(LD2/N2 +MD2/N +σD2/

√
N),

respectively. Secondly, both residuals ‖vN‖ and εN in (4.5.80) and (4.5.81) converge
to 0 at the same rate (up to a constant factor). Finally, it is only for simplicity that we
assume that V (r,z) = ‖z− r‖2/2; Similar results can be achieved under assumptions
that ∇ω is Lipschitz continuous.

4.6 Stochastic block mirror descent method

In the section we consider the stochastic programming problem given by

f ∗ := min
x∈X
{ f (x) := E[F(x,ξ )]}. (4.6.1)

Here X ⊆Rn is a closed convex set, ξ is a random variable with support Ξ ⊆Rd and
F(·,ξ ) : X → R is continuous for every ξ ∈ Ξ . In addition, we assume that X has a
block structure, i.e.,

X = X1×X2×·· ·×Xb, (4.6.2)

where Xi ⊆ Rni , i = 1, . . . ,b, are closed convex sets with n1 +n2 + . . .+nb = n.
The block coordinate descent (BCD) method is a natural method for solving

problems with X given in the form of (4.6.2). In comparison with regular first-order
methods, each iteration of these methods updates only one block of variables. In
particular, if each block consists of only one variable (i.e., ni = 1, i = 1, . . . ,b), then
the BCD method becomes the classical coordinate descent (CD) method.

Most BCD methods were designed for solving deterministic optimization prob-
lems. One possible approach for solving problem (4.6.1), based on these methods
and the sample average approximation (SAA), can be described as follows. For a
given set of i.i.d. samples (dataset) ξk,k = 1, . . . ,N, of ξ , we first approximate f (·) in
(4.6.1) by f̃ (x) := 1

N ∑
N
k=1F(x,ξk) and then apply the BCD methods to minx∈X f̃ (x).
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Since ξk, k = 1, . . . ,N, are fixed a priori, by recursively updating the (sub)gradient of
f̃ , the iteration cost of the BCD method can be considerably smaller than that of the
gradient descent methods. However, the above SAA approach is also known for the
following drawbacks: a) the high memory requirement to store ξk, k = 1, . . . ,N; b)
the high dependence (at least linear) of the iteration cost on the sample size N, which
can be expensive when dealing with large datasets; and c) the difficulty to apply the
approach to the on-line setting where one needs to update the solution whenever a
new piece of data ξk is collected.

A different approach to solve problem (4.6.1) is to apply the stochastic gradient
descent (SGD) type methods as introduced in the previous few sections. Note that
all these algorithms only need to access one single ξk at each iteration, and hence
does not require much memory. In addition, their iteration cost is independent of the
sample size N. However, since these algorithms need to update the whole vector x
at each iteration, their iteration cost can strongly depend on n unless the problem is
very sparse.

Our main goal in this section is to present a new class of stochastic optimization
methods, referred to as the stochastic block mirror descent (SBMD) methods, by
incorporating the aforementioned block-coordinate decomposition into the classic
stochastic mirror descent method. As a motivating example, consider an important
class of SP problems with F(x,ξ ) =ψ(Bx−q,ξ ), where B is a certain linear operator
and ψ is a relatively simple function. These problems arise from many machine learn-
ing applications, where ψ is a loss function and B ∈ Rm×n denotes a certain basis (or
dictionary) obtained by, e.g., metric learning. Each iteration of existing SGD methods
would require O(mn) arithmetic operations to compute Bx and becomes prohibitive
if mn exceeds 1012 . On the other hand, by using block-coordinate decomposition
with ni = 1, the iteration cost of the SBMD algorithms can be significantly reduced to
O(m), which can be further reduced if B and ξk are sparse (see Subsection 4.6.1.1 for
more discussions). Our development has also been motivated by the situation when
the bottleneck of the mirror descent method exists in the projection (or prox-mapping)
subproblems (see (??)), in the sense that X is decomposable and the computation of
the projection over X is more expensive than that of gradient. In this case, we can also
significantly reduce the iteration cost by using the block-coordinate decomposition,
since each iteration of the SBMD method requires only one projection over Xi for
some 1≤ i≤ b, while the mirror descent method needs to perform the projections
over Xi for all 1 ≤ i ≤ b. It should be noted, however, that our algorithm does not
apply to the situation when a decomposition of X is not available.

To fix notation in this section, we use Rni , i = 1, . . . ,b, to denote Euclidean spaces
equipped with inner product 〈·, ·〉 and norm ‖ · ‖i (‖ · ‖i,∗ be the conjugate) such that
∑

b
i=1ni = n. Let In be the identity matrix in Rn and Ui ∈ Rn×ni , i = 1,2, . . . ,b, be the

set of matrices satisfying (U1,U2, . . . ,Ub) = In. For a given x ∈Rn, we denote its i-th
block by x(i) =UT

i x, i = 1, . . . ,b. Note that x =U1x(1)+ . . .+Ubx(b). Moreover, we
define ‖x‖2 = ‖x(1)‖2

1 + . . .+‖x(b)‖2
b. and denote its conjugate by ‖y‖2

∗ = ‖y(1)‖2
1,∗+

. . .+‖y(b)‖2
b,∗.
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4.6.1 Nonsmooth convex optimization

In this subsection we assume that the objective function f of problem (4.6.1) is
convex but not necessarily differentiable. The SBMD method incorporates random
block decomposition into the classic mirror descent method. More specifically, each
iteration of this algorithm updates one block of the search point along a stochas-
tic (sub)gradient direction given by Gik(xk,ξk) ≡UT

ik G(x,ξ ). Here, the index ik is
randomly chosen and G(x,ξ ) is an unbiased estimator of the subgradient of f (·), i.e.,

E[G(x,ξ )] = g(x) ∈ ∂ f (x), ∀x ∈ X . (4.6.3)

Moreover, we assume that

E[‖Gi(x,ξ )‖2
i,∗]≤M2

i , i = 1,2, ...,b. (4.6.4)

Clearly, by (4.6.3) and (4.6.4), we have

‖gi(x)‖2
i,∗ = ‖E[Gi(x,ξ )]‖2

i,∗ ≤ E[‖Gi(x,ξ )‖2
i,∗]≤M2

i , i = 1,2, ...,b, (4.6.5)

and
‖g(x)‖2

∗ = ∑
b
i=1‖gi(x)‖2

i,∗ ≤ ∑
b
i=1M2

i . (4.6.6)

4.6.1.1 The SBMD algorithm for nonsmooth problems

We present a general scheme of the SBMD algorithm, based on Bregman’s divergence,
to solve stochastic convex optimization problems.

Recall that a function νi : Xi→ R is a distance generating function with modulus
αi with respect to ‖ · ‖i, if ν is continuously differentiable and strongly convex with
parameter αi with respect to ‖ · ‖i. Without loss of generality, we assume throughout
the paper that αi = 1 for any i = 1, . . . ,b because we can always rescale ν(x) to
ν̄(x) = ν(x)/αi in case αi 6= 1. Therefore, we have

〈x− z,∇νi(x)−∇νi(z)〉 ≥ ‖x− z‖2
i ∀x,z ∈ Xi.

The prox-function (or Bregman distance) associated with νi is given by

Vi(z,x) = νi(x)− [νi(z)+ 〈∇νi(z),x− z〉] ∀x,z ∈ Xi. (4.6.7)

Suppose that the set Xi is bounded, the distance generating function νi also gives rise
to the diameter of Xi that will be used frequently in our convergence analysis:

Dνi,Xi := max
x∈Xi

νi(x)−min
x∈Xi

νi(x). (4.6.8)

For the sake of notational convenience, sometimes we simply denote Dνi,Xi by
Di. Note that the definition of Dνi,Xi slightly differs the diameter DXi in (3.2.4).
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Sometimes it is a little easier to compute Dνi,Xi than DXi . However, most convergence
results we discuss in this section also hold by using DXi in place of Dνi,Xi after
slightly modifying some constant factors.

Letting x(i)1 = argminx∈Xi
νi(x), i = 1, . . . ,b, we can easily see that for any x ∈ X ,

Vi(x
(i)
1 ,x(i)) = νi(x(i))−νi(x

(i)
1 )−〈∇νi(x

(i)
1 ),x(i)− x(i)1 〉 ≤ νi(x(i))−νi(x

(i)
1 )≤ Di,

(4.6.9)
which, in view of the strong convexity of νi, also implies that ‖x(i)1 − x(i)‖2

i /2≤ Di.
Therefore, for any x,y ∈ X , we have

‖x(i)− y(i)‖i ≤ ‖x(i)− x(i)1 ‖i +‖x(i)1 − y(i)‖i ≤ 2
√

2Di, (4.6.10)

‖x− y‖=
√

∑
b
i=1‖x(i)− y(i)‖2

i ≤ 2
√

2∑
b
i=1Di. (4.6.11)

With the above definition of the prox-mapping, we can formally describe the
stochastic block mirror descent (SBMD) method as in Algorithm 4.5.

Algorithm 4.5 The Stochastic Block Mirror Descent (SBMD) Algorithm
Let x1 ∈ X , positive stepsizes {γk}k≥1, nonnegative weights {θk}k≥1, and probabilities pi ∈ [0,1],
i = 1, . . . ,b, s.t. ∑

b
i=1 pi = 1 be given. Set s1 = 0, and ui = 1 for i = 1, . . . ,b.

for k = 1, . . . ,N do
1. Generate a random variable ik according to

Prob{ik = i}= pi, i = 1, . . . ,b. (4.6.12)

2. Update s(i)k , i = 1, . . . ,b, by

s(i)k+1 =

{
s(i)k + x(i)k ∑

k
j=uik

θ j i = ik,

s(i)k i 6= ik,
(4.6.13)

and then set uik = k+1.

3. Update x(i)k , i = 1, . . . ,b, by

x(i)k+1 =





argmin
u∈Xi
〈Gik (xk,ξk),u〉+ 1

γk
Vi(x

(i)
k ,u) i = ik,

x(i)k i 6= ik.
(4.6.14)

end for
Output: Set s(i)N+1 = s(i)N+1 + x(i)N ∑

N
j=ui

θ j , i = 1, . . . ,b, i 6= iN and x̄N = sN+1/∑
N
k=1θk.

We now add a few remarks about the SBMD algorithm stated above. Firstly,
note that in this algorithm, the random variables ξk and ik, k = 1, . . . , are assumed
to be independent of each other. Secondly, each iteration of the SBMD method
recursively updates the search point xk based on Gik(xk,ξk), the ik-th block of the
stochastic subgradient. In addition, rather than taking the average of {xk} in the end
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of algorithm as in the mirror-descent method, we introduce an incremental block
averaging scheme to compute the output of the algorithm. More specifically, we use
a summation vector sk to denote the weighted sum of xk’s and the index variables ui,
i = 1, . . . ,b, to record the latest iteration when the i-th block of sk is updated. Then
in (4.6.13), we add up the ik-th block of sk with xk∑

k
j=ik θ j, where ∑

k
j=ik θ j is often

given by explicit formula and hence easy to compute. It can be checked that by using
this averaging scheme, we have

x̄N =
(
∑

N
k=1θk

)−1
∑

N
k=1(θkxk). (4.6.15)

Thirdly, observe that in addition to (4.6.13) and (4.6.14), each iteration of the
SBMD method involves the computation of Gik . Whenever possible, we should
update Gik recursively in order to reduce the iteration cost of the SBMD algorithm.
Consider the SP problems with the objective function

f (x) = E[ψ(Bx−q,ξ )]+χ(x),

where ψ(·) and χ(·) are relatively simple functions, q ∈ Rn, and B ∈ Rm×n. For the
sake of simplicity, let us also assume that n1 = . . . = nb = 1. For example, in the
well-known support vector machine (SVM) problem, we have ψ(y) =max{〈y,ξ 〉,0}
and χ(x) = ‖x‖2

2/2. In order to compute the full vector G(xk,ξk), we need O(mn)
arithmetic operations to compute the vector Bxk−q, which majorizes other arithmetic
operations if ψ and χ are simple. On the other hand, by recursively updating the
vector yk = Bxk in the SBMD method, we can significantly reduce the iteration
cost from O(mn) to O(m) . This bound can be further reduced if both ξk and B are
sparse (i.e., the vector ξk and each row vector of B contain just a few nonzeros).
The above example can be generalized to the case when B has r×b blocks denoted
by Bi, j ∈ Rmi×n j , 1≤ i≤ r and 1≤ j ≤ b, and each block row Bi = (Bi,1, . . . ,Bi,b),
i = 1, . . . ,r, is block-sparse.

Finally, observe that the above SBMD method is conceptual only because we
have not yet specified the selection of the stepsizes {γk}, the weights {θk}, and the
probabilities {pi}. We will specify these parameters after establishing some basic
convergence properties of this method.

4.6.1.2 Convergence properties of SBMD for nonsmooth problems

In this subsection, we discuss the main convergence properties of the SBMD method
for solving general nonsmooth convex problems.

Theorem 4.10. Let x̄N be the output of the SBMD algorithm and suppose that

θk = γk, k = 1, . . . ,N. (4.6.16)

Then we have, for any N ≥ 1,
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E[ f (x̄N)− f (x∗)]≤
(
∑

N
k=1γk

)−1
[
∑

b
i=1 p−1

i Vi(x
(i)
1 ,x(i)∗ )+ 1

2 ∑
N
k=1γ

2
k ∑

b
i=1M2

i

]
,

(4.6.17)
where x∗ is an arbitrary solution of (4.6.1) and the expectation is taken with respect
to (w.r.t.) {ik} and {ξk}.

Proof. For simplicity, let us denote Vi(z,x) ≡ Vi(z(i),x(i)), gik ≡ g(ik)(xk) (c.f.
(4.6.3)) and V (z,x) = ∑

b
i=1 p−1

i Vi(z,x). Also let us denote ζk = (ik,ξk) and ζ[k] =
(ζ1, . . . ,ζk). By the optimality condition of (??) (see Lemma 4.3) and the definition
of x(i)k in (4.6.14), we have

Vik(xk+1,x)≤Vik(xk,x)+ γk
〈
Gik(xk,ξk),UT

ik (x− xk)
〉
+ 1

2 γ
2
k

∥∥Gik(xk,ξk)
∥∥2

ik,∗.

Using this observation, we have, for any k ≥ 1 and x ∈ X ,

V (xk+1,x) = ∑i 6=ik p−1
i Vi(xk,x)+ p−1

ik
Vik(xk+1,x)

≤ ∑i6=ik p−1
i Vi(xk,x)+

p−1
ik

[
Vik(xk,x)+ γk

〈
Gik(xk,ξk),UT

ik (x− xk)
〉
+ 1

2 γ2
k

∥∥Gik(xk,ξk)
∥∥2

ik,∗

]

=V (xk,x)+ γk p−1
ik

〈
Uik Gik(xk,ξk),x− xk

〉
+ 1

2 γ2
k p−1

ik

∥∥Gik(xk,ξk)
∥∥2

ik,∗
=V (xk,x)+ γk〈g(xk),x− xk〉+ γkδk +

1
2 γ2

k δ̄k,

(4.6.18)

where

δk := 〈p−1
ik

Uik Gik(xk,ξk)−g(xk),x− xk〉 and δ̄k := p−1
ik

∥∥Gik(xk,ξk)
∥∥2

ik,∗ . (4.6.19)

It then follows from (4.6.18) and the convexity of f (·) that, for any k ≥ 1 and x ∈ X ,

γk[ f (xk)− f (x)]≤ γk〈g(xk),xk− x〉 ≤V (xk,x)−V (xk+1,x)+ γkδk +
1
2 γ

2
k δ̄k.

By using the above inequalities, the convexity of f (·), and the fact that x̄N =

∑
N
k=1(γkxk)/∑

N
k=1γk due to (4.6.15) and (4.6.16), we conclude that for any N ≥ 1 and

x ∈ X ,

f (x̄N)− f (x) ≤
(
∑

N
k=1γk

)−1
∑

N
k=1γk [ f (xk)− f (x)]

≤
(
∑

N
k=1γk

)−1 [V (x1,x)+∑
N
k=1
(
γkδk +

1
2 γ2

k δ̄k
)]
.

(4.6.20)

Now, observe that by (4.6.3) and (4.6.12),

Eζk

[
p−1

ik
〈Uik Gik ,x− xk〉|ζ[k−1]

]
= ∑

b
i=1Eξk

[
〈UiGi(xk,ξk),x− xk〉|ζ[k−1]

]

= ∑
b
i=1〈Uigi(xk),x− xk〉= 〈g(xk),x− xk〉,

and hence that using the independence between ik and ξk, we have

E[δk|ζk−1] = 0. (4.6.21)

Also, by (4.6.4) and (4.6.12),
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E
[

p−1
ik

∥∥Gik(xk,ξk)
∥∥2

ik,∗

]
= ∑

b
i=1 pi p−1

i ‖Gi(xk,ξk)‖2
i,∗ ≤ ∑

b
i=1M2

i . (4.6.22)

Our result in (4.6.17) then immediately follows by taking expectation on both sides
of (4.6.20), replacing x by x∗, and using the previous observations in (4.6.21) and
(4.6.22).

Below we provide a few specialized convergence results for the SBMD algorithm
after properly selecting {pi}, {γk}, and {θk}.

Corollary 4.5. Suppose that {θk} in Algorithm 4.5 are set to (4.6.16) and x∗ is an
arbitrary solution of (4.6.1).

a) If X is bounded, and {pi} and {γk} are set to

pi =
√

Di

∑
b
i=1
√

Di
, i = 1, . . . ,b, and γk = γ ≡

√
2∑

b
i=1
√

Di√
N∑

b
i=1M2

i

, k = 1, . . . ,N, (4.6.23)

then
E[ f (x̄N)− f (x∗)]≤

√
2
N ∑

b
i=1
√

Di

√
∑

b
i=1M2

i . (4.6.24)

b) If {pi} and {γk} are set to

pi =
1
b , i = 1, . . . ,b, and γk = γ ≡

√
2bD̃√

N∑
b
i=1M2

i

, k = 1, . . . ,N, (4.6.25)

for some D̃ > 0, then

E[ f (x̄N)− f (x∗)]≤
√

∑
b
i=1M2

i

(
∑

b
i=1Vi(x

(i)
1 ,x(i)∗ )

D̃ + D̃
) √

b√
2N

. (4.6.26)

Proof. We show part a) only, since part b) can be proved similarly. Note that by
(4.6.9) and (4.6.23), we have

∑
b
i=1 p−1

i Vi(x1,x∗)≤ ∑
b
i=1 p−1

i Di =
(

∑
b
i=1
√

Di

)2
.

Using this observation, (4.6.17), and (4.6.23), we have

E[ f (x̄N)− f (x∗)]≤ (Nγ)−1
[(

∑
b
i=1
√

Di
)2

+ Nγ2

2 ∑
b
i=1M2

i

]
=

√
2
N ∑

b
i=1
√

Di

√
∑

b
i=1M2

i .

A few remarks about the results obtained in Theorem 4.10 and Corollary 4.5 are
in place. First, the parameter setting in (4.6.23) only works for the case when X is
bounded, while the one in (4.6.25) also applies to the case when X is unbounded
or when the bounds Di, i = 1, . . . ,b, are not available. It can be easily seen that the

optimal choice of D̃ in (4.6.26) would be
√

∑
b
i=1Vi(x1,x∗). In this case, (4.6.26)

reduces to
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E[ f (x̄N)− f (x∗)]≤
√

2∑
b
i=1M2

i

√
∑

b
i=1Vi(x1,x∗)

√
b√
N
≤
√

2∑
b
i=1M2

i

√
∑

b
i=1Di

√
b√
N
,

(4.6.27)
where the second inequality follows from (4.6.9). It is interesting to note the dif-
ference between the above bound and (4.6.24). Specifically, the bound obtained
in (4.6.24) by using a non-uniform distribution {pi} always minorizes the one in
(4.6.27) by the Cauchy-Schwartz inequality.

Second, observe that in view of (4.6.24), the total number of iterations required
by the SBMD method to find an ε-solution of (4.6.1) can be bounded by

2
(

∑
b
i=1
√

Di

)2(
∑

b
i=1M2

i

)
1
ε2 . (4.6.28)

Also note that the iteration complexity of the mirror-descent SA algorithm employed
with the same νi(·), i = 1, . . . ,b, is given by

2∑
b
i=1Di

(
∑

b
i=1M2

i

)
1
ε2 . (4.6.29)

Clearly, the bound in (4.6.28) can be larger, up to a factor of b, than the one in (4.6.29).
Therefore, the total arithmetic cost of the SBMD algorithm will be comparable to or
smaller than that of the mirror descent SA, if its iteration cost is smaller than that of
the latter algorithm by a factor of O(b).

Third, in Corollary 4.5 we have used a constant stepsize policy where γ1 = . . .= γN .
However, it should be noted that variable stepsize policies can also be used in the
SBMD method.

4.6.1.3 Nonsmooth strongly convex problems

In this subsection, we assume that the objective function f (·) in (4.6.1) is strongly
convex, i.e., ∃ µ > 0 s.t.

f (y)≥ f (x)+ 〈g(x),y− x〉+µ∑
b
i=1Vi(x(i),y(i)) ∀x,y ∈ X . (4.6.30)

In addition, for the sake of simplicity, we assume that the probability distribution of
ik is uniform, i.e.,

p1 = p2 = . . .= pb =
1
b . (4.6.31)

It should be noted, however, that our analysis can be easily adapted to the case when
ik is non-uniform.

We are now ready to describe the main convergence properties of the SBMD
algorithm for solving nonsmooth strongly convex problems.

Theorem 4.11. Suppose that (4.6.30) and (4.6.31) hold. If

γk ≤ b
µ

(4.6.32)

and
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θk =
γk
Γk

with Γk =

{
1 k = 1
Γk−1(1− γkµ

b ) k ≥ 2,
(4.6.33)

then, for any N ≥ 1, we have

E[ f (x̄N)− f (x∗)]≤
(
∑

N
k=1θk

)−1
[
(b− γ1µ)∑b

i=1Vi(x
(i)
1 ,x(i)∗ )+ 1

2 ∑
N
k=1γkθk∑

b
i=1M2

i

]
,

(4.6.34)
where x∗ is the optimal solution of (4.6.1).

Proof. For simplicity, let us denote Vi(z,x) ≡ Vi(z(i),x(i)), gik ≡ g(ik)(xk), and
V (z,x) = ∑

b
i=1 p−1

i Vi(z,x). Also let us denote ζk = (ik,ξk) and ζ[k] = (ζ1, . . . ,ζk), and
let δk and δ̄k be defined in (4.6.19). By (4.6.31), we have

V (z,x) = b∑
b
i=1Vi(z(i),x(i)). (4.6.35)

Using this observation, (4.6.18), and (4.6.30), we obtain

V (xk+1,x)≤V (xk,x)+ γk〈g(xk),x− xk〉+ γkδk +
1
2 γ

2
k δ̄k

≤V (xk,x)+ γk
[

f (x)− f (xk)− µ

2 ‖x− xk‖2]+ γkδk +
1
2 γ

2
k δ̄k

≤
(
1− γkµ

b

)
V (xk,x)+ γk [ f (x)− f (xk)]+ γkδk +

1
2 γ

2
k δ̄k,

which, in view of Lemma 3.17, then implies that

1
ΓN

V (xN+1,x)≤
(
1− γ1µ

b

)
V (x1,x)+∑

N
k=1Γ

−1
k γk

[
f (x)− f (xk)+δk +

1
2 γ

2
k δ̄k
]
.

(4.6.36)
Using the fact that V (xN+1,x)≥ 0 and (4.6.33), we conclude from the above relation
that

∑
N
k=1θk[ f (xk)− f (x)]≤

(
1− γ1µ

b

)
V (x1,x)+∑

N
k=1θkδk +

1
2 ∑

N
k=1γkθkδ̄k. (4.6.37)

Taking expectation on both sides of the above inequality, and using relations (4.6.21)
and (4.6.22), we obtain

∑
N
k=1θkE[ f (xk)− f (x)]≤

(
1− γ1µ

b

)
V (x1,x)+ 1

2 ∑
N
k=1γkθk∑

b
i=1M2

i ,

which, in view of (4.6.15), (4.6.31), and the convexity of f (·), then clearly implies
(4.6.34).

Below we provide a specialized convergence result for the SBMD method to solve
nonsmooth strongly convex problems after properly selecting {γk}.
Corollary 4.6. Suppose that (4.6.30) and (4.6.31) hold. If {θk} are set to (4.6.33)
and {γk} are set to

γk =
2b

µ(k+1) , k = 1, . . . ,N, (4.6.38)

then, for any N ≥ 1, we have

E[ f (x̄N)− f (x∗)]≤ 2b
µ(N+1)∑

b
i=1M2

i , (4.6.39)
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where x∗ is the optimal solution of (4.6.1).

Proof. It can be easily seen from (4.6.33) and (4.6.38) that

Γk =
2

k(k+1) , θk =
γk
Γk

= bk
µ
, b− γ1µ = 0, (4.6.40)

∑
N
k=1θk =

bN(N+1)
2µ

, ∑
N
k=1γkθk ≤ 2b2N

µ2 , (4.6.41)

and
∑

N
k=1θ

2
k = b2

µ2
N(N+1)(2N+1)

6 ≤ b2

µ2
N(N+1)2

3 . (4.6.42)

Hence, by (4.6.34),

E[ f (x̄N)− f (x∗)]≤ 1
2

(
∑

N
k=1θk

)−1
∑

N
k=1γkθk∑

b
i=1M2

i ≤ 2b
µ(N+1)∑

b
i=1M2

i .

In view of (4.6.39), the number of iterations performed by the SBMD method
to find an ε-solution for nonsmooth strongly convex problems can be bound by
2b
µε ∑

b
i=1M2

i .

4.6.1.4 Large-deviation properties for nonsmooth problems

Our goal in this subsection is to establish the large-deviation results associated with
the SBMD algorithm under the following “light-tail” assumption about the random
variable ξ :

E
{

exp
[
‖Gi(x,ξ )‖2

i,∗ /M2
i

]}
≤ exp(1), i = 1,2, ...,b. (4.6.43)

It can be easily seen that (4.6.43) implies (4.6.4) by Jensen’s inequality. It should be
pointed out that the above “light-tail” assumption is always satisfied for deterministic
problems with bounded subgradients.

For the sake of simplicity, we only consider the case when the random variables
{ik} in the SBMD agorithm are uniformly distributed, i.e., relation (4.6.31) holds.
The following result states the large-deviation properties of the SBMD algorithm for
solving general nonsmooth problems.

Theorem 4.12. Suppose that Assumptions (4.6.43) and (4.6.31) holds. Also assume
that X is bounded.

a) For solving general nonsmooth CP problems (i.e., (4.6.16) holds), we have

Prob
{

f (x̄N)− f (x∗)≥ b
(
∑

N
k=1γk

)−1
[
∑

b
i=1Vi(x

(i)
1 ,x(i)∗ )+ 1

2 M̄2
∑

N
k=1γ2

k

+λM̄
(

1
2 M̄∑

N
k=1γ2

k +4
√

2
√

∑
b
i=1Di

√
∑

N
k=1γ2

k

)]}
≤ exp

(
−λ 2/3

)
+ exp(−λ ),

(4.6.44)
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for any N ≥ 1 and λ > 0, where M̄ = max
i=1,...,b

Mi and x∗ is an arbitrary solution of

(4.6.1).
b) For solving strongly convex problems (i.e., (4.6.30), (4.6.32), and (4.6.33) hold),

we have

Prob
{

f (x̄N)− f (x∗)≥ b
(
∑

N
k=1θk

)−1
[
(1− γ1µ

b )∑b
i=1Vi(x

(i)
1 ,x(i)∗ )+ 1

2 M̄2
∑

N
k=1γkθk

+λM̄
(

1
2 M̄∑

N
k=1γkθk +4

√
2
√

∑
b
i=1Di

√
∑

N
k=1θ 2

k

)]}
≤ exp

(
−λ 2/3

)
+ exp(−λ ),

(4.6.45)
for any N ≥ 1 where x∗ is the optimal solution of (4.6.1).

Proof. We first show part a). Note that by (4.6.43), the concavity of φ(t) =
√

t for
t ≥ 0 and the Jensen’s inequality, we have, for any i = 1,2, ...,b,

E
{

exp
[
‖Gi(x,ξ )‖2

i,∗ /(2M2
i )
]}
≤
√
E
{

exp
[
‖Gi(x,ξ )‖2

i,∗ /M2
i

]}
≤ exp(1/2).

(4.6.46)
Also note that by (4.6.21), δk, k = 1, . . . ,N, is the martingale-difference. In addition,
denoting M2 ≡ 32b2M̄2

∑
b
i=1Di, we have

E[exp
(
M−2

δ
2
k
)
]≤ ∑

b
i=1

1
bE
[
exp
(
M−2‖x− xk‖2 ‖bUT

i Gi−g(xk)‖2
∗
)]

(4.6.47)

≤ ∑
b
i=1

1
bE
{

exp
[
2M−2‖x− xk‖2 (b2‖Gi‖2

i,∗+‖g(xk)‖2
∗
)]}

≤ ∑
b
i=1

1
bE
{

exp
[
16M−2

(
∑

b
i=1Di

)(
b2‖Gi‖2

i,∗+∑
b
i=1M2

i

)]}

≤ ∑
b
i=1

1
bE
{

exp
[

b2‖Gi‖2i,∗+∑
b
i=1M2

i
2b2M̄2

]}

≤ ∑
b
i=1

1
bE
{

exp
[
‖Gi‖2i,∗

2M2
i

+ 1
2

]}
≤ exp(1),

where the first five inequalities follow from (4.6.12) and (4.6.19), (4.6.31), (4.6.6)
and (4.6.11), the definition of M, and (4.6.46), respectively. Therefore, by the large-
deviation theorem on the Martingale-difference (see Lemma 4.1), we have

Prob
{

∑
N
k=1γkδk ≥ λM

√
∑

N
k=1γ2

k

}
≤ exp(−λ

2/3). (4.6.48)

Also observe that under Assumption (4.6.43), (4.6.12), (4.6.19), and (4.6.31))

E
[
exp
(
δ̄k/(bM̄2)

)]
≤ ∑

b
i=1

1
bE
[
exp
(
‖Gi(xk,ξk)‖2

i,∗ /M̄2
)]

≤ ∑
b
i=1

1
bE
[
exp
(
‖Gi(xk,ξk)‖2

i,∗ /M2
i

)]

≤ ∑
b
i=1

1
b exp(1) = exp(1), (4.6.49)

where the second inequality follows from the definition of M̄ and the third one
follows from (4.6.4). Setting ψk = γ2

k /∑
N
k=1γ2

k , we have exp
{

∑
N
k=1ψkδ̄k/(bM̄2)

}
≤
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∑
N
k=1ψkexp{δ̄k/(bM̄2)}. Using these previous two inequalities, we have

E
[
exp
{

∑
N
k=1γ

2
k δ̄k/(bM̄2

∑
N
k=1γ

2
k )
}]
≤ exp{1}.

It then follows from Markov’s inequality that ∀λ ≥ 0,

Prob
{

∑
N
k=1γ

2
k δ̄k > (1+λ )(bM̄2)∑N

k=1γ
2
k
}

= Prob
{

exp
{

∑
N
k=1γ

2
k δ̄k/(bM̄2

∑
N
k=1γ

2
k )
}
> exp{(1+λ )}

}

≤
E
[
exp
{
∑

N
k=1γ2

k δ̄k/(bM̄2∑
N
k=1γ2

k )
}]

exp{1+λ} ≤ exp{1}
exp{1+λ} = exp{−λ}. (4.6.50)

Combining (4.6.20), (4.6.48) and (4.6.50), we obtain (4.6.44).
The probabilistic bound in (4.6.45) follows from (4.6.37) and an argument similar

to the one used in the proof of (4.6.44), and hence the details are skipped.

We now provide some specialized large-deviation results for the SBMD algorithm
with different selections of {γk} and {θk}.
Corollary 4.7. Suppose that (4.6.43) and (4.6.31) hold. Also assume that X is
bounded.

a) If {θk} and {γk} are set to (4.6.16), (4.6.25) and D̃ =

√
∑

b
i=1Vi(x

(i)
1 ,x(i)∗ ) for

general nonsmooth problems, then we have

Prob

{
f (x̄N)− f (x∗)≥

√
b∑

b
i=1M2

i ∑
b
i=1Di√

2N

[
1+(1+λ ) M̄2

m̄2 +8λ
M̄
m̄

]}

≤ exp
(
−λ 2/3

)
+ exp(−λ )

(4.6.51)

for any λ > 0, where m̄ = min
i=1,...,b

Mi and x∗ is an arbitrary solution of (4.6.1).

b) If {θk} and {γk} are set to (4.6.33) and (4.6.38) for strongly convex problems,
then we have

Prob

{
f (x̄N)− f (x∗)≥ 2(1+λ )b∑

b
i=1M2

i
(N+1)µ

M̄2

m̄2 +
8
√

2λM̄
√

b∑
b
i=1M2

i ∑
b
i=1Di

m̄
√

3N

}

≤ exp
(
−λ 2/3

)
+ exp(−λ )

(4.6.52)

for any λ > 0, where x∗ is the optimal solution of (4.6.1).

Proof. Note that by (4.6.9), we have ∑
b
i=1Vi(x

(i)
1 ,x(i)∗ )≤ ∑

b
i=1Di. Also by (4.6.25),

we have

∑
N
k=1γk =

(
2NbD̃2

∑
b
i=1M2

i

)1/2

and ∑
N
k=1γ

2
k = 2bD̃2

∑
b
i=1M2

i

.

Using these identities and (4.6.44), we conclude that
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Prob

{
f (x̄N)− f (x∗)≥ b

(
∑

b
i=1M2

i
2NbD̃2

)1/2 [
∑

b
i=1Vi(x

(i)
1 ,x(i)∗ )+bD̃2M̄2

(
∑

b
i=1M2

i
)−1

+λM̄
(

2bM̄D̃2
(
∑

b
i=1M2

i
)−1

+8b1/2D̃
√

∑
b
i=1Di

(
∑

b
i=1M2

i
)− 1

2

)]}

≤ exp
(
−λ 2/3

)
+ exp(−λ ).

Using the fact that ∑
b
i=1M2

i ≥ bm̄2 and D̃ =

√
∑

b
i=1Vi(x

(i)
1 ,x(i)∗ ) to simplify the above

relation, we obtain (4.6.51). Similarly, relation (4.6.52) follows directly from (4.6.45)
and a few bounds in (6.4.79), (6.4.80) and (4.6.42).

We now add a few remarks about the results obtained in Theorem 4.12 and
Corollary 4.7. Firstly, observe that by (4.6.51), the number of iterations required
by the SBMD method to find an (ε,Λ)-solution of (4.6.1), i.e., a point x̄ ∈ X s.t.
Prob{ f (x̄)− f ∗ ≥ ε} ≤Λ can be bounded by

O
(

b log2(1/Λ)
ε2

)

after disregarding a few constant factors.
Secondly, it follows from (4.6.52) that the number of iterations performed by the

SBMD method to find an (ε,Λ)-solution for nonsmooth strongly convex problems,
after disregarding a few constant factors, can be bounded by O

(
b log2(1/Λ)/ε2

)
,

which, in case b = 1, is about the same as the one obtained for solving nonsmooth
problems without assuming convexity. It should be noted, however, that this bound
can be improved to O (b log(1/Λ)/ε) , for example, by incorporating a domain
shrinking procedure (see Section 4.2).

4.6.2 Convex composite optimization

In this section, we consider a special class of convex stochastic composite optimiza-
tion problems given by

φ
∗ := min

x∈X
{φ(x) := f (x)+χ(x)} . (4.6.53)

Here χ(·) is a relatively simple convex function and f (·) defined in (4.6.1) is a
smooth convex function with Lipschitz-continuous gradients g(·). Our goal is to
present a variant of the SBMD algorithm which can make use of the smoothness
properties of the objective function of an SP problem. More specifically, we consider
convex composite optimization problems given in the form of (4.6.53), where f (·) is
smooth and its gradients g(·) satisfy

‖gi(x+Uiρi)−gi(x)‖i,∗ ≤ Li‖ρi‖i ∀ ρi ∈ Rni , i = 1,2, ...,b. (4.6.54)

It then follows that
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f (x+Uiρi)≤ f (x)+ 〈gi(x),ρi〉+ Li
2 ‖ρi‖2

i ∀ρi ∈ Rni ,x ∈ X . (4.6.55)

The following assumption is made throughout this section.

Assumption 12 The function χ(·) is block separable, i.e., χ(·) can be decomposed
as

χ(x) = ∑
b
i=1χi(x(i)) ∀x ∈ X . (4.6.56)

where χi : Rni → R are closed and convex.

We are now ready to describe a variant of the SBMD algorithm for solving smooth
and composite problems.

Algorithm 4.6 A variant of SBMD for convex stochastic composite optimization
Let x1 ∈ X , positive stepsizes {γk}k≥1, nonnegative weights {θk}k≥1, and probabilities pi ∈ [0,1],
i = 1, . . . ,b, s.t. ∑

b
i=1 pi = 1 be given. Set s1 = 0, ui = 1 for i = 1, . . . ,b, and θ1 = 0.

for k = 1, . . . ,N do
1. Generate a random variable ik according to (4.6.12).
2. Update s(i)k , i = 1, . . . ,b, by (4.6.13) and then set uik = k+1.

3. Update x(i)k , i = 1, . . . ,b, by

x(i)k+1 =

{
argminz∈Xi

〈
Gi(xk,ξk),z− x(i)k

〉
+ 1

γk
Vi(x

(i)
k ,z)+χi(x) i = ik,

x(i)k i 6= ik.
(4.6.57)

end for
Output: Set s(i)N+1 = s(i)N+1 + x(i)N+1∑

N+1
j=ui

θ j , i = 1, . . . ,b, and x̄N = sN+1/∑
N+1
k=1 θk.

A few remarks about the above variant of SBMD algorithm for composite convex
problem in place. Firstly, similar to Algorithm 4.5, G(xk,ξk) is an unbiased estima-
tor of g(xk) (i.e., (4.6.3) holds). Moreover, in order to know exactly the effect of
stochastic noises in G(xk,ξk), we assume that for some σi ≥ 0,

E[‖Gi(x,ξ )−gi(x)‖2
i,∗]≤ σ

2
i , i = 1, . . . ,b. (4.6.58)

Clearly, if σi = 0, i = 1, . . . ,b, then the problem is deterministic. For notational
convenience, we also denote

σ :=
(

∑
b
i=1σ

2
i

)1/2
. (4.6.59)

Secondly, observe that the way we compute the output x̄N in Algorithm 4.6 is
slightly different from Algorithm 4.5. In particular, we set θ1 = 0 and compute x̄N of
Algorithm 4.6 as a weighted average of the search points x2, ...,xN+1, i.e.,

x̄N =
(
∑

N+1
k=2 θk

)−1
sN+1 =

(
∑

N+1
k=2 θk

)−1
∑

N+1
k=2 (θkxk), (4.6.60)

while the output of Algorithm 4.5 is taken as a weighted average of x1, ...,xN .
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Thirdly, it can be easily seen from (4.6.9), (6.2), and (4.6.58) that if X is bounded,
then

E[‖Gi(x,ξ )‖2
i,∗]≤ 2‖gi(x)‖2

i,∗+2E‖Gi(x,ξ )−gi(x)‖2
i,∗]≤ 2‖gi(x)‖2

i,∗+2σ
2
i

≤ 2
[
2‖gi(x)−gi(x1)‖2

i,∗+2‖gi(x1)‖2
i,∗
]
+2σ

2
i

≤ 2
[
2‖g(x)−g(x1)‖2

∗+2‖gi(x1)‖2
i,∗
]
+2σ

2
i

≤ 4
(

∑
b
i=1Li

)2
‖x− x1‖2 +4‖gi(x1)‖2

i,∗+2σ
2
i

≤ 8b2L̄2
∑

b
i=1Di +4‖gi(x1)‖2

i,∗+2σ
2
i , i = 1, . . . ,b, (4.6.61)

where L̄ := maxi=1,...,b Li and the fourth inequality follows from the fact that g is Lip-
schitz continuous with constant ∑

b
i=1Li. Hence, we can directly apply Algorithm 4.5

in the previous section to problem (4.6.53), and its rate of convergence is readily
given by Theorem 4.10 and 4.11. However, in this section we will show that by
properly selecting {θk}, {γk}, and {pi} in the above variant of the SBMD algorithm,
we can significantly improve the dependence of the rate of convergence of the SBMD
algorithm on the Lipschitz constants Li, i = 1, . . . ,b.

We first discuss the main convergence properties of Algorithm 4.6 for convex
stochastic composite optimization without assuming strong convexity.

Theorem 4.13. Suppose that {ik} in Algorithm 4.6 are uniformly distributed, i.e.,
(4.6.31) holds. Also assume that {γk} and {θk} are chosen such that for any k ≥ 1,

γk ≤ 1
2L̄ , (4.6.62)

θk+1 = bγk− (b−1)γk+1. (4.6.63)

Then, under Assumption (4.6.3) and (4.6.58), we have, for any N ≥ 2,

E[φ(x̄N)−φ(x∗)]

≤
(

∑
N+1
k=2 θk

)−1 [
(b−1)γ1[φ(x1)−φ(x∗)]+b∑

b
i=1Vi(x

(i)
1 ,x(i)∗ )+σ2

∑
N
k=1γ2

k

]
,

(4.6.64)
where x∗ is an arbitrary solution of problem (4.6.53) and σ is defined in (4.6.59).

Proof. For simplicity, let us denote Vi(z,x) ≡ Vi(z(i),x(i)), gik ≡ g(ik)(xk), and
V (z,x) = ∑

b
i=1 p−1

i Vi(z,x). Also denote ζk = (ik,ξk) and ζ[k] = (ζ1, . . . ,ζk), and let
δik = Gik(xk,ξk)− gik(xk) and ρik = UT

ik (xk+1 − xk). By the definition of φ(·) in
(4.6.53) and (4.6.55), we have

φ(xk+1)≤ f (xk)+ 〈gik(xk),ρik〉+
Lik
2

∥∥ρik

∥∥2
ik
+χ(xk+1)

= f (xk)+ 〈Gik(xk,ξk),ρik〉+
Lik
2

∥∥ρik

∥∥2
ik
+χ(xk+1)−〈δik ,ρik〉. (4.6.65)

Moreover, it follows from the optimality condition of (??) (see Lemma 3.5) and
(4.6.57) that, for any x ∈ X ,
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〈Gik(xk,ξk),ρik〉+χik(x
(ik)
k+1)≤ 〈Gik(xk,ξk),x(ik)− x(ik)k 〉+χik(x

(ik))

+ 1
γk

[
Vik(xk,x)−Vik(xk+1,x)−Vik(xk+1,xk)

]
.

Combining the above two inequalities and using (4.6.56), we obtain

φ(xk+1)≤ f (xk)+
〈

Gik(xk,ξk),x(ik)− x(ik)k

〉
+χik(x

(ik))

+ 1
γk

[
Vik(xk,x)−Vik(xk+1,x)−Vik(xk+1,xk)

]

+
Lik
2

∥∥ρik

∥∥2
ik
+∑i 6=ik χi(x

(i)
k+1)−〈δik ,ρik〉. (4.6.66)

By the strong convexity of νi(·) and (4.6.62), using the simple inequality that bu−
au2

2 ≤ b2

2a ,∀a > 0, we have

− 1
γk

Vik(xk+1,xk)+
Lik
2

∥∥ρik

∥∥2
ik
−〈δik ,ρik〉 ≤ −

(
1

2γk
− Lik

2

)∥∥ρik

∥∥2
ik
−〈δik ,ρik〉

≤ γk‖δik‖
2
∗

2(1−γkLik )
≤ γk‖δik‖

2
∗

2(1−γkL̄) ≤ γk
∥∥δik

∥∥2
∗ .

Also observe that by the definition of xk+1 in (4.6.57), (4.6.14), and the defini-
tion of V (·, ·), we have ∑i6=ik χi(x

(i)
k+1) = ∑i6=ik χi(x

(i)
k ) and Vik(xk,x)−Vik(xk+1,x) =

[V (xk,x)−V (xk+1,x)]/b. Using these observations, we conclude from (4.6.66) that

φ(xk+1)≤ f (xk)+
〈

Gik(xk,ξk),x(ik)− x(ik)k

〉
+ 1

bγk
[V (xk,x)−V (xk+1,x)]

+ γk
∥∥δik

∥∥2
∗+∑i6=ik χi(x

(i)
k )+χik(x

(ik)). (4.6.67)

Now noting that

Eζk

[〈
Gik(xk,ξk),x(ik)− x(ik)k

〉
|ζ[k−1]

]
= 1

b ∑
b
i=1Eξk

[〈
Gi(xk,ξk),x(i)− x(i)k

〉
|ζ[k−1]

]

= 1
b 〈g(xk),x− xk〉 ≤ 1

b [ f (x)− f (xk)],
(4.6.68)

Eζk

[∥∥δik

∥∥2
∗ |ζ[k−1]

]
= 1

b ∑
b
i=1Eξk

[
‖Gi(xk,ξk)−gi(xk)‖2

i,∗|ζ[k−1]
]

≤ 1
b ∑

b
i=1σ

2
i = σ2

b , (4.6.69)

Eζk

[
∑i 6=ik χi(x

(i)
k )|ζ[k−1]

]
= 1

b ∑
b
j=1∑i6= jχi(x

(i)
k ) = b−1

b χ(xk), (4.6.70)

Eζk

[
χik(x

(ik))|ζ[k−1]

]
= 1

b ∑
b
i=1χi(x(i)) = 1

b χ(x), (4.6.71)

we conclude from (4.6.67) that

Eζk

[
φ(xk+1)+

V (xk+1,x)
bγk

|ζ[k−1]

]
≤ f (xk)+

1
b [ f (x)− f (xk)]+

1
b χ(x)

+ V (xk,x)
bγk

+ γk
b σ

2 + b−1
b χ(xk) =

b−1
b φ(xk)+

1
b φ(x)+ V (xk,x)

bγk
+ γk

b σ
2,



4.6 Stochastic block mirror descent method 217

which implies that

bγkE[φ(xk+1)−φ(x)]+E[V (xk+1,x)]≤ (b−1)γkE[φ(xk)−φ(x)]+E [V (xk,x)]+γ
2
k σ

2.
(4.6.72)

Now, summing up the above inequalities (with x = x∗) for k = 1, . . . ,N , and noting
that θk+1 = bγk− (b−1)γk+1, we obtain

∑
N
k=2θkE[φ(xk)−φ(x∗)]+bγNE[φ(xN+1)−φ(x∗)]+E[V (xN+1,x∗)]
≤ (b−1)γ1[φ(x1)−φ(x∗)]+V (x1,x∗)+σ2

∑
N
k=1γ2

k ,

Using the above inequality and the facts that V (·, ·)≥ 0 and φ(xN+1)≥ φ(x∗), we
conclude

∑
N+1
k=2 θkE[φ(xk)−φ(x∗)]≤ (b−1)γ1[φ(x1)−φ(x∗)]+V (x1,x∗)+σ

2
∑

N
k=1γ

2
k ,

which, in view of (4.6.59), (4.6.60) and the convexity of φ(·), clearly implies (4.6.64).

The following corollary describes a specialized convergence result of Algo-
rithm 4.6 for solving convex stochastic composite optimization problems after prop-
erly selecting {γk}.

Corollary 4.8. Suppose that {pi} in Algorithm 4.6 are set to (4.6.31). Also assume
that {γk} are set to

γk = γ = min
{

1
2L̄ ,

D̃
σ

√
b
N

}
(4.6.73)

for some D̃ > 0, and {θk} are set to (4.6.63). Then, under Assumptions (4.6.3) and
(4.6.58), we have

E [φ(x̄N)−φ(x∗)]≤ (b−1)[φ(x1)−φ(x∗)]
N +

2bL̄∑
b
i=1Vi(x

(i)
1 ,x(i)∗ )

N

+ σ
√

b√
N

[
∑

b
i=1Vi(x

(i)
1 ,x(i)∗ )

D̃ + D̃
]
. (4.6.74)

where x∗ is an arbitrary solution of problem (4.6.53).

Proof. It follows from (4.6.63) and (4.6.73) that θk = γk = γ , k = 1, . . . ,N. Using
this observation and Theorem 4.13, we obtain

E [φ(x̄N)−φ(x∗)]≤ (b−1)[φ(x1)−φ(x∗)]
N +

b∑
b
i=1Vi(x

(i)
1 ,x(i)∗ )

Nγ
+ γσ

2,

which, in view of (4.6.73), then implies (4.6.74).

We now add a few remarks about the results obtained in Corollary 4.8. First, in

view of (4.6.74), an optimal selection of D̃ would be
√

∑
b
i=1Vi(x

(i)
1 ,x(i)∗ ). In this case,

(4.6.74) reduces to
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E [φ(x̄N)−φ(x∗)]≤ (b−1)[φ(x1)−φ(x∗)]
N +

2bL̄∑
b
i=1Vi(x

(i)
1 ,x(i)∗ )

N +
2σ
√

b
√

∑
b
i=1Di√

N

≤ (b−1)[φ(x1)−φ(x∗)]
N +

2bL̄∑
b
i=1Di

N +
2σ
√

b
√

∑
b
i=1Di√

N
. (4.6.75)

Second, if we directly apply Algorithm 4.5 to problem (4.6.53), then, in view of
(4.6.27) and (4.6.61), we have

E[φ(x̄N)−φ(x∗)]≤ 2
√

∑
b
i=1

[
4b2L̄2

(
∑

b
i=1Di

)
+2‖gi(x1)‖2

i,∗+σ2
i

]√
b
√

∑
b
i=1Di√

N

≤ 4b2L̄∑
b
i=1Di√

N
+2
√

∑
b
i=1

(
2‖gi(x1)‖2

i,∗+σ2
i

)√
b
√

∑
b
i=1Di√

N
.

(4.6.76)

Clearly, the bound in (4.6.75) has a much weaker dependence on the Lipschitz
constant L̄ than the one in (4.6.76). In particular, we can see that L̄ can be as large
as O(

√
N) without affecting the bound in (4.6.75), after disregarding some other

constant factors. Moreover, the bound in (4.6.75) also has a much weaker dependence
on the number of blocks b than the one in (4.6.76).

In the remaining part of this section, we consider the case when the objective
function is strongly convex, i.e., the function f (·) in (4.6.53) satisfies (4.6.30). The
following theorem describes some convergence properties of the SBMD algorithm
for solving strongly convex composite problems.

Theorem 4.14. Suppose that (4.6.30) and (4.6.31) hold. Also assume that the param-
eters {γk} and {θk} are chosen such that for any k ≥ 1,

γk ≤min
{

1
2L̄ ,

b
µ

}
, (4.6.77)

θk+1 =
bγk
Γk
− (b−1)γk+1

Γk+1
with Γk =

{
1 k = 1
Γk−1(1− γkµ

b ) k ≥ 2.
(4.6.78)

Then, for any N ≥ 2, we have

E[φ(x̄N)−φ(x∗)]≤
[
∑

N+1
k=2 θk

]−1
[(

b−µγ1

)
∑

b
i=1Vi(x

(i)
1 ,x(i)∗ )

+(b−1)γ1[φ(x1)−φ(x∗)] +∑
N
k=1

γ2
k

Γk
σ2
]
,

(4.6.79)

where x∗ is the optimal solution of problem (4.6.53).

Proof. Observe that by the strong convexity of f (·), for any x ∈ X , the relation in
(4.6.68) can be strengthened to
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Eζk

[〈
Gik(xk,ξk),x(ik)− x(ik)k

〉
|ζ[k−1]

]

= 1
b 〈g(xk),x− xk〉 ≤ 1

b [ f (x)− f (xk)− µ

2 ‖x− xk‖2].

Using this observation, (4.6.69), (4.6.70), and (4.6.71), we conclude from (4.6.67)
that

Eζk

[
φ(xk+1)+

1
bγk

V (xk+1,x)|ζ[k−1]

]
≤ f (xk)+

1
b

[
f (x)− f (xk)− µ

2 ‖x− xk‖2
]

+ 1
bγk

V (xk,x)+
γk
b σ2 + b−1

b χ(xk)+
1
b χ(x)

≤ b−1
b φ(xk)+

1
b φ(x)+

(
1

bγk
− µ

b2

)
V (xk,x)+

γk
b σ2,

where the last inequality follows from (4.6.35). By taking expectation w.r.t. ξ[k−1] on
both sides of the above inequality and replacing x by x∗, we conclude that, for any
k ≥ 1,

E[V (xk+1,x∗)]≤
(

1− µγk
b

)
E[V (xk,x∗)]+(b−1)γkE[φ(xk)−φ(x∗)]−

bγkE [φ(xk+1)−φ(x∗)]+ γ2
k σ2,

which, in view of Lemma 3.17 (with ak = γkµ/(b), Ak = Γk and Bk = (b−
1)γk[φ(xk)−φ(x∗)]−bγkE [φ(xk+1)−φ(x∗)]+ γ2

k σ2), then implies that

1
ΓN
[V (xk+1,x∗)]≤ (1− µγ1

b )V (x1,x∗)+(b−1)∑N
k=1

γk
Γk
[φ(xk)−φ(x∗)]

−b∑
N
k=1

γk
Γk
[φ(xk+1)−φ(x∗)]+∑

N
k=1

γ2
k

Γk
σ

2

≤ (1− µγ1
b )V (x1,x∗)+(b−1)γ1[φ(x1)−φ(x∗)]

−∑
N+1
k=2 θk[φ(xk)−φ(x∗)]+∑

N
k=1

γ2
k

Γk
σ

2,

where the last inequality follows from (4.6.78) and the fact that φ(xN+1)−φ(x∗)≥ 0.
Noting that V (xN+1,x∗)≥ 0, we conclude from the above inequality that

∑
N+1
k=2 θkE[φ(xk)−φ(x∗)]≤ (1− µγ1

b )V (x1,x∗)+(b−1)γ1[φ(x1)−φ(x∗)]+∑
N
k=1

γ2
k

Γk
σ

2.

Our result immediately follows from the above inequality, the convexity of φ(·), and
(4.6.60).

Below we specialize the rate of convergence of the SBMD method for solving
strongly convex composite problems with a proper selection of {γk} .

Corollary 4.9. Suppose that (4.6.30) and (4.6.31) hold. Also assume that {θk} are
set to (4.6.78) and

γk = 2b/(µ(k+ k0)) ∀k ≥ 1, (4.6.80)

where
k0 :=

⌊
4bL̄
µ

⌋
.

Then, for any N ≥ 2, we have
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E[φ(x̄N)−φ(x∗)]≤ µk2
0

N(N+1)∑
b
i=1Vi(x1,x∗)+

2(b−1)k0
N(N+1) [φ(x1)−φ(x∗)]+ 4bσ2

µ(N+1) ,

(4.6.81)
where x∗ is the optimal solution of problem (4.6.53).

Proof. We can check that

γk =
2b

µ(k+b4bL̄/µc) ≤
1

2L̄ .

It can also be easily seen from the definition of γk and (4.6.78) that

Γk =
k0(k0+1)

(k+k0)(k+k0−1) , 1− γ1µ

b = k0−1
k0+1 , ∀k ≥ 1, (4.6.82)

θk =
bγk
Γk
− (b−1)γk+1

Γk+1
= 2bk+2b(k0−b)

µk0(k0+1) ≥ 2bk
µk0(k0+1) , (4.6.83)

where the relation k0 ≥ b follows from the definition of k0 and the fact that L̄≥ µ .
Hence,

∑
N+1
k=2 θk ≥ bN(N+1)

µk0(k0+1) , ∑
N
k=1

γ2
k

Γk
= 4b2

µ2k0(k0+1)∑
N
k=1

k+k0−1
k+k0

≤ 4Nb2

µ2k0(k0+1) . (4.6.84)

By using the above observations and (4.6.79), we have

E[φ(x̄N)−φ(x∗)]

≤
(
∑

N+1
k=2 θk

)−1
[(

1− µγ1
b

)
V (x1,x∗)+(b−1)γ1[φ(x1)−φ(x∗)]+∑

N
k=1

γ2
k

Γk
σ2
]
.

≤ µk0(k0+1)
bN(N+1)

[
k0−1
k0+1V (x1,x∗)+

2b(b−1)
µ(k0+1) [φ(x1)−φ(x∗)]+ 4Nb2σ2

µ2k0(k0+1)

]

≤ µk2
0

bN(N+1)V (x1,x∗)+
2(b−1)k0
N(N+1) [φ(x1)−φ(x∗)]+ 4bσ2

µ(N+1) ,

where the second inequality follows (4.6.82), (4.6.83) and (4.6.84).

It is interesting to observe that, in view of (4.6.81) and the definition of k0,
the Lipschitz constant L̄ can be as large as O(

√
N) without affecting the rate of

convergence of the SBMD algorithm, after disregarding other constant factors, for
solving strongly convex stochastic composite optimization problems.

4.7 Exercises and notes

1. Establish the rate of convergence for the stochastic mirror descent method applied
to problem (4.1.1) under the following situation.

a. Nonsmooth and strongly convex for which (4.1.7) holds and

f (y)− f (x)−〈 f ′(x),y− x〉 ≥ µV (x,y),∀x,y ∈ X . (4.7.85)

b. Smooth and strongly convex for which both (4.1.20) and (4.7.85) hold.
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2. Establish the lower complexity bound stated in (4.2.3) and (4.2.4) for stochastic
optimization methods applied to problem 4.2.1.

3. Establish the rate of convergence of the accelerated stochastic gradient descent
method if the objective function f in (4.2.1) is differentiable and its gradients are
Hölder continuous, i.e.,

‖∇ f (x)−∇ f (y)‖∗ ≤ L‖x− y‖v,∀x,y ∈ X

for some v ∈ [0,1].
4. Consider the matrix game problem, that is, problem (4.3.1) with

φ(x,y) := yT Ax+bT x+ cT y,

where A ∈ Rm×n, X is the standard Euclidean ball, i.e.,

X :=
{

x ∈ Rn : ∑
n
j=1x2

j ≤ 1
}
,

and Y is the standard simplex, i.e.,

Y :=
{

y ∈ Rm : y≥ 0,∑m
i=1yi = 1

}
.

Try to derive a randomized oracle for the stochastic mirror descent method dis-
cussed in Section 4.3 for solving this problem.

5. Consider the linearized primal-dual method in Algorithm 4.1.

a. Establish the rate of convergence for solving deterministic saddle point prob-
lems in (4.4.1).

b. Develop a stochastic version of this method and establish its rate of convergence
for solving problem (4.4.1) under the stochastic first-order oracle as described
in Section 4.4.

6. The stochastic accelerated mirror-prox method with αt = 1, G = 0 and J = 0 will
be equivalent to a stochastic version of the mirror-prox method.

a. Establish the rate of convergence of this algorithm applied to monotone varia-
tional inequalities (i.e., H is monotone).

b. Establish the rate of convergence of this algorithm applied to generalized
monotone variational inequalities, i.e., there exists an z̄ ∈ Z such that

〈H(z),z− z̄〉 ≥ 0,∀z ∈ Z.

Notes. Stochastic gradient descent (a.k.a, stochastic approximation) goes back to
Robbins and Monro [95]. Nemirovksi and Yudin [78] first introduced the stochastic
mirror descent method in 1983 and further improvement was made in [89, 90, 81, 77].
In particular, Nemirovski et. al. [77] presented a comprehensive treatment for the
stochastic mirror descent method, which includes the complexity analysis for gen-
eral nonsmooth, strongly convex, and convex-concave saddle point point problems,
the derivation of large-deviation results, and extensive numerical experimentation.
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Moreover, Lan, Nemirovski and Shapiro [57] presents the validation analysis, i.e., ac-
curacy certificates for this method. Lan [50] first presented the accelerated stochastic
gradient descent (a.k.a., accelerated stochastic approximation or SGD with momen-
tum) in 2008 and the paper was formally published in [51]. A comprehensive study
of this method, including the generaliztion for solving strongly convex composite
optimization problems, multi-epoch (or multi-stage) variants, shrinking procedures,
and accuracy certificates, was presented by Ghadimi and Lan in [31, 32]. Chen, Lan
and Ouyang presented the stochastic accelerated primal-dual method for solving
stochastic saddle point problems with a bilinear structure in [18], and the stochas-
tic accelerated mirror-prox method for solving a class of composite variational
inequalities in [17]. Note that an earlier stochastic mirror-prox method without the
acceleration steps was presented in [47]. Dang and Lan first introduced the random-
ized block decomposition into nonsmooth and stochastic optimization in [23]. Note
that here exists a long history for block coordinate descent methods for solving
deterministic optimization problems (see, e.g., [69, 105, 84, 66, 94]).



Chapter 5
Finite-sum and Distributed Optimization

In this chapter, we will study a special class of convex optimization problems whose
objective function is given by the summation of many components. These problems
have found wide applications in empirical risk minimization and distributed opti-
mization. These problems are deterministic optimization problems with a special
finite-sum structure, but they can also be viewed as stochastic optimization prob-
lems with a discrete distribution. We will study two typical classes of randomized
algorithms for finite-sum optimization. The first class incorporates random block
decomposition into the dual space of the primal-dual methods for deterministic
convex optimization, while the second one employs variance reduction techniques
into stochastic gradient descent methods for stochastic optimization.

5.1 Random primal-dual gradient method

In this section we are interested in the convex programming (CP) problem given by

Ψ
∗ := min

x∈X

{
Ψ(x) := 1

m ∑
m
i=1 fi(x)+h(x)+µ ν(x)

}
. (5.1.1)

Here, X ⊆Rn is a closed convex set, h is a relatively simple convex function, fi :Rn→
R, i = 1, . . . ,m, are smooth convex functions with Lipschitz continuous gradient, i.e.,
∃Li ≥ 0 such that

‖∇ fi(x1)−∇ fi(x2)‖∗ ≤ Li‖x1− x2‖, ∀x1,x2 ∈ Rn, (5.1.2)

ν : X → R is a strongly convex function with modulus 1 w.r.t. an arbitrary norm ‖ · ‖,
i.e.,

〈ν ′(x1)−ν
′(x2),x1− x2〉 ≥ 1

2‖x1− x2‖2, ∀x1,x2 ∈ X , (5.1.3)

and µ ≥ 0 is a given constant. Hence, the objective function Ψ is strongly convex
whenever µ > 0. For notational convenience, we also denote f (x)≡ 1

m ∑
m
i=1 fi(x) and

L≡ 1
m ∑

m
i=1Li. It is easy to see that for some L f ≥ 0,

223
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‖∇ f (x1)−∇ f (x2)‖∗ ≤ L f ‖x1− x2‖ ≤ L‖x1− x2‖, ∀x1,x2 ∈ Rn. (5.1.4)

Throughout this section, we assume subproblems of the form

argminx∈X 〈g,x〉+h(x)+µ ν(x) (5.1.5)

are easy to solve for any g ∈ Rn and µ ≥ 0. We point out below a few examples
where such an assumption is satisfied.

• If X is relatively simple, e.g., Euclidean ball, simplex or l1 ball, and h(x) = 0,
and w(·) is some properly choosing distance generating function, we can obtain
closed form solutions of problem (5.1.5). This is the standard setting used in the
regular first-order methods.

• If the problem is unconstrained, i.e.,X = Rn, and h(x) is relatively simple, we can
derive closed form solutions of (5.1.5) for some interesting cases. For example,
if h(x) = ‖x‖1 and w(x) = ‖x‖2

2, then an explicit solution of (5.1.5) is readily
given by its first-order optimality condition. A similar example is given by h(x) =
∑

d
i=1 σi(x) and w(x) = tr(xT x)/2, where σi(x), i = 1, . . . ,d, denote the singular

values of x ∈ Rd×d .
• If X is relatively simple and h(x) is nontrivial, we can still compute closed form

solutions of (5.1.5) for some interesting special cases, e.g., when X is the standard
simplex, w(x) = ∑

d
i=1 xi logxi and h(x) = ∑

d
i=1 xi.

.
The deterministic finite-sum problem (5.2.1) can model the empirical risk min-

imization in machine learning and statistical inferences, and hence has become
the subject of intensive studies during the past few years. Our study on the finite-
sum problems (5.2.1) and (??) has also been motivated by the emerging need for
distributed optimization and machine learning. One typical example of the afore-
mentioned distributed problems is Federated Learning (see Figure 5.1). Under such
settings, each component function fi is associated with an agent i, i = 1, . . . ,m, which
are connected through a distributed network. While different topologies can be con-
sidered for distributed optimization, in this section we focus on the star network
where m agents are connected to one central server, and all agents only communicate
with the server (see Figure 5.1). These types of distributed optimization problems
have several unique features. Firstly, they allow for data privacy, since no local data
is stored in the server. Secondly, network agents behave independently and they
may not be responsive at the same time. Thirdly, the communication between the
server and agent can be expensive and has high latency. Under the distributed setting,
methods requiring full gradient computation may incur extra communication and
synchronization costs. As a consequence, methods which require fewer full gradient
computations seem to be more advantageous in this regard. As a particular example,
in the `2-regularized logistic regression problem, we have

fi(x)= li(x) := 1
Ni

∑
Ni
j=1 log(1+exp(−bi

ja
i
j
T

x)), i= 1, . . . ,m, ν(x)=R(x) := 1
2‖x‖2

2,
(5.1.6)
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provided that fi is the loss function of agent i with training data {ai
j,b

i
j}Ni

j=1 ∈
Rn×{−1,1}, and µ := λ is the penalty parameter. Note that another type of topology

Fig. 5.1: A distributed network with 5
agents and one server

Fig. 5.2: An example of the decentralized
network

for distributed optimization is the multi-agent network without a central server,
namely the decentralized setting, as shown in Figure 5.2, where the agents can
only communicate with their neighbors to update information (see Section 8.3 for
discussions about decentralized algorithms).

Stochastic (sub)gradient descent (SGD) type methods, as discussed in Chapter 4
have been proven useful to solve problems given in the form of (5.1.1). Recall that
SGD was originally designed to solve stochastic optimization problems given by

min
x∈X

Eξ [F(x,ξ )], (5.1.7)

where ξ is a random variable with support Ξ ⊆ Rd . Problem (5.1.1) can be viewed
as a special case of (5.1.7) by setting ξ to be a discrete random variable supported on
{1, . . . ,m} with Prob{ξ = i}= pi and

F(x, i) = (mpi)
−1 fi(x)+h(x)+µν(x), i = 1, . . . ,m.

Since each iteration of SGDs needs to compute the (sub)gradient of only one ran-
domly selected fi. Observe that the subgradients of h and ν are not required due
to the assumption in (5.1.5). their iteration cost is significantly smaller than that
for deterministic first-order methods (FOM), which involves the computation of
first-order information of f and thus all the m (sub)gradients of fi’s. Moreover, when
fi’s are general nonsmooth convex functions, by properly specifying the probabilities
pi, i = 1, . . . ,m. Indeed, suppose that fi are Lipschitz continuous with constants Mi
and let us denote M := ∑

m
i=1Mi, we should set pi = Mi/M in order to get the optimal

complexity for SGDs. It can be shown (see Section 4.1) that the iteration complexities
for both SGD and FOM are in the same order of magnitude. Consequently, the total
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number of subgradients required by SGDs can be m times smaller than those by
FOMs.

Note however, that there is a significant gap on the complexity bounds between
SGDs and deterministic FOMs if fi’s are smooth convex functions. For the sake
of simplicity, let us focus on the strongly convex case when µ > 0 and let x∗ be
the optimal solution of (5.1.1). In order to find a solution x̄ ∈ X s.t. ‖x̄− x∗‖2 ≤ ε ,
the total number of gradient evaluations for fi’s performed by optimal FOMs (see
Section 3.3) can be bounded by

O

{
m
√

L f
µ

log 1
ε

}
. (5.1.8)

On the other hand, a direct application of optimal SGDs (see Section 4.2) to the
aforementioned stochastic optimization reformulation of (5.1.1) would yield an

O
{√

L
µ

log 1
ε
+ σ2

µε

}
(5.1.9)

iteration complexity bound on the number of gradient evaluations for fi’s. Here σ > 0
denotes variance of the stochastic gradients, i.e., E[‖G(x,ξ )−∇ f (x)‖2

∗]≤ σ2, where
G(x,ξ ) is an unbiased estimator for the gradient ∇ f (x). Clearly, the latter bound is
significantly better than the one in (5.1.8) in terms of its dependence on m, but much
worse in terms of its dependence on accuracy ε and a few other problem parameters
(e.g., L and µ). It should be noted that the optimality of (5.1.9) for general stochastic
programming (5.1.7) does not preclude the existence of more efficient algorithms for
solving (5.1.1), because (5.1.1) is a special case of (5.1.7) with finite support Ξ .

Following the constructions in Section 3.3, we develop a randomized primal-dual
gradient (RPDG) method, which is an incremental gradient method using only one
randomly selected component ∇ fi at each iteration. This method was developed
by using the following ideas: 1) a proper reformulation of (5.1.1) as a primal-dual
saddle point problem with multiple dual players; and 2) the incorporation of a
new non-differentiable prox-function (or Bregman distance) based on the conjugate
functions of f in the dual space. Different from the game interpretation of the
accelerated gradient descent method, the RPDG method incorporates an additional
dual prediction step before performing the primal descent step (with a properly
defined primal prox-function). We prove that the number of iterations (and hence the
number of gradients) required by RPDG is bounded by

O
((

m+
√

mL
µ

)
log 1

ε

)
, (5.1.10)

both in expectation and with high probability. The complexity bounds of the RPDG
method are established in terms of not only the distance from the iterate xk to the
optimal solution, but also the primal optimality gap based on the ergodic mean of the
iterates.

Moreover, we show that the number of gradient evaluations required by any
randomized incremental gradient methods to find an ε-solution of (5.1.1), i.e., a point



5.1 Random primal-dual gradient method 227

x̄ ∈ X s.t. E[‖x̄− x∗‖2
2]≤ ε , cannot be smaller than

Ω

((
m+

√
mL
µ

)
log 1

ε

)
, (5.1.11)

whenever the dimension

n≥ (k+m/2)/ log(1/q),

This bound is obtained by carefully constructing a special class of separable quadratic
programming problems and tightly bounding the expected distance to the optimal
solution for any arbitrary distribution used to choose fi at each iteration. Note that
we assume that the distribution is chosen prior to the execution of the algorithms
and is independent of the iteration number for the sake of simplicity. However, the
construction can be extended for more general randomized methods. Comparing
(5.1.10) with (5.1.11), we conclude that the complexity of the RPDG method is
optimal if n is large enough. As a byproduct, we also derived a lower complexity
bound for randomized block coordinate descent methods by utilizing the separable
structure of the aforementioned worst-case instances.

Finally, we generalize RPDG for problems which are not necessarily strongly
convex (i.e., µ = 0) and/or involve structured nonsmooth terms fi. We show that for
all these cases, the RPDG can save O(

√
m) times gradient computations (up to certain

logarithmic factors) in comparison with the corresponding optimal deterministic
FOMs at the cost of making O(

√
m) times more calls to the prox-oracle. In particular,

we show that when both the primal and dual of (5.1.1) are not strongly convex,
the total number of iterations performed by the RPDG method can be bounded by
O(
√

m/ε) (up to some logarithmic factors), which is O(
√

m) times better, in terms
of the total number of dual subproblems to be solved, than deterministic methods for
solving bi-linear saddle point problems (see Section 3.6).

5.1.1 Multi-dual-player game reformulation

We start by introducing a new saddle point reformulation of (5.1.1) than (5.2.14). Let
Ji : Yi→ R be the conjugate functions of fi/m and Yi, i = 1, . . . ,m, denote the dual
spaces where the gradients of fi/m reside. For the sake of notational convenience, let
us denote J(y) := ∑

m
i=1Ji(yi), Y := Y1×Y2× . . .×Ym, and y = (y1;y2; . . . ;ym) for

any yi ∈ Yi, i = 1, . . . ,m. Clearly, we can reformulate problem (5.1.1) equivalently
as a saddle point problem:

Ψ
∗ := min

x∈X

{
h(x)+µ ν(x)+max

y∈Y
〈x,Uy〉− J(y)

}
, (5.1.12)

where U ∈ Rn×nm is given by

U := [I, I, . . . , I] . (5.1.13)
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Here I is the identity matrix in Rn. Given a pair of feasible solutions z̄ = (x̄, ȳ) and
z = (x,y) of (5.1.12), we define the primal-dual gap function Q(z̄,z) by

Q(z̄,z) := [h(x̄)+µν(x̄)+ 〈x̄,Uy〉− J(y)]− [h(x)+µν(x)+ 〈x,Uȳ〉− J(ȳ)] .
(5.1.14)

It is well-known that z̄ ∈ Z ≡ X×Y is an optimal solution of (5.1.12) if and only if
Q(z̄,z)≤ 0 for all z ∈ Z.

We now discuss both primal and dual prox-functions (proximity control functions)
in the primal and dual spaces, respectively, associated with problem 5.1.12.

Recall that the function ν : X → R in (5.1.1) is strongly convex with modulus 1
with respect to ‖ · ‖. We can define a primal prox-function associated with ν as

V (x0,x)≡Vν(x0,x) := ν(x)− [ν(x0)+ 〈ν ′(x0),x− x0〉], (5.1.15)

where ν ′(x0) ∈ ∂ν(x0) is an arbitrary subgradient of ν at x0. Clearly, by the strong
convexity of ν , we have

V (x0,x)≥ 1
2‖x− x0‖2, ∀x,x0 ∈ X . (5.1.16)

Note that the prox-function V (·, ·) described above generalizes the Bregman’s dis-
tance in the sense that ν is not necessarily differentiable (see Section 3.2). Throughout
this section, we assume that the prox-mapping associated with X , ν , and h, given by

argmin
x∈X

{
〈g,x〉+h(x)+µ ν(x)+ηV (x0,x)

}
, (5.1.17)

is easily computable for any x0 ∈ X ,g ∈Rn, µ ≥ 0, and η > 0. Clearly this is equiva-
lent to the assumption that (5.1.5) is easy to solve. Whenever ν is non-differentiable,
we need to specify a particular selection of the subgradient ν ′ before performing
the prox-mapping. We assume throughout this section that such a selection of ν ′ is
defined recursively as follows. Denote

x1 = argmin
x∈X

{
〈g,x〉+h(x)+µ ν(x)+ηV (x0,x)

}
.

By the optimality condition, we have

g+h′(x1)+(µ +η)ν ′(x1)−ην
′(x0) ∈NX (x1),

where where NX (x1) denotes the normal cone of X at x1 given by NX (x̄) := {v∈Rn :
vT (x− x̄)≤ 0,∀x ∈ X}. Once such a ν ′(x1) satisfying the above relation is identified,
we will use it as a subgradient when defining V (x1,x) in the next iteration. Note that
such a subgradient can be identified without additional computational cost as long as
x1 is obtained, since one needs it to check the optimality condition of (5.1.17) when
finding x1.

Since Ji, i = 1, . . . ,m, are strongly convex with modulus σi = m/Li w.r.t. ‖ ·‖∗, we
can define their associated dual prox-functions and dual prox-mappings as
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Wi(y0
i ,yi) := Ji(yi)− [Ji(y0

i )+ 〈J′i (y0
i ),yi− y0

i 〉], (5.1.18)

arg min
yi∈Yi

{
〈−x̃,yi〉+ Ji(yi)+ τWi(y0

i ,yi)
}
, (5.1.19)

for any y0
i ,yi ∈ Yi. Accordingly, we define

W (ỹ,y) := ∑
m
i=1Wi(ỹi,yi). (5.1.20)

Again, Wi may not be uniquely defined since Ji are not necessarily differentiable.
However, we will discuss how to specify the particular selection of J′i ∈ ∂Ji later in
this section.

5.1.2 Randomization on gradient computation

The basic idea of the randomized primal-dual gradient method (see Algorithm 5.1)
is to incorporate the random block decomposition into the primal-dual method
discussed in Section 3.6 for solving problem 5.1.12. In view of our discussions in
Section 3.4, the computation of dual prox-mapping is equivalent to the computation
of gradient, hence, the randomization the computation of dual prox-mapping reduces
to the randomized computation of gradients.

Algorithm 5.1 A randomized primal-dual gradient (RPDG) method

Let x0 = x−1 ∈ X , and the nonnegative parameters {τt}, {ηt}, and {αt} be given.
Set y0

i =
1
m ∇ fi(x0), i = 1, . . . ,m.

for t = 1, . . . ,k do
Choose it according to Prob{it = i}= pi, i = 1, . . . ,m.
Update zt = (xt ,yt) according to

x̃t = αt(xt−1− xt−2)+ xt−1. (5.1.21)

yt
i =





arg min
yi∈Yi

{
〈−x̃t ,yi〉+ Ji(yi)+ τWi(yt−1

i ,yi)
}
, i = it ,

yt−1
i , i 6= it .

(5.1.22)

ỹt
i =

{
p−1

i (yt
i− yt−1

i )+ yt−1
i , i = it ,

yt−1
i , i 6= it .

. (5.1.23)

xt = argmin
x∈X

{
〈∑m

i=1ỹt
i ,x〉+h(x)+µ ν(x)+ηtV (xt−1,x)

}
. (5.1.24)

end for

We now add some remarks about the randomized primal-dual gradient method.
Firstly, in (5.1.22), we only compute a randomly selected dual prox-mapping in this
method in (5.1.22). Secondly, in addition to the primal prediction step (5.1.21), we
add a new dual prediction step (5.1.23), and then use the predicted dual variable
ỹt for the computation of the new search point xt in (5.1.24). It can be easily seen
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that the RPDG method reduces to the primal-dual method, as well as the accelerated
gradient method, whenever the number of blocks m = 1.

The RPDG method can be viewed as a game iteratively performed by a buyer
and m suppliers for finding the solutions (order quantities and product prices) of
the saddle point problem in (5.1.12). In this game, both the buyer and suppliers
have access to their local cost h(x)+µν(x) and Ji(yi), respectively, as well as their
interactive cost (or revenue) represented by a bilinear function 〈x,yi〉. Also, the buyer
has to purchase the same amount of products from each supplier (e.g., for fairness).
Although there are m suppliers, in each iteration only a randomly chosen supplier
can make price changes according to (5.1.22) using the predicted demand x̃t . In order
to understand the buyer’s decision in (5.1.24), let us first denote

ŷt
i := arg min

yi∈Yi

{
〈−x̃t ,yi〉+ Ji(yi)+ τWi(yt−1

i ,yi)
}
, i = 1, . . . ,m; t = 1, . . . ,k.

(5.1.25)
In other words, ŷt

i , i = 1, . . . ,m, denote the prices that all the suppliers can possibly
set up at iteration t. Then we can see that

Et [ỹt
i] = ŷt

i. (5.1.26)

Indeed, we have

yt
i =

{
ŷt

i, i = it ,
yt−1

i , i 6= it .
(5.1.27)

Hence Et [yt
i] = piŷt

i +(1− pi)yt−1
i , i = 1, . . . ,m. Using this identity in the definition

of ỹt in (5.1.23), we obtain (5.1.26). Instead of using ∑
m
i=1ŷt

i in determining his order
in (5.1.24), the buyer notices that only one supplier has made a change on the price,
and thus uses ∑

m
i=1ỹt

i to predict the case when all the dual players would modify the
prices simultaneously.

In order to implement the above RPDG method, we shall explicitly specify
the selection of the subgradient J′it in the definition of the dual prox-mapping in
(5.1.22). Denoting x0

i = x0, i = 1, . . . ,m, we can easily see from y0
i = 1

m ∇ fi(x0)

that x0
i ∈ ∂Ji(y0

i ), i = 1, . . . ,m. Using this relation and letting J′i (y
t−1
i ) = xt−1

i in the
definition of Wi(yt−1

i ,yi) in (5.1.22) (see (5.1.18)), we then conclude from Lemma 3.6
and (5.1.22) that for any t ≥ 1,

xt
it = (x̃t + τtxt−1

it )/(1+ τt), xt
i = xt−1

i , ∀i 6= it ;

yt
it =

1
m ∇ fit (x

t
it ), yt

i = yt−1
i , ∀i 6= it .

Moreover, observe that the computation of xt in (5.1.24) requires an involved com-
putation of ∑

m
i=1ỹt

i . In order to save computational time, we suggest to compute this
quantity in a recursive manner as follows. Let us denote gt ≡∑

m
i=1yt

i . Clearly, in view
of the fact that yt

i = yt−1
i , ∀i 6= it , we have

gt = gt−1 +(yt
it − yt−1

it ).
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Also, by the definition of gt and (5.1.23), we have

∑
m
i=1ỹt

i = ∑i 6=it y
t−1
i + p−1

it (yt
it − yt−1

it )+ yt−1
it

= ∑
m
i=1yt−1

i + p−1
it (yt

it − yt−1
it )

= gt−1 + p−1
it (yt

it − yt−1
it ).

Incorporating these two ideas mentioned above, we present an efficient implementa-
tion of the RPDG method in Algorithm 5.2.

Algorithm 5.2 An efficient implementation of the RPDG method

Let x0 = x−1 ∈ X , and nonnegative parameters {αt}, {τt}, and {ηt} be given.
Set x0

i = x0, y0
i =

1
m ∇ fi(x0), i = 1, . . . ,m, and g0 = ∑

m
i=1y0

i .
for t = 1, . . . ,k do

Choose it according to Prob{it = i}= pi, i = 1, . . . ,m.
Update zt := (xt ,yt) by

x̃t = αt(xt−1− xt−2)+ xt−1. (5.1.28)

xt
i =

{
(1+ τt)

−1
(
x̃t + τt xt−1

i

)
, i = it ,

xt−1
i , i 6= it .

(5.1.29)

yt
i =

{
1
m ∇ fi(xt

i), i = it ,
yt−1

i , i 6= it .
(5.1.30)

xt = argmin
x∈X

{
〈gt−1 + p−1

it (yt
it − yt−1

it ),x〉+h(x)+µ ν(x)+ηtV (xt−1,x)
}
. (5.1.31)

gt = gt−1 + yt
it − yt−1

it . (5.1.32)

end for

Clearly, the RPDG method is an incremental gradient type method since each
iteration of this algorithm involves the computation of the gradient ∇ fit of only one
component function. As shown in the following Subsection, such a randomization
scheme can lead to significantly savings on the total number of gradient evaluations,
at the expense of more primal prox-mappings.

It should also be noted that due to the randomness in the RPDG method, we can
not guarantee that xt

i ∈ X for all i = 1, . . . ,m, and t ≥ 1 in general, even though we
do have all the iterates xt ∈ X . That is why we need to make the assumption that fi’s
are differentiable over Rn for the RPDG method. We will address this issue later in
Section 5.2 by developing a different randomized algorithm.
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5.1.3 Convergence for strongly convex problems

Our goal in this subsection is to describe the convergence properties of the RPDG
method for the strongly convex case when µ > 0. Generalization of the RPDG
method for the non-strongly convex case will be discussed in Section 5.1.5.

We first introduce some basic tools and general results about the RPDG method in
Subsection 5.1.3.1 and 5.1.3.2, respectively. Then we describe the main convergence
properties in Subsection 5.1.3.3. Moreover, in Subsection 5.1.4, we derive the lower
complexity bound for randomized algorithms for solving finite-sum optimization
problems.

5.1.3.1 Some basic tools

The following result provides a few different bounds on the diameter of the dual
feasible sets G and Y in (5.2.14) and (5.1.12).

Lemma 5.1. Let x0 ∈ X be given, and y0
i = 1

m ∇ fi(x0), i = 1, . . . ,m. Assume that
J′i (y

0
i ) = x0 in the definition of W (y0,y) in (5.1.18).

a) For any x ∈ X and yi =
1
m ∇ fi(x), i = 1, . . . ,m, we have

W (y0,y)≤ L f

2
‖x0− x‖2 ≤ L fV (x0,x). (5.1.33)

b) If x∗ ∈ X is an optimal solution of (5.1.1) and y∗i =
1
m ∇ fi(x∗), i = 1, . . . ,m, then

W (y0,y∗)≤Ψ(x0)−Ψ(x∗). (5.1.34)

Proof. We first show part a). It follows from the definitions of W (y0,y) and Ji, that

W (y0,y) = J(y)− J(y0)−∑
m
i=1〈J′i (y0

i ),yi− y0
i 〉

= 〈x,Uy〉− f (x)+ f (x0)−〈x0,Uy0〉−〈x0,U(y− y0)〉
= f (x0)− f (x)−〈Uy,x0− x〉

≤ L f

2
‖x0− x‖2 ≤ L fV (x0,x),

where the last inequality follows from (5.1.16). We now show part b). By the above
relation, the convexity of h and ν , and the optimality of (x∗,y∗), we have

W (y0,y∗) = f (x0)− f (x∗)−〈Uy∗,x0− x∗〉
= f (x0)− f (x∗)+ 〈h′(x∗)+µν ′(x∗),x0− x∗〉−〈Uy∗+h′(x∗)+µν ′(x∗),x0− x∗〉
≤ f (x0)− f (x∗)+ 〈h′(x∗)+µν ′(x∗),x0− x∗〉 ≤Ψ(x0)−Ψ(x∗).
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The following lemma gives an important bound for the primal optimality gap
Ψ(x̄)−Ψ(x∗) for some x̄ ∈ X .

Lemma 5.2. Let (x̄, ȳ) ∈ Z be a given pair of feasible solutions of (5.1.12), and
z∗ = (x∗,y∗) be a pair of optimal solutions of (5.1.12). Then, we have

Ψ(x̄)−Ψ(x∗)≤ Q((x̄, ȳ),z∗)+
L f

2
‖x̄− x∗‖2. (5.1.35)

Proof. Let ȳ∗=( 1
m ∇ f1(x̄); 1

m ∇ f2(x̄); . . . ; 1
m ∇ fm(x̄)), and by the definition of Q(·, ·)

in (5.1.14), we have

Q((x̄, ȳ),z∗) = [h(x̄)+µν(x̄)+ 〈x̄,Uy∗〉− J(y∗)]− [h(x∗)+µν(x∗)+ 〈x∗,Uȳ〉− J(ȳ)]

≥ [h(x̄)+µν(x̄)+ 〈x̄,Uȳ∗〉− J(ȳ∗)]+ 〈x̄,U(y∗− ȳ∗)〉− J(y∗)+ J(ȳ∗)

−
[

h(x∗)+µν(x∗)+max
y∈Y
{〈x∗,Uy〉− J(y)}

]

=Ψ(x̄)−Ψ(x∗)+ 〈x̄,U(y∗− ȳ∗)〉−〈x∗,Uy∗〉+ f (x∗)+ 〈x̄,Uȳ∗〉− f (x̄)

=Ψ(x̄)−Ψ(x∗)+ f (x∗)− f (x̄)+ 〈x̄− x∗,∇ f (x∗)〉

≥Ψ(x̄)−Ψ(x∗)− L f

2
‖x̄− x∗‖2,

where the second equality follows from the fact that Ji, i = 1, . . . ,m, are the conjugate
functions of fi.

5.1.3.2 General results for RPDG

We will establish some general convergence results in Proposition 5.1 Before showing
Proposition 5.1 we will develop a few technical results. Lemma 5.3 below character-
izes the solutions of the prox-mapping in (5.1.17) and (5.1.19). This result slightly
generalizes Lemma 3.5.

Lemma 5.3. Let U be a closed convex set and a point ũ ∈ U be given. Also let
w : U → R be a convex function and

W (ũ,u) = w(u)−w(ũ)−〈w′(ũ),u− ũ〉, (5.1.36)

for some w′(ũ) ∈ ∂w(ũ). Assume that the function q : U → R satisfies

q(u1)−q(u2)−〈q′(u2),u1−u2〉 ≥ µ0W (u2,u1), ∀u1,u2 ∈U (5.1.37)

for some µ0 ≥ 0. Also assume that the scalars µ1 and µ2 are chosen such that
µ0 +µ1 +µ2 ≥ 0. If

u∗ ∈ Argmin{q(u)+µ1w(u)+µ2W (ũ,u) : u ∈U}, (5.1.38)
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then for any u ∈U, we have

q(u∗)+µ1w(u∗)+µ2W (ũ,u∗)+(µ0+µ1+µ2)W (u∗,u)≤ q(u)+µ1w(u)+µ2W (ũ,u).

Proof. Let φ(u) := q(u)+µ1w(u)+µ2W (ũ,u). It can be easily checked that for
any u1,u2 ∈U ,

W (ũ,u1) =W (ũ,u2)+ 〈W ′(ũ,u2),u1−u2〉+W (u2,u1),

w(u1) = w(u2)+ 〈w′(u2),u1−u2〉+W (u2,u1).

Using these relations and (5.1.37), we conclude that

φ(u1)−φ(u2)−〈φ ′(u2),u1−u2〉 ≥ (µ0 +µ1 +µ2)W (u2,u1) (5.1.39)

for any u1,u2 ∈Y , which together with the fact that µ0 +µ1 +µ2 ≥ 0 then imply that
φ is convex. Since u∗ is an optimal solution of (5.1.38), we have 〈φ ′(u∗),u−u∗〉 ≥ 0.
Combining this inequality with (5.1.39), we conclude that

φ(u)−φ(u∗)≥ (µ0 +µ1 +µ2)W (u∗,u),

from which the result immediately follows.

The following simple result provides a few identities related to yt and ỹt that will
be useful for the analysis of the RPDG algorithm.

Lemma 5.4. Let yt , ỹt , and ŷt be defined in (5.1.22), (5.1.23), and (5.1.25), respec-
tively. Then we have, for any i = 1, . . . ,m and t = 1, . . . ,k,

Et [Wi(yt−1
i ,yt

i)] = piWi(yt−1
i , ŷt

i), (5.1.40)

Et [Wi(yt
i,yi)] = piWi(ŷt

i,yi)+(1− pi)Wi(yt−1
i ,yi), (5.1.41)

for any y ∈Y , where Et denotes the conditional expectation w.r.t. it given i1, . . . , it−1.

Proof. (5.1.40) follows immediately from the facts that Probt{yt
i = ŷt

i}=Probt{it =
i}= pi and Probt{yt

i = yt−1
i }= 1− pi. Here Probt denotes the conditional probability

w.r.t. it given i1, . . . , it−1. Similarly, we can show (5.1.41).

We now prove an important recursion about the RPDG method.

Lemma 5.5. Let the gap function Q be defined in (5.1.14). Also let xt and ŷt be
defined in (5.1.24) and (5.1.25), respectively. Then for any t ≥ 1, we have

E[Q((xt , ŷt),z)]≤ E
[
ηtV (xt−1,x)− (µ +ηt)V (xt ,x)−ηtV (xt−1,xt)

]

+∑
m
i=1E

[(
p−1

i (1+ τt)−1
)

Wi(yt−1
i ,yi)− p−1

i (1+ τt)Wi(yt
i,yi)

]

+E
[
〈x̃t − xt ,U(ỹt − y)〉− τt p−1

it Wit (y
t−1
it ,yt

it )
]
, ∀z ∈ Z.

(5.1.42)

Proof. It follows from Lemma 5.3 applied to (5.1.24) that ∀x ∈ X ,



5.1 Random primal-dual gradient method 235

〈xt − x,Uỹt〉+h(xt)+µν(xt)−h(x)−µν(x)
≤ ηtV (xt−1,x)− (µ +ηt)V (xt ,x)−ηtV (xt−1,xt).

(5.1.43)

Moreover, by Lemma 5.3 applied to (5.1.25), we have, for any i = 1, . . . ,m and
t = 1, . . . ,k,

〈−x̃t , ŷt
i− yi〉+ Ji(ŷt

i)− Ji(yi)≤ τtWi(yt−1
i ,yi)− (1+ τt)Wi(ŷt

i,yi)− τtWi(yt−1
i , ŷt

i).

Summing up these inequalities over i = 1, . . . ,m, we have, ∀y ∈ Y ,

〈−x̃t ,U(ŷt − y)〉+ J(ŷt)− J(y)
≤ ∑

m
i=1
[
τtWi(yt−1

i ,yi)− (1+ τt)Wi(ŷt
i,yi)− τtWi(yt−1

i , ŷt
i)
]
.

(5.1.44)

Using the definition of Q in (5.1.14), (5.1.43), and (5.1.44), we have

Q((xt , ŷt),z)≤ ηtV (xt−1,x)− (µ +ηt)V (xt ,x)−ηtV (xt−1,xt)

+∑
m
i=1
[
τtWi(yt−1

i ,yi)− (1+ τt)Wi(ŷt
i,yi)− τtWi(yt−1

i , ŷt
i)
]

+ 〈x̃t ,U(ŷt − y)〉−〈xt ,U(ỹt − y)〉+ 〈x,U(ỹt − ŷt)〉. (5.1.45)

Also observe that by (5.1.22), (5.1.26), (5.1.40), and (5.1.41),

Wi(yt−1
i ,yt

i) = 0, ∀i 6= it ,

E[〈x,U(ỹt − ŷt)〉] = 0,
E[〈x̃t ,Uŷt〉] = E[〈x̃t ,Uỹt〉],

E[Wi(yt−1
i , ŷt

i)] = E[p−1
i Wi(yt−1

i ,yt
i)]

E[Wi(ŷt
i,yi)] = p−1

i E[Wi(yt
i,yi)]− (p−1

i −1)E[Wi(yt−1
i ,yi)],

Taking expectation on both sides of (5.1.45) and using the above observations, we
obtain (5.1.42).

We are now ready to establish a general convergence result for RPDG.

Proposition 5.1. Suppose that {τt}, {ηt}, and {αt} in the RPDG method satisfy

θt
(

p−1
i (1+ τt)−1

)
≤ p−1

i θt−1(1+ τt−1), i = 1, . . . ,m; t = 2, . . . ,k, (5.1.46)
θtηt ≤ θt−1(µ +ηt−1), t = 2, . . . ,k, (5.1.47)

ηk
4 ≥

Li(1−pi)
2

mτk pi
, i = 1, . . . ,m, (5.1.48)

ηt−1
2 ≥

Liαt
mτt pi

+
(1−p j)

2L j
mτt−1 p j

, i, j ∈ {1, . . . ,m}; t = 2, . . . ,k, (5.1.49)

ηk
2 ≥

∑
m
i=1(piLi)

m(1+τk)
, (5.1.50)

αtθt = θt−1, t = 2, . . . ,k, (5.1.51)

for some θt ≥ 0, t = 1, . . . ,k. Then, for any k ≥ 1 and any given z ∈ Z, we have
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∑
k
t=1θtE[Q((xt , ŷt),z)]≤ η1θ1V (x0,x)− (µ +ηk)θkE[V (xk,x)]

+ ∑
m
i=1θ1

(
p−1

i (1+ τ1)−1
)

Wi(y0
i ,yi). (5.1.52)

Proof. Multiplying both sides of (5.1.42) by θt and summing the resulting inequal-
ities, we have

E[∑k
t=1θtQ((xt , ŷt),z)]≤ E

[
∑

k
t=1θt

(
ηtV (xt−1,x)− (µ +ηt)V (xt ,x)−ηtV (xt−1,xt)

)]

+∑
m
i=1E

{
∑

k
t=1θt

[(
p−1

i (1+ τt)−1
)

Wi(yt−1
i ,yi)− p−1

i (1+ τt)Wi(yt
i,yi)

]}

+E
[
∑

k
t=1θt

(
〈x̃t − xt ,U(ỹt − y)〉− τt p−1

it Wit (y
t−1
it ,yt

it )
)]

,

which, in view of the assumptions in (5.1.47) and (5.1.46), then implies that

E[∑k
t=1θtQ((xt , ŷt),z)]≤ η1θ1V (x0,x)− (µ +ηk)θkE[V (xk,x)]

+ ∑
m
i=1E

[
θ1
(

p−1
i (1+ τ1)−1

)
Wi(y0

i ,yi)− p−1
i θk(1+ τk)Wi(yk

i ,yi)
]

− E
[
∑

k
t=1θt∆t

]
, (5.1.53)

where

∆t := ηtV (xt−1,xt)−〈x̃t − xt ,U(ỹt − y)〉+ τt p−1
it Wit (y

t−1
it ,yt

it ). (5.1.54)

We now provide a bound on ∑
k
t=1θt∆t in (5.1.53). Note that by (5.1.21), we have

〈x̃t − xt ,U(ỹt − y)〉= 〈xt−1− xt ,U(ỹt − y)〉−αt〈xt−2− xt−1,U(ỹt − y)〉
= 〈xt−1− xt ,U(ỹt − y)〉−αt〈xt−2− xt−1,U(ỹt−1− y)〉
−αt〈xt−2− xt−1,U(ỹt − ỹt−1)〉

= 〈xt−1− xt ,U(ỹt − y)〉−αt〈xt−2− xt−1,U(ỹt−1− y)〉
−αt p−1

it 〈x
t−2− xt−1,yt

it − yt−1
it 〉

−αt(p−1
it−1
−1)〈xt−2− xt−1,yt−2

it−1
− yt−1

it−1
〉, (5.1.55)

where the last identity follows from the observation that by (5.1.22) and (5.1.23),

U(ỹt − ỹt−1) = ∑
m
i=1
{[

p−1
i (yt

i− yt−1
i )+ yt−1

i
]
−
[
p−1

i (yt−1
i − yt−2

i )+ yt−2
i
]}

= ∑
m
i=1
{[

p−1
i yt

i− (p−1
i −1)yt−1

i
]
−
[
p−1

i yt−1
i − (p−1

i −1)yt−2
i
]}

= ∑
m
i=1
[
p−1

i (yt
i− yt−1

i )+(p−1
i −1)(yt−2

i − yt−1
i )

]

= p−1
it (yt

it − yt−1
it )+(p−1

it−1
−1)(yt−2

it−1
− yt−1

it−1
).

Using relation (5.1.55) in the definition of ∆t in (5.1.54), we have
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∑
k
t=1θt∆t = ∑

k
t=1θt

[
ηtV (xt−1,xt)

− 〈xt−1− xt ,U(ỹt − y)〉+αt〈xt−2− xt−1,U(ỹt−1− y)〉
+ αt p−1

it 〈x
t−2− xt−1,yt

it − yt−1
it 〉+αt(p−1

it−1
−1)〈xt−2− xt−1,yt−2

it−1
− yt−1

it−1
〉

+ p−1
it τtWit (y

t−1
it ,yt

it )
]
. (5.1.56)

Observe that by (5.1.51) and the fact that x−1 = x0,

∑
k
t=1θt

[
〈xt−1− xt ,U(ỹt − y)〉−αt〈xt−2− xt−1,U(ỹt−1− y)〉

]

= θk〈xk−1− xk,U(ỹk− y)〉
= θk〈xk−1− xk,U(yk− y)〉+θk〈xk−1− xk,U(ỹk− yk)〉
= θk〈xk−1− xk,U(yk− y)〉+θk(p−1

ik
−1)〈xk−1− xk,yk

ik − yk−1
ik
〉,

where the last identity follows from the definitions of yk and ỹk in (5.1.22) and
(5.1.23), respectively. Also, by the strong convexity of P and Wi, we have

V (xt−1,xt)≥ 1
2‖xt−1− xt‖2 and Wit (y

t−1
it ,yt

it )≥ m
2Lit
‖yt−1

it − yt
it‖2.

Using the previous three relations in (5.1.56), we have

∑
k
t=1θt∆t ≥ ∑

k
t=1θt

[
ηt
2 ‖xt−1− xt‖2 +αt p−1

it 〈x
t−2− xt−1,yt

it − yt−1
it 〉

+ αt(p−1
it−1
−1)〈xt−2− xt−1,yt−2

it−1
− yt−1

it−1
〉+ mτt

2Lit pit
‖yt−1

it − yt
it‖2
]

−θk〈xk−1− xk,U(yk− y)〉−θk(p−1
ik
−1)〈xk−1− xk,yk

ik − yk−1
ik
〉.

Regrouping the terms in the above relation, and the fact that x−1 = x0, we obtain
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∑
k
t=1θt∆t ≥ θk

[
ηk
4 ‖xk−1− xk‖2−〈xk−1− xk,U(yk− y)〉

]

+θk

[
ηk
4 ‖xk−1− xk‖2− (p−1

ik
−1)〈xk−1− xk,yk

ik − yk−1
ik
〉+ mτk

4Lik pik
‖yk−1

ik
− yk

ik‖
2
]

+ ∑
k
t=2θt

[
αt
pit
〈xt−2− xt−1,yt

it − yt−1
it 〉+

mτt
4Lit pit

‖yt−1
it − yt

it‖2
]

+ ∑
k
t=2

[
αtθt(p−1

it−1
−1)〈xt−2− xt−1,yt−2

it−1
− yt−1

it−1
〉+ mτt−1θt−1

4Lit−1 pit−1
‖yt−2

it−1
− yt−1

it−1
‖2
]

+ ∑
k
t=2

θt−1ηt−1
2 ‖xt−2− xt−1‖2

≥ θk

[
ηk
4 ‖xk−1− xk‖2−〈xk−1− xk,U(yk− y)〉

]

+ θk

(
ηk
4 −

Lik (1−pik )
2

mτk pik

)
‖xk−1− xk‖2

+ ∑
k
t=2

[
θt−1ηt−1

2 − Lit α2
t θt

mτt pit
− α2

t θ 2
t (1−pit−1 )

2Lit−1
mτt−1θt−1 pit−1

]
‖xt−2− xt−1‖2

= θk

[
ηk
4 ‖xk−1− xk‖2−〈xk−1− xk,U(yk− y)〉

]

+ θk

(
ηk
4 −

Lik (1−pik )
2

mτk pik

)
‖xk−1− xk‖2

+ ∑
k
t=2θt−1

(
ηt−1

2 −
Lit αt

mτt pit
− (1−pit−1 )

2Lit−1
mτt−1 pit−1

)
‖xt−2− xt−1‖2

≥ θk

[
ηk
4 ‖xk−1− xk‖2−〈xk−1− xk,U(yk− y)〉

]
, (5.1.57)

where the second inequality follows from the simple relation that

b〈u,v〉+a‖v‖2/2≥−b2‖u‖2/(2a),∀a > 0, (5.1.58)

and the last inequality follows from (5.1.48) and (5.1.49). Plugging the bound (5.1.57)
into (5.1.53), we have

∑
k
t=1θtE[Q((xt , ŷt),z)]≤ θ1η1V (x0,x)−θk(µ +ηk)E[V (xk,x)]
+∑

m
i=1θ1

(
p−1

i (1+ τ1)−1
)

Wi(y0
i ,yi)

−θkE
[

ηk
4 ‖xk−1− xk‖2−〈xk−1− xk,U(yk− y)〉+∑

m
i=1 p−1

i (1+ τk)Wi(yk
i ,yi)

]
.

Also observe that by (5.1.50) and (7.1.30),

ηk
4 ‖xk−1− xk‖2−〈xk−1− xk,U(yk− y)〉+∑

m
i=1 p−1

i (1+ τk)Wi(yk
i ,yi)

≥ ηk
4 ‖xk−1− xk‖2 +∑

m
i=1

[
−〈xk−1− xk,yk

i − yi〉+ m(1+τk)
2Li pi

‖yk
i − yi‖2

]

≥
(

ηk
4 −

∑
m
i=1(piLi)

2m(1+τk)

)
‖xk−1− xk‖2 ≥ 0,

The result then immediately follows by combining the above two conclusion.
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5.1.3.3 Main convergence results

We now are now ready to establishe the main convergence properties for the RPDG
method applied to strongly convex problems with µ > 0.

Theorem 5.1. Suppose that {τt}, {ηt}, and {αt} in the RPDG method are set to

τt = τ, ηt = η , and αt = α, (5.1.59)

for any t ≥ 1 such that

(1−α)(1+ τ)≤ pi, i = 1, . . . ,m, (5.1.60)
η ≤ α(µ +η), (5.1.61)

ητ pi ≥ 4Li/m, i = 1, . . . ,m, (5.1.62)

for some α ∈ (0,1). Then, for any k ≥ 1, we have

E[V (xk,x∗)]≤
(

1+ L f α

(1−α)η

)
α

kV (x0,x∗), (5.1.63)

E[Ψ(x̄k)−Ψ(x∗)]≤ α
k/2
(

α
−1

η + 3−2α

1−α
L f +

2L2
f α

(1−α)η

)
V (x0,x∗), (5.1.64)

where x̄k = (∑k
t=1θt)

−1
∑

k
t=1(θtxt) with

θt =
1

αt , ∀t = 1, . . . ,k, (5.1.65)

and x∗ denotes the optimal solution of problem (5.1.1), and the expectation is taken
w.r.t. i1, . . . , ik.

Proof. It can be easily checked that the conditions in (5.1.46)-(5.1.51) are satisfied
with our requirements (5.1.59)-(5.1.62) of {τt}, {ηt}, {αt}, and {θt}. Using the fact
that Q((xt , ŷt),z∗)≥ 0 , we then conclude from (5.1.52) (with x = x∗ and y = y∗) that,
for any k ≥ 1,

E[V (xk,x∗)]≤ 1
θk(µ+η)

[
θ1ηV (x0,x∗)+ θ1α

1−α
W (y0,y∗)

]
≤
(

1+ L f α

(1−α)η

)
α

kV (x0,x∗),

where the first inequality follows from (5.1.59) and (5.1.60), and the second inequality
follows from (5.1.61) and (5.1.33).

Let us denote ȳk ≡ (∑k
t=1θt)

−1
∑

k
t=1(θt ŷt), z̄k = (x̄k, ȳk). In view of (5.2.60), the

convexity of ‖ · ‖, and (5.1.16), we have

E[Ψ(x̄k)−Ψ(x∗)]≤ E[Q(z̄k,z∗)]+ L f
2 (∑k

t=1θt)
−1E[∑k

t=1θt‖xt − x∗‖2]

≤ E[Q(z̄k,z∗)]+L f (∑
k
t=1θt)

−1E[∑k
t=1θtV (xt ,x∗)]. (5.1.66)

Using (5.1.52) (with x = x∗ and y = y∗), the fact that V (xk,x∗)≥ 0, and (8.1.24), we
obtain
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E[Q(z̄k,z∗)]≤
(

∑
k
t=1θt

)−1
∑

k
t=1θtE[Q((xt , ŷt),z∗)]≤ α

k
(

α
−1

η +
L f

1−α

)
V (x0,x∗).

We conclude from (5.1.63) and the definition of {θt} that

(∑k
t=1θt)

−1E[∑k
t=1θtV (xt ,x∗)] = (∑k

t=1α
−t)−1

∑
k
t=1α

−t(1+ L f α

(1−α)η )α
tV (x0,x∗)

≤ 1−α

α−k−1 ∑
k
t=1

αt

α3t/2 (1+
L f α

(1−α)η )V (x0,x∗)

= 1−α

α−k−1
α−k/2−1
1−α1/2 (1+ L f α

(1−α)η )V (x0,x∗)

= 1+α1/2

1+α−k/2 (1+
L f α

(1−α)η )V (x0,x∗)

≤ 2α
k/2(1+ L f α

(1−α)η )V (x0,x∗).

Using the above two relations, and (5.1.66), we obtain

E[Ψ(x̄k)−Ψ(x∗)]≤ α
k
(

α
−1

η +
L f

1−α

)
V (x0,x∗)+L f 2α

k/2
(

1+ L f α

(1−α)η

)
V (x0,x∗)

≤ α
k/2
(

α
−1

η + 3−2α

1−α
L f +

2L2
f α

(1−α)η

)
V (x0,x∗).

We now provide a few specific selections of pi, τ , η , and α satisfying (5.1.60)-
(5.1.62) and establish the complexity of the RPDG method for computing a stochastic
ε-solution of problem (5.1.1), i.e., a point x̄ ∈ X s.t. E[V (x̄,x∗)] ≤ ε , as well as a
stochastic (ε,λ )-solution of problem (5.1.1), i.e., a point x̄ ∈ X s.t. Prob{V (x̄,x∗)≤
ε} ≥ 1−λ for some λ ∈ (0,1). Moreover, in view of (5.1.64), similar complexity
bounds of the RPDG method can be established in terms of the primal optimality
gap, i.e. E[Ψ(x̄)−Ψ ∗].

The following corollary shows the convergence of RPDG under a non-uniform
distribution for the random variables it , t = 1, . . . ,k.

Corollary 5.1. Suppose that {it} in the RPDG method are distributed over {1, . . . ,m}
according to

pi = Prob{it = i}= 1
2m + Li

2mL , i = 1, . . . ,m. (5.1.67)

Also assume that {τt}, {ηt}, and {αt} are set to (5.1.59) with

τ =

√
(m−1)2+4mC−(m−1)

2m ,

η =
µ

√
(m−1)2+4mC+µ(m−1)

2 ,
α = 1− 1

(m+1)+
√

(m−1)2+4mC
,

(5.1.68)

where
C = 8L

µ
. (5.1.69)

Then for any k ≥ 1, we have
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E[V (xk,x∗)]≤ (1+ 3L f
µ
)αkV (x0,x∗), (5.1.70)

E[Ψ(x̄k)−Ψ
∗]≤ α

k/2(1−α)−1
[

µ +2L f +
L2

f
µ

]
V (x0,x∗). (5.1.71)

As a consequence, the number of iterations performed by the RPDG method to find
a stochastic ε-solution and a stochastic (ε,λ )-solution of (5.1.1), in terms of the
distance to the optimal solution, i.e., E[V (xk,x∗)], can be bounded by K(ε,C) and
K(λε,C), respectively, where

K(ε,C) :=
[
(m+1)+

√
(m−1)2 +4mC

]
log
[
(1+ 3L f

µ
)V (x0,x∗)

ε

]
. (5.1.72)

Similarly, the total number of iterations performed by the RPDG method to find
a stochastic ε-solution and a stochastic (ε,λ )-solution of (5.1.1), in terms of the
primal optimality gap, i.e., E[Ψ(x̄k)−Ψ ∗], can be bounded by K̃(ε,C) and K̃(λε,C),
respectively, where

K̃(ε,C) := 2
[
(m+1)+

√
(m−1)2 +4mC

]
log
[

2(µ +2L f +
L2

f
µ
)(m+

√
mC)V (x0,x∗)

ε

]
.

(5.1.73)

Proof. It follows from (5.1.68) that

(1−α)(1+τ)= 1/(2m)≤ pi, (1−α)η =(α−1/2)µ ≤αµ, and ητ pi = µCpi≥ 4Li/m,

and hence that the conditions in (5.1.60)-(5.1.62) are satisfied. Notice that by the fact
that α ≥ 3/4, ∀m≥ 1 and (5.1.68), we have

1+ L f α

(1−α)η = 1+L f
α

(α−1/2)µ ≤ 1+ 3L f
µ
.

Using the above bound in (5.1.63), we obtain (5.1.70). It follows from the facts
(1−α)η ≤ αµ , 1/2≤ α ≤ 1,∀m≥ 1, and η ≥ µ

√
C > 2µ that

α
−1

η + 3−2α

1−α
L f +

2L2
f α

(1−α)η ≤ (1−α)−1(µ +2L f +
L2

f
µ
).

Using the above bound in (5.1.64), we obtain (5.1.71). Denoting D≡ (1+ 3L f
µ
)V (x0,x∗),

we conclude from (5.1.70) and the fact that logx≤ x−1 for any x ∈ (0,1) that

E[V (xK(ε,C),x∗)]≤ Dα
log(D/ε)

1−α ≤ Dα
log(D/ε)
− logα ≤ Dα

log(ε/D)
logα = ε.

Moreover, by Markov’s inequality, (5.1.70) and the fact that logx ≤ x− 1 for any
x ∈ (0,1), we have

Prob{V (xK(λε,C),x∗)> ε} ≤ 1
ε
E[V (xK(λε,C),x∗)]≤ D

ε
α

log(D/(λε))
1−α ≤ D

ε
α

log(λε/D)
logα = λ .
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The proofs for the complexity bounds in terms of the primal optimality gap is similar
and hence the details are skipped.

The non-uniform distribution in (5.1.67) requires the estimation of the Lipschitz
constants Li, i = 1, . . . ,m. In case such information is not available, we can use a
uniform distribution for it , and as a result, the complexity bounds will depend on a
larger condition number given by

max
i=1,...,m

Li/µ.

However, if we do have L1 = L2 = · · ·= Lm, then the results obtained by using a uni-
form distribution is slightly sharper than the one by using a non-uniform distribution
in Corollary 5.1.

Corollary 5.2. Suppose that {it} in the RPDG method are uniformly distributed over
{1, . . . ,m} according to

pi = Prob{it = i}= 1
m , i = 1, . . . ,m. (5.1.74)

Also assume that {τt}, {ηt}, and {αt} are set to (5.1.59) with

τ =

√
(m−1)2+4mC̄−(m−1)

2m ,

η =
µ

√
(m−1)2+4mC̄+µ(m−1)

2 ,
α = 1− 2

(m+1)+
√

(m−1)2+4mC̄
,

(5.1.75)

where
C̄ := 4

µ
max

i=1,...,m
Li. (5.1.76)

Then we have

E[V (xk,x∗)]≤ (1+ L f
µ
)αkV (x0,x∗), (5.1.77)

E[Ψ(x̄k)−Ψ
∗]≤ α

k/2(1−α)−1
(

µ +2L f +
L2

f
µ

)
V (x0,x∗). (5.1.78)

for any k ≥ 1. As a consequence, the number of iterations performed by the RPDG
method to find a stochastic ε-solution and a stochastic (ε,λ )-solution of (5.1.1), in
terms of the distance to the optimal solution, i.e., E[V (xk,x∗)], can be bounded by
Ku(ε,C̄) and Ku(λε,C̄), respectively, where

Ku(ε,C̄) := (m+1)+
√

(m−1)2+4mC̄
2 log

[
(1+ L f

µ
)V (x0,x∗)

ε

]
.

Similarly, the total number of iterations performed by the RPDG method to find a
stochastic ε-solution and a stochastic (ε,λ )-solution of (5.1.1), in terms of the primal
optimality gap, i.e., E[Ψ(x̄k)−Ψ ∗], can be bounded by K̃(ε,C̄)/2 and K̃(λε,C̄)/2,
respectively, where K̃(ε,C̄) is defined in (5.1.73).
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Proof. It follows from (5.1.75) that

(1−α)(1+ τ) = 1/m = pi, (1−α)η−αµ = 0, and ητ = µC̄ ≥ 4Li,

and hence that the conditions in (5.1.60)-(5.1.62) are satisfied. By the identity (1−
α)η = αµ , we have

1+ L f α

(1−α)η = 1+ L f
µ
.

Using the above bound in (5.1.63), we obtain (5.1.77). Moreover, note that η ≥
µ
√

C̄ ≥ 2µ and 2/3≤ α ≤ 1,∀m≥ 1 we have

α
−1

η + 3−2α

1−α
L f +

2L2
f α

(1−α)η ≤ (1−α)−1(µ +2L f +
L2

f
µ
).

Using the above bound in (5.1.64), we obtain (5.1.78). The proofs for the complexity
bounds are similar to those in Corollary 5.1 and hence the details are skipped.

Comparing the complexity bounds obtained from Corollaries 5.1 and 5.2 with
those of any optimal deterministic first-order method, they differ in a factor of
O(
√

mL f /L), whenever
√

mC log(1/ε) is dominating in (5.1.72). Clearly, when L f
and L are in the same order of magnitude, RPDG can save up to O(

√
m) gradient

evaluations for the component function fi than the deterministic first-order methods.
However, it should be pointed out that L f can be much smaller than L. In particular,
when Li = L j,∀i, j ∈ {1, . . . ,m}, L f = L/m. In the next subsection, we will construct
examples in such extreme cases to obtain the lower complexity bound for general
randomized incremental gradient methods.

5.1.4 Lower complexity bound for randomized methods

Our goal in this subsection is to demonstrate that the complexity bounds obtained
in Theorem 5.1, and Corollaries 5.1 and 5.2 for the RPDG method are essentially
not improvable. Observe that although there exist rich lower complexity bounds in
the literature for deterministic first-order methods, the study on lower complexity
bounds for randomized methods are still quite limited.

To derive the performance limit of the incremental gradient methods, we consider
a special class of unconstrained and separable strongly convex optimization problems
given in the form of

min
xi∈Rñ,i=1,...,m

{
Ψ(x) := ∑

m
i=1

1
m

[
fi(xi)+

µ

2 ‖xi‖2
2
]}

. (5.1.79)

Here ñ ≡ n/m ∈ {1,2, . . .} and ‖ · ‖2 denotes standard Euclidean norm. To fix the
notation, we also denote x = (x1, . . . ,xm). Moreover, we assume that fi’s are quadratic
functions given by
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fi(xi) =
µm(Q−1)

4

[ 1
2 〈Axi,xi〉−〈e1,xi〉

]
, (5.1.80)

where e1 := (1,0, . . . ,0) and A is a symmetric matrix in Rñ×ñ given by

A =




2 −1 0 0 · · · 0 0 0
−1 2 −1 0 · · · 0 0 0
0 −1 2 −1 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · −1 2 −1
0 0 0 0 · · · 0 −1 κ




with κ =
√

Q+3√
Q+1 . (5.1.81)

Note that the tridiagonal matrix A above consists of a different diagonal element κ .
It can be easily checked that A� 0 and its maximum eigenvalue does not exceeds 4.
Indeed, for any s≡ (s1, . . . ,sñ) ∈ Rñ, we have

〈As,s〉= s2
1 +∑

ñ−1
i=1 (si− si+1)

2 +(κ−1)s2
ñ ≥ 0

〈As,s〉 ≤ s2
1 +∑

ñ−1
i=1 2(s2

i + s2
i+1)+(κ−1)s2

ñ

= 3s2
1 +4∑

ñ−1
i=2 s2

i +(κ +1)s2
ñ ≤ 4‖s‖2

2,

where the last inequality follows from the fact that κ ≤ 3. Therefore, for any Q > 1,
the component functions fi in (5.1.80) are convex and their gradients are Lipschitz
continuous with constant bounded by Li = µm(Q−1), i = 1, . . . ,m.

The following result provides an explicit expression for the optimal solution of
(5.1.79).

Lemma 5.6. Let q be defined in (5.1.91), x∗i, j is the j-th element of xi, and define

x∗i, j = q j, i = 1, . . . ,m; j = 1, . . . , ñ. (5.1.82)

Then x∗ is the unique optimal solution of (5.1.79).

Proof. It can be easily seen that q is the smallest root of the equation

q2−2 Q+1
Q−1 q+1 = 0. (5.1.83)

Note that x∗ satisfies the optimality condition of (5.1.79), i.e.,
(

A+ 4
Q−1 I

)
x∗i = e1, i = 1, . . . ,m. (5.1.84)

Indeed, we can write the coordinate form of (5.1.84) as

2 Q+1
Q−1 x∗i,1− x∗i,2 = 1, (5.1.85)

x∗i, j+1−2 Q+1
Q−1 x∗i, j + x∗i, j−1 = 0, j = 2,3, . . . , ñ−1, (5.1.86)

−(κ + 4
Q−1 )x

∗
i,ñ + x∗i,ñ−1 = 0, (5.1.87)
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where the first two equations follow directly from the definition of x∗ and relation
(5.1.83), and the last equation is implied by the definitions of κ and x∗ in (5.1.81)
and (5.1.82), respectively.

We consider a general class of randomized incremental gradient methods which
sequentially acquire the gradient of a randomly selected component function fit at
iteration t. More specifically, we assume that the independent random variables it ,
t = 1,2, . . ., satisfy

Prob{it = i}= pi and ∑
m
i=1 pi = 1, pi ≥ 0, i = 1, . . . ,m. (5.1.88)

Moreover, we assume that these methods generate a sequence of test points {xk}
such that

xk ∈ x0 +Lin{∇ fi1(x
0), . . . ,∇ fik(x

k−1)}, (5.1.89)

where Lin denotes the linear span.
Theorem 5.2 below describes the performance limit of the above randomized

incremental gradient methods for solving (5.1.79). We also need a few technical
results to establish the lower complexity bounds.

Lemma 5.7. a) For any x > 1, we have

log(1− 1
x )≥− 1

x−1 . (5.1.90)

b) Let ρ,q, q̄ ∈ (0,1) be given. If we have

ñ≥ t log q̄+log(1−ρ)
2logq ,

for any t ≥ 0, then
q̄t −q2ñ ≥ ρ q̄t(1−q2ñ).

Proof. We first show part a). Denote φ(x) = log(1− 1
x )+

1
x−1 . It can be easily

seen that limx→+∞ φ(x) = 0. Moreover, for any x > 1, we have

φ
′(x) = 1

x(x−1) − 1
(x−1)2 = 1

x−1

( 1
x − 1

x−1

)
< 0,

which implies that φ is a strictly decreasing function for x > 1. Hence, we must have
φ(x)> 0 for any x > 1. Part b) follows from the following simple calculation.

q̄t −q2ñ−ρ q̄t(1−q2ñ) = (1−ρ)q̄t −q2ñ +ρ q̄tq2ñ ≥ (1−ρ)q̄t −q2ñ ≥ 0.

We are now ready to describe our main results regarding the lower complexity
bound.

Theorem 5.2. Let x∗ be the optimal solution of problem (5.1.79) and denote

q :=
√

Q−1√
Q+1 . (5.1.91)
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Then the iterates {xk} generated by any randomized incremental gradient method
must satisfy

E[‖xk−x∗‖22]
‖x0−x∗‖22

≥ 1
2 exp

(
− 4k

√
Q

m(
√

Q+1)2−4
√

Q

)
(5.1.92)

for any

n≥ n(m,k)≡
m log

[
(1−(1−q2)/m)

k
/2
]

2logq . (5.1.93)

Proof. Without loss of generality, we may assume that the initial point x0
i = 0,

i= 1, . . . ,m. Indeed, the incremental gradient methods described in Subsection 3.3 are
invariant with respect to a simultaneous shift of the decision variables. In other words,
the sequence of iterates {xk}, which is generated by such a method for minimizing
the function Ψ(x) starting from x0, is just a shift of the sequence generated for
minimizing Ψ̄(x) =Ψ(x+ x0) starting from the origin.

Now let ki, i = 1, . . . ,m, denote the number of times that the gradients of the
component function fi are computed from iteration 1 to k. Clearly ki’s are binomial
random variables supported on {0,1, . . . ,k} such that ∑

m
i=1ki = k. Also observe that

we must have xk
i, j = 0 for any k≥ 0 and ki+1≤ j≤ ñ, because each time the gradient

∇ fi is computed, the incremental gradient methods add at most one more nonzero
entry to the i-th component of xk due to the structure of the gradient ∇ fi. Therefore,
we have

‖xk−x∗‖22
‖x0−x∗‖22

= ∑
m
i=1‖xk

i−x∗i ‖22
∑

m
i=1‖x∗i ‖2

≥ ∑
m
i=1∑

ñ
j=ki+1(x

∗
i, j)

2

∑
m
i=1∑

ñ
j=1(x

∗
i, j)

2
= ∑

m
i=1(q

2ki−q2ñ)

m(1−q2ñ)
. (5.1.94)

Observing that for any i = 1, . . . ,m,

E[q2ki ] = ∑
k
t=0

[
q2t
(

k
t

)
pt

i(1− pi)
k−t
]
= [1− (1−q2)pi]

k,

we then conclude from (5.1.94) that

E[‖xk−x∗‖22]
‖x0−x∗‖22

≥ ∑
m
i=1[1−(1−q2)pi]

k−mq2ñ

m(1−q2ñ)
.

Noting that [1− (1− q2)pi]
k is convex w.r.t. pi for any pi ∈ [0,1] and k ≥ 1, by

minimizing the RHS of the above bound w.r.t. pi, i = 1, . . . ,m, subject to ∑
m
i=1 pi = 1

and pi ≥ 0, we conclude that

E[‖xk−x∗‖22]
‖x0−x∗‖22

≥ [1−(1−q2)/m]k−q2ñ

1−q2ñ ≥ 1
2 [1− (1−q2)/m]k, (5.1.95)

for any n≥ n(m,k) (see (5.1.93)) and possible selection of pi, i = 1, . . . ,m satisfying
(5.1.88), where the last inequality follows from Lemma 5.7.b). Noting that
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1− (1−q2)/m = 1−
[

1−
(√

Q−1√
Q+1

)2
]

1
m = 1− 1

m + 1
m

(
1− 2√

Q+1

)2

= 1− 4
m(
√

Q+1) +
4

m(
√

Q+1)2 = 1− 4
√

Q
m(
√

Q+1)2 ,

we then conclude from (5.1.95) and Lemma 5.7.a) that

E[‖xk−x∗‖22]
‖x0−x∗‖22

≥ 1
2

[
1− 4

√
Q

m(
√

Q+1)2

]k
= 1

2 exp
(

k log
(

1− 4
√

Q
m(
√

Q+1)2

))

≥ 1
2 exp

(
− 4k

√
Q

m(
√

Q+1)2−4
√

Q

)
.

As an immediate consequence of Theorem 5.2, we obtain a lower complexity
bound for randomized incremental gradient methods.

Corollary 5.3. The number of gradient evaluations performed by any randomized
incremental gradient methods for finding a solution x̄ ∈ X of problem (5.1.1) such
that E[‖x̄− x∗‖2

2]≤ ε cannot be smaller than

Ω

{(√
mC +m

)
log ‖x

0−x∗‖22
ε

}

if n is sufficiently large, where C = L/µ and L = 1
m ∑

m
i=1Li.

Proof. It follows from (5.1.92) that the number of iterations k required by any
randomized incremental gradient methods to find an approximate solution x̄ must
satisfy

k ≥
(

m(
√

Q+1)2

4
√

Q −1
)

log ‖x
0−x∗‖22

2ε
≥
[

m
2

(√
Q

2 +1
)
−1
]

log ‖x
0−x∗‖22

2ε
. (5.1.96)

Noting that for the worst-case instance in (5.1.79), we have Li = µm(Q− 1), i =
1, . . . ,m, and hence that L = 1

m ∑
m
i=1Li = mµ(Q−1). Using this relation, we conclude

that

k ≥
[

1
2

(√
mC+m2

2 +m
)
−1
]

log ‖x
0−x∗‖22

2ε
=: k.

The above bound holds when n≥ n(m,k).

In view of Theorem 5.2, we can also derive a lower complexity bound for ran-
domized block coordinate descent methods, which update one randomly selected
block of variables at each iteration for minx∈X Ψ(x). Here Ψ is smooth and strongly
convex such that

µΨ

2 ‖x− y‖2
2 ≤Ψ(x)−Ψ(y)−〈∇Ψ(y),x− y〉 ≤ LΨ

2 ‖x− y‖2
2,∀x,y ∈ X .

Corollary 5.4. The number of iterations performed by any randomized block co-
ordinate descent methods for finding a solution x̄ ∈ X of minx∈X Ψ(x) such that
E[‖x̄− x∗‖2

2]≤ ε cannot be smaller than
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Ω

{(
m
√

QΨ

)
log ‖x

0−x∗‖22
ε

}

if n is sufficiently large, where QΨ = LΨ/µΨ denotes the condition number of Ψ .

Proof. The worst-case instances in (5.1.79) have a block separable structure. There-
fore, any randomized incremental gradient methods are equivalent to randomized
block coordinate descent methods. The result then immediately follows from (5.1.96).

5.1.5 Generalization to problems without strong convexity

In this section, we generalize the RPDG method for solving a few different types of
convex optimization problems which are not necessarily smooth and strongly convex.

5.1.5.1 Smooth problems with bounded feasible sets

Our goal in this subsection is to generalize RPDG for solving smooth problems
without strong convexity (i.e., µ = 0). Different from the deterministic PDG method,
it is difficult to develop a simple stepsize policy for {τt}, {ηt}, and {αt} which
can guarantee the convergence of this method unless a weaker termination criterion
is used.In order to obtain stronger convergence results, we will discuss a different
approach obtained by applying the RPDG method to a slightly perturbed problem of
(5.1.1).

In order to apply this perturbation approach, we will assume that X is bounded
(see Subsection 5.1.5.3 for possible extensions), i.e., given x0 ∈ X , ∃DX ≥ 0 s.t.

max
x∈X

Vν(x0,x)≤ D2
X . (5.1.97)

Now we define the perturbation problem as

Ψ
∗

δ
:= min

x∈X
{Ψδ (x) := f (x)+h(x)+δVν(x0,x)} , (5.1.98)

for some fixed δ > 0. It is well-known that an approximate solution of (5.1.98) will
also be an approximate solution of (5.1.1) if δ is sufficiently small. More specifically,
it is easy to verify that

Ψ
∗ ≤Ψ

∗
δ
≤Ψ

∗+δD2
X , (5.1.99)

Ψ(x)≤Ψδ (x)≤Ψ(x)+δD2
X , ∀x ∈ X . (5.1.100)

The following result describes the complexity associated with this perturbation
approach for solving smooth problems without strong convexity (i.e., µ = 0).
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Proposition 5.2. Let us apply the RPDG method with the parameter settings in
Corollary 5.1 to the perturbation problem (5.1.98) with

δ = ε

2D2
X
, (5.1.101)

for some ε > 0. Then we can find a solution x̄ ∈ X s.t. E[Ψ(x̄)−Ψ ∗]≤ ε in at most

O

{(
m+

√
mLD2

X
ε

)
log mL f DX

ε

}
(5.1.102)

iterations. Moreover, we can find a solution x̄ ∈ X s.t. Prob{Ψ(x̄)−Ψ ∗ > ε} ≤ λ for
any λ ∈ (0,1) in at most

O

{(
m+

√
mLD2

X
ε

)
log mL f DX

λε

}
(5.1.103)

iterations.

Proof. Let x∗
δ

be the optimal solution of (5.1.98). Denote C := 16LD2
X/ε and

K := 2
[
(m+1)+

√
(m−1)2 +4mC

]
log
[
(m+

√
mC)(δ +2L f +

L2
f

δ
)

4D2
X

ε

]
.

It can be easily seen that

Ψ(x̄K)−Ψ
∗ ≤Ψδ (x̄

K)−Ψ
∗

δ
+δD2

X =Ψδ (x̄
K)−Ψ

∗
δ
+ ε

2 .

Note that problem (5.1.98) is given in the form of (5.1.1) with the strongly convex
modulus µ = δ , and h(x) = h(x)− δ 〈ν ′(x0),x〉. Hence by applying Corollary 5.1,
we have

E[Ψδ (x̄
K)−Ψ

∗
δ
]≤ ε

2 .

Combining these two inequalities, we have E[Ψ(x̄K)−Ψ ∗]≤ ε , which implies the
bound in (5.1.102). The bound in (5.1.103) can be shown similarly and hence the
details are skipped.

Observe that if we apply a deterministic optimal first-order method (e.g., Nes-
terov’s method or the PDG method), the total number of gradient evaluations for ∇ fi,
i = 1, . . . ,m, would be given by

m

√
L f D2

X
ε

.

Comparing this bound with (5.1.102), we can see that the number of gradient eval-
uations performed by the RPDG method can be O

(√
m log−1(mL f DX/ε)

)
times

smaller than these deterministic methods when L and L f are in the same order of
magnitude.
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5.1.5.2 Structured nonsmooth problems

In this subsection, we assume that the component functions fi are nonsmooth but can
be approximated closely by smooth ones. More specifically, we assume that

fi(x) := max
yi∈Yi
〈Aix,yi〉−qi(yi). (5.1.104)

One can approximate fi(x) and f , respectively, by

f̃i(x,δ ) :=max
yi∈Yi
〈Aix,yi〉−qi(yi)−δwi(yi) and f̃ (x,δ ) = 1

m ∑
m
i=1 f̃i(x,δ ), (5.1.105)

where wi(yi) is a strongly convex function with modulus 1 such that

0≤ wi(yi)≤ D2
Yi
, ∀yi ∈ Yi. (5.1.106)

In particular, we can easily show that

f̃i(x,δ )≤ fi(x)≤ f̃i(x,δ )+δD2
Yi

and f̃ (x,δ )≤ f (x)≤ f̃ (x,δ )+δD2
Y , (5.1.107)

for any x∈ X , where D2
Y = 1

m ∑
m
i=1D2

Yi
. Moreover, fi(·,δ ) and f (·,δ ) are continuously

differentiable and their gradients are Lipschitz continuous with constants given by

L̃i =
‖Ai‖2

δ
and L̃ = ∑

m
i=1‖Ai‖2

mδ
= ‖A‖2

mδ
, (5.1.108)

respectively. As a consequence, we can apply the RPDG method to solve the approx-
imation problem

Ψ̃
∗

δ
:= min

x∈X

{
Ψ̃δ (x) := f̃ (x,δ )+h(x)+µν(x)

}
. (5.1.109)

The following result provides complexity bounds of the RPDG method for solving
the above structured nonsmooth problems for the case when µ > 0.

Proposition 5.3. Let us apply the RPDG method with the parameter settings in
Corollary 5.1 to the approximation problem (5.1.109) with

δ = ε

2D2
Y
, (5.1.110)

for some ε > 0. Then we can find a solution x̄ ∈ X s.t. E[Ψ(x̄)−Ψ ∗]≤ ε in at most

O
{
‖A‖DY

√
m
µε

log ‖A‖DX DY
mµε

}
(5.1.111)

iterations. Moreover, we can find a solution x̄ ∈ X s.t. Prob{Ψ(x̄)−Ψ ∗ > ε} ≤ λ for
any λ ∈ (0,1) in at most

O
{
‖A‖DY

√
m
µε

log ‖A‖DX DY
λmµε

}
(5.1.112)
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iterations.

Proof. It follows from (5.1.107) and (5.1.109) that

Ψ(x̄k)−Ψ
∗ ≤ Ψ̃δ (x̄

k)−Ψ̃
∗

δ
+δD2

Y = Ψ̃δ (x̄
k)−Ψ̃

∗
δ
+ ε

2 . (5.1.113)

Using relation (5.1.108) and Corollaries 5.1, we conclude that a solution x̄k ∈ X
satisfying E[Ψ̃δ (x̄k)−Ψ̃ ∗

δ
]≤ ε/2 can be found in

O

{
‖A‖DY

√
m
µε

log
[
(m+

√
mL̃
µ
)
(

µ +2L̃+ L̃2

µ

)
D2

X
ε

]}

iterations. This observation together with (5.1.113) and the definition of L̃ in (5.1.108)
then imply the bound in (5.1.111). The bound in (5.1.112) follows similarly from
(5.1.113) and Corollaries 5.1, and hence the details are skipped.

The following result holds for the RPDG method applied to the above structured
nonsmooth problems when µ = 0.

Proposition 5.4. Let us apply the RPDG method with the parameter settings in
Corollary 5.1 to the approximation problem (5.1.109) with δ in (5.1.110) for some
ε > 0. Then we can find a solution x̄ ∈ X s.t. E[Ψ(x̄)−Ψ ∗]≤ ε in at most

O
{√

m‖A‖DX DY
ε

log ‖A‖DX DY
mε

}

iterations. Moreover, we can find a solution x̄ ∈ X s.t. Prob{Ψ(x̄)−Ψ ∗ > ε} ≤ λ for
any λ ∈ (0,1) in at most

O
{√

m‖A‖DX DY
ε

log m‖A‖DX DY
λmε

}

iterations.

Proof. Similarly to the arguments used in the proof of Proposition 5.3, our results
follow from (5.1.113), and an application of Proposition 5.2 to problem (5.1.109).

By Propositions 5.3 and 5.4, the total number of gradient computations for f̃ (·,δ )
performed by the RPDG method, after disregarding the logarithmic factors, can be
O(
√

m) times smaller than those required by deterministic first-order methods.

5.1.5.3 Unconstrained smooth problems

In this subsection, we set X = Rn, h(x) = 0, and µ = 0 in (5.1.1) and consider the
basic convex programming problem of

f ∗ := min
x∈Rn

{
f (x) := 1

m ∑
m
i=1 fi(x)

}
. (5.1.114)

We assume that the set of optimal solutions X∗ of this problem is nonempty.
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We will still use the perturbation-based approach as described in Subsection 5.1.5.1
by solving the perturbation problem given by

f ∗
δ

:= min
x∈Rn

{
fδ (x) := f (x)+ δ

2 ‖x− x0‖2
2,
}

(5.1.115)

for some x0 ∈ X ,δ > 0, where ‖ · ‖2 denotes the Euclidean norm. Also let Lδ denote
the Lipschitz constant for fδ (x). Clearly, Lδ = L+δ . Since the problem is uncon-
strained and the information on the size of the optimal solution is unavailable, it
is hard to estimate the total number of iterations by using the absolute accuracy in
terms of E[ f (x̄)− f ∗]. Instead, we define the relative accuracy associated with a
given x̄ ∈ X by

Rac(x̄,x0, f ∗) := 2[ f (x̄)− f ∗]
L(1+minu∈X∗ ‖x0−u‖22)

. (5.1.116)

We are now ready to establish the complexity of the RPDG method applied to
(5.1.114) in terms of Rac(x̄,x0, f ∗).

Proposition 5.5. Let us apply the RPDG method with the parameter settings in
Corollary 5.1 to the perturbation problem (5.1.115) with

δ = Lε

2 , (5.1.117)

for some ε > 0. Then we can find a solution x̄ ∈ X s.t. E[Rac(x̄,x0, f ∗)]≤ ε in at most

O
{√

m
ε

log m
ε

}
(5.1.118)

iterations. Moreover, we can find a solution x̄ ∈ X s.t. Prob{Rac(x̄,x0, f ∗)> ε} ≤ λ

for any λ ∈ (0,1) in at most

O
{√

m
ε

log m
λε

}
(5.1.119)

iterations.

Proof. Let x∗
δ

be the optimal solution of (5.1.115). Also let x∗ be the optimal
solution of (5.1.114) that is closest to x0, i.e., x∗ = argminu∈X∗‖x0− u‖2. It then
follows from the strong convexity of fδ that

δ

2 ‖x∗δ − x∗‖2
2 ≤ fδ (x

∗)− fδ (x
∗
δ
)

= f (x∗)+ δ

2 ‖x∗− x0‖2
2− fδ (x

∗
δ
)

≤ δ

2 ‖x∗− x0‖2
2,

which implies that
‖x∗

δ
− x∗‖2 ≤ ‖x∗− x0‖2. (5.1.120)

Moreover, using the definition of fδ and the fact that x∗ is feasible to (5.1.115), we
have

f ∗ ≤ f ∗
δ
≤ f ∗+ δ

2 ‖x∗− x0‖2
2,

which implies that
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f (x̄K)− f ∗ ≤ fδ (x̄
K)− f ∗

δ
+ f ∗

δ
− f ∗

≤ fδ (x̄
K)− f ∗

δ
+ δ

2 ‖x∗− x0‖2
2.

Now suppose that we run the RPDG method applied to (5.1.115) for K iterations.
Then by Corollary 5.1, we have

E[ fδ (x̄
K)− f ∗

δ
]≤ α

K/2(1−α)−1
(

δ +2Lδ +
L2

δ

δ

)
‖x0− x∗

δ
‖2

2

≤ α
K/2(1−α)−1

(
δ +2Lδ +

L2
δ

δ

)
[‖x0− x∗‖2

2 +‖x∗− x∗
δ
‖2

2]

= 2α
K/2(1−α)−1

(
3δ +2L+ (L+δ )2

δ

)
‖x0− x∗‖2

2,

where the last inequality follows from (5.1.120) and α is defined in (5.1.68) with
C = 8Lδ/δ = 8(L+δ )

δ
= 8(2/ε +1). Combining the above two relations, we have

E[ f (x̄K)− f ∗]≤
[
2α

K/2(1−α)−1
(

3δ +2L+ (L+δ )2

δ

)
+ δ

2

]
[‖x0− x∗‖2

2.

Dividing both sides of the above inequality by L(1+‖x0− x∗‖2
2)/2, we obtain

E[Rac(x̄K ,x0, f ∗)]≤ 2
L

[
2α

K/2(1−α)−1
(

3δ +2L+ (L+δ )2

δ

)
+ δ

2

]

≤ 4
(

m+2
√

2m( 2
ε
+1)

)(
3ε +4+(2+ ε)( 2

ε
+1)

)
α

K/2 + ε

2 ,

which clearly implies the bound in (5.1.118). The bound in (5.1.119) also follows
from the above inequality and the Markov’s inequality.

By Proposition 5.5, the total number of gradient evaluations for the component
functions fi required by the RPDG method can be O(

√
m log−1(m/ε)) times smaller

than those performed by deterministic optimal first-order methods.

5.2 Random gradient extrapolation method

In the last section, we have introduced a randomized primal-dual gradient (RPDG)
method, which can be viewed as a randomized version of the accelerated gradient
methods in Section 3.3, for solving finite-sum and distributed optimization problems.
As discussed earlier, one potential problem associated with RPDG is that it requires
a restrictive assumption that each fi has to be differentiable and has Lipschitz con-
tinuous gradients over the whole Rn due to its primal extrapolation step. Moreover,
RPDG has a complicated algorithmic scheme, which contains a primal extrapolation
step and a gradient (dual) prediction step in addition to solving a primal proximal
subproblem, and thus leads to an intricate primal-dual convergence analysis. Our
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goal in this section is to address these issues issue by presenting a novel randomized
first-order method, namely randomized gradient extrapolation method (RGEM). Be-
fore discussing RGEM, we first need to introduce the gradient extrapolation method,
a new optimal first-order method inspired by the game interpretation of accelerated
gradient descent method.

More specifically, we consider the finite-sum convex programming problem given
in the form of

ψ
∗ := min

x∈X

{
ψ(x) := 1

m ∑
m
i=1 fi(x)+µν(x)

}
. (5.2.1)

Here, X ⊆ Rn is a closed convex set, fi : X → R, i = 1, . . . ,m, are smooth convex
functions with Lipschitz continuous gradients over X , i.e., ∃Li ≥ 0 such that

‖∇ fi(x1)−∇ fi(x2)‖∗ ≤ Li‖x1− x2‖, ∀x1,x2 ∈ X , (5.2.2)

ν : X → R is a strongly convex function with modulus 1 w.r.t. a norm ‖ · ‖, i.e.,

ν(x1)−ν(x2)−〈ν ′(x2),x1− x2〉 ≥ 1
2‖x1− x2‖2, ∀x1,x2 ∈ X , (5.2.3)

where ν ′(·) denotes any subgradient (or gradient) of ν(·) and µ ≥ 0 is a given
constant. Hence, the objective function ψ is strongly convex whenever µ > 0. For
notational convenience, we also denote f (x)≡ 1

m ∑
m
i=1 fi(x), L≡ 1

m ∑
m
i=1Li, and L̂ =

maxi=1,...,m Li. It is easy to see that for some L f ≥ 0,

‖∇ f (x1)−∇ f (x2)‖∗ ≤ L f ‖x1− x2‖ ≤ L‖x1− x2‖, ∀x1,x2 ∈ X . (5.2.4)

Observe that problem (5.2.1) is slightly simpler than the finite-sum optimization
problem (5.1.1) in the previous section since the convex term h does not appear in
(5.2.1). However, it is relatively easy to extend our discussions here in this section to
solve the more general finite-sum optimization problem in (5.1.1).

We also consider a class of stochastic finite-sum optimization problems given by

ψ
∗ := min

x∈X

{
ψ(x) := 1

m ∑
m
i=1Eξi [Fi(x,ξi)]+µν(x)

}
, (5.2.5)

where ξi’s are random variables with support Ξi ⊆ Rd . It can be easily seen that
(5.2.5) is a special case of (5.2.1) with fi(x) = Eξi [Fi(x,ξi)], i = 1, . . . ,m. However,
different from deterministic finite-sum optimization problems, only noisy gradi-
ent information of each component function fi can be accessed for the stochastic
finite-sum optimization problem in (5.2.5). By considering the stochastic finite-sum
optimization problem, we are interested in not only the deterministic empirical risk
minimization, but also the generalization risk for distributed machine learning which
allows the private data for each agent to be collected in an online (steaming) fash-
ion. In the distributed learning example given in (5.1.6), for minimization of the
generalized risk, fi’s are given in the form of expectation, i.e.,

fi(x) = li(x) := Eξi [log(1+ exp(−ξ
T
i x))], i = 1, . . . ,m,
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where the random variable ξi models the underlying distribution for training dataset
of agent i. It should be noted, however, that little attention in the study of randomized
first-order methods has been paid to the stochastic finite-sum problem in (5.2.5).
For example, it is unknown whether there exists an algorithm which only requires
a significantly smaller number of communication rounds (e.g., O(log1/ε)), but
can achieve the optimal O(1/ε) sampling complexity for solving the stochastic
finite-sum problem in (5.2.5).

5.2.1 Gradient extrapolation method

Our goal in this section is to introduce a new algorithmic framework, referred to
as the gradient extrapolation method (GEM), for solving the convex optimization
problem given by

ψ
∗ := min

x∈X
{ψ(x) := f (x)+µν(x)} . (5.2.6)

We show that GEM can be viewed as a dual of the accelerated gradient descent
method although these two algorithms appear to be quite different. Moreover, GEM
possess some nice properties which enable us to develop and analyze the random
gradient extrapolation method for distributed and stochastic optimization.

5.2.1.1 The algorithm

Similar to Section 5.1, we define a prox-function associated with ν as

V (x0,x)≡Vν(x0,x) := ν(x)−
[
ν(x0)+ 〈ν ′(x0),x− x0〉

]
, (5.2.7)

where ν ′(x0) ∈ ∂ν(x0) is an arbitrary subgradient of ν at x0. By the strong convexity
of ν , we have

V (x0,x)≥ 1
2
‖x− x0‖2, ∀x,x0 ∈ X . (5.2.8)

It should be pointed out that the prox-function V (·, ·) described above is a generalized
Bregman distance in the sense that ν is not necessarily differentiable. Throughout
this section, we assume that the prox-mapping associated with X and ν , given by

argminx∈X
{
〈g,x〉+µν(x)+ηV (x0,x)

}
, (5.2.9)

is easily computable for any x0 ∈ X ,g ∈ Rn,µ ≥ 0,η > 0. Note that whenever ν is
non-differentiable, we need to specify a particular selection of the subgradient ν ′

before performing the prox-mapping. We assume throughout this paper that such a
selection of ν ′ is defined recursively as follows. Denote

x1 = argminx∈X
{
〈g,x〉+µν(x)+ηV (x0,x)

}
.



256 5 Finite-sum and Distributed Optimization

By its optimality condition, we have

g+(µ +η)ν ′(x1)−ην
′(x0) ∈NX (x1),

where NX (x1) := {v ∈Rn : vT (x−x1)≤ 0,∀x ∈ X} denotes the normal cone of X at
x1. Once such a ν ′(x1) satisfying the above relation is identified, we will use it as a
subgradient when defining V (x1,x) in the next iteration. Note that such a subgradient
can be identified as long as x1 is obtained, since it satisfies the optimality condition
of (5.2.9).

We are now ready to describe the gradient extrapolation method (GEM). As
shown in Algorithm 5.3, GEM starts with a gradient extrapolation step (5.2.10) to
compute g̃t from the two previous gradients gt−1 and gt−2. Based on g̃t , it performs a
proximal gradient descent step in (5.2.11) and updates the output solution xt . Finally,
the gradient at xt is computed for gradient extrapolation in the next iteration.

Algorithm 5.3 An optimal gradient extrapolation method (GEM)

Input: Let x0 ∈ X , and the nonnegative parameters {αt}, {ηt}, and {τt} be given.
Set x0 = x0 and g−1 = g0 = ∇ f (x0).
for t = 1,2, . . . ,k do

g̃t = αt(gt−1−gt−2)+gt−1. (5.2.10)

xt = argminx∈X
{
〈g̃t ,x〉+µν(x)+ηtV (xt−1,x)

}
. (5.2.11)

xt =
(
xt + τt xt−1)/(1+ τt). (5.2.12)

gt = ∇ f (xt). (5.2.13)

end for
Output: xk.

We now show that GEM can be viewed as the dual of the accelerated gradient
descent (AGD) method. To see such a relationship, we will first rewrite GEM in a
primal-dual form. Let us consider the dual space G , where the gradients of f reside,
and equip it with the conjugate norm ‖ ·‖∗. Let J f : G →R be the conjugate function
of f such that f (x) := maxg∈G {〈x,g〉 − J f (g)}. We can reformulate the original
problem in (5.2.6) as the following saddle point problem:

ψ
∗ := min

x∈X

{
max
g∈G
{〈x,g〉− J f (g)}+µ ν(x)

}
. (5.2.14)

It is clear that J f is strongly convex with modulus 1/L f w.r.t. ‖ · ‖∗. Therefore, we
can define its associated dual generalized Bregman distance and dual prox-mappings
as



5.2 Random gradient extrapolation method 257

Wf (g0,g) := J f (g)− [J f (g0)+ 〈J′f (g0),g−g0〉], (5.2.15)

argming∈G
{
〈−x̃,g〉+ J f (g)+ τWf (g0,g)

}
, (5.2.16)

for any g0,g ∈ G .
Lemma 3.6 in Section 5.1 shows that the computation of the dual prox-mapping

associated with Wf is equivalent to the computation of ∇ f . Using this result, we can
see that the GEM iteration can be written in a primal-dual form. Given (x0,g−1,g0)∈
X×G ×G , it updates (xt ,gt) by

g̃t = αt(gt−1−gt−2)+gt−1, (5.2.17)

xt = argminx∈X
{
〈g̃t ,x〉+µν(x)+ηtV (xt−1,x)

}
, (5.2.18)

gt = argming∈G
{
〈−x̃t ,g〉+ J f (g)+ τtWf (gt−1,g)

}
, (5.2.19)

with a specific selection of J′f (g
t−1) = xt−1 in Wf (gt−1,g). Indeed, by denoting

x0 = x0, we can easily see from g0 = ∇ f (x0) that x0 ∈ ∂J f (g0). Now assume that
gt−1 = ∇ f (xt−1) and hence that xt−1 ∈ ∂J f (gt−1). By the definition of gt in (5.2.19)
and Lemma 3.6, we conclude that gt =∇ f (xt) with xt = (xt +τtxt−1)/(1+τt), which
are exactly the definitions given in (5.2.12) and (5.2.13).

Recall that in a simple version of the AGD method given (xt−1, x̄t−1) ∈ X×X , it
updates (xt , x̄t) by

xt = (1−λt)x̄t−1 +λtxt−1, (5.2.20)
gt = ∇ f (xt), (5.2.21)

xt = argminx∈X
{
〈gt ,x〉+µν(x)+ηtV (xt−1,x)

}
, (5.2.22)

x̄t = (1−λt)x̄t−1 +λtxt , (5.2.23)

for some λt ∈ [0,1]. Moreover, in view of the discussions in Section 3.4, we can
show that (5.2.20)-(5.2.23) can be viewed as a specific instantiation of the following
primal-dual updates:

x̃t = αt(xt−1− xt−2)+ xt−1, (5.2.24)

gt = argming∈G
{
〈−x̃t ,g〉+ J f (g)+ τtWf (gt−1,g)

}
, (5.2.25)

xt = argminx∈X
{
〈gt ,x〉+µν(x)+ηtV (xt−1,x)

}
. (5.2.26)

Comparing (5.2.17)-(5.2.19) with (5.2.24)-(6.6.13), we can clearly see that GEM
is a dual version of AGD, obtained by switching the primal and dual variables in each
equation of (5.2.24)-(6.6.13). The major difference exists in that the extrapolation
step in GEM is performed in the dual space while the one in AGD is performed in the
primal space. In fact, extrapolation in the dual space will help us to greatly simplify
and further enhance the randomized primal-dual gradient methods in Section 5.1.
Another interesting fact is that in GEM, the gradients are computed for the output
solutions {xt}. On the other hand, the output solutions in the AGD method are given
by {x̄t} while the gradients are computed for the extrapolation sequence {xt}.
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5.2.1.2 Convergence of GEM

We set out to establish the convergence properties of the GEM method for solving
(5.2.6). Observe that our analysis is carried out completely in the primal space and
does not rely on the primal-dual interpretation described in the previous section. This
type of analysis technique appears to be new for solving problem (5.2.6) as it also
differs significantly from that of AGD.

We will need to establish some basic properties for a smooth convex function.

Lemma 5.8. If f : X → R has Lipschitz continuous gradients with constant L, then

1
2L‖∇ f (x)−∇ f (z)‖2

∗ ≤ f (x)− f (z)−〈∇ f (z),x− z〉 ∀x,z ∈ X .

Proof. Denote φ(x) = f (x)− f (z)−〈∇ f (z),x−z〉. Clearly φ also has L-Lipschitz
continuous gradients. It is easy to check that ∇φ(z) = 0, and hence that minx φ(x) =
φ(z) = 0, which implies

φ(z)≤ φ(x− 1
L ∇φ(x))

= φ(x)+
∫ 1

0
〈∇φ

(
x− τ

L ∇φ(x)
)
,− 1

L ∇φ(x)〉dτ

= φ(x)+ 〈∇φ(x),− 1
L ∇φ(x)〉+

∫ 1

0
〈∇φ

(
x− τ

L ∇φ(x)
)
−∇φ(x),− 1

L ∇φ(x)〉dτ

≤ φ(x)− 1
L‖∇φ(x)‖2

∗+
∫ 1

0
L‖ τ

L ∇φ(x)‖∗ ‖ 1
L ∇φ(x)‖∗dτ

= φ(x)− 1
2L‖∇φ(x)‖2

∗.

Therefore, we have 1
2L‖∇φ(x)‖2

∗ ≤ φ(x)−φ(z) = φ(x), and the result follows imme-
diately from this relation.

We first establish some general convergence properties for GEM for both smooth
convex (µ = 0) and strongly convex cases (µ > 0).

Theorem 5.3. Suppose that {ηt}, {τt}, and {αt} in GEM satisfy

θt−1 = αtθt , t = 2, . . . ,k, (5.2.27)
θtηt ≤ θt−1(µ +ηt−1), t = 2, . . . ,k, (5.2.28)
θtτt = θt−1(1+ τt−1), t = 2, . . . ,k, (5.2.29)

αtL f ≤ τt−1ηt , t = 2, . . . ,k, (5.2.30)
2L f ≤ τk(µ +ηk), (5.2.31)

for some θt ≥ 0, t = 1, . . . ,k. Then, for any k ≥ 1 and any given x ∈ X, we have

θk(1+ τk)[ψ(xk)−ψ(x)]+ θk(µ+ηk)
2 V (xk,x)≤ θ1τ1[ψ(x0)−ψ(x)]+θ1η1V (x0,x).

(5.2.32)

Proof. Applying Lemma 3.5 to (5.2.11), we obtain
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〈xt − x,αt(gt−1−gt−2)+gt−1〉+µν(xt)−µν(x)
≤ ηtV (xt−1,x)− (µ +ηt)V (xt ,x)−ηtV (xt−1,xt).

(5.2.33)

Moreover, using the definition of ψ , the convexity of f , and the fact that gt = ∇ f (xt),
we have

(1+ τt) f (xt)+µν(xt)−ψ(x)
≤ (1+ τt) f (xt)+µν(xt)−µν(x)− [ f (xt)+ 〈gt ,x− xt〉]
= τt [ f (xt)−〈gt ,xt − xt−1〉]−〈gt ,x− xt〉+µν(xt)−µν(x)
≤− τt

2L f
‖gt −gt−1‖2

∗+ τt f (xt−1)−〈gt ,x− xt〉+µν(xt)−µν(x),

where the first equality follows from the definition of xt in (5.2.12), and the last
inequality follows from Lemma 5.8. In view of (5.2.33), we then have

(1+ τt) f (xt)+µν(xt)−ψ(x)
≤− τt

2L f
‖gt −gt−1‖2

∗+ τt f (xt−1)+ 〈xt − x,gt −gt−1−αt(gt−1−gt−2)〉
+ηtV (xt−1,x)− (µ +ηt)V (xt ,x)−ηtV (xt−1,xt).

Multiplying both sides of the above inequality by θt , and summing up the resulting
inequalities from t = 1 to k, we obtain

∑
k
t=1θt(1+ τt) f (xt)+∑

k
t=1θt [µν(xt)−ψ(x)]

≤−∑
k
t=1

θt τt
2L f
‖gt −gt−1‖2

∗+∑
k
t=1θtτt f (xt−1)

+∑
k
t=1θt〈xt − x,gt −gt−1−αt(gt−1−gt−2)〉

+∑
k
t=1θt [ηtV (xt−1,x)− (µ +ηt)V (xt ,x)−ηtV (xt−1,xt)].

(5.2.34)

Now by (5.2.27) and the fact that g−1 = g0, we have

∑
k
t=1θt〈xt − x,gt −gt−1−αt(gt−1−gt−2)〉

= ∑
k
t=1θt [〈xt − x,gt −gt−1〉−αt〈xt−1− x,gt−1−gt−2〉]
−∑

k
t=2θtαt〈xt − xt−1,gt−1−gt−2〉

= θk〈xk− x,gk−gk−1〉−∑
k
t=2θtαt〈xt − xt−1,gt−1−gt−2〉.

(5.2.35)

Moreover, in view of (5.2.28), (5.2.29) and the definition of xt (5.2.12), we obtain
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∑
k
t=1θt [ηtV (xt−1,x)− (µ +ηt)V (xt ,x)]

(5.2.28)

≤ θ1η1V (x0,x)−θk(µ +ηk)V (xk,x), (5.2.36)

∑
k
t=1θt [(1+ τt) f (xt)− τt f (xt−1)]

(5.2.29)
= θk(1+ τk) f (xk)−θ1τ1 f (x0), (5.2.37)

∑
k
t=1θt

(5.2.29)
= ∑

k
t=2[θtτt −θt−1τt−1]+θk = θk(1+ τk)−θ1τ1, (5.2.38)

θk(1+ τk)xk

(5.2.12)
= θk(xk + τk

1+τk−1
xk−1 + · · ·+∏

k
t=2

τt
1+τt−1

x1 +∏
k
t=2

τt
1+τt−1

τ1x0)

(5.2.29)
= ∑

k
t=1θtxt +θ1τ1x0. (5.2.39)

The last two relations (cf. (5.2.38) and (5.2.39)), in view of the convexity of ν(·),
also imply that

θk(1+ τk)µν(xk)≤ ∑
k
t=1θt µν(xt)+θ1τ1µν(x0).

Therefore, by (5.2.34) - (5.2.39), and the definition of ψ , we conclude that

θk(1+ τk)[ψ(xk)−ψ(x)]

≤ ∑
k
t=2

[
− θt−1τt−1

2L f
‖gt−1−gt−2‖2

∗−θtαt〈xt − xt−1,gt−1−gt−2〉−θtηtV (xt−1,xt)
]

−θk

[
τk

2L f
‖gk−gk−1‖2

∗−〈xk− x,gk−gk−1〉+(µ +ηk)V (xk,x)
]
+θ1η1V (x0,x)

+θ1τ1[ψ(x0)−ψ(x)]−θ1η1V (x0,x1).
(5.2.40)

By the strong convexity of V (·, ·) in (5.2.8), the simple relation that b〈u,v〉 −
a‖v‖2/2 ≤ b2‖u‖2/(2a), ∀a > 0, and the conditions in (5.2.30) and (5.2.31), we
have

−∑
k
t=2

[
θt−1τt−1

2L f
‖gt−1−gt−2‖2

∗+θtαt〈xt − xt−1,gt−1−gt−2〉+θtηtV (xt−1,xt)
]

≤ ∑
k
t=2

θt
2

(
αt L f
τt−1
−ηt

)
‖xt−1− xt‖2 ≤ 0

−θk

[
τk

2L f
‖gk−gk−1‖2

∗−〈xk− x,gk−gk−1〉+ (µ+ηk)
2 V (xk,x)

]

≤ θk
2

(
L f
τk
− µ+ηk

2

)
‖xk− x‖2 ≤ 0.

Using the above relations in (5.2.40), we obtain (8.2).

We are now ready to establish the optimal convergence behavior of GEM as a
consequence of Theorem 5.3. We first provide a constant step-size policy which
guarantees an optimal linear rate of convergence for the strongly convex case (µ > 0).

Corollary 5.5. Let x∗ be an optimal solution of (5.2.1), xk and xk be defined in
(5.2.11) and (5.2.12), respectively. Suppose that µ > 0, and that {τt}, {ηt} and {αt}
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are set to

τt ≡ τ =
√

2L f
µ
, ηt ≡ η =

√
2L f µ, and αt ≡ α =

√
2L f /µ

1+
√

2L f /µ
, ∀t = 1, . . . ,k.

(5.2.41)
Then,

V (xk,x∗)≤ 2α
k[V (x0,x∗)+ 1

µ
(ψ(x0)−ψ

∗)], (5.2.42)

ψ(xk)−ψ
∗ ≤ α

k [
µV (x0,x∗)+ψ(x0)−ψ

∗] . (5.2.43)

Proof. Let us set θt = α−t , t = 1, . . . ,k. It is easy to check that the selection
of {τt},{ηt} and {αt} in (5.2.41) satisfies conditions (5.2.27)-(5.2.31). In view of
Theorem 5.3 and (5.2.41), we have

ψ(xk)−ψ(x∗)+ µ+η

2(1+τ)V (xk,x∗)≤ θ1τ

θk(1+τ) [ψ(x0)−ψ(x∗)]+ θ1η

θk(1+τ)V (x0,x∗)

= α
k[ψ(x0)−ψ(x∗)+µV (x0,x∗)].

It also follows from the above relation, the fact ψ(xk)−ψ(x∗)≥ 0, and (5.2.41) that

V (xk,x∗) ≤ 2(1+τ)αk

µ+η
[µV (x0,x∗)+ψ(x0)−ψ(x∗)]

= 2αk[V (x0,x∗)+ 1
µ
(ψ(x0)−ψ(x∗))].

We now provide a stepsize policy which guarantees the optimal rate of conver-
gence for the smooth case (µ = 0). Observe that in smooth case we can estimate the
solution quality for the sequence {xk} only.

Corollary 5.6. Let x∗ be an optimal solution of (5.2.1), and xk be defined in (5.2.12).
Suppose that µ = 0, and that {τt}, {ηt} and {αt} are set to

τt =
t
2 , ηt =

4L f
t , and αt =

t
t+1 , ∀t = 1, . . . ,k. (5.2.44)

Then,

ψ(xk)−ψ(x∗) = f (xk)− f (x∗)≤ 2
(k+1)(k+2) [ f (x

0)− f (x∗)+8L fV (x0,x∗)].
(5.2.45)

Proof. Let us set θt = t +1, t = 1, . . . ,k. It is easy to check that the parameters
in (5.2.44) satisfy conditions (5.2.30)-(5.2.31). In view of (8.2) and (5.2.44), we
conclude that

ψ(xk)−ψ(x∗)≤ 2
(k+1)(k+2) [ψ(x0)−ψ(x∗)+8L fV (x0,x∗)].
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In Corollary 5.7, we improve the above complexity result in terms of the depen-
dence on f (x0)− f (x∗) by using a different step-size policy and a slightly more
involved analysis for the smooth case (µ = 0).

Corollary 5.7. Let x∗ be an optimal solution of (5.2.1), xk and xk be defined in
(5.2.11) and (5.2.12), respectively. Suppose that µ = 0, and that {τt}, {ηt} and {αt}
are set to

τt =
t−1

2 , ηt =
6L f

t , and αt =
t−1

t , ∀t = 1, . . . ,k. (5.2.46)

Then, for any k ≥ 1,

ψ(xk)−ψ(x∗) = f (xk)− f (x∗)≤ 12L f
k(k+1)V (x0,x∗). (5.2.47)

Proof. If we set θt = t, t = 1, . . . ,k. It is easy to check that the parameters
in (5.2.46) satisfy conditions (5.2.27)-(5.2.29) and (5.2.31). However, condition
(5.2.30) only holds for t = 3, . . . ,k, i.e.,

αtL f ≤ τt−1ηt , t = 3, . . . ,k. (5.2.48)

In view of (5.2.40) and the fact that τ1 = 0, we have

θk(1+ τk)[ψ(xk)−ψ(x)]
≤−θ2[α2〈x2− x1,g1−g0〉+η2V (x1,x2)]−θ1η1V (x0,x1)

−∑
k
t=3

[
θt−1τt−1

2L f
‖gt−1−gt−2‖2

∗+θtαt〈xt − xt−1,gt−1−gt−2〉+θtηtV (xt−1,xt)
]

−θk

[
τk

2L f
‖gk−gk−1‖2

∗−〈xk− x,gk−gk−1〉+(µ +ηk)V (xk,x)
]
+θ1η1V (x0,x)

≤ θ1α2
2η2
‖g1−g0‖2

∗− θ1η1
2 ‖x1− x0‖2 +∑

k
t=3

θt
2

(
αt L f
τt−1
−ηt

)
‖xt−1− xt‖2

+ θk
2

(
L f
τk
− ηk

2

)
‖xk− x‖2 +θ1η1V (x0,x)− θkηk

2 V (xk,x)

≤ θ1α2L2
f

2η2
‖x1− x0‖2− θ1η1

2 ‖x1− x0‖2 +θ1η1V (x0,x)− θkηk
2 V (xk,x)

≤ θ1

(
α2L2

f
2η2
−η1

)
‖x1− x0‖2 +θ1η1V (x0,x)− θkηk

2 V (xk,x),

where the second inequality follows from the simple relation that b〈u,v〉−a‖v‖2/2≤
b2‖u‖2/(2a), ∀a > 0 and (5.2.8), the third inequality follows from (5.2.48), (5.2.31),
the definition of gt in (5.2.13) and (5.2.4), and the last inequality follows from the
facts that x0 = x0 and x1 = x1 (due to τ1 = 0). Therefore, by plugging the parameter
setting in (5.2.46) into the above inequality, we conclude that

ψ(xk)−ψ∗ = f (xk)− f (x∗) ≤ [θk(1+ τk)]
−1[θ1η1V (x0,x∗)− θkηk

2 V (xk,x)]
≤ 12L f

k(k+1)V (x0,x∗).
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In view of the results obtained in the above two corollaries, GEM exhibits optimal
rates of convergence for both strongly convex and smooth cases. Different from the
classical AGD method, GEM performs extrapolation on the gradients, rather than
the iterates. This fact will help us to develop an enhanced randomized incremental
gradient method than RPDG, i.e., the random gradient extrapolation method, with a
much simpler analysis.

5.2.2 Deterministic finite-sum problems

We present in this this subsection a randomized version of GEM and discuss its
convergence properties for solving the deterministic finite-sum problem in (5.2.1).

5.2.2.1 Algorithmic framework

The basic scheme of RGEM is formally stated in Algorithm 5.4. This algorithm
simply initializes the gradient as y−1

i = y0
i = 0, i = 1, . . . ,m. At each iteration, RGEM

requires the new gradient information of only one randomly selected component
function fi, but maintains m pairs of search points and gradients (xt

i,y
t
i), i = 1, . . . ,m,

which are stored, possibly by their corresponding agents in the distributed network.
More specifically, it first performs a gradient extrapolation step in (5.2.49) and the
primal proximal mapping in (5.2.50). Then a randomly selected block xt

it is updated
in (5.2.51) and the corresponding component gradient ∇ fit is computed in (5.2.52).
As can be seen from Algorithm 5.4, RGEM does not require any exact gradient
evaluations.

Note that the computation of xt in (5.2.50) requires an involved computation of
1
m ∑

m
i=1ỹt

i . In order to save computational time when implementing this algorithm,
we suggest to compute this quantity in a recursive manner as follows. Let us denote
gt ≡ 1

m ∑
m
i=1yt

i, t = 1, . . . ,k. Clearly, in view of the fact that yt
i = yt−1

i , ∀i 6= it , we
have

gt = gt−1 + 1
m (y

t
it − yt−1

it ). (5.2.54)

Also, by the definition of gt and (5.2.49), we have

1
m ∑

m
i=1ỹt

i =
1
m ∑

m
i=1yt−1

i + αt
m (yt−1

it−1
− yt−2

it−1
) = gt−1 + αt

m (yt−1
it−1
− yt−2

it−1
). (5.2.55)

Using these two ideas mentioned above, we can compute 1
m ∑

m
i=1ỹt

i in two steps:
i) initialize g0 = 0, and update gt as in (5.2.54) after the gradient evaluation step
(5.2.52); ii) replace (5.2.49) by (5.2.55) to compute 1

m ∑
m
i=1ỹt

i . Also note that the
difference yt

it − yt−1
it can be saved as it is used in both (5.2.54) and (5.2.55) for the

next iteration. These enhancements will be incorporated into the distributed setting
in Subsection 5.2.4 to possibly save communication costs.
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Algorithm 5.4 A random gradient extrapolation method (RGEM)

Input: Let x0 ∈ X , and the nonnegative parameters {αt}, {ηt}, and {τt} be given.
Initialization:
Set x0

i = x0, y−1
i = y0

i = 0, i = 1, . . . ,m.
for t = 1, . . . ,k do

Choose it according to Prob{it = i}= 1
m , i = 1, . . . ,m.

ỹt
i = yt−1

i +αt(yt−1
i − yt−2

i ),∀i, (5.2.49)

xt = argminx∈X
{
〈 1

m ∑
m
i=1ỹt

i ,x〉+µν(x)+ηV (xt−1,x)
}
, (5.2.50)

xt
i =

{
(1+ τt)

−1(xt + τt xt−1
i ), i = it ,

xt−1
i , i 6= it .

(5.2.51)

yt
i =

{
∇ fi(xt

i), i = it ,
yt−1

i , i 6= it .
(5.2.52)

end for
Output: For some θt > 0, t = 1, . . . ,k, set

xk := (∑k
t=1θt)

−1
∑

k
t=1θt xt . (5.2.53)

It is also interesting to observe the differences between RGEM and RPDG (sec-
tion 5.1). RGEM has only one extrapolation step (5.2.49) which combines two types
of predictions. One is to predict future gradients using historic data, and the other is
to obtain an estimator of the current exact gradient of f from the randomly updated
gradient information of fi. However, RPDG method needs two extrapolation steps in
both the primal and dual spaces. Due to the existence of the primal extrapolation step,
RPDG cannot guarantee the search points where it performs gradient evaluations to
fall within the feasible set X . Hence, it requires the assumption that fi’s are differen-
tiable with Lipschitz continuous gradients over Rn. Such a strong assumption is not
required by RGEM, since all the primal iterates generated by RGEM stay within the
feasible region X . As a result, RGEM can deal with a much wider class of problems
than RPDG. Moreover, in RGEM we do not need to compute the exact gradients
at the initial point x0

i , but simply set them as y0
i = 0. It can be seen that under the

L-smooth assumption on gradients (cf. (5.2.4)), there exists 0≤ σ0 <+∞ such that

1
m ∑

m
i=1‖∇ fi(x0)‖2

∗ = σ
2
0 . (5.2.56)

5.2.2.2 Convergence analysis

Our main goal in this subsection is to establish the convergence of RGEM for solving
problem (5.2.1).
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Comparing RGEM in Algorithm 5.4 with GEM in Algorithm 5.3, we can see
that RGEM is a direct randomization of GEM. Therefore, inheriting from GEM, its
convergence analysis is carried out completely in the primal space. However, the
analysis for RGEM is more challenging especially because we need to 1) build up
the relationship between 1

m ∑
m
i=1 fi(xk

i ) and f (xk), for which we exploit the function
Q defined in (6.6.26) as an intermediate tool; 2) bound the error caused by inex-
act gradients at the initial point and 3) analyze the accumulated error caused by
randomization and noisy stochastic gradients.

Before establishing the convergence of RGEM, we first provide some important
technical results. Let x̂t

i and ŷt
i, i = 1, . . . ,m, t ≥ 1 be defined as

x̂t
i = (1+ τt)

−1(xt + τtxt−1
i ), (5.2.57)

ŷt
i = ∇ fi(x̂t

i). (5.2.58)

The following simple result demonstrates a few identities related to xt
i (cf. (5.2.51))

and yt
i (cf. (5.2.52)).

Lemma 5.9. Let xt and yt
i be defined in (5.2.50) and (5.2.52), respectively, and x̂t

i
and ŷt

i be defined as in (5.2.57) and (5.2.58), respectively. Then we have, for any
i = 1, . . . ,m and t = 1, . . . ,k,

Et [yt
i] =

1
m ŷt

i +(1− 1
m )y

t−1
i ,

Et [xt
i] =

1
m x̂t

i +(1− 1
m )x

t−1
i ,

Et [ fi(xt
i)] =

1
m fi(x̂t

i)+(1− 1
m ) fi(xt−1

i ),

Et [‖∇ fi(xt
i)−∇ fi(xt−1

i )‖2
∗] =

1
m‖∇ fi(x̂t

i)−∇ fi(xt−1
i )‖2

∗,

where Et denotes the conditional expectation w.r.t. it given i1, . . . , it−1 when yt
i is

defined in (5.2.52).

Proof. This first equality follows immediately from the facts that Probt{yt
i = ŷt

i}=
Probt{it = i}= 1

m and Probt{yt
i = yt−1

i }= 1− 1
m . Here Probt denotes the conditional

probability w.r.t. it given i1, . . . , it−1. Similarly, we can prove the rest equalities.

We define the following function Q to help us analyze the convergence properties
of RGEM. Let x,x ∈ X be two feasible solutions of (5.2.1) (or (5.2.5)), we define the
corresponding Q(x,x) by

Q(x,x) := 〈∇ f (x),x− x〉+µν(x)−µν(x). (5.2.59)

It is obvious that if we fix x = x∗, an optimal solution of (5.2.1) (or (5.2.5)), by the
convexity of ν and the optimality condition of x∗, for any feasible solution x, we can
conclude that

Q(x,x∗)≥ 〈∇ f (x∗)+µν
′(x∗),x− x∗〉 ≥ 0.

Moreover, observing that f is smooth, we conclude that
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Q(x,x∗) = f (x∗)+ 〈∇ f (x∗),x− x∗〉+µν(x)−ψ(x∗)

≥−L f
2 ‖x− x∗‖2 +ψ(x)−ψ(x∗). (5.2.60)

The following lemma establishes an important relationship regarding Q.

Lemma 5.10. Let xt be defined in (5.2.50), and x ∈ X be any feasible solution of
(5.2.1) or (5.2.5). Suppose that τt in RGEM satisfy

θt(m(1+ τt)−1) = θt−1m(1+ τt−1), t = 2, . . . ,k, (5.2.61)

for some θt ≥ 0, t = 1, . . . ,k. Then, we have

∑
k
t=1θtE[Q(xt ,x)]≤ θk(1+ τk)∑

m
i=1E[ fi(xk

i )]+∑
k
t=1θtE[µν(xt)−ψ(x)]

−θ1(m(1+ τ1)−1)[〈x0− x,∇ f (x)〉+ f (x)]. (5.2.62)

Proof. In view of the definition of Q in (6.6.26), we have

Q(xt ,x) = 1
m ∑

m
i=1〈∇ fi(x),xt − x〉+µν(xt)−µν(x)

(5.2.57)
= 1

m ∑
m
i=1[(1+ τt)〈x̂t

i− x,∇ fi(x)〉− τt〈xt−1
i − x,∇ fi(x)〉]+µν(xt)−µν(x).

Taking expectation on both sides of the above relation over {i1, . . . , ik}, and using
Lemma 5.11, we obtain

E[Q(xt ,x)] = ∑
m
i=1E[(1+ τt)〈xt

i− x,∇ fi(x)〉− ((1+ τt)− 1
m )〈xt−1

i − x,∇ fi(x)〉]
+E[µν(xt)−µν(x)].

Multiplying both sides of the above inequality by θt , and summing up the resulting
inequalities from t = 1 to k, we conclude that

∑
k
t=1θtE[Q(xt ,x)]

= ∑
m
i=1∑

k
t=1E[θt(1+ τt)〈xt

i− x,∇ fi(x)〉−θt((1+ τt)− 1
m )〈xt−1

i − x,∇ fi(x)〉]
+∑

k
t=1θtE[µν(xt)−µν(x)].

Note that by (5.2.61) and the fact that x0
i = x0, i = 1, . . . ,m, we have

∑
k
t=1θt = ∑

k
t=2[θtm(1+ τt)−θt−1m(1+ τt−1)]+θ1

= θkm(1+ τk)−θ1(m(1+ τ1)−1), (5.2.63)

∑
k
t=1[θt(1+ τt)〈xt

i− x,∇ fi(x)〉−θt((1+ τt)− 1
m )〈xt−1

i − x,∇ fi(x)〉]
= θk(1+ τk)〈xk

i − x,∇ fi(x)〉−θ1((1+ τ1)− 1
m )〈x0− x,∇ fi(x)〉,

for i = 1, . . . ,m. Combining the above three relations and using the convexity of fi,
we obtain
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∑
k
t=1θtE[Q(xt ,x)]

≤ θk(1+ τk)∑
m
i=1E[ fi(xk

i )− fi(x)]−θ1(m(1+ τ1)−1)〈x0− x,∇ f (x)〉
+∑

k
t=1θtE[µν(xt)−µν(x)],

which in view of (5.2.63) implies (5.2.62).

We now prove the main convergence properties for RGEM to solve (5.2.1). Ob-
serve that RGEM starts with y0

i = 0, i = 1, . . . ,m, and only updates the correspond-
ing it-block of (xt

i,y
t
i), i = 1, . . . ,m, according to (5.2.51) and (5.2.52), respectively.

Therefore, for yt
i generated by RGEM, we have

yt
i =

{
0, if the i-th block has never been updated for the first t iterations,
∇ fi(xt

i), o.w.
(5.2.64)

Throughout this subsection, we assume that there exists σ0 ≥ 0 which is the upper
bound of the initial gradients, i.e., (5.2.56) holds. Proposition 5.6 below establishes
some general convergence properties of RGEM for solving strongly convex problems.

Proposition 5.6. Let xt and xk be defined as in (5.2.50) and (5.2.53), respectively,
and x∗ be an optimal solution of (5.2.1). Let σ0 be defined in (5.2.56), and suppose
that {ηt}, {τt}, and {αt} in RGEM satisfy (5.2.61) and

mθt−1 = αtθt , t ≥ 2, (5.2.65)
θtηt ≤ θt−1(µ +ηt−1), t ≥ 2, (5.2.66)

2αtLi ≤ mτt−1ηt , i = 1, . . . ,m; t ≥ 2, (5.2.67)
4Li ≤ τk(µ +ηk), i = 1, . . . ,m, (5.2.68)

for some θt ≥ 0, t = 1, . . . ,k. Then, for any k ≥ 1, we have

E[Q(xk,x∗)] ≤ (∑k
t=1θt)

−1
∆̃0,σ0 ,

E[V (xk,x∗)] ≤ 2∆̃0,σ0
θk(µ+ηk)

, (5.2.69)

where

∆̃0,σ0 := θ1(m(1+ τ1)−1)(ψ(x0)−ψ∗)+θ1η1V (x0,x∗)
+∑

k
t=1(

m−1
m )t−1 2θt αt+1

mηt+1
σ2

0 .
(5.2.70)

Proof. In view of the definition of xt in (5.2.50) and Lemma 3.5, we have

〈xt − x, 1
m ∑

m
i=1ỹt

i〉+µν(xt)−µν(x)
≤ ηtV (xt−1,x)− (µ +ηt)V (xt ,x)−ηtV (xt−1,xt).

(5.2.71)

Moreover, using the definition of ψ in (5.2.1), the convexity of fi, and the fact that
ŷt

i = ∇ fi(x̂t
i) (see (5.2.58) with yt

i defined in (5.2.52)), we obtain
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1+τt
m ∑

m
i=1 fi(x̂t

i)+µν(xt)−ψ(x)

≤ 1+τt
m ∑

m
i=1 fi(x̂t

i)+µν(xt)−µν(x)− 1
m ∑

m
i=1[ fi(x̂t

i)+ 〈ŷt
i,x− x̂t

i〉]
= τt

m ∑
m
i=1[ fi(x̂t

i)+ 〈ŷt
i,x

t−1
i − x̂t

i〉]+µν(xt)−µν(x)− 1
m ∑

m
i=1〈ŷt

i,x− xt〉
≤ − τt

2m ∑
m
i=1

1
Li
‖∇ fi(x̂t

i)−∇ fi(xt−1
i )‖2

∗+
τt
m ∑

m
i=1 fi(xt−1

i )

+µν(xt)−µν(x)− 1
m ∑

m
i=1〈ŷt

i,x− xt〉, (5.2.72)

where the first equality follows from the definition of x̂t
i in (5.2.57), and the last

inequality follows from the smoothness of fi (see Lemma 5.8) and (5.2.58). It then
follows from (5.2.71) and the definition of ỹt

i in (5.2.49) that

1+τt
m ∑

m
i=1 fi(x̂t

i)+µν(xt)−ψ(x)

≤− τt
2m ∑

m
i=1

1
Li
‖∇ fi(x̂t

i)−∇ fi(xt−1
i )‖2

∗+
τt
m ∑

m
i=1 fi(xt−1

i )

+ 〈xt − x, 1
m ∑

m
i=1[ŷ

t
i− yt−1

i −αt(yt−1
i − yt−2

i )]〉
+ηtV (xt−1,x)− (µ +ηt)V (xt ,x)−ηtV (xt−1,xt).

Therefore, taking expectation on both sides of the above relation over {i1, . . . , ik},
and using Lemma 5.11, we have

E[(1+ τt)∑
m
i=1 fi(xt

i)+µν(xt)−ψ(x)]

≤ E[− τt
2Lit
‖∇ fit (x

t
it )−∇ fit (x

t−1
it )‖2

∗+
1
m ∑

m
i=1(m(1+ τt)−1) fi(xt−1

i )]

+E{〈xt − x, 1
m ∑

m
i=1[m(yt

i− yt−1
i )−αt(yt−1

i − yt−2
i )]〉}

+E[ηtV (xt−1,x)− (µ +ηt)V (xt ,x)−ηtV (xt−1,xt)].

Multiplying both sides of the above inequality by θt , and summing up the resulting
inequalities from t = 1 to k, we obtain

∑
k
t=1∑

m
i=1E[θt(1+ τt) fi(xt

i)]+∑
k
t=1θtE[µν(xt)−ψ(x)]

≤ ∑
k
t=1θtE

[
− τt

2Lit
‖∇ fit (x

t
it )−∇ fit (x

t−1
it )‖2

∗+∑
m
i=1((1+ τt)− 1

m ) fi(xt−1
i )

]

+∑
k
t=1∑

m
i=1θtE[〈xt − x,yt

i− yt−1
i − αt

m (yt−1
i − yt−2

i )〉]
+∑

k
t=1θtE[ηtV (xt−1,x)− (µ +ηt)V (xt ,x)−ηtV (xt−1,xt)]. (5.2.73)

Now by (5.2.65), and the facts that y−1
i = y0

i , i = 1, . . . ,m, and that we only update
yt

it (see (5.2.52)), we have

∑
k
t=1∑

m
i=1θt〈xt − x,yt

i− yt−1
i − αt

m (yt−1
i − yt−2

i )〉
= ∑

k
t=1θt〈xt − x,yt

it − yt−1
it 〉−

θt αt
m 〈xt−1− x,yt−1

it−1
− yt−2

it−1
〉

−∑
k
t=2

θt αt
m 〈xt − xt−1,yt−1

it−1
− yt−2

it−1
〉

(5.2.65)
= θk〈xk− x,yk

ik − yk−1
ik
〉−∑

k
t=2

θt αt
m 〈xt − xt−1,yt−1

it−1
− yt−2

it−1
〉.
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Moreover, in view of (5.2.66), (5.2.61), and the fact that x0
i = x0, i = 1, . . . ,m, we

obtain

∑
k
t=1θt [ηtV (xt−1,x)− (µ +ηt)V (xt ,x)]

(5.2.66)

≤ θ1η1V (x0,x)−θk(µ +ηk)V (xk,x),

∑
k
t=1∑

m
i=1θt(1+ τt) fi(xt

i)−θt((1+ τt)− 1
m ) fi(xt−1

i )

(5.2.61)
= ∑

m
i=1θk(1+ τk) fi(xk

i )−θ1(m(1+ τ1)−1) f (x0),

which together with (5.2.73), (5.2.64) and the fact that θ1η1V (x0,x1)≥ 0 imply that

θk(1+ τk)∑
m
i=1E[ fi(xk

i )]+∑
k
t=1θtE[µν(xt)−ψ(x)]+ θk(µ+ηk)

2 E[V (xk,x)]

≤ θ1(m(1+ τ1)−1) f (x0)+θ1η1V (x0,x)

+∑
k
t=2E

[
− θt αt

m 〈xt − xt−1,yt−1
it−1
− yt−2

it−1
〉

−θtηtV (xt−1,xt)− θt−1τt−1
2Lit−1

‖yt−1
it−1
−∇ fit−1(x

t−2
it−1

)‖2
∗
]

+θkE
[
〈xk− x,yk

ik − yk−1
ik
〉− (µ+ηk)

2 V (xk,x)− τk
2Lik
‖yk

ik −∇ fik(x
k−1
ik

)‖2
∗
]
.

(5.2.74)

By the strong convexity of V (·, ·) in (5.2.8), the simple relations that b〈u,v〉 −
a‖v‖2/2≤ b2‖u‖2/(2a),∀a > 0 and ‖a+b‖2 ≤ 2‖a‖2 +2‖b‖2, we have

∑
k
t=2

[
− θt αt

m 〈xt − xt−1,yt−1
it−1
− yt−2

it−1
〉−θtηtV (xt−1,xt)− θt−1τt−1

2Lit−1
‖yt−1

it−1
−∇ fit−1(x

t−2
it−1

)‖2
∗
]

(5.2.8)

≤ ∑
k
t=2

[
− θt αt

m 〈xt − xt−1,yt−1
it−1
− yt−2

it−1
〉− θt ηt

2 ‖xt−1− xt‖2

− θt−1τt−1
2Lit−1

‖yt−1
it−1
−∇ fit−1(x

t−2
it−1

)‖2
∗
]

≤ ∑
k
t=2

[
θt−1αt
2mηt
‖yt−1

it−1
− yt−2

it−1
‖2
∗− θt−1τt−1

2Lit−1
‖yt−1

it−1
−∇ fit−1(x

t−2
it−1

)‖2
∗
]

≤ ∑
k
t=2

[(
θt−1αt

mηt
− θt−1τt−1

2Lit−1

)
‖yt−1

it−1
−∇ fit−1(x

t−2
it−1

)‖2
∗+

θt−1αt
mηt
‖∇ fit−1(x

t−2
it−1

)− yt−2
it−1
‖2
∗
]

which in view of conditions in (5.2.67) implies that

∑
k
t=2

[
− θt αt

m 〈xt − xt−1,yt−1
it−1
− yt−2

it−1
〉−θtηtV (xt−1,xt)− θt−1τt−1

2Lit−1
‖yt−1

it−1
−∇ fit−1(x

t−2
it−1

)‖2
∗
]

(5.2.67)

≤ ∑
k
t=2

θt−1αt
mηt

[
‖∇ fit−1(x

t−2
it−1

)− yt−2
it−1
‖2
∗
]
.

Similarly, in view of (5.2.68), we obtain
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θk

[
〈xk− x,yk

ik − yk−1
ik
〉− (µ+ηk)

2 V (xk,x)− τk
2Lik
‖yk

ik −∇ fik(x
k−1
ik

)‖2
∗
]

≤ 2θk
µ+ηk

[
‖∇ fik(x

k−1
ik

)− yk−1
ik
‖2
∗
]
≤ 2θkαk+1

mηk+1

[
‖∇ fik(x

k−1
ik

)− yk−1
ik
‖2
∗
]
,

where the last inequality follows from the fact that mηk+1 ≤ αk+1(µ +ηk) (induced
from (5.2.65) and (5.2.66)). Therefore, combing the above three relations, we con-
clude that

θk(1+ τk)∑
m
i=1E[ fi(xk

i )]+∑
k
t=1θtE[µν(xt)−ψ(x)]+ θk(µ+ηk)

2 E[V (xk,x)]

≤ θ1(m(1+ τ1)−1) f (x0)+θ1η1V (x0,x)

+∑
k
t=1

2θt αt+1
mηt+1

E[‖∇ fit (x
t−1
it )− yt−1

it ‖
2
∗]. (5.2.75)

We now provide a bound on E[‖∇ fit (x
t−1
it )− yt−1

it ‖2
∗]. In view of (5.2.64), we have

‖∇ fit (x
t−1
it )−yt−1

it ‖
2
∗=

{
‖∇ fit (x

t−1
it )‖2

∗, no update on the it -th block until iteration t;
0, o.w.

Let us denote event Bit := {the it -th block has never been updated until iteration t},
for all t = 1, . . . ,k, we have

E[‖∇ fit (x
t−1
it )− yt−1

it ‖
2
∗] = E[‖∇ fit (x

t−1
it )‖2

∗|Bit ]Prob{Bit} ≤
(m−1

m

)t−1
σ

2
0 ,

where the last inequality follows from the definitions of Bit , xt
i in (5.2.51) and σ2

0
in (5.2.56). Fixing x = x∗, and using the above result in (5.2.75), we then conclude
from (5.2.75) and Lemma 5.10 that

0≤ ∑
k
t=1θtE[Q(xt ,x∗)]

≤ θ1(m(1+ τ1)−1)[ f (x0)−〈x0− x∗,∇ f (x∗)〉− f (x∗)]

+θ1η1V (x0,x∗)+∑
k
t=1(

m−1
m )t−1 2θt αt+1

mηt+1
σ

2
0 − θk(µ+ηk)

2 E[V (xk,x∗)],

which, in view of the relation −〈x0− x∗,∇ f (x∗)〉 ≤ 〈x0− x∗,µν ′(x∗)〉 ≤ µν(x0)−
µν(x∗) and the convexity of Q(·,x∗), implies the first result in (5.2.69). Moreover,
we can also conclude from the above inequality that

θk(µ+ηk)
2 E[V (xk,x∗)]

≤ θ1(m(1+ τ1)−1)[ψ(x0)−ψ(x∗)]+θ1η1V (x0,x∗)+∑
k
t=1(

m−1
m )t−1 2θt αt+1

mηt+1
σ

2
0 ,

from which the second result in (5.2.69) follows.

With the help of Proposition 5.6, we are now ready to establish the convergence
properties of RGEM.
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Theorem 5.4. Let x∗ be an optimal solution of (5.2.1), xk and xk be defined in (5.2.50)
and (5.2.53), respectively, and L̂ = maxi=1,...,m Li. Also let {τt}, {ηt} and {αt} be
set to

τt ≡ τ = 1
m(1−α) −1, ηt ≡ η = α

1−α
µ, and αt ≡ mα. (5.2.76)

If (5.2.56) holds and α is set as

α = 1− 1
m+
√

m2+16mL̂/µ
, (5.2.77)

then

E[V (xk,x∗)]≤ 2∆0,σ0 αk

µ
, (5.2.78)

E[ψ(xk)−ψ(x∗)]≤ 16max
{

m, L̂
µ

}
∆0,σ0α

k/2, (5.2.79)

where
∆0,σ0 := µV (x0,x∗)+ψ(x0)−ψ

∗+ σ2
0

mµ
. (5.2.80)

Proof. Letting θt = α−t , t = 1, . . . ,k, we can easily check that parameter setting in
(5.2.76) with α defined in (5.2.77) satisfies conditions (5.2.61) and (5.2.65)-(5.2.68)
stated in Proposition 5.6. It then follows from (5.2.76) and (5.2.69) that

E[Q(xk,x∗)]≤ αk

1−αk

[
µV (x0,x∗)+ψ(x0)−ψ

∗+ 2m(1−α)2σ2
0

(m−1)µ ∑
k
t=1
(m−1

mα

)t
]
,

E[V (xk,x∗)]≤ 2α
k
[
V (x0,x∗)+ ψ(x0)−ψ∗

µ
+

2m(1−α)2σ2
0

(m−1)µ2 ∑
k
t=1
(m−1

mα

)t
]
, ∀k ≥ 1.

Also observe that α ≥ 2m−1
2m , we then have

∑
k
t=1
(m−1

mα

)t ≤ ∑
k
t=1

(
2(m−1)
2m−1

)t
≤ 2(m−1).

Combining the above three relations and the fact that m(1−α)≤ 1/2, we have

E[Q(xk,x∗)]≤ αk

1−αk ∆0,σ0 ,

E[V (xk,x∗)]≤ 2α
k
∆0,σ0/µ, ∀k ≥ 1, (5.2.81)

where ∆0,σ0 is defined in (5.2.80). The second relation immediately implies our bound
in (5.2.78). Moreover, by the strong convexity of V (·, ·) in (5.2.8) and (5.2.78), we
have
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L f
2 E[‖xk− x∗‖2] ≤ L f

2 (∑k
t=1θt)

−1
∑

k
t=1θtE[‖xt − x∗‖2]

(5.2.8)
≤ L f

(1−α)αk

1−αk ∑
k
t=1α

−tE[V (xt ,x∗)]
(5.2.78)

≤ L f (1−α)αk

1−αk ∑
k
t=1

2∆0,σ0
µ

=
2L f (1−α)∆0,σ0 kαk

µ(1−αk)
.

Combining the above relation with the first inequality in (5.2.81) and (5.2.60), we
obtain

E[ψ(xk)−ψ(x∗)]
(5.2.60)
≤ E[Q(xk,x∗)]+ L f

2 E[‖xk− x∗‖2]≤
(

1+ 2L f (1−α)

µ
k
)

∆0,σ0 αk

1−αk

=
(

1
1−α

+
2L f
µ

k
)

∆0,σ0 αk(1−α)

1−αk .

Observing that

1
1−α
≤ 16

3 max{m, L̂/µ},
2L f
µ
≤ 16

3 max{m, L̂/µ},

(k+1)αk(1−α)

1−αk =
(

∑
k
t=1

αt

αt +1
)

αk(1−α)

1−αk ≤
(

∑
k
t=1

αt

α3t/2 +1
)

αk(1−α)

1−αk

≤ 1−αk/2

αk/2(1−α1/2)

αk(1−α)

1−αk +α
k ≤ 2α

k/2 +α
k ≤ 3α

k/2,

we have

E[ψ(xk)−ψ(x∗)]≤ 16
3 max

{
m, L̂

µ

}
(k+1)αk(1−α)∆0,σ0

1−αk ≤ 16max
{

m, L̂
µ

}
∆0,σ0α

k/2.

In view of Theorem 5.4, we can provide bounds on the total number of gradient
evaluations performed by RGEM to find a stochastic ε-solution of problem (5.2.1),
i.e., a point x̄ ∈ X s.t. E[ψ(x̄)−ψ∗]≤ ε . Theorem 5.4 implies the number of gradient
evaluations of fi performed by RGEM to find a stochastic ε-solution of (5.2.1) can
be bounded by

K(ε,C,σ2
0 )= 2

(
m+

√
m2 +16mC

)
log

16max{m,C}∆0,σ0
ε

=O

{(
m+

√
mL̂
µ

)
log 1

ε

}
.

(5.2.82)
Here C = L̂/µ . Therefore, whenever

√
mC log(1/ε) is dominating, and L f and L̂ are

in the same order of magnitude, RGEM can save up to O(
√

m) gradient evaluations
of the component function fi than the optimal deterministic first-order methods. More
specifically, RGEM does not require any exact gradient computation and its iteration
cost is similar to pure stochastic gradient descent. It should be pointed out that while
the rates of convergence of RGEM obtained in Theorem 5.4 is stated in terms of
expectation, we can develop large-deviation results for these rates of convergence
using similar techniques in Section 5.1 for solving strongly convex problems.
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Furthermore, if a one-time exact gradient evaluation is available at the initial point,
i.e., y−1

i = y0
i = ∇ fi(x0), i = 1, . . . ,m, we can employ a more aggressive stepsize

policy with
α = 1− 2

m+
√

m2+8mL̂/µ
.

Similarly, we can demonstrate that the number of gradient evaluations of fi performed
by RGEM with this initialization method to find a stochastic ε-solution can be
bounded by

(
m+

√
m2 +8mC

)
log
(

6max{m,C}∆0,0
ε

)
+m = O

{(
m+

√
mL̂
µ

)
log 1

ε

}
.

It is worth noting that according to the parameter setting in (5.2.76), we have

η = ( 1
1−α
−1)µ =

(
m+

√
m2 +16mL̂/µ

)
µ−µ = Ω(mµ +

√
mLµ).

In some statistical learning applications with L2 regularization (i.e., ω(x) = ‖x‖2
2/2),

one usually chooses µ = Ω(1/m). For these applications, the stepsize of RGEM is
in the order of 1/

√
L, which is larger than 1/L for those un-accelerated methods.

5.2.3 Stochastic finite-sum problems

We discuss in this subsection the stochastic finite-sum optimization and online
learning problems, where only noisy gradient information of fi can be accessed via a
stochastic first-order (SFO) oracle. In particular, for any given point xt

i ∈ X , the SFO
oracle outputs a vector Gi(xt

i,ξ
t
i ) s.t.

Eξ [Gi(xt
i,ξ

t
i )] = ∇ fi(xt

i), i = 1, . . . ,m, (5.2.83)

Eξ [‖Gi(xt
i,ξ

t
i )−∇ fi(xt

i)‖2
∗]≤ σ

2, i = 1, . . . ,m. (5.2.84)

We also assume that throughout this subsection that the ‖ · ‖ is associated with the
inner product 〈·, ·〉.

As shown in Algorithm 5.5, the RGEM for stochastic finite-sum optimization
is naturally obtained by replacing the gradient evaluation of fi in Algorithm 5.4
(see (5.2.52)) with a stochastic gradient estimator of fi given in (5.2.85). In par-
ticular, at each iteration, we collect Bt number of stochastic gradients of only one
randomly selected component fi and take their average as the stochastic estimator of
∇ fi. Moreover, it needs to be mentioned that the way RGEM initializes gradients,
i.e, y−1 = y0 = 0, is very important for stochastic optimization, since it is usually
impossible to compute exact gradient for expectation functions even at the initial
point.
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Algorithm 5.5 RGEM for stochastic finite-sum optimization
This algorithm is the same as Algorithm 5.4 except that (5.2.52) is replaced by

yt
i =

{
1
Bt

∑
Bt
j=1Gi(xt

i ,ξ
t
i, j), i = it ,

yt−1
i , i 6= it .

(5.2.85)

Here, Gi(xt
i ,ξ

t
i, j), j = 1, . . . ,Bt , are stochastic gradients of fi computed by the SFO oracle at xt

i .

Under the standard assumptions in (5.2.83) and (5.2.84) for stochastic optimiza-
tion, and with proper choices of algorithmic parameters, we can show that RGEM can
achieve the optimal O{σ2/(µ2ε)} rate of convergence (up to a certain logarithmic
factor) for solving strongly convex problems given in the form of (5.2.5) in terms of
the number of stochastic gradients of fi.

Before establishing the convergence of RGEM, we first provide some important
technical results. Let x̂t

i be defined in (5.2.57) and

ŷt
i =

1
Bt

∑
Bt
j=1Gi(x̂t

i,ξ
t
i, j). (5.2.86)

Note the above definition of ĥt
i is different from the one in (5.2.86).

The following simple result demonstrates a few identities related to xt
i (cf. (5.2.51))

and yt
i (cf. (5.2.52) or (5.2.85)). For notation convenience, we use E[ik] for taking

expectation over {i1, . . . , ik}, Eξ for expectations over {ξ 1, . . . ,ξ k}, respectively, we
use E to denote the expectations over all random variables.

Lemma 5.11. Let xt and yt
i be defined in (5.2.50) and (5.2.85), respectively, and x̂t

i
and ŷt

i be defined as in (5.2.57) and (5.2.86), respectively. Then we have, for any
i = 1, . . . ,m and t = 1, . . . ,k,

Et [yt
i] =

1
m ŷt

i +(1− 1
m )y

t−1
i ,

Et [xt
i] =

1
m x̂t

i +(1− 1
m )x

t−1
i ,

Et [ fi(xt
i)] =

1
m fi(x̂t

i)+(1− 1
m ) fi(xt−1

i ),

Et [‖∇ fi(xt
i)−∇ fi(xt−1

i )‖2
∗] =

1
m‖∇ fi(x̂t

i)−∇ fi(xt−1
i )‖2

∗,

where Et denotes the conditional expectation w.r.t. it given i1, . . . , it−1 when yt
i is

defined in (5.2.52), and w.r.t. it given i1, . . . , it−1,ξ
t
1, . . . ,ξ

t
m when yt

i is defined in
(5.2.85), respectively.

Proof. This first equality follows immediately from the facts that Probt{yt
i =

ŷt
i} = Probt{it = i} = 1

m and Probt{yt
i = yt−1

i } = 1− 1
m . Here Probt denotes the

conditional probability w.r.t it given i1, . . . , it−1,ξ
t
1, . . . ,ξ

t
m. Similarly, we can prove

the rest equalities.

Note that the parameter {Bt} in Algorithm 5.5 denotes the batch size used to
compute yt

it in (5.2.85). Since we now assume that ‖ · ‖ is associated with a certain



5.2 Random gradient extrapolation method 275

inner product, it can be easily seen from (5.2.85), and the two assumptions we have
for the stochastic gradients computed by SFO oracle, i.e., (5.2.83) and (5.2.84), that

Eξ [y
t
it ] = ∇ fit (x

t
it ) and Eξ [‖yt

it −∇ fit (x
t
it )‖2
∗]≤ σ2

Bt
, ∀it , t = 1, . . . ,k, (5.2.87)

and hence yt
it is an unbiased estimator of ∇ fit (x

t
it ). Moreover, for yt

i generated by
Algorithm 5.5, we can see that

yt
i =

{
0, no update on the i-th block for the first t iterations;
1
Bl

∑
Bl
j=1Gi(xl

i ,ξ
l
i, j), latest update happened at l-th iteration, for 1≤ l ≤ t.

(5.2.88)
We now establish some general convergence properties for Algorithm 5.5.

Proposition 5.7. Let xt and xk be defined as in (5.2.50) and (5.2.53), respectively,
and x∗ be an optimal solution of (5.2.5). Suppose that σ0 and σ are defined in
(5.2.56) and (5.2.84), respectively, and {ηt}, {τt}, and {αt} in Algorithm 5.5 satisfy
(5.2.61), (5.2.65), (5.2.66), and (5.2.68) for some θt ≥ 0, t = 1, . . . ,k. Moreover, if

3αtLi ≤ mτt−1ηt , i = 1, . . . ,m; t ≥ 2, (5.2.89)

then for any k ≥ 1, we have

E[Q(xk,x∗)]≤ (∑k
t=1θt)

−1
∆̃0,σ0,σ ,

E[V (xk,x∗)]≤ 2∆̃0,σ0 ,σ
θk(µ+ηk)

, (5.2.90)

where

∆̃0,σ0,σ := ∆̃0,σ0 +∑
k
t=2

3θt−1αt σ
2

2mηt Bt−1
+∑

k
t=1

2θt αt+1
m2ηt+1

∑
t−1
l=1(

m−1
m )t−1−l σ2

Bl
, (5.2.91)

with ∆̃0,σ0 defined in (5.2.70).

Proof. Observe that in Algorithm 5.5 yt
i is updated as in (5.2.85). Therefore,

according to (5.2.86), we have

ŷt
i =

1
Bt

∑
Bt
j=1Gi(x̂t

i,ξ
t
i, j), i = 1, . . . ,m, t ≥ 1,

which together with the first relation in (5.2.87) imply that Eξ [〈ŷt
i,x− x̂t

i〉] =
Eξ [〈∇ fi(x̂t

i),x− x̂t
i〉]. Hence, we can rewrite (5.2.72) as
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Eξ [
1+τt

m ∑
m
i=1 fi(x̂t

i)+µν(xt)−ψ(x)]

≤ Eξ

[
1+τt

m ∑
m
i=1 fi(x̂t

i)+µν(xt)−µν(x)− 1
m ∑

m
i=1[ fi(x̂t

i)+ 〈∇ fi(x̂t
i),x− x̂t

i〉]
]

= Eξ

[
1+τt

m ∑
m
i=1 fi(x̂t

i)+µν(xt)−µν(x)− 1
m ∑

m
i=1[ fi(x̂t

i)+ 〈ŷt
i,x− x̂t

i〉]
]

≤ Eξ

[
− τt

2m ∑
m
i=1

1
Li
‖∇ fi(x̂t

i)−∇ fi(xt−1
i )‖2

∗+
τt
m ∑

m
i=1 fi(xt−1

i )

+ 〈xt − x, 1
m ∑

m
i=1[ŷ

t
i− yt−1

i −αt(yt−1
i − yt−2

i )]〉
+ηtV (xt−1,x)− (µ +ηt)V (xt ,x)−ηtV (xt−1,xt)

]
,

where the last inequality follows from (5.2.71). Following the same procedure as in
the proof of Proposition 5.6, we obtain the following similar relation (cf. (5.2.74))

θk(1+ τk)∑
m
i=1E[ fi(xk

i )]+∑
k
t=1θtE[µν(xt)−ψ(x)]+ θk(µ+ηk)

2 E[V (xk,x)]

≤ θ1(m(1+ τ1)−1) f (x0)+θ1η1V (x0,x)

+∑
k
t=2E

[
− θt αt

m 〈xt − xt−1,yt−1
it−1
− yt−2

it−1
〉−θtηtV (xt−1,xt)− θt−1τt−1

2Lit−1
‖∇ fit−1(x

t−1
it−1

)

−∇ fit−1(x
t−2
it−1

)‖2
∗
]

+θkE
[
〈xk− x,yk

ik − yk−1
ik
〉− (µ+ηk)

2 V (xk,x)− τk
2Lik
‖∇ fik(x

k
ik)−∇ fik(x

k−1
ik

)‖2
∗
]
.

By the strong convexity of V (·, ·) in (5.2.8), and the fact that b〈u,v〉− a‖v‖2/2 ≤
b2‖u‖2/(2a),∀a > 0, we have, for t = 2, . . . ,k,

E[− θt αt
m 〈xt − xt−1,yt−1

it−1
− yt−2

it−1
〉−θtηtV (xt−1,xt)− θt−1τt−1

2Lit−1
‖∇ fit−1(x

t−1
it−1

)−∇ fit−1(x
t−2
it−1

)‖2
∗]

(5.2.8)

≤ E[− θt αt
m 〈xt − xt−1,yt−1

it−1
−∇ fit−1(x

t−1
it−1

)+∇ fit−1(x
t−1
it−1

)−∇ fit−1(x
t−2
it−1

)+∇ fit−1(x
t−2
it−1

)− yt−2
it−1
〉]

−E
[

θt ηt
2 ‖xt−1− xt‖2 +

θt−1τt−1
2Lit−1

‖∇ fit−1(x
t−1
it−1

)−∇ fit−1(x
t−2
it−1

)‖2
∗
]

≤ E
[(

3θt−1αt
2mηt

− θt−1τt−1
2Lit−1

)
‖∇ fit−1(x

t−1
it−1

)−∇ fit−1(x
t−2
it−1

)‖2
∗
]

+
3θt−1αt

2mηt
E
[
‖yt−1

it−1
−∇ fit−1(x

t−1
it−1

)‖2
∗+‖∇ fit−1(x

t−2
it−1

)− yt−2
it−1
‖2
∗
]

(5.2.89)

≤ 3θt−1αt
2mηt

E
[
‖yt−1

it−1
−∇ fit−1(x

t−1
it−1

)‖2
∗+‖∇ fit−1(x

t−2
it−1

)− yt−2
it−1
‖2
∗
]
.

Similarly, we can also obtain
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E
[
〈xk− x,yk

ik − yk−1
ik
〉− (µ+ηk)

2 V (xk,x)− τk
2Lik
‖ fik(x

k
ik)−∇ fik(x

k−1
ik

)‖2
∗
]

(5.2.87),(5.2.8)

≤ E
[
〈xk− x,∇ fik(x

k
ik)−∇ fik(x

k−1
ik

)+∇ fik(x
k−1
ik

)− yk−1
ik
〉
]

−E
[
(µ+ηk)

4 ‖xk− x‖2 + τk
2Lik
‖ fik(x

k
ik)−∇ fik(x

k−1
ik

)‖2
∗
]

≤ E
[(

2
µ+ηk

− τk
2Lik

)
‖∇ fik(x

k
ik)−∇ fik(x

k−1
ik

)‖2
∗+

2
µ+ηk
‖∇ fik(x

k−1
ik

)− yk−1
ik
‖2
∗
]

(5.2.68)

≤ E
[

2
µ+ηk
‖∇ fik(x

k−1
ik

)− yk−1
ik
‖2
∗
]
.

Combining the above three relations, and using the fact that mηk+1 ≤ αk+1(µ +ηk)
(induced from (5.2.65) and (5.2.66)), we have

θk(1+ τk)∑
m
i=1E[ fi(xk

i )]+∑
k
t=1θtE[µν(xt)−ψ(x)]+ θk(µ+ηk)

2 E[V (xk,x)]

≤ θ1(m(1+ τ1)−1) f (x0)+θ1η1V (x0,x)

+∑
k
t=2

3θt−1αt
2mηt

E[‖yt−1
it−1
−∇ fit−1(x

t−1
it−1

)‖2
∗]+∑

k
t=1

2θt αt+1
mηt+1

E[‖∇ fit (x
t−1
it )− yt−1

it ‖
2
∗].

Moreover, in view of the second relation in (5.2.87), we have

E[‖yt−1
it−1
−∇ fit−1(x

t−1
it−1

)‖2
∗]≤ σ2

Bt−1
, ∀t ≥ 2.

Let us denote Eit ,t := max{l : il = it , l < t} with Eit ,t = 0 denoting the event that the
it -th block has never been updated until iteration t, we can also conclude that for any
t ≥ 1

E[‖∇ fit (x
t−1
it )− yt−1

it ‖
2
∗] = ∑

t−1
l=0E

[
‖∇ fil (x

l
il )− yl

il‖
2
∗|{Eit ,t = l}

]
Prob{Eit ,t = l}

≤ (m−1
m )t−1

σ
2
0 +∑

t−1
l=1

1
m (

m−1
m )t−1−l σ2

Bl
,

where the first term in the inequality corresponds to the case when the it-block has
never been updated for the first t−1 iterations, and the second term represents that its
latest update for the first t−1 iterations happened at the l-th iteration. Hence, using
Lemma 5.10 and following the same argument as in the proof of Proposition 5.6, we
obtain our results in (5.2.90).

We are now ready to prove Theorem 5.5, which establishes an optimal complexity
bound (up to a logarithmic factor) on the number of calls to the SFO oracle and a
linear rate of convergence in terms of the communication complexity for solving
problem (5.2.5).

Theorem 5.5. Let x∗ be an optimal solution of (5.2.5), xk and xk be generated by
Algorithm 5.5, and L̂ = maxi=1,...,m Li. Suppose that σ0 and σ are defined in (5.2.56)
and (5.2.84), respectively. Given the iteration limit k, let {τt}, {ηt} and {αt} be set
to (5.2.76) with α being set as (5.2.77), and we also set
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Bt = dk(1−α)2
α
−te, t = 1, . . . ,k, (5.2.92)

then

E[V (xk,x∗)]≤ 2αk∆0,σ0 ,σ
µ

, (5.2.93)

E[ψ(xk)−ψ(x∗)]≤ 16max
{

m, L̂
µ

}
∆0,σ0,σ α

k/2, (5.2.94)

where the expectation is taken w.r.t. {it} and {ξ t
i } and

∆0,σ0,σ := µV (x0,x∗)+ψ(x0)−ψ(x∗)+ σ2
0 /m+5σ2

µ
. (5.2.95)

Proof. Let us set θt =α−t , t = 1, . . . ,k. It is easy to check that the parameter setting
in (5.2.76) with α defined in (5.2.77) satisfies conditions (5.2.61), (5.2.65), (5.2.66),
(5.2.68), and (5.2.89) as required by Proposition 5.7. By (5.2.76), the definition of
Bt in (5.2.92), and the fact that α ≥ 2m−1

2m > (m−1)/m, we have

∑
k
t=2

3θt−1αt σ
2

2mηt Bt−1
≤ ∑

k
t=2

3σ2

2µ(1−α)k ≤ 3σ2

2µ(1−α) ,

∑
k
t=1

2θt αt+1
m2ηt+1

∑
t−1
l=1(

m−1
m )t−1−l σ2

Bl
≤ 2σ2

αµm(1−α)k ∑
k
t=1(

m−1
mα

)t−1
∑

t−1
l=1(

mα

m−1 )
l

≤ 2σ2

µ(1−α)mαk ∑
k
t=1(

m−1
mα

)t−1( mα

m−1 )
t−1 1

1−(m−1)/(mα)

≤ 2σ2

µ(1−α)
1

mα−(m−1) ≤ 4σ2

µ(1−α) .

Hence, similar to the proof of Theorem 5.4, using the above relations and (5.2.76) in
(5.2.90), we obtain

E[Q(xk,x∗)]≤ αk

1−αk

[
∆0,σ0 +

5σ2

µ

]
,

E[V (xk,x∗)]≤ 2α
k
[
∆0,σ0 +

5σ2

µ2

]
,

where ∆0,σ0 is defined in (5.2.80). The second relation implies our results in (5.2.93).
Moreover, (5.2.94) follows from the same argument as we used in proving Theo-
rem 5.4.

In view of (5.2.94), the number of iterations performed by RGEM to find a
stochastic ε-solution of (5.2.5), can be bounded by

K̂(ε,C,σ2
0 ,σ

2) := 2
(

m+
√

m2 +16mC
)

log
16max{m,C}∆0,σ0 ,σ

ε
. (5.2.96)

Furthermore, in view of (5.2.93) this iteration complexity bound can be improved to

K̄(ε,α,σ2
0 ,σ

2) := log1/α

2∆̃0,σ0,σ
µε

, (5.2.97)
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in terms of finding a point x̄ ∈ X s.t. E[V (x̄,x∗)]≤ ε . Therefore, the corresponding
number of stochastic gradient evaluations performed by RGEM for solving problem
(5.2.5) can be bounded by

∑
k
t=1Bt ≤ k∑

k
t=1(1−α)2

α
−t + k = O

{(
∆0,σ0 ,σ

µε
+m+

√
mC
)

log
∆0,σ0 ,σ

µε

}
,

which together with (5.2.95) imply that the total number of required stochastic
gradients or samples of the random variables ξi, i = 1, . . . ,m, can be bounded by

Õ

{
σ2

0 /m+σ2

µ2ε
+ µV (x0,x∗)+ψ(x0)−ψ∗

µε
+m+

√
mL̂
µ

}
.

Observe that this bound does not depend on the number of terms m for small enough
ε . This complexity bound in fact is in the same order of magnitude (up to a logarith-
mic factor) as the complexity bound achieved by the optimal accelerated stochastic
approximation methods (Section 4.2), which uniformly sample all the random vari-
ables ξi, i = 1, . . . ,m. However, this latter approach will thus involve much higher
communication costs in the distributed setting (see Subsection 5.2.4 for more discus-
sions).

5.2.4 Distributed implementation

This subsection is devoted to RGEMs (see Algorithm 5.4 and Algorithm 5.5) from
two different perspectives, i.e., the server and the activated agent under a distributed
setting. We also discuss the communication costs incurred by RGEM under this
setting.

Both the server and agents in the distributed network start with the same global
initial point x0, i.e., x0

i = x0, i = 1, . . . ,m, and the server also sets ∆y = 0 and g0 = 0.
During the process of RGEM, the server updates iterate xt and calculates the output
solution xk (cf. (5.2.53)) which is given by sumx/sumθ . Each agent only stores its
local variable xt

i and updates it according to information received from the server (i.e.,
xt ) when activated. The activated agent also needs to upload the changes of gradient
∆yi to the server. Note that line 5 of RGEM from the it-th agent’s perspective is
optional if the agent saves historic gradient information from the last update.

RGEM The server’s perspective
1: while t ≤ k do
2: xt ←

argminx∈X
{
〈gt−1 + αt

m ∆y,x〉+µν(x)+ηtV (xt−1,x)
}

3: sumx← sumx+θt xt

4: sumθ ← sumθ +θt
5: Send signal to the it -th agent where it is

selected uniformly from {1, . . . ,m}
6: if it -th agent is responsive then
7: Send current iterate xt to it -th agent
8: if Receive feedback ∆y then
9: gt ← gt−1 +∆y

10: t← t +1
11: else goto Line 5
12: end if
13: else goto Line 5
14: end if
15: end while
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RGEM The activated it-th agent’s per-
spective
1: Download the current iterate xt from the

server
2: if t = 1 then
3: yt−1

i ← 0
4: else
5: yt−1

i ← ∇ fi(xt−1
i ) . Optional

6: end if
7: xt

i ← (1+ τt)
−1(xt + τt xt−1

i )
8: yt

i ← ∇ fi(xt
i)

9: Upload the local changes to the server, i.e.,
∆yi = yt

i− yt−1
i

We now add some remarks about the potential benefits of RGEM for distributed
optimization and machine learning. Firstly, since RGEM does not require any exact
gradient evaluation of f , it does not need to wait for the responses from all agents in
order to compute an exact gradient. Each iteration of RGEM only involves communi-
cation between the server and the activated it -th agent. In fact, RGEM will move to
the next iteration in case no response is received from the it-th agent. This scheme
works under the assumption that the probability for any agent being responsive or
available at a certain point of time is equal. Secondly, since each iteration of RGEM
involves only constant number of communication rounds between the server and one
selected agent, the communication complexity for RGEM under distributed setting
can be bounded by

O

{(
m+

√
mL̂
µ

)
log 1

ε

}
.

Therefore, it can save up to O{√m} rounds of communication than the optimal
deterministic first-order methods.

For solving distributed stochastic finite-sum optimization problems (5.2.5),
RGEM from the it -th agent’s perspective will be slightly modified as follows.

RGEM The activated it -th agent’s perspective for solving (5.2.5)
1: Download the current iterate xt from the server
2: if t = 1 then
3: yt−1

i ← 0 . Assuming RGEM saves yt−1
i for t ≥ 2 at the latest update

4: end if
5: xt

i ← (1+ τt)
−1(xt + τt xt−1

i )

6: yt
i ← 1

Bt
∑

Bt
j=1Gi(xt

i ,ξ
t
i, j) . Bt is the batch size, and Gi’s are the stochastic gradients given by

SFO
7: Upload the local changes to the server, i.e., ∆yi = yt

i− yt−1
i

Similar to the case for the deterministic finite-sum optimization, the total number
of communication rounds performed by the above RGEM can be bounded by
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O

{(
m+

√
mL̂
µ

)
log 1

ε

}
,

for solving (5.2.5). Each round of communication only involves the server and a ran-
domly selected agent. This communication complexity seems to be optimal, since it
matches the lower complexity bound (5.1.11) established in Section 5.1.4. Moreover,
the sampling complexity, i.e., the total number of samples to be collected by all the
agents, is also nearly optimal and comparable to the case when all these samples
are collected in a centralized location and processed by an optimal stochastic ap-
proximation method. On the other hand, if one applies an existing optimal stochastic
approximation method to solve the distributed stochastic optimization problem, the
communication complexity will be as high as O(1/

√
ε), which is much worse than

RGEM.

5.3 Variance-reduced mirror descent

In the previous two sections, we have derived a few stochastic algorithms for finite-
sum optimization by introducing randomization into accelerated gradient descent (or
primal-dual) methods in Chapter 3. In this section, we will study these finite-sum
problems from a different perspective by viewing them as some special stochastic
optimization problems with finite support. Our goal is to improve the stochastic
optimization methods in Chapter 4 by introducing novel gradient estimators with
reduced variance.

More specifically, we consider the problem of

min
x∈X
{Ψ(x) := f (x)+h(x)} , (5.3.1)

where X ⊆ Rm is a closed convex set, f is the average of m smooth convex com-
ponent functions fi, i.e., f (x) = ∑

m
i=1 fi(x)/m, and h is a simple but possibly non-

differentiable convex function. We assume that for ∀ i=1,2,...,m, ∃Li > 0, s.t.

‖∇ fi(x)−∇ fi(y)‖∗ ≤ Li‖x− y‖, ∀x,y ∈ X .

Clearly, f has Lipschitz continuous gradients with constant

L f ≤ L≡ 1
m ∑

m
i=1Li.

Moreover, we assume that the objective function f is possibly strongly convex, i.e.,
∃ µ ≥ 0 s.t.

f (y)≥ f (x)+ 〈∇ f (x),y− x〉+µV (x,y),∀x,y ∈ X . (5.3.2)

It is worth noting that in comparison with problem (5.1.1) and (5.2.1), we do not
need to explicitly put a strongly convex term into the objective function of (5.3.1),
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because the stochastic algorithm we will introduce in this section does not rely on
the strong convexity.

In the basic stochastic gradient (mirror) descent method, we can use ∇ fit (x) for a
randomly selected component it ∈ {1, . . . ,m} as an unbiased estimator of the exact
gradient ∇ f (x). The variance of this gradient estimator will remain as a constant
throughout the algorithm. In contrast to this basic algorithm, variance-reduced mirror
descent intends to find an unbiased gradient estimator whose variance will vanish as
the algorithm converges. The basic scheme of the variance-reduced mirror descent
method is described in Algorithm 5.6.

The variance-reduced mirror descent method is a multi-epoch algorithm. Each
epoch of this method contains T iterations and requires the computation of a full
gradient at the point x̃. The gradient ∇ f (x̃) will then be used to define a gradient
estimator Gt for ∇ f (xt−1) at each iteration t. We will show that Gt has smaller
variance than the aforementioned estimator ∇ fit (x

t−1), notwithstanding both are
unbiased estimators for ∇ f (xt−1).

Algorithm 5.6 A variance-reduced mirror descent method

Input: x0,γ,T,{θt}.
x̃0 = x0.
for s = 1,2, . . . do

Set x̃ = x̃s−1 and g̃ = ∇ f (x̃).
Set x1 = xs−1 and T = Ts.
probability Q = {q1, . . . ,qm} on {1, . . . ,m}.
for t = 1,2, . . . ,T do

Pick it ∈ {1, . . . ,m} randomly according to Q.
Gt = (∇ fit (xt)−∇ fit (x̃))/(qit m)+ g̃.
xt+1 = argminx∈X {γ[〈Gt ,x〉+h(x)]+V (xt ,x)}.

end for
set xs = xT+1 and x̃s = ∑

T
t=2(θt xt)/∑

T
t=2θt .

end for

Different from the randomized methods discussed in the previous two sections,
variance-reduced mirror descent needs to compute full gradients from time to time,
which may incur extra delays caused by synchronization under distributed settings
for optimization and machine learning. However, this method does not require the
computation of gradients at m search points xi, i = 1, . . . ,m. Moreover, one does not
need to save the gradients ∇ fi(x̃) by computation two gradient components ∇ fit (xt)
and ∇ fit (x̃) in each iteration. Therefore, this algorithm can does not require much
memory. As we will show later in next section, an accelerated version of variance-
reduced mirror descent method can achieve comparable or even slightly better rate
of convergence than RPGD and RGEM. In this section, we focus on the convergence
analysis of the basic scheme of variance-reduced mirror descent method without
acceleration.

We now discuss a few results that will be used to establish the convergence of
variance reduced stochastic mirror descent method.



5.3 Variance-reduced mirror descent 283

The following result follows as a consequence of Lemma 5.8.

Lemma 5.12. Let x∗ be an optimal solution of (5.3.1). Then we have

1
m ∑

m
i=1

1
mqi
‖∇ fi(x)−∇ fi(x∗)‖2

∗ ≤ 2LQ [Ψ(x)−Ψ(x∗)] , ∀x ∈ X , (5.3.3)

where
LQ = 1

m max
i=1,...,m

Li
qi
. (5.3.4)

Proof. By Lemma 5.8 (with f = fi), we have

‖∇ fi(x)−∇ fi(x∗)‖2
∗ ≤ 2Li [ fi(x)− fi(x∗)−〈∇ fi(x∗),x− x∗〉] .

Dividing this inequality by 1/(m2qi), and summing over i = 1, . . . ,m, we obtain

1
m ∑

m
i=1

1
mqi
‖∇ fi(x)−∇ fi(x∗)‖2

∗ ≤ 2LQ [ f (x)− f (x∗)−〈∇ f (x∗),x− x∗〉] . (5.3.5)

By the optimality of x∗, we have 〈∇ f (x∗)+h′(x∗),x− x∗〉 ≥ 0 for any x ∈ X , which
in view of the convexity of h, implies that 〈∇ f (x∗),x− x∗〉 ≥ h(x∗)−h(x) for any
x ∈ X . The result then follows by combining the previous two conclusions.

In the sequel, we still denote δt := Gt−g(xt), where g(xt) = ∇ f (xt). Lemma 5.13
below shows that if the algorithm converges, then the variance of δt will also become
smaller and smaller.

Lemma 5.13. Conditionally on x1, . . . ,xt ,

E[δt ] = 0, (5.3.6)

E[‖δt‖2
∗]≤ 2LQ[ f (x̃)− f (xt)−〈∇ f (xt), x̃− xt ], (5.3.7)

E[‖δt‖2
∗]≤ 4LQ[Ψ(xt)−Ψ(x∗)+Ψ(x̃)−Ψ(x∗)]. (5.3.8)

Proof. Taking expectation with respect to it conditionally on x1, . . . ,xt , we obtain

E
[

1
mqit

∇ fit (xt)
]
= ∑

m
i=1

qi
mqi

∇ fi(xt) = ∑
m
i=1

1
m ∇ fi(xt) = ∇ f (xt).

Similarly we have E
[

1
mqit

∇ fit (x̃)
]
= ∇ f (x̃). Therefore,

E[Gt ] = E
[

1
mqit

(
∇ fit (xt)−∇ fit (x̃)

)
+∇ f (x̃)

]
= ∇ f (xt). (5.3.9)

To bound the variance, we have

E[‖δt‖2
∗] =E[‖ 1

mqit

(
∇ fit (xt)−∇ fit (x̃)

)
+∇ f (x̃)−∇ f (xt)‖2

∗]

=E[ 1
(mqit )

2 ‖∇ fit (xt)−∇ fit (x̃)‖2
∗]−‖∇ f (xt)−∇ f (x̃)‖2

∗

≤E[ 1
(mqit )

2 ‖∇ fit (xt)−∇ fit (x̃)‖2
∗].
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The above relation, in view of relation 5.3.5 (with x and x∗ replaced by x̃ and xt),
then implies (5.3.7). Moreover,

E[ 1
(mqit )

2 ‖∇ fit (xt)−∇ fit (x̃)‖2
∗] = E[ 1

(mqit )
2 ‖∇ fit (xt)−∇ fi(x∗)+∇ fi(x∗)−∇ fit (x̃)‖2

∗]

≤ E[ 2
(mqit )

2 ‖∇ fit (xt)−∇ fit (x
∗)‖2
∗]+E[ 2

(mqit )
2 ‖∇ fit (x̃)−∇ fit (x

∗)‖2
∗]

= 2
m ∑

m
i=1

1
mqi
‖∇ fi(xt)−∇ fi(x∗)‖2

∗+
2
m ∑

m
i=1

1
mqi
‖∇ fi(x̃)−∇ fi(x∗)‖2

∗,

which together with Lemma 5.12 then imply (5.3.8).

We now show the possible progress made by each iteration of the variance-reduced
mirror descent method. This result resembles Lemma 4.2 for the original stochastic
mirror descent method.

Lemma 5.14. If the stepsize γ satisfies Lγ ≤ 1/2, then for any x ∈ X,

γ[Ψ(xt+1)−Ψ(x)]+V (xt+1,x)≤ (1− γµ)V (xt ,x)+ γ〈δt ,x− xt〉+ γ
2‖δt‖2

∗.
(5.3.10)

Moreover, conditionally on i1, . . . , it−1

γE[Ψ(xt+1)−Ψ(x∗)]+E[V (xt+1,x∗)]

≤ (1− γµ)V (xt ,x∗)+4LQγ
2[Ψ(xt)−Ψ(x∗)+Ψ(x̃)−Ψ(x∗)]. (5.3.11)

Proof. Similarly to (4.1.26), we have

γ f (xt+1)≤ γ[ f (xt)+ 〈Gt ,xt+1− xt〉]+V (xt ,xt+1)+
γ2‖δt‖2∗
2(1−Lγ)

≤ γ[ f (xt)+ 〈Gt ,xt+1− xt〉]+V (xt ,xt+1)+ γ
2‖δt‖2

∗,

where the last inequality follows from the assumption that Lγ ≤ 1/2. Moreover, it
follows from Lemma 3.5 that

γ[ f (xt)+ 〈Gt ,xt+1− xt〉+h(xt+1)]+V (xt ,xt+1)

≤ γ[ f (xt)+ 〈Gt ,x− xt〉+h(x)]+V (xt ,x)−V (xt+1,x)

= γ[ f (xt)+ 〈g(xt),x− xt〉+h(x)]+ γ〈δt ,x− xt〉+V (xt ,x)−V (xt+1,x)

≤ γ[Ψ(x)−µV (xt ,x)]+ γ〈δt ,x− xt〉+V (xt ,x)−V (xt+1,x),

where the last inequality follows from the convexity of f (·). Combining the above
two conclusions and rearranging the terms, we obtain (5.3.10). Using Lemma 5.13
and taking expectation on both sides of (5.3.10) with respect to it , we obtain (5.3.11).

With the help of Lemma 5.14, we will be able to establish the rate of convergence
for the stochastic variance-reduced mirror descent method for solving a few different
classes of finite-sum optimization problems.
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5.3.1 Smooth problems without strong convexity

In this subsection, we assume that f is not necessarily strongly convex, i.e., µ = 0
in (5.3.2). We will present a general convergence results first and then discuss the
selection of some algorithmic parameters (e.g., γ and Ts).

Theorem 5.6. Suppose that the algorithmic parameters for the variance reduced
stochastic mirror descent method satisfy

θt = 1, t ≥ 1, (5.3.12)
4LQγ ≤ 1, (5.3.13)
ws := (1−4LQγ)(Ts−1−1)−4LQγTs > 0,s≥ 2. (5.3.14)

Then we have

E[Ψ(x̄S)−Ψ(x∗)]≤ γ(1+4LQγT1)[Ψ(x0)−Ψ(x∗)]+V (x0,x∗)

γ∑
S
s=1ws

, (5.3.15)

where
x̄S = ∑

S
s=1(ws x̃s)

∑
S
s=1ws

. (5.3.16)

Proof. Summing up (5.3.11) (with µ = 0) over t = 1, . . . ,T and taking expectation
with respect to random variables i1, . . . , iT , we obtain

γE[Ψ(xT+1)−Ψ(x∗)]+(1−4LQγ)γ∑
T
t=2E[Ψ(xt)−Ψ(x∗)]+E[V (xT+1,x∗)]

≤ 4LQγ
2[Ψ(x1)−Ψ(x∗)]+4LQγ

2T [Ψ(x̃)−Ψ(x∗)]+V (x1,x∗).

Now consider a fixed epoch s with iteration limit T = Ts, input x1 = xs−1 and x̃= x̃s−1,
and output xs = xT+1 and x̃s = ∑

T
t=2xt/(T −1) due to θt = 1. By the above inequality

and the convexity of Ψ , we have

γE[Ψ(xs)−Ψ(x∗)]+(1−4LQγ)γ(Ts−1)E[Ψ(x̃s)−Ψ(x∗)]+E[V (xs,x∗)]

≤ 4LQγ
2[Ψ(xs−1)−Ψ(x∗)]+4LQγ

2Ts[Ψ(x̃s−1)−Ψ(x∗)]+V (xs−1,x∗)

≤ γ[Ψ(xs−1)−Ψ(x∗)]+4LQγ
2Ts[Ψ(x̃s−1)−Ψ(x∗)]+V (xs−1,x∗),

where the last inequality follows from the assumption that 4LQγ ≤ 1. Summing up
the above inequalities over s = 1, . . . ,S, and taking full expectation over all random
variables, we have

γE[Ψ(xS)−Ψ(x∗)]+(1−4LQγ)γ(TS−1)E[Ψ(x̃S)−Ψ(x∗)]

+ γ∑
S−1
s=1 [(1−4LQγ)(Ts−1−1)−4LQγTs]E[Ψ(x̃s)−Ψ(x∗)]+E[V (xS,x∗)]

≤ γ[Ψ(x0)−Ψ(x∗)]+4LQγ
2T1[Ψ(x̃0)−Ψ(x∗)]+V (x0,x∗)

= γ(1+4LQγT1)[Ψ(x0)−Ψ(x∗)]+V (x0,x∗),
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which, in view of (5.3.16) and the convexity of Ψ , then implies the result in (5.3.15).

In light of Theorem 5.6, we now provide some specific rules to select γ and Ts and
establish the complexity of the resulting algorithm. Certainly it is possible to develop
many other rules to specify these parameters.

Corollary 5.8. Suppose that θ = 1, γ = 1/(16LQ), and

Ts = 2Ts−1,s = 2,3, . . . , (5.3.17)

with T1 = 7. Then for any S≥ 1, we have

E[Ψ(x̄S)−Ψ(x∗)]≤ 8
2S−1

[ 11
4 (Ψ(x0)−Ψ(x∗))+16LQV (x0,x∗)

]
. (5.3.18)

Moreover, the total number of gradient computations required to find an ε-solution
of (5.3.1), i.e., a point x̄ ∈ X s.t. Ψ(x̄)−Ψ(x∗)≤ ε , can be bounded by

O
{

m log Ψ(x0)−Ψ(x∗)+LQV (x0,x∗)
ε

+
Ψ(x0)−Ψ(x∗)+LQV (x0,x∗)

ε

}
. (5.3.19)

Proof. Note that by (5.3.17), we have

ws =
3
4 (Ts−1−1)− 1

4 Ts =
1
8 Ts− 3

4

≥ 1
8 Ts− 3

28 Ts =
1
56 Ts, (5.3.20)

where the inequality follows from the fact that Ts ≥ 7. Using this observation and
(5.3.17), we have

∑
S
s=1ws ≥ 1

8 (2
S−1).

Using these relations in (5.3.15), we obtain (5.3.18). In view of (5.3.18), the
total number of epochs S to find an ε-solution of (5.3.1) can be bounded by
S̄≡ log(Ψ(x0)−Ψ(x∗)+LQV (x0,x∗))/ε . Hence the total number of gradient com-
putations can be bounded mS̄+∑

S̄
s=1Ts, which is bounded by (5.3.19).

Recall that directly applying the mirror descent method would require O(m/ε)
gradient computations for each component functions fi to find an ε-solution of (5.3.1).
It is interesting to see that the total number of gradient computations required by the
stochastic variance reduced mirror descent methods improves this bound significantly
in terms of its dependence on m. Moreover, the bound in (5.3.19) is also smaller than
a direct application of the stochastic mirror descent method to (5.3.1) as long as

m≤ O
{

1
log(1/ε)

(
1
ε2 − 1

ε

)}

after disregarding some constant factors.
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5.3.2 Smooth and strongly convex problems

In this subsection, we assume that f is strongly convex, i.e., µ > 0 in (5.3.2).
The following result shows the progress made by each epoch of the variance-

reduced mirror descent method.

Theorem 5.7. Suppose that the algorithmic parameters for the variance-reduced
mirror descent method satisfy

θt = (1− γµ)−t , t ≥ 0, (5.3.21)
1≥ 2Lγ, (5.3.22)
1≥ γµ +4LQγ. (5.3.23)

Then we have ∆s ≤ ρ∆s−1 for any s≥ 1, where

∆s := γE[Ψ(xs)−Ψ(x∗)]+E[V (xs,x∗)]

+(1− γµ−4LQγ)µ−1(θT −θ1)E[Ψ(x̃s)−Ψ(x∗)], (5.3.24)

ρ := max
{

1
θT
,

4LQγ(θT−1)
(1−γµ−4LQγ)(θT−θ1)

}
. (5.3.25)

Proof. Multiplying both sides of (5.3.11) by θt in (5.3.21), we have

γθtE[Ψ(xt+1)−Ψ(x∗)]+θtE[V (xt+1,x∗)]

≤ 4LQγ
2
θt [Ψ(xt)−Ψ(x∗)+Ψ(x̃)−Ψ(x∗)]+θt−1V (xt ,x∗).

Summing up the previous inequality over t = 1, . . . ,T and taking expectation with
respect to the history of random variables i1, . . . , iT , we obtain

γθTE[Ψ(xT+1)−Ψ(x∗)]

+(1− γµ−4LQγ)γ∑
T
t=2θtE[Ψ(xt)−Ψ(x∗)]+θTE[V (xT+1,x∗)]

≤ 4LQγ
2[Ψ(x1)−Ψ(x∗)]+4LQγ

2
∑

T
t=1θt [Ψ(x̃)−Ψ(x∗)]+V (x1,x∗).

Now consider a fixed epoch s with input x1 = xs−1 and x̃ = x̃s−1, and output xs = xT+1
and x̃s = ∑

T
t=2θtxt/∑

T
t=2θt . By the above inequality, the convexity of Ψ and the fact

that
∑

T
t=sθt = (γµ)−1

∑
T
t=s (θt −θt−1) = (γµ)−1(θT −θs−1), (5.3.26)

we have

γθTE[Ψ(xs)−Ψ(x∗)]

+(1− γµ−4LQγ)µ−1(θT −θ1)E[Ψ(x̃s)−Ψ(x∗)]+θTE[V (xs,x∗)]

≤ 4LQγ
2[Ψ(xs−1)−Ψ(x∗)]+4LQγµ

−1(θT −1)[Ψ(x̃s−1)−Ψ(x∗)]+V (xs−1,x∗)

≤ γ[Ψ(xs−1)−Ψ(x∗)]+4LQγµ
−1(θT −1)[Ψ(x̃s−1)−Ψ(x∗)]+V (xs−1,x∗),
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where the last inequality follows from the fact 4LQγ ≤ 1 due to (5.3.23). The result
then immediately follows the above inequality.

We are now ready to establish the convergence of the variance-reduced mirror
descent method.

Corollary 5.9. Suppose that the algorithmic parameters for the variance-reduced
mirror descent method are set to

γ = 1
21L , (5.3.27)

qi =
Li

∑
m
i=1Li

, (5.3.28)

T ≥ 2, (5.3.29)

θt = (1− γµ)−t , t ≥ 0, (5.3.30)

Then for any s≥ 1, we have

∆s ≤
{

max
[
(1− µ

21L )
T , 1

2

]}s
∆0, (5.3.31)

where ∆s is defined in (5.3.24). In particular, if T is set to a constant factor of m,
denoted by o{m}, then the total number of gradients required to find an ε-solution of
problem (5.3.1) can be bounded by O{( L

µ
+m) log ∆0

ε
}.

Proof. It is easy to check that LQ = 1
m ∑

m
i=1Li = L. Moreover, whenever T ≥ 2, we

have θT−1
θT−θ1

≤ 2. Indeed,

θT−1
θT−θ1

−2 = 1−(1−γµ)T

1−(1−γµ)T−1 −2 = (1−γµ)T−1(1+γµ)−1
1−(1−γµ)T−1 ≤ 0. (5.3.32)

Hence,

4LQγ(θT−1)
(1−γµ−4LQγ)(θT−θ1)

≤ 8LQγ

1−γµ−4LQγ
≤ 8Lγ

1−5Lγ
≤ 1

2 . (5.3.33)

Using these relations in Proposition 5.7, we obtain (5.3.31). Now assume that T =
o{m}. We consider two cases. If (1− µ

21L )
T ≤ 1

2 , then by (5.3.31) the total number
of epochs can be bounded by O{log(∆0/ε)}, which implies that the total number
of gradient computations (s× (m+T )) can be bounded by O{m log(∆0/ε)}. Now
if (1− µ

21L )
T ≥ 1

2 , then by (5.3.31), then the total number of iterations (s×T ) and
hence the total number of gradient computations (s× (m+T )) are both bounded by
O{ L

µ
log(∆0/ε). The result follows by combining these two cases.

The complexity bound obtained in Corollary 5.9 significantly improves the
O(1/(µε)) complexity bound for a direction application of stochastic mirror descent
method since the former one only depends on log(1/ε). However, the stochastic
mirror descent and stochastic accelerated gradient descent methods still have their
own merits. Firstly, they can be used to handle different classes of problems such
as general nonsmooth problems, as well as stochastic optimization problems with
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continuous (rather than discrete) random variables. Secondly, suppose that one ap-
plies the stochastic variance reduced mirror descent method to solve the sample
average approximation problem of minx∈X E[F(x,ξ )]. In other words, we will collect
and save a sample {ξ1, . . . ,ξm} of size m = O(1/ε) and use the variance reduction
methods to solve the deterministic counterpart given by minx∈X

1
m ∑

m
i=1F(x,ξi). The

total number of gradient computations performed by this approach will be worse
than those by stochastic mirror descent method and stochastic accelerated gradient
descent method up to a factor of O(log(1/ε)). Thirdly, the stochastic mirror descent
and stochastic accelerated gradient descent methods do not require us to save the
sample {ξ1, . . . ,ξm} and can be used to process online learning and optimization
problems.

5.4 Variance-reduced accelerated gradient descent

In this section, we introduce a novel randomized incremental gradient method,
namely, the variance-reduced accelerated gradient algorithm, for solving the finite-
sum optimization problem in (5.3.1) whose objective function consists of the average
of m smooth components together with a simple convex term. We demonstrate
that the variance-reduced accelerated gradient method exhibits a unified optimal
rates of convergence for solving both convex and strongly convex problems. In
particular, for solving smooth convex problems which are not necessarily strongly
convex, the variance-reduced accelerated gradient algorithm does not require to
add any strongly convex perturbation into the objective, but can directly achieve
the optimal O(m logm+

√
mL/ε) complexity bound. This bound can be improved

to O(m log(1/ε)) under certain lower accuracy regime. Here L and ε denote the
Lipschitz constant of the gradients and target accuracy respectively. Moreover, for
solving strongly convex problems with modulus µ , the variance-reduced accelerated
gradient method equipped with a unified step-size policy can adjust itself according
to the value of the conditional number (L/µ), and achieve the optimal linear rate of
convergence when the conditional number is relatively small, and the best-known
sublinear rate of convergence that is independent of the condition number otherwise.
In addition, we show that the variance-reduced accelerated gradient method exhibits
an accelerated linear rate of convergence for solving a wide class of weakly strongly
convex problems, which only satisfy a certain error bound condition rather than
strong convexity.

The basic scheme of the variance-reduced accelerated gradient method is formally
described in Algorithm 5.7. This algorithm consists of multiple epochs. In each epoch
(or outer loop), it first computes the full gradient ∇ f (x̃) at the point x̃, which will
then be repeatedly used to define a gradient estimator Gt at each iteration of the inner
loop. This is the same as the variance reduction technique introduced in Section 5.3.
The inner loop has a similar algorithmic scheme to the stochastic accelerated gradient
method in Section 4.2 with a constant step-size policy. Indeed, the parameters used in
the inner loop, i.e., {γs},{αs}, and {ps}, only depend on the index of epoch s. Each
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iteration of the inner loop requires the gradient information of only one randomly
selected component function fit , and maintains three primal sequences.

Algorithm 5.7 Variance-reduced accelerated gradient method

Input: x0,γ,T,{θt}.
x̃0 = x0.
for s = 1,2, . . . do

Set x̃ = x̃s−1 and g̃ = ∇F(x̃).
Set x0 = xs−1, x̄0 = x̃ and T = Ts.
for t = 1,2, . . . ,T do

Pick it ∈ {1, . . . ,m} randomly according to Q = {q1, . . . ,qm} on {1, . . . ,m}.
xt = [(1+µγs)(1−αs− ps)x̄t−1 +αsxt−1 +(1+µγs)psx̃]/[1+µγs(1−αs)].
Gt = (∇ fit (xt)−∇ fit (x̃))/(qit n)+ g̃.
xt = argminx∈X {γs [〈Gt ,x〉+h(x)+µV (xt ,x)]+V (xt−1,x)}.
x̄t = (1−αs− ps)x̄t−1 +αsxt + psx̃.

end for
set xs = xT and x̃s = ∑

T
t=1(θt x̄t)/∑

T
t=1θt .

end for

The variance-reduced accelerated gradient method reduces to the variance-reduced
mirror descent method if αs = 1 and ps = 0. In this case, the algorithm only maintains
one primal sequence {xt} and exhibits a non-accelerated rate of convergence with
complexity bounded by O{(m+L/µ) log(1/ε} for solving (5.3.1).

In the sequel, we define

l f (z,x) := f (z)+ 〈∇ f (z),x− z〉, (5.4.1)
δt := Gt −∇ f (xt), (5.4.2)

x+t−1 := 1
1+µγs

(xt−1 +µγsxt) . (5.4.3)

Similarly to the results (i.e., (5.3.6) and (5.3.7) in Lemma 5.13, we have, condi-
tionally on x1, . . . ,xt ,

E[δt ] = 0, (5.4.4)

E[‖δt‖2
∗]≤ 2LQ[ f (x̃)− f (xt)−〈∇ f (xt), x̃− xt ]. (5.4.5)

Also observe that the auxiliary point x+t−1 has been used in the original accelerated
gradient method and its stochastic counterpart. Using the above definition of x+t−1,
and the definitions of xt and x̄t in Algorithm 5.7, we have

x̄t − xt = (1−αs− ps)x̄t−1 +αsxt + psx̃− xt

= αsxt +
1

1+µγs
{[1+µγs(1−αs)]xt −αsxt−1}− xt

= αs(xt − x+t−1). (5.4.6)
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The following result examines the optimality conditions associated with the
definition of xt in Algorithm 5.7.

Lemma 5.15. For any x ∈ X, we have

γs[l f (xt ,xt)− l f (xt ,x)+h(xt)−h(x)]≤ γsµV (xt ,x)+V (xt−1,x)− (1+µγs)V (xt ,x)

− 1+µγs
2 ‖xt − x+t−1‖2− γs〈δt ,xt − x〉.

Proof. It follows from Lemma 3.5 and the definition of xt in Algorithm 5.7 that

γs[〈Gt ,xt − x〉+h(xt)−h(x)+µV (xt ,xt)]+V (xt−1,xt)

≤ γsµV (xt ,x)+V (xt−1,x)− (1+µγs)V (xt ,x).

Also observe that

〈Gt ,xt − x〉= 〈∇ f (xt),xt − x〉+ 〈δt ,xt − x〉
= l f (xt ,xt)− l f (xt ,x)+ 〈δt ,xt − x〉

and

γsµV (xt ,xt)+V (xt−1,xt)≥ 1
2

(
µγs‖xt − xt‖2 +‖xt − xt−1‖2)

≥ 1+µγs
2 ‖xt − x+t−1‖2,

where the last inequality follows from the definition of x+t−1 in (5.4.3) and the
convexity of ‖ · ‖. The result then follows by combining the above three relations.

We now show the possible progress made by each inner iteration of the variance-
reduced accelerated gradient method.

Lemma 5.16. Assume that αs ∈ [0,1], ps ∈ [0,1] and γs > 0 satisfy

1+µγs−Lαsγs > 0, (5.4.7)

ps− LQαsγs
1+µγs−Lαsγs

≥ 0. (5.4.8)

Then, conditional on x1, . . . ,xt−1, we have

γs
αs
E[ψ(x̄t)−ψ(x)]+(1+µγs)E[V (xt ,x)]≤ γs

αs
(1−αs− ps)E[ψ(x̄t−1)−ψ(x)]

+ γs ps
αs

E[ψ(x̃)−ψ(x)]+E[V (xt−1,x)]
(5.4.9)

for any x ∈ X.

Proof. Note that by the smoothness of f and the definition of x̄t , we have

f (x̄t)≤ l f (xt , x̄t)+
L
2‖x̄t − xt‖2

= (1−αs− ps)l f (xt , x̄t−1)+αsl f (xt ,xt)+ psl f (xt , x̃)+
Lα2

s
2 ‖xt − x+t−1‖2.
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The above inequality, in view of Lemma 5.15 and the (strong) convexity of f , then
implies that

f (x̄t)≤ (1−αs− ps)l f (xt , x̄t−1)

+αs

[
l f (xt ,x)+h(x)−h(xt)+µV (xt ,x)+

1
γs

V (xt−1,x)− 1+µγs
γs

V (xt ,x)
]

+ psl f (xt , x̃)− αs
2γs

(1+µαs−Lαsγs)‖xt − x+t−1‖2−αs〈δt ,xt − x〉
≤ (1−αs− ps) f (x̄t−1)

+αs

[
Ψ(x)−h(xt)+

1
γs

V (xt−1,x)− 1+µγs
γs

V (xt ,x)
]

+ psl f (xt , x̃)− αs
2γs

(1+µαs−Lαsγs)‖xt − x+t−1‖2

−αs〈δt ,xt − x+t−1〉−αs〈δt ,x+t−1− x〉
≤ (1−αs− ps) f (x̄t−1)

+αs

[
Ψ(x)−h(xt)+

1
γs

V (xt−1,x)− 1+µγs
γs

V (xt ,x)
]

+ psl f (xt , x̃)+
αsγs‖δt‖2∗

2(1+µγs−Lαsγs)
+αs〈δt ,x+t−1− x〉.

Note that by (5.4.4), (5.4.5), (5.4.8) and the convexity of f , we have, conditional on
x1, . . . ,xt−1,

psl f (xt , x̃)+
αsγsE[‖δt‖2∗]

2(1+µγs−Lαsγs)
+αsE[〈δt ,x+t−1− x〉]

≤ psl f (xt , x̃)+
LQαsγs

1+µγs−Lαsγs
[ f (x̃)− l f (xt , x̃)]

≤
(

ps− LQαsγs
1+µγs−Lαsγs

)
l f (xt , x̃)+

LQαsγs
1+µγs−Lαsγs

f (x̃)

≤ ps f (x̃).

Moreover, by the convexity of h, we have h(x̄t)≤ (1−αs− ps)h(x̄t−1)+αsh(xt)+
psh(x̃). Summing up the previous three conclusions we obtain

E[Ψ(x̄t)]≤ (1−αs− ps)Ψ(x̄t−1)+ psΨ(x̃)+αsΨ(x) (5.4.10)
+αs

γs
[V (xt−1,x)− (1+µγs)V (xt ,x)] . (5.4.11)

The result then follows by subtracting Ψ(x) from both sides of the above inequality.

Utilizing this result in Lemma 5.16, we will discuss the convergence properties
of the variance-reduced accelerated gradient method for solving smooth problems,
smooth and strongly convex problems, and smooth problems satisfying a certain
error bound condition in the following few subsections.
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5.4.1 Smooth problems without strong convexity

In this subsection, we consider the case when f is not necessarily strongly convex,
i.e., µ = 0 in (5.3.2).

The following result shows possible decrease of functional values in each epoch
of the variance-reduced accelerated gradient method for solving smooth finite-sum
convex optimization problems.

Lemma 5.17. Assume that for each epoch s, s≥ 1, αs, γs, ps and Ts are chosen such
that (5.4.7)-(5.4.8) hold. Also, let us set

θt =

{
γs
αs
(αs + ps) t = 1, . . . ,Ts−1

γs
αs

t = Ts.
(5.4.12)

Moreover, let us denote

Ls := γs
αs

+(Ts−1) γs(αs+ps)
αs

, Rs := γs
αs
(1−αs)+(Ts−1) γs ps

αs
, (5.4.13)

and assume that
ws := Ls−Rs+1 ≥ 0,∀s≥ 1. (5.4.14)

Then we have

LsE[Ψ(x̃s)−Ψ(x)]+(∑s−1
j=1w j)E[Ψ(x̄s)−Ψ(x)]

≤R1E[Ψ(x̃0)−Ψ(x)]+V (x0,x)−V (xs,x), (5.4.15)

where
x̄s := (∑s−1

j=1w j)∑
s−1
j=1(w j x̃ j). (5.4.16)

Proof. Using our assumptions on αs, γs and ps, the fact that µ = 0, we have

γs
αs
E[Ψ(x̄t)−Ψ(x)]≤ γs

αs
(1−αs− ps)E[Ψ(x̄t−1)−Ψ(x)]

+ γs ps
αs

E[Ψ(x̃)−Ψ(x)]+V (xt−1,x)−V (xt ,x).

Summing up these inequalities for t = 1, . . . ,Ts, using the definition of θt in (5.4.12)
and the fact that x̄0 = x̃, and rearranging the terms, we have

∑
Ts
t=1θtE[Ψ(x̄t)−Ψ(x)]≤

[
γs
αs
(1−αs)+(Ts−1) γs ps

αs

]
E[Ψ(x̃)−Ψ(x)]

+V (x0,x)−V (xT ,x).

Now using the facts that xs = xT , x̃s =∑
T
t=1(θtxt)/∑

Ts
t=1θt , x̃= x̃s−1, and the convexity

of Ψ , we have

∑
Ts
t=1θtE[Ψ(x̃s)−Ψ(x)]≤

[
γs
αs
(1−αs)+(Ts−1) γs ps

αs

]
E[Ψ(x̃s−1)−Ψ(x)]

+V (xs−1,x)−V (xs,x),
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which, in view of the fact that ∑
Ts
t=1θt =

γs
αs

+(Ts−1) γs(αs+ps)
αs

, then implies that

LsE[Ψ(x̃s)−Ψ(x)]≤RsE[Ψ(x̃s−1)−Ψ(x)]+V (xs−1,x)−V (xs,x).

Summing over the above relations, using the convexity of Ψ and rearranging the
terms, we then obtain (5.4.15).

With the help of Lemma 5.17 we are now ready to establish the main convergence
properties of the variance-reduced accelerated gradient method for the case when
µ = 0 in (5.3.2).

Theorem 5.8. Assume that θt are defined in (5.4.12) and the probabilities qi are set
to Li/∑

m
i=1Li for i = 1, . . . ,m. Moreover, let us denote s0 := blog2 mc+1 and assume

that

Ts =

{
2s−1, s≤ s0

Ts0 , s > s0
, γs =

1
3Lαs

, and ps =
1
2 , (5.4.17)

with

αs =

{
1
2 , s≤ s0

2
s−s0+4 , s > s0

. (5.4.18)

Then for any x ∈ X,

E[Ψ(x̃s)−Ψ(x)]≤
{

2−(s+1)D0, 1≤ s≤ s0,
8LD0

(s−s0+4)2(m+1) , s > s0,
(5.4.19)

where
D0 := 2[ψ(x0)−ψ(x∗)]+3LV (x0,x∗). (5.4.20)

Proof. Note that by the definition of LQ in (5.3.4) and the selection of qi, we have
LQ = L. Observe that both conditions in (5.4.7) and (5.4.8) are satisfied since

1+µγs−Lαsγs = 1−Lαsγs =
2
3

and

ps− LQαsγs
1+µγs−Lαsγs

= ps− 1
2 = 0.

Next, letting Ls and Rs be defined in (5.4.13), we will show that Ls ≥Rs+1 for any
s≥ 1. Indeed, if 1≤ s < s0, we have αs+1 = αs, γs+1 = γs, Ts+1 = 2Ts, and hence

ws = Ls−Rs+1 =
γs
αs
[1+(Ts−1)(αs + ps)− (1−αs)− (2Ts−1)ps]

= γs
αs
[Ts(αs− ps)] = 0.

Moreover, if s≥ s0, we have
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ws = Ls−Rs+1 =
γs
αs
− γs+1

αs+1
(1−αs+1)+(Ts0 −1)

[
γs(αs+ps)

αs
− γs+1 ps+1

αs+1

]

= 1
12L +

(Ts0−1)[2(s−s0+4)−1]
24L ≥ 0.

Using these observations in (5.4.15) iteratively, we then conclude that

LsE[Ψ(x̃s)−Ψ(x)]≤R1E[Ψ(x̃0)−Ψ(x)]+V (x0,x)−V (xs,x)

≤ 2
3L [Ψ(x0)−Ψ(x)]+V (x0,x)

for any s≥ 1, where the last identity follows from the fact that R1 =
2

3L . It can be

easily seen that if s≤ s0, Ls =
2s+1

3L . In addition, if s≥ s0, we have

Ls =
1

3Lα2
s

[
1+(Ts−1)(αs +

1
2 )
]

=
(s−s0+4)(Ts0−1)

6L +
(s−s0+4)2(Ts0+1)

24L

≥ (s−s0+4)2(m+1)
24L . (5.4.21)

The result then follows immediately by combining the previous three inequalities.

In view of Theorem 5.8, we can bound the total number of gradient computations
of fi as follows.

Corollary 5.10. The total number of gradient evaluation performed by the variance-
reduced accelerated gradient method can be bounded by

N̄ :=





O
{

m log D0
ε

}
, mε ≥ D0,

O

{√
mD0

ε
+m logm

}
, o.w.,

(5.4.22)

where D0 is defined in (5.4.20).

Proof. First let us consider the regime of lower accuracy and/or large number of
components, i.e., when mε ≥ D0. In this case we need to run the algorithm for at
most s0 epochs because we can easily check that

D0
2s0−1−1

≤ ε.

More precisely, the number of epochs can be bounded by

Sl := min
{⌈

1+ log2

(
D0
ε

)⌉
,s0

}
.

Hence the total number of gradient evaluations can be bounded by

mSl +∑
Sl
s=1Ts = mSl +∑

Sl
s=12s−1 ≤ mSl +2Sl

= O
{

min
(

m log D0
ε
,m logm

)}
= O

{
m log D0

ε

}
, (5.4.23)
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where the last identity follows from the assumption that mε ≥ D0. Now let us
consider the regime for high accuracy and/or smaller number of components, i.e.,
when mε < D0. In this case, we may need to run the algorithm for more than s0
epochs. More precisely, the total number of epochs can be bounded by

Sh :=
⌈√

16D0
(m+1)ε + s0−4

⌉
.

Note that the total number of gradient evaluations needed for the first s0 epochs can
be bounded by ms0 +∑

s0
s=1Ts while the total number of gradient evaluations for the

remaining epochs can be bounded by (Ts0 +m)(Sh− s0). As a consequence, the total
number of gradient evaluations can be bounded by

ms0 +∑
s0
s=1Ts +(Ts0 +m)(Sh− s0) = ∑

s0
s=1Ts +(Ts0 +m)Sh

= O

{√
mD0

ε
+m logm

}
. (5.4.24)

We now make a few observations regarding the results obtained in Corollary 5.10.
Firstly, whenever the required accuracy ε is low and/or the number of components
m is large, the variance-reduced accelerated gradient method can achieve a fast
linear rate of convergence even if the objective function is not strongly convex.
Otherwise, it exhibits an optimal sublinear rate of convergence with complexity
bounded by O{

√
mD0/ε +m logm}. Secondly, whenever

√
mD0/ε is dominating

in the second case of (5.4.22), the variance-reduced accelerated gradient method
can save up to O(

√
m) gradient evaluations of the component function fi than the

optimal deterministic first-order methods for solving (5.3.1).

5.4.2 Smooth and strongly convex problems

In this subsection we consider the case when f is possibly strongly convex, including
the situation when the problem is almost non-strongly convex, i.e., µ ≈ 0. Our goal
is to provide a unified step-size policy which allows the variance-reduced accelerated
gradient method to achieve an optimal rate of convergence for finite-sum optimization
in (5.3.1) regardless of its strong convexity.

We first discuss how to specify the algorithmic parameters used in the variance-
reduced accelerated gradient method. In fact, our selection of {Ts}, {γs}, and {ps}
will be exactly the same as those in (5.4.17) for the smooth convex case, but with αs
given by

αs =

{ 1
2 , s≤ s0,

max
{

2
s−s0+4 ,min{

√
mµ

3L ,
1
2}
}
, s > s0.

(5.4.25)
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Such a selection of αs enables us to consider different classes of problems with
different problem parameters such as L/µ and m. However, the selection of {θt},
i.e., the weights to take the average of the iterates for each epoch, will be more
complicated. Specifically, denoting s0 := blogmc+1, we assume that the weights

{θt} are set to (5.4.12) if 1≤ s≤ s0 or s0 < s≤ s0 +
√

12L
mµ
−4, m < 3L

4µ
. Otherwise,

we set them to

θt =

{
Γt−1− (1−αs− ps)Γt , 1≤ t ≤ Ts−1,
Γt−1, t = Ts,

(5.4.26)

where Γt = (1+µγs)
t . The selection of these weights come from the convergence

analysis of the algorithms as we will see later.

Below we consider four different cases and establish the convergence properties
of the variance-reduced accelerated gradient method in each case.

Lemma 5.18. If s≤ s0, then for any x ∈ X,

E[ψ(x̃s)−ψ(x)]≤ 2−(s+1)D0, 1≤ s≤ s0,

where D0 is defined in (5.4.20).

Proof. In this case, we have αs = ps =
1
2 , γs =

2
3L , and Ts = 2s−1. It then follows

from (5.4.9) that

γs
αs
E[ψ(x̄t)−ψ(x)]+(1+µγs)E[V (xt ,x)]≤ γs

2αs
E[ψ(x̃)−ψ(x)]+E[V (xt−1,x)].

Summing up the above relation from t = 1 to Ts, we have

γs
αs

∑
Ts
t=1E[ψ(x̄t)−ψ(x)]+E[V (xTs ,x)]+µγs∑

Ts
t=1E[V (xt ,x)]

≤ γsTs
2αs

E[ψ(x̃)−ψ(x)]+E[V (x0,x)].

Note that in this case θt are chosen as in (5.4.12), i.e., θt =
γs
αs

, t = 1, . . . ,Ts in the
definition of x̃s, we then have

4Ts
3L E[ψ(x̃s)−ψ(x)]+E[V (xs,x)]≤ 4Ts

6L E[ψ(x̃s−1)−ψ(x)]+E[V (xs−1,x)]

=
4Ts−1

3L E[ψ(x̃s−1)−ψ(x)]+E[V (xs−1,x)],

where we use the facts that x̃ = x̃s−1, x0 = xs−1, and xs = xTs in the epoch s and the
parameter settings in (5.4.17). Applying this inequality recursively, we then have

4Ts
3L E[ψ(x̃s)−ψ(x)]+E[V (xs,x)]≤ 2

3LE[ψ(x̃0)−ψ(x)]+V (x0,x)

= 2
3LE[ψ(x0)−ψ(x)]+V (x0,x). (5.4.27)

By plugging Ts = 2s−1 into the above inequality, we obtain the result.
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Lemma 5.19. If s≥ s0 and m≥ 3L
4µ

,

E[ψ(x̃s)−ψ(x∗)]≤
( 4

5

)s
D0,

where x∗ is an optimal solution of (5.3.1).

Proof. In this case, we have αs = ps =
1
2 , γs = γ = 2

3L , and Ts ≡ Ts0 = 2s0−1,s≥ s0.
It then follows from (5.4.9) that

4
3LE[ψ(x̄t)−ψ(x)]+(1+ 2µ

3L )E[V (xt ,x)]≤ 2
3LE[ψ(x̃)−ψ(x)]+E[V (xt−1,x)].

Multiplying both sides of the above inequality by Γt−1 = (1+ 2µ

3L )
t−1, we obtain

4
3LΓt−1E[ψ(x̄t)−ψ(x)]+ΓtE[V (xt ,x)]≤ 2

3LΓt−1E[ψ(x̃)−ψ(x)]+Γt−1E[V (xt−1,x)].

Note that θt are chosen as in (5.4.26) when s ≥ s0, i.e., θt = Γt−1 = (1+ 2µ

3L )
t−1,

t = 1, . . . ,Ts, s≥ s0. Summing up the above inequality for t = 1, . . . ,Ts we have

4
3L ∑

Ts
t=1θtE[ψ(x̄t)−ψ(x)]+ΓTsE[V (xTs ,x)]

≤ 2
3L ∑

Ts
t=1θtE[ψ(x̃)−ψ(x)]+E[V (x0,x)], s≥ s0.

Observe that for s≥ s0, m≥ Ts ≡ Ts0 = 2blog2 mc ≥ m/2, and hence that

ΓTs = (1+ 2µ

3L )
Ts = (1+ 2µ

3L )
Ts0 ≥ 1+

2µTs0
3L ≥ 1+

Ts0
2m ≥ 5

4 , ∀s≥ s0, (5.4.28)

and using the facts that x̃s = ∑
Ts
t=1(θt x̄t)/∑

Ts
t=1θt , x̃ = x̃s−1, x0 = xs−1, and xTs = xs in

the s epoch, and ψ(x̃s)−ψ(x∗)≥ 0, we conclude from the above inequalities that

5
4

{
2

3LE[ψ(x̃s)−ψ(x∗)]+(∑
Ts
t=1θt)

−1E[V (xs,x∗)]
}

≤ 2
3LE[ψ(x̃s−1)−ψ(x∗)]+(∑

Ts
t=1θt)

−1E[V (xs−1,x∗)],s≥ s0.

Applying this relation recursively for s≥ s0, we then obtain

2
3LE[ψ(x̃s)−ψ(x∗)]+(∑

Ts
t=1θt)

−1E[V (xs,x∗)]

≤
( 4

5

)s−s0
{

2
3LE[ψ(x̃s0)−ψ(x∗)]+(∑

Ts
t=1θt)

−1E[V (xs0 ,x∗)]
}

≤
( 4

5

)s−s0
{

2
3LE[ψ(x̃s0)−ψ(x∗)]+ 1

Ts0
E[V (xs0 ,x∗)]

}
,

where the last inequality follows from ∑
Ts
t=1θt ≥ Ts = Ts0 . Plugging (5.4.27) into the

above inequality, we have

E[ψ(x̃s)−ψ(x∗)]≤
( 4

5

)s−s0 D0
2Ts0

=
( 4

5

)s−s0 D0
2s0 ≤

( 4
5

)s
D0, s≥ s0.
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Lemma 5.20. If s0 < s≤ s0 +
√

12L
mµ
−4 and m < 3L

4µ
, then for any x ∈ X,

E[ψ(x̃s)−ψ(x)]≤ 16D0
(s−s0+4)2m .

Proof. In this case, 1
2 ≥ 2

s−s0+4 ≥
√

mµ

3L . Therefore, we set θt as in (5.4.12),

αs =
2

s−s0+4 , ps =
1
2 , γs =

1
3Lαs

, and Ts ≡ Ts0 . Observe that the parameter setting in
this case is the same as the smooth case in Theorem 5.8. Hence, by following the
same procedure as in the proof of Theorem 5.8, we can obtain

LsE[ψ(x̃s)−ψ(x)]+E[V (xs,x)]≤Rs0+1E[ψ(x̃s0)−ψ(x)]+E[V (xs0 ,x)]

≤Ls0E[ψ(x̃s0)−ψ(x)]+E[V (xs0 ,x)]

≤ D0
3L , (5.4.29)

where the last inequality follows from the fact that Ls0 ≥
2Ts0
3L and the relation in

(5.4.27). The result then follows by noting that Ls ≥ (s−s0+4)2m
48L (see (5.4.21)).

Lemma 5.21. If s > s̄0 := s0 +
√

12L
mµ
−4 and m < 3L

4µ
, then

E[ψ(x̃s)−ψ(x∗)]≤
(

1+
√

µ

3mL

)−m(s−s̄0)
2 D0

3L/4µ
, (5.4.30)

where x∗ is an optimal solution of (5.3.1).

Proof. In this case, 1
2 ≥

√
mµ

3L ≥ 2
s−s0+4 . Therefore, we use constant step-size

policy that αs ≡
√

mµ

3L , ps ≡ 1
2 , γs ≡ 1

3Lαs
= 1√

3mLµ
, and Ts ≡ Ts0 . Also note that in

this case θt are chosen as in (5.4.26). Multiplying both sides of (5.4.9) by Γt−1 =
(1+µγs)

t−1, we obtain

γs
αs

Γt−1E[ψ(x̄t)−ψ(x)]+ΓtE[V (xt ,x)]≤ Γt−1γs
αs

(1−αs− ps)E[ψ(x̄t−1)−ψ(x)]

+
Γt−1γs ps

αs
E[ψ(x̃)−ψ(x)]+Γt−1E[V (xt−1,x)].

Summing up the above inequality from t = 1, . . . ,Ts and using the fact that x̄0 = x̃,
we arrive at

γs
αs

∑
Ts
t=1θtE[ψ(x̄t)−ψ(x)]+ΓTsE[V (xTs ,x)]

≤ γs
αs

[
1−αs− ps + ps∑

Ts
t=1Γt−1

]
E[ψ(x̃)−ψ(x)]+E[V (x0,x)].

Now using the facts that xs = xTs , x0 = xs−1, x̃s = ∑
Ts
t=1(θt x̄t)/∑

Ts
t=1θt , x̃ = x̃s−1,

Ts = Ts0 and the convexity of ψ , we obtain
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γs
αs

∑
Ts0
t=1θtE[ψ(x̃s)−ψ(x)]+ΓTs0

E[V (xs,x)]

≤ γs
αs

[
1−αs− ps + ps∑

Ts0
t=1Γt−1

]
E[ψ(x̃s−1)−ψ(x)]+E[V (xs−1,x)] (5.4.31)

for any s > s̄0. Moreover, we have

∑
Ts0
t=1θt = ΓTs0−1 +∑

Ts0−1
t=1 (Γt−1− (1−αs− ps)Γt)

= ΓTs0
(1−αs− ps)+∑

Ts0
t=1(Γt−1− (1−αs− ps)Γt)

= ΓTs0
(1−αs− ps)+ [1− (1−αs− ps)(1+µγs)]∑

Ts0
t=1Γt−1.

Observe that for any T > 1 and 0 ≤ δT ≤ 1, (1+ δ )T ≤ 1+ 2T δ , αs =
√

mµ

3L ≥√
Ts0 µ

3L and hence that

1− (1−αs− ps)(1+µγs)≥ (1+µγs)(αs−µγs + ps)

≥ (1+µγs)(Ts0 µγs−µγs + ps)

= ps(1+µγs)[2(Ts0 −1)µγs +1]

≥ ps(1+µγs)
Ts0 = psΓTs0

.

Then we conclude that ∑
Ts0
t=1θt ≥ ΓTs0

[
1−αs− ps + ps∑

Ts0
t=1Γt−1

]
. Together with

(5.4.31) and the fact that ψ(x̃s)−ψ(x∗)≥ 0, we have

ΓTs0

{
γs
αs

[
1−αs− ps + ps∑

Ts0
t=1Γt−1

]
E[ψ(x̃s)−ψ(x∗)]+E[V (xs,x∗)]

}

≤ γs
αs

[
1−αs− ps + ps∑

Ts0
t=1Γt−1

]
E[ψ(x̃s−1)−ψ(x∗)]+E[V (xs−1,x∗)].

Applying the above relation recursively for s > s̄0 = s0 +
√

12L
mµ
−4, and also noting

that Γt = (1+µγs)
t and the constant step-size policy in this case, we obtain

γs
αs

[
1−αs− ps + ps∑

Ts0
t=1Γt−1

]
E[ψ(x̃s)−ψ(x∗)]+E[V (xs,x∗)]

≤ (1+µγs)
−Ts0 (s−s̄0)

{
γs
αs

[
1−αs− ps + ps∑

Ts0
t=1Γt−1

]

E[ψ(x̃s̄0)−ψ(x∗)]+E[V (xs̄0 ,x∗)]
}
.

According to the parameter settings in this case, i.e., αs ≡
√

mµ

3L , ps ≡ 1
2 , γs ≡ 1

3Lαs
=

1√
3mLµ

, and s̄0 = s0 +
√

12L
mµ
−4, we have γs

αs

[
1−αs− ps + ps∑

Ts0
t=1Γt−1

]
≥ γs psTs0

αs
=

Ts0
2mµ

=
(s̄0−s0+4)2Ts0

24L . Using this observation in the above inequality, we then conclude
that
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E[ψ(x̃s)−ψ(x∗)]≤ (1+µγs)
−Ts0 (s−s̄0)

[
E[ψ(x̃s̄0)−ψ(x∗)]+ 24L

(s̄0−s0+4)2Ts0
E[V (xs̄0 ,x∗)]

]

≤ (1+µγs)
−Ts0 (s−s̄0) 24L

(s̄0−s0+4)2Ts0

[
Ls̄0E[ψ(x̃s̄0)−ψ(x∗)]+E[V (xs̄0 ,x∗)]

]

≤ (1+µγs)
−Ts0 (s−s̄0) 24L

(s̄0−s0+4)2Ts0

D0
3L

≤ (1+µγs)
−Ts0 (s−s̄0) 16D0

(s̄0−s0+4)2m

= (1+µγs)
−Ts0 (s−s̄0) D0

3L/4µ
,

where the second inequality follows from the fact that Ls̄0 ≥
(s̄0−s0+4)2Ts0

24L =
Ts0

2mµ
due

to (5.4.21), the third inequality follows from (5.4.29) in Case 3, and last inequality
follows from Ts0 = 2blog2 mc ≥ m/2.

Putting the above four technical results together, we obtain the following main
result of this subsection.

Theorem 5.9. Suppose that the probabilities qi’s are set to Li/∑
m
i=1Li for i= 1, . . . ,m.

Moreover, let us denote s0 := blogmc+1 and assume that the weights {θt} are set

to (5.4.12) if 1≤ s≤ s0 or s0 < s≤ s0 +
√

12L
mµ
−4, m < 3L

4µ
. Otherwise, they are set

to (5.4.26). If the parameters {Ts}, {γs} and {ps} set to (5.4.17) with {αs} given by
(5.4.25), then we have

E[ψ(x̃s)−ψ(x∗)]≤





2−(s+1)D0, 1≤ s≤ s0,( 4
5

)s
D0, s > s0 and m≥ 3L

4µ
,

16D0
(s−s0+4)2m , s0 < s≤ s0 +

√
12L
mµ
−4

and m < 3L
4µ
,

(
1+
√

µ

3mL

)−m(s−s̄0)
2 D0

3L/4µ
, s0 +

√
12L
mµ
−4 = s̄0 < s

and m < 3L
4µ
,

(5.4.32)
where x∗ is an optimal solution of (5.3.1) and D0 is defined as in (5.4.20).

We are now ready to derive the complexity bound in terms of the total number of
grradient evaluations.

Corollary 5.11. The total number of gradient evaluations of fi performed by Algo-
rithm 5.7 to find a stochastic ε-solution of (2.0.1) can be bounded by

N̄ :=





O
{

m log D0
ε

}
, m≥ D0

ε
or m≥ 3L

4µ
,

O

{
m logm+

√
mD0

ε

}
, m < D0

ε
≤ 3L

4µ
,

O
{

m logm+
√

mL
µ

log D0/ε

3L/4µ

}
, m < 3L

4µ
≤ D0

ε
.

(5.4.33)

where D0 is defined as in (5.4.20).
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Proof. Firstly, it is clear that the first case and the third case correspond to the
results of the smooth case discussed in Corollary 5.10. As a consequence, the to-
tal number of gradient evaluations can also be bounded by (5.4.23) and (5.4.24),
respectively. Secondly, for the second case of (5.4.32), it is easy to check that the
variance-reduced accelerated gradient method needs to run at most S :=O{logD0/ε}
epochs, and hence the total number of gradient evaluations can be bounded by

mS+∑
S
s=1Ts ≤ 2mS = O

{
m log D0

ε

}
. (5.4.34)

Finally, for the last case of (5.4.32), since the variance-reduced accelerated gradient
method only needs to run at most S′ = s̄0+2

√
3L
mµ

log D0/ε

3L/4µ
epochs, the total number

of gradient evaluations can be bounded by

S′

∑
s=1

(m+Ts) =
s0

∑
s=1

(m+Ts)+
s̄0

∑
s=s0+1

(m+Ts0)+(m+Ts0)(S
′− s̄0)

≤ 2m logm+2m(
√

12L
mµ
−4)+4m

√
3L
mµ

log D0/ε

3L/4µ

= O
{

m logm+
√

mL
µ

log D0/ε

3L/4µ

}
.

Observe that the complexity bound (5.4.33) is a unified convergence result for
the variance-reduced accelerated gradient method to solve deterministic smooth
finite-sum optimization problems (2.0.1). When the strongly convex modulus µ

of the objective function is large enough, i.e., 3L/µ < D0/ε , the variance-reduced
accelerated gradient method exhibits an optimal linear rate of convergence as can be
seen from the third case of (5.4.33). If µ is relatively small, this algorithm treats the
finite-sum problem (5.3.1) as a smooth problem without strongly convexity, which
leads to the same complexity bounds as in Corollary 5.10.

5.4.3 Problems satisfying an error-bound condition

In this subsection, we establish the convergence properties of the variance-reduced
accelerated gradient method to solve some more general classes of finite-sum opti-
mization problems. In particular, we investigate a class of weakly strongly convex
problems, i.e., the objective function φ(x) satisfies the error bound condition given
by

V (x,X∗)≤ 1
µ̄
(ψ(x)−ψ

∗), ∀x ∈ X , (5.4.35)

where X∗ denotes the set of optimal solutions of (5.3.1).
Many optimization problems satisfy the above error bound condition, includ-

ing linear systems, quadratic programs, linear matrix inequalities, and composite
problems with strongly convex outer function and polyhedral inner functions. Even
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though these problems are not strongly convex, by properly restarting the variance-
reduced accelerated gradient method we can solve them with an accelerated linear
rate of convergence as shown in the following result.

Theorem 5.10. Assume that the probabilities qi’s are set to Li/∑
m
i=1Li for i =

1, . . . ,m, and θt are defined as (5.4.12). Moreover, let us set parameters {γs}, {ps}
and {αs} as in (5.4.17) and (5.4.18) with

Ts =

{
T12s−1, s≤ s0

Ts0 , s > s0
, (5.4.36)

where s0 = 4,s = s0 + 4
√

L
µ̄m and T1 = min{m, L

µ̄
}. Then under (5.4.35), for any

x∗ ∈ X∗,
E[ψ(x̃s)−ψ(x∗)]≤ 5

16 [ψ(x0)−ψ(x∗)]. (5.4.37)

Moreover, if we restart Algorithm 5.7 k = log ψ(x0)−ψ(x∗)
ε

times and each time has s
iterations, then

E[ψ(x̃sk)−ψ(x∗)]≤
( 5

16

)k
[ψ(x0)−ψ(x∗)]≤ ε,

and the total number of gradient evaluations of fi to find a stochastic ε-solution of
(2.0.1) can be bounded by

N̄ := k(∑s(m+Ts)) = O
(
m+

√
mL
µ̄

)
log ψ(x0)−ψ(x∗)

ε
. (5.4.38)

Proof. Similar to the smooth case, according to (5.4.15), for any x ∈ X , we have

LsE[ψ(x̃s)−ψ(x)]≤R1E[ψ(x̃0)−ψ(x)]+E[V (x0,x)−V (xs,x)]

≤R1[ψ(x0)−ψ(x)]+V (x0,x).

Then we use x∗ to replace x and use the relation of (5.4.35) to obtain

LsE[ψ(x̃s)−ψ(x∗)]≤R1[ψ(x0)−ψ(x∗)]+ 1
u [ψ(x)−ψ(x∗)].

Now, we compute Ls and R1. According to (5.4.21), we have Ls ≥
(s−s0+4)2(Ts0+1)

24L .
We have R1 =

2T1
3L by plugging the parameters γ1, p1, α1 and T1 into (5.4.13). Thus,

we prove (5.4.37) as follows (recall that s0 = 4 and s = s0 +4
√

L
µ̄m ):

E[ψ(x̃s)−ψ(x∗)]≤ 16T1+24L/µ̄

(s−s0+4)2T12s0−1 [ψ(x0)−ψ(x∗)]

≤ 16+24L/(µ̄T1)

(s−s0+4)22s0−1 [ψ(x0)−ψ(x∗)]

≤ 5
16

L/(µ̄T1)
1+L/(µ̄m) [ψ(x0)−ψ(x∗)]

≤ 5
16 [ψ(x0)−ψ(x∗)],
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where the last inequality follows from T1 = min{m, L
µ̄
}. Finally, we plug k =

log ψ(x0)−ψ(x∗)
ε

,s0 = 4,s = s0 +4
√

L
µ̄m and T1 = min{m, L

µ̄
} to prove (5.4.38):

N̄ := k(∑s(m+Ts))≤ k(ms+T12s0(s− s0 +1)) = O
(
m+

√
mL
µ̄

)
log ψ(x0)−ψ(x∗)

ε
.

5.5 Exercises and notes

1. Figure out one way to use the function values fi and its gradients ∇ fi, rather than
the conjugate functions Ji, in the analysis of the primal-dual gradient method.

2. It is possible to specialize the mirror-prox method for solving the saddle point
problem in (5.2.14). Please state this algorithm in a way such so that only gradient
computation rather than dual prox-mapping is invovled.

3. Consider the finite-sum problem in (5.3.1). Also assume that (5.3.2) holds with
µ > 0. Show the rate of convergence of the following variance-reduced gradient
method applied to solve this problem. Given the value of xk−1 and of each f ′i (φ

k−1
i )

at the end of iteration k−1, the updates for iteration k is as follows:

a. Pick a j uniformly at random.
b. Take φ k

j = xk−1, and store f ′j(φ
k
j ) in the table. All other entries in the table

remain unchanged. The quantity φ k
j is not explicitly stored.

c. Update x using f ′j(φ
k
j ), f ′j(φ

k−1
j ) and the table average:

wk = xk−1− γ

[
f ′j(φ

k
j )− f ′j(φ

k−1
j )+ 1

n ∑
n
i=1 f ′i (φ

k−1
i )

]
, (5.5.39)

xk = argminx∈X

{
γ[〈wk,x〉+h(x)]+V (xt ,x)

}
. (5.5.40)

4. Try to establish the convergence of the variance-reduced mirror descent for solving
stochastic finite-sum problems in (5.2.5).

5. Try to establish the convergence of the variance-reduced accelerated gradient
method for solving stochastic finite-sum problems in (5.2.5).

Notes. The randomized primal-dual gradient (RPDG) method was first presented
by Lan and Zhou [62] in 2015. They also established a lower complexity bound
for solving a class of finite-sum optimization problems. The gradient extrapolation
methods for stochastic and distributed optimization was first presented by Lan and
Zhou in [60]. RPDG and the catalyst scheme by Lin et al. [67] are the first two
incremental gradient methods that can achieve the lower complexity bound in [62].
Allen-zhu [2] presented the Katyusha method which combines a special class of
accelerated SGD with variance reduction technique. Lan et. al. [61] introduced a
new variance-reduced accelerated gradient method called Varag, which is uniformly
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optimal for convex and strongly convex problems, as well as problems satisfying
an error-bound condition. Our introduction to variance-reduced accelerated gradient
method follows [61]. Earlier important progresses on random incremental gradient
method were made in [12, 99, 46, 24] among many others. In particular, Schimidt et al.
[99] presented a stochastic average gradient (SAG) method, which uses randomized
sampling of fi to update the gradients, and can achieve a linear rate of convergence,
i.e., an O {m+(mL/µ) log(1/ε)} complexity bound, to solve unconstrained finite-
sum problems (5.2.1). Johnson and Zhang later in [46] presented a stochastic variance
reduced gradient (SVRG) method, which computes an estimator of ∇ f by iteratively
updating the gradient of one randomly selected fi of the current exact gradient
information and re-evaluating the exact gradient from time to time. [109] later
extended SVRG to solve proximal finite-sum problems (5.2.1). All these methods
exhibit an O {(m+L/µ) log(1/ε)} complexity bound, and [24] also presented an
improved SAG method, called SAGA, that can achieve such a complexity result.
Related stochastic dual methods (e.g., [101, 100, 110]) may involve the solution of a
more complicated subproblem. In spite of these developments, variance reduction
was not incorporated into the more general mirror descent method until Section 5.3
of this monograph to the best of our knowledge.





Chapter 6
Nonconvex Stochastic Optimization

In the last few chapters, we have discussed a few stochastic gradient descent type
methods and established their convergence rates for solving different convex opti-
mization problems. Note however that convexity has played an important role in our
analysis. In this chapter, we focus on stochastic optimization problems which are not
necessarily convex. We first introduce some new stochastic optimization algorithms,
including the randomized stochastic gradient and stochastic accelerated gradient
descent methods, for solving these nonconvex problems. We establish the complexity
of these methods for computing an approximate stationary point of a nonlinear pro-
gramming problem. We will also discuss variants of these methods for solving a class
of simulation-based optimization problems in which only stochastic zeroth-order
information is available. In addition, we study indirect acceleration schemes through
proximal point methods for solving nonconvex finite-sum and multi-block problems
without or with linearly coupled constraints.

6.1 Unconstrained nonconvex stochastic optimization

In this section, we study the classical unconstrained nonlinear programming (NLP)
problem given in the form of

f ∗ := inf
x∈Rn

f (x), (6.1.1)

where f : Rn→ R is a differentiable (not necessarily convex), bounded from below,
and its gradient ∇ f (·) satisfies

‖∇ f (y)−∇ f (x)‖ ≤ L‖y− x‖, ∀x,y ∈ Rn.

We say that f ∈ C 1,1
L (Rn) if it is differentiable and the above assumption is satisfied.

Clearly, we have

307
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| f (y)− f (x)−〈∇ f (x),y− x〉| ≤ L
2‖y− x‖2, ∀x,y ∈ Rn. (6.1.2)

If, in addition, f (·) is convex, then

f (y)− f (x)−〈∇ f (x),y− x〉 ≥ 1
2L‖∇ f (y)−∇ f (x)‖2, (6.1.3)

and

〈∇ f (y)−∇ f (x),y− x〉 ≥ 1
L‖∇ f (y)−∇ f (x)‖2, ∀x,y ∈ Rn. (6.1.4)

However, different from the standard NLP, we assume throughout this section that
we only have access to noisy function values or gradients about the objective function
f in (6.1.1). In particular, in the basic setting, we assume that problem (6.1.1) is to
be solved by iterative algorithms which acquire the gradients of f via subsequent
calls to a stochastic first-order oracle (SFO). At iteration k of the algorithm, xk
being the input, the SFO outputs a stochastic gradient G(xk,ξk), where ξk, k ≥ 1, are
random variables whose distributions Pk are supported on Ξk ⊆ Rd . The following
assumptions are made for the Borel functions G(xk,ξk).

Assumption 13 For any k ≥ 1, we have

a) E[G(xk,ξk)] = ∇ f (xk), (6.1.5)
b) E

[
‖G(xk,ξk)−∇ f (xk)‖2]≤ σ

2, (6.1.6)

for some parameter σ ≥ 0.

Observe that, by (6.1.5), G(xk,ξk) is an unbiased estimator of ∇ f (xk) and, by (6.1.6),
the variance of the random variable ‖G(xk,ξk)−∇ f (xk)‖ is bounded. It is worth
noting that in the standard setting for SP, the random vectors ξk, k = 1,2, . . ., are
independent of each other (and also of xk). Our assumption here is slightly weaker
since we do not need to assume ξk, k = 1,2, . . ., to be independent.

Our study on the aforementioned SP problems has been motivated by a few
interesting applications which are briefly outlined as follows.

• In many machine learning problems, we intend to minimize a regularized loss
function f (·) given by

f (x) =
∫

Ξ

L(x,ξ )dP(ξ )+ r(x), (6.1.7)

where either the loss function L(x,ξ ) or the regularization r(x) is nonconvex.
• Another important class of problems originate from the so-called endogenous

uncertainty in SP. More specifically, the objective functions for these SP problems
are given in the form of

f (x) =
∫

Ξ(x)
F(x,ξ )dPx(ξ ), (6.1.8)



6.1 Unconstrained nonconvex stochastic optimization 309

where the support Ξ(x) and the distribution function Px of the random vector ξ

depend on x. The function f in (6.1.8) is usually nonconvex even if F(x,ξ ) is
convex with respect to x. For example, if the support Ξ does not depend on x, it is
often possible to represent dPx = H(x)dP for some fixed distribution P. Typically
this transformation results in a nonconvex integrand function. Other techniques
have also been developed to compute unbiased estimators for the gradient of f (·)
in (6.1.8).

• Finally, in simulation-based optimization, the objective function is given by
f (x) = Eξ [F(x,ξ )], where F(·,ξ ) is not given explicitly, but through a black-box
simulation procedure. Therefore, we do not know if the function f is convex or not.
Moreover, in these cases, we usually only have access to stochastic zeroth-order
information about the function values of f (·) rather than its gradients.

The complexity of the gradient descent method for solving problem (6.1.1) has
been well-understood under the deterministic setting (i.e., σ = 0 in (6.1.6)). In
particular, it is well-known that after running the method for at most N = O(1/ε)
steps, we have mink=1,...,N ‖∇ f (xk)‖2 ≤ ε . Note, however, such an analysis is not
applicable to the stochastic setting (i.e., σ > 0 in (6.1.6)). Moreover, even if we have
mink=1,...,N ‖∇ f (xk)‖2 ≤ ε , to find the best solution from {x1, . . . ,xN} is still difficult
since ‖∇ f (xk)‖ is not known exactly. This section proceeds as follows. Firstly, to
solve the aforementioned nonconvex SP problem, we present a randomized stochastic
gradient descent (RSGD) method by introducing the following modifications to the
classical stochastic gradient descent. Instead of taking average of the iterates as
in the stochastic mirror descent for convex SP, we randomly select a solution x̄
from {x1, . . . ,xN} according to a certain probability distribution as the output. We
show that such a solution satisfies E[‖∇ f (x̄)‖2]≤ ε after running the method for at
most N = O(1/ε2) iterations. Moreover, if f (·) is convex, we show that the relation
E[ f (x̄)− f ∗]≤ ε always holds. We demonstrate that such a complexity result is nearly
optimal for solving convex SP problems (see the discussions after Corollary 6.1).
It should not be too surprising to see that the complexity for the stochastic case is
much worse than that for the deterministic case. For example, in the convex case,
it is known from the previous chapter that the complexity for finding an solution x̄
satisfying f (x̄)− f ∗ ≤ ε will be substantially increased from O(1/

√
ε) to O(1/ε2)

as one moves from the deterministic to stochastic setting.
Secondly, in order to improve the large deviation properties and hence the relia-

bility of the RSGD method, we present a two-phase randomized stochastic gradient
descent (2-RSGD) method by introducing a post-optimization phase to evaluate a
short list of solutions generated by several independent runs of the RSGD method. We
show that the complexity of the 2-RSGD method for computing an (ε,Λ)-solution
of problem (6.1.1), i.e., a point x̄ such that Prob{‖∇ f (x̄)‖2 ≤ ε} ≥ 1−Λ for some
ε > 0 and Λ ∈ (0,1), can be bounded by

O
{

log(1/Λ)σ2

ε

[
1
ε
+ log(1/Λ)

Λ

]}
.

We further show that, under certain light-tail assumption about the SFO, the above
complexity bound can be reduced to
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O
{

log(1/Λ)σ2

ε

( 1
ε
+ log 1

Λ

)}
.

Thirdly, we specialize the RSGD method for the case where only stochastic
zeroth-order information is available. There exists a somewhat long history for the
development of zeroth-order (or derivative-free) methods in nonlinear programming.
However, only few complexity results are available for these types of methods,
mostly for convex programming and deterministic nonconvex programming problems.
By incorporating a Gaussian smoothing technique into the aforementioned RSGD
method, we present a randomized stochastic gradient free (RSGF) method for solving
a class of simulation-based optimization problems and demonstrate that its iteration
complexity for finding the aforementioned ε-solution (i.e., E[‖∇ f (x̄)‖2]≤ ε) can be
bounded by O(n/ε2). Moreover, the same RSGF algorithm possesses an O(n/ε2)
complexity bound, in terms of E[ f (x̄)− f ∗] ≤ ε , for solving smooth convex SP
problems.

6.1.1 Stochastic first-order methods

Our goal in this section is to present and analyze a new class of SGD algorithms
for solving general smooth nonlinear (possibly nonconvex) SP problems. More
specifically, we present the RSGD method and establish its convergence properties in
Subsection 6.1.1.1, and then introduce the 2-RSGD method which can significantly
improve the large-deviation properties of the RSGD method in Subsection 6.1.1.2.

We assume throughout this section that Assumption 13 holds. In some cases,
Assumption 13 is augmented by the following “light-tail” assumption.

Assumption 14 For any x ∈ Rn and k ≥ 1, we have

E
[
exp{‖G(x,ξk)−∇ f (x)‖2/σ

2}
]
≤ exp{1}. (6.1.9)

It can be easily seen that Assumption 14 implies Assumption 13.b) by Jensen’s
inequality.

6.1.1.1 The randomized stochastic gradient method

The convergence of existing SGD methods requires f (·) to be convex. Moreover, in
order to guarantee the convexity of f (·), one often need to assume that the random
variables ξk, k≥ 1, to be independent of the search sequence {xk}. Below we present a
new SGD-type algorithm that can deal with both convex and nonconvex SP problems,
and allow random noises to be dependent on the search sequence. This algorithm is
obtained by incorporating a certain randomization scheme into the classical SGD
method.

A randomized stochastic gradient (RSGD) method
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Input: Initial point x1, iteration limit N, stepsizes {γk}k≥1 and probability mass
function PR(·) supported on {1, . . . ,N}.
Step 0. Let R be a random variable with probability mass function PR.
Step k = 1, . . . ,R. Call the stochastic first-order oracle for computing G(xk,ξk)
and set

xk+1 = xk− γkG(xk,ξk). (6.1.10)

Output xR.

A few remarks about the above RSGD method are in order. Firstly, in comparison
with the classical SGD, we have used a random iteration count, R, to terminate the
execution of the RSGD algorithm. Equivalently, one can view such a randomiza-
tion scheme from a slightly different perspective described as follows. Instead of
terminating the algorithm at the R-th step, one can also run the RSGD algorithm
for N iterations but randomly choose a search point xR (according to PR) from its
trajectory as the output of the algorithm. Clearly, using the latter scheme, we just
need to run the algorithm for the first R iterations and the remaining N−R iterations
are surpluses. Note however, that the primary goal to introduce the random iteration
count R is to derive new complexity results for nonconvex SP, rather than save the
computational efforts in the last N−R iterations of the algorithm. Indeed, if R is
uniformly distributed, the computational gain from such a randomization scheme is
simply a factor of 2. Secondly, the RSGD algorithm described above is conceptual
only because we have not specified the selection of the stepsizes {γk} and the proba-
bility mass function PR yet. We will address this issue after establishing some basic
convergence properties of the RSGD method.

The following result describes some convergence properties of the RSGD method.

Theorem 6.1. Suppose that the stepsizes {γk} and the probability mass function
PR(·) in the RSGD method are chosen such that γk < 2/L and

PR(k) := Prob{R = k}= 2γk−Lγ2
k

∑
N
k=1(2γk−Lγ2

k )
, k = 1, ...,N. (6.1.11)

Then, under Assumption 13,

a) for any N ≥ 1, we have

1
LE[‖∇ f (xR)‖2]≤ D2

f +σ2∑
N
k=1γ2

k

∑
N
k=1(2γk−Lγ2

k )
, (6.1.12)

where the expectation is taken with respect to R and ξ[N] := (ξ1, ...,ξN),

D f :=
[

2( f (x1)− f ∗)
L

] 1
2
, (6.1.13)

and f ∗ denotes the optimal value of problem (6.1.1);
b) if, in addition, problem (6.1.1) is convex with an optimal solution x∗, then, for any

N ≥ 1,
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E[ f (xR)− f ∗]≤ D2
X+σ2∑

N
k=1γ2

k

∑
N
k=1(2γk−Lγ2

k )
, (6.1.14)

where the expectation is taken with respect to R and ξ[N], and

DX := ‖x1− x∗‖. (6.1.15)

Proof. Denote δk ≡ G(xk,ξk)−∇ f (xk), k ≥ 1. We first show part a). Using the
assumption that f ∈ C 1,1

L (Rn), (6.1.2) and (6.1.10), we have, for any k = 1, . . . ,N,

f (xk+1) ≤ f (xk)+ 〈∇ f (xk),xk+1− xk〉+ L
2 γ

2
k ‖G(xk,ξk)‖2

= f (xk)− γk〈∇ f (xk),G(xk,ξk)〉+ L
2 γ

2
k ‖G(xk,ξk)‖2

= f (xk)− γk‖∇ f (xk)‖2− γk〈∇ f (xk),δk〉
+L

2 γ
2
k
[
‖∇ f (xk)‖2 +2〈∇ f (xk),δk〉+‖δk‖2]

= f (xk)−
(
γk− L

2 γ
2
k
)
‖∇ f (xk)‖2

−
(
γk−Lγ

2
k
)
〈∇ f (xk),δk〉+ L

2 γ
2
k ‖δk‖2. (6.1.16)

Summing up the above inequalities and re-arranging the terms, we obtain

∑
N
k=1
(
γk− L

2 γ
2
k
)
‖∇ f (xk)‖2 ≤ f (x1)− f (xN+1)−∑

N
k=1
(
γk−Lγ

2
k
)
〈∇ f (xk),δk〉

+L
2 ∑

N
k=1γ

2
k ‖δk‖2

≤ f (x1)− f ∗−∑
N
k=1
(
γk−Lγ

2
k
)
〈∇ f (xk),δk〉

+L
2 ∑

N
k=1γ

2
k ‖δk‖2, (6.1.17)

where the last inequality follows from the fact that f (xN+1) ≥ f ∗. Note that the
search point xk is a function of the history ξ[k−1] of the generated random process and
hence is random. Taking expectations (with respect to ξ[N]) on both sides of (6.1.17)
and noting that under Assumption 13, E[‖δk‖2]≤ σ2, and

E[〈∇ f (xk),δk〉|ξ[k−1]] = 0, (6.1.18)

we obtain

∑
N
k=1
(
γk− L

2 γ
2
k
)
Eξ[N]
‖∇ f (xk)‖2 ≤ f (x1)− f ∗+ Lσ2

2 ∑
N
k=1γ

2
k (6.1.19)

Dividing both sides of the above inequality by L∑
N
k=1
(
γk−Lγ2

k /2
)

and noting that

E[‖∇ f (xR)‖2] = ER,ξ[N]
[‖∇ f (xR)‖2] =

∑
N
k=1(2γk−Lγ2

k )Eξ[N]
‖∇ f (xk)‖2

∑
N
k=1(2γk−Lγ2

k )
,

we conclude

1
LE[‖∇ f (xR)‖2]≤ 1

∑
N
k=1(2γk−Lγ2

k )

[
2( f (x1)− f ∗)

L +σ
2
∑

N
k=1γ

2
k

]
,
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which, in view of (6.1.13), clearly implies (6.1.12).
We now show that part b) holds. Denote νk ≡ ‖xk− x∗‖. First observe that, for

any k = 1, . . . ,N,

ν
2
k+1 = ‖xk− γkG(xk,ξk)− x∗‖2

= ν
2
k −2γk〈G(xk,ξk),xk− x∗〉+ γ

2
k ‖G(xk,ξk)‖2

= ν
2
k −2γk〈∇ f (xk)+δk,xk− x∗〉+ γ

2
k
(
‖∇ f (xk)‖2 +2〈∇ f (xk),δk〉+‖δk‖2) .

Moreover, in view of (6.1.4) and the fact that ∇ f (x∗) = 0, we have

1
L‖∇ f (xk)‖2 ≤ 〈∇ f (xk),xk− x∗〉. (6.1.20)

Combining the above two relations, we obtain, for any k = 1, . . . ,N,

ν
2
k+1 ≤ ν

2
k − (2γk−Lγ

2
k )〈∇ f (xk),xk− x∗〉−2γk〈xk− γk∇ f (xk)− x∗,δk〉+ γ

2
k ‖δk‖2

≤ ν
2
k − (2γk−Lγ

2
k )[ f (xk)− f ∗]−2γk〈xk− γk∇ f (xk)− x∗,δk〉+ γ

2
k ‖δk‖2,

where the last inequality follows from the convexity of f (·) and the fact that γk ≤ 2/L.
Summing up the above inequalities and re-arranging the terms, we have

∑
N
k=1(2γk−Lγ

2
k )[ f (xk)− f ∗] ≤ ν

2
1 −ν

2
N+1−2∑

N
k=1γk〈xk− γk∇ f (xk)− x∗,δk〉

+∑
N
k=1γ

2
k ‖δk‖2

≤ D2
X −2∑

N
k=1γk〈xk− γk∇ f (xk)− x∗,δk〉

+∑
N
k=1γ

2
k ‖δk‖2,

where the last inequality follows from (6.1.15) and the fact that νN+1 ≥ 0. The rest
of the proof is similar to that of part a) and hence the details are skipped.

We now describe a possible strategy for the selection of the stepsizes {γk} in the
RSGD method. For the sake of simplicity, let us assume that a constant stepsize policy
is used, i.e., γk = γ , k = 1, . . . ,N, for some γ ∈ (0,2/L). Note that the assumption
of constant stepsizes does not hurt the efficiency estimate of the RSGD method.
The following corollary of Theorem 6.1 is obtained by appropriately choosing the
parameter γ .

Corollary 6.1. Suppose that the stepsizes {γk} are set to

γk = min
{

1
L ,

D̃
σ
√

N

}
,k = 1, . . . ,N, (6.1.21)

for some D̃> 0. Also assume that the probability mass function PR(·) is set to (6.1.11).
Then, under Assumption 13, we have

1
LE[‖∇ f (xR)‖2]≤BN :=

LD2
f

N +

(
D̃+

D2
f

D̃

)
σ√
N
, (6.1.22)
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where D f is defined in (6.1.13). If, in addition, problem (6.1.1) is convex with an
optimal solution x∗, then

E[ f (xR)− f ∗]≤ LD2
X

N +
(

D̃+
D2

X
D̃

)
σ√
N
, (6.1.23)

where DX is defined in (6.1.15).

Proof. Noting that by (6.1.21), we have

D2
f +σ2∑

N
k=1γ2

k

∑
N
k=1(2γk−Lγ2

k )
=

D2
f +Nσ2γ2

1
Nγ1(2−Lγ1)

≤ D2
f +Nσ2γ2

1
Nγ1

=
D2

f
Nγ1

+σ
2
γ1

≤ D2
f

N max
{

L, σ
√

N
D̃

}
+σ

2 D̃
σ
√

N

≤ LD2
f

N +

(
D̃+

D2
f

D̃

)
σ√
N
,

which together with (6.1.12) then imply (6.1.22). Relation (6.1.23) follows similarly
from the above inequality (with D f replaced by DX ) and (6.1.14).

We now make a few remarks about the results obtained in Theorem 6.1 and
Corollary 6.1. Firstly, as can be seen from (6.1.19), instead of randomly selecting a
solution xR from {x1, . . . ,xN}, another possibility would be to output the solution x̂N
such that

‖∇ f (x̂N)‖= min
k=1,...,N

‖∇ f (xk)‖. (6.1.24)

We can show that E‖∇ f (x̂N)‖ goes to zero with similar rates of convergence as
in (6.1.12) and (6.1.22). However, to use this strategy would require some extra
computational effort to compute ‖∇ f (xk)‖ for all k = 1, . . . ,N. Since ‖∇ f (xk)‖
cannot be computed exactly, to estimate them by using Monte-carlo simulation
would incur additional approximation errors and raise some reliability issues. On the
other hand, the above RSGD method does not require any extra computational effort
for estimating the gradients ‖∇ f (xk)‖, k = 1, . . . ,N.

Secondly, observe that in the stepsize policy (6.1.21), we need to specify a param-
eter D̃. While the RSGD method converges for any arbitrary D̃ > 0, it can be easily
seen from (6.1.22) and (6.1.23) that an optimal selection of D̃ would be D f and DX ,
respectively, for solving nonconvex and convex SP problems. With such selections,
the bounds in (6.1.22) and (6.1.23), respectively, reduce to

1
LE[‖∇ f (xR)‖2]≤ LD2

f
N +

2D f σ√
N
. (6.1.25)

and
E[ f (xR)− f ∗]≤ LD2

X
N + 2DX σ√

N
. (6.1.26)

Note however, that the exact values of D f or DX are rarely known a priori and one
often needs to set D̃ to a suboptimal value, e.g., certain upper bounds on D f or DX .
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Thirdly, a possible drawback for the above RSGD method is that one needs to
estimate L to obtain an upper bound on γk (see, e.g., (6.1.21)), which will also
possibly affect the selection of PR (see (6.1.11)). Note that similar requirements also
exist for some deterministic first-order methods (e.g., gradient descent descent and
accelerated gradient descent methods). While under the deterministic setting, one
can somehow relax such requirements by using certain line-search procedures to
enhance the practical performance of these methods, it is more difficult to devise
similar line-search procedures for the stochastic setting, since the exact values of
f (xk) and ∇ f (xk) are not available. It should be noted, however, that we do not need
very accurate estimate for L in the RSGD method. Indeed, it can be easily checked
that the RSGD method exhibits an O(1/

√
N) rate of convergence if the stepsizes

{γk} are set to
min

{
1

qL ,
D̃

σ
√

N

}
, k = 1, . . . ,N

for any q ∈ [1,
√

N]. In other words, we can overestimate the value of L by a factor
up to

√
N and the resulting RSGD method still exhibits similar rate of convergence.

A common practice in stochastic optimization is to estimate L by using the stochastic
gradients computed at a small number of trial points. It is also worth noting that,
although in general the selection of PR will depend on γk and hence on L, such a
dependence is not necessary in some special cases. In particular, if the stepsizes {γk}
are chosen according to a constant stepsize policy (e.g., (6.1.21)), then R is uniformly
distributed on {1, . . . ,N}. It should be stressed that the persisting dependency of
the stepsize on the Lipschitz constant seems essentially impossible to overcome at
present and it is a potentially challenging direction of future research for stochastic
methods.

Fourthly, it is interesting to note that the RSGD method allows us to have a unified
treatment for both nonconvex and convex SP problems in view of the specification of
{γk} and PR(·) (c.f., (6.1.11) and (6.1.21)). Recall from Chapter 4 that the optimal
rate of convergence for solving smooth convex SP problems is given by

O
(

LD2
X

N2 + DX σ√
N

)
.

Comparing (6.1.26) with the above bound, the RSGD method possesses a nearly
optimal rate of convergence, since the second term in (6.1.26) is unimprovable while
the first term in (6.1.26) can be much improved.

Finally, observe that we can use different stepsize policy other than the constant
one in (6.1.21). In particular, it can be shown that the RSGD method with the
following two stepsize policies will exhibit similar rates of convergence as those in
Corollary 6.1.

• Increasing stepsize policy:

γk = min
{

1
L ,

D̃
√

k
σN

}
,k = 1, . . . ,N.

• Decreasing stepsize policy:
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γk = min
{

1
L ,

D̃
σ(kN)1/4

}
,k = 1, . . . ,N.

Intuitively speaking, one may want to choose decreasing stepsizes which, according
to the definition of PR(·) in (6.1.11), can stop the algorithm earlier. On the other hand,
as the algorithm moves forward and local information about the gradient gets better,
choosing increasing stepsizes might be a better option. We expect that the practical
performance of these stepsize policies will depend on each problem instance to be
solved.

While Theorem 6.1 and Corollary 6.1 establish the expected convergence per-
formance over many runs of the RSGD method, we are also interested in the large-
deviation properties for a single run of this method. In particular, we are interested in
establishing its complexity for computing an (ε,Λ)-solution of problem (6.1.1), i.e.,
a point x̄ satisfying Prob{‖∇ f (x̄)‖2 ≤ ε} ≥ 1−Λ for some ε > 0 and Λ ∈ (0,1). By
using (6.1.22) and Markov’s inequality, we have

Prob
{
‖∇ f (xR)‖2 ≥ λLBN

}
≤ 1

λ
, ∀λ > 0. (6.1.27)

It then follows that the number of calls to SFO performed by the RSGD method for
finding an (ε,Λ)-solution, after disregarding a few constant factors, can be bounded
by

O
{

1
Λε

+ σ2

Λ 2ε2

}
. (6.1.28)

The above complexity bound is rather pessimistic in terms of its dependence on Λ .
We will investigate one possible way to significantly improve it in next subsection.

6.1.1.2 A two-phase randomized stochastic gradient method

In this subsection, we describe a variant of the RSGD method which can considerably
improve the complexity bound in (6.1.28). This procedure consists of two phases: an
optimization phase used to generate a list of candidate solutions via a few independent
runs of the RSGD method and a post-optimization phase in which a solution is
selected from this candidate list.

A two-phase RSGD (2-RSGD) method

Input: Initial point x1, number of runs S, iteration limit N, and sample size T .
Optimization phase:

For s = 1, . . . ,S

Call the RSGD method with input x1, iteration limit N, stepsizes {γk} in
(6.1.21) and probability mass function PR in (6.1.11). Let x̄s be the output of
this procedure.

Post-optimization phase:
Choose a solution x̄∗ from the candidate list {x̄1, . . . , x̄S} such that
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‖g(x̄∗)‖= min
s=1,...,S

‖g(x̄s)‖, g(x̄s) := 1
T ∑

T
k=1G(x̄s,ξk), (6.1.29)

where G(x,ξk), k = 1, . . . ,T , are the stochastic gradients returned by the SFO.

Observe that in (6.1.29), we define the best solution x̄∗ as the one with the smallest
value of ‖g(x̄s)‖, s = 1, . . . ,S. Alternatively, one can choose x̄∗ from {x̄1, . . . , x̄S}
such that

f̃ (x̄∗) = min
1,...,S

f̃ (x̄s), f̃ (x̄s) =
1
T ∑

T
k=1F(x̄s,ξk). (6.1.30)

In the 2-RSGD method described above, the number of calls to the SFO are given
by S×N and S×T , respectively, for the optimization phase and post-optimization
phase. Also note that we can possibly recycle the same sequence {ξk} across all
gradient estimations in the post-optimization phase of 2-RSGD method. We will
provide in Theorem 6.2 below certain bounds on S, N and T , to compute an (ε,Λ)-
solution of problem (6.1.1).

We need the following results regarding the large deviations of vector valued
martingales.

Lemma 6.1. Assume that we are given a polish space with Borel probability measure
µ and a sequence of F0 = { /0,Ω} ⊆F1 ⊆F2 ⊆ . . . of σ -sub-algebras of Borel
σ -algebra of Ω . Let ζi ∈ Rn, i = 1, . . . ,∞, be a martingale-difference sequence of
Borel functions on Ω such that ζi is Fi measurable and E[ζi|i− 1] = 0, where
E[·|i], i = 1,2, . . ., denotes the conditional expectation w.r.t. Fi and E≡ E[·|0] is the
expectation w.r.t. µ .

a) If E[‖ζi‖2]≤ σ2
i for any i≥ 1, then E[‖∑N

i=1ζi‖2]≤ ∑
N
i=1σ2

i . As a consequence,
we have

∀N ≥ 1,λ ≥ 0 : Prob
{
‖∑N

i=1ζi‖2 ≥ λ∑
N
i=1σ

2
i
}
≤ 1

λ
;

b) If E
{

exp
(
‖ζi‖2/σ2

i
)
|i−1

}
≤ exp(1) almost surely for any i≥ 1, then

∀N ≥ 1,λ ≥ 0 : Prob
{
‖∑N

i=1ζi‖ ≥
√

2(1+λ )
√

∑
N
i=1σ2

i

}
≤ exp(−λ

2/3).

Proof. TBD.

We are now ready to describe the main convergence properties of the 2-RSGD
method. More specifically, Theorem 6.2.a) below shows the convergence rate of
this algorithm for a given set of parameters (S,N,T ), while Theorem 6.2.b) estab-
lishes the complexity of the 2-RSGD method for computing an (ε,Λ)-solution of
problem (6.1.1).

Theorem 6.2. Under Assumption 13, the following statements hold for the 2-RSGD
method applied to problem (6.1.1).

a) Let BN be defined in (6.1.22). We have

Prob
{
‖∇ f (x̄∗)‖2 ≥ 2

(
4LBN + 3λσ2

T

)}
≤ S+1

λ
+2−S, ∀λ > 0; (6.1.31)
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b) Let ε > 0 and Λ ∈ (0,1) be given. If the parameters (S,N,T ) are set to

S = S(Λ) := dlog(2/Λ)e , (6.1.32)

N = N(ε) :=

⌈
max

{
32L2D2

f
ε

,

[
32L

(
D̃+

D2
f

D̃

)
σ

ε

]2
}⌉

, (6.1.33)

T = T (ε,Λ) :=
⌈

24(S+1)σ2

Λε

⌉
, (6.1.34)

then the 2-RSGD method can compute an (ε,Λ)-solution of problem (6.1.1) after
taking at most

S(Λ) [N(ε)+T (ε,Λ)] (6.1.35)

calls to the stochastic first-order oracle.

Proof. We first show part a). Observe that by the definition of x̄∗ in (6.1.29), we
have

‖g(x̄∗)‖2 = min
s=1,...,S

‖g(x̄s)‖2 = min
s=1,...,S

‖∇ f (x̄s)+g(x̄s)−∇ f (x̄s)‖2

≤ min
s=1,...,S

{
2‖∇ f (x̄s)‖2 +2‖g(x̄s)−∇ f (x̄s)‖2}

≤ 2 min
s=1,...,S

‖∇ f (x̄s)‖2 +2 max
s=1,...,S

‖g(x̄s)−∇ f (x̄s)‖2,

which implies that

‖∇ f (x̄∗)‖2 ≤ 2‖g(x̄∗)‖2 +2‖∇ f (x̄∗)−g(x̄∗)‖2 ≤ 4 min
s=1,...,S

‖∇ f (x̄s)‖2

+4 max
s=1,...,S

‖g(x̄s)−∇ f (x̄s)‖2 +2‖∇ f (x̄∗)−g(x̄∗)‖2. (6.1.36)

We now provide certain probabilistic upper bounds to the three terms in the right hand
side of the above inequality. Firstly, using the fact that x̄s, 1≤ s≤ S, are independent
and relation (6.1.27) (with λ = 2), we have

Prob
{

min
s=1,...,S

‖∇ f (x̄s)‖2 ≥ 2LBN

}
=

S

∏
s=1

Prob
{
‖∇ f (x̄s)‖2 ≥ 2LBN

}
≤ 2−S.

(6.1.37)
Moreover, denoting δs,k =G(x̄s,ξk)−∇ f (x̄s), k= 1, . . . ,T , we have g(x̄s)−∇ f (x̄s)=

∑
T
k=1δs,k/T . Using this observation, Assumption 13 and Lemma 6.1.a), we conclude

that, for any s = 1, . . . ,S,

Prob
{
‖g(x̄s)−∇ f (x̄s)‖2 ≥ λσ2

T

}
= Prob

{
‖∑T

k=1δs,k‖2 ≥ λT σ
2}≤ 1

λ
, ∀λ > 0,

which implies that

Prob
{

max
s=1,...,S

‖g(x̄s)−∇ f (x̄s)‖2 ≥ λσ2

T

}
≤ S

λ
, ∀λ > 0, (6.1.38)
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and that
Prob

{
‖g(x̄∗)−∇ f (x̄∗)‖2 ≥ λσ2

T

}
≤ 1

λ
, ∀λ > 0. (6.1.39)

The result then follows by combining relations (6.1.36), (6.1.37), (6.1.38) and
(6.1.39).

We now show that part b) holds. Since the 2-RSGD method needs to call the RSGD
method S times with iteration limit N(ε) in the optimization phase, and estimate the
gradients g(x̄s), s= 1, . . . ,S with sample size T (ε) in the post-optimization phase, the
total number of calls to the stochastic first-order oracle is bounded by S[N(ε)+T (ε)].
It remains to show that x̄∗ is an (ε,Λ)-solution of problem (6.1.1). Noting that by the
definitions of BN and N(ε), respectively, in (6.1.22) and (6.1.33), we have

BN(ε) =
LD2

f
N(ε) +

(
D̃+

D2
f

D̃

)
σ√
N(ε)
≤ ε

32L + ε

32L = ε

16L .

Using the above observation, (6.1.34) and setting λ = [2(S+1)]/Λ in (6.1.31), we
have

4LBN(ε)+
3λσ2

T (ε) = ε

4 +
λΛε

8(S+1) =
ε

2 ,

which, together with relations (6.1.31) and (6.1.32), and the selection of λ , then
imply that

Prob
{
‖∇ f (x̄∗)‖2 ≥ ε

}
≤ Λ

2 +2−S ≤Λ .

It is interesting to compare the complexity bound in (6.1.35) with the one in
(6.1.28). In view of (6.1.32), (6.1.33) and (6.1.34), the complexity bound in (6.1.35),
after disregarding a few constant factors, is equivalent to

O
{

log(1/Λ)
ε

+ σ2

ε2 log 1
Λ
+ log2(1/Λ)σ2

Λε

}
. (6.1.40)

The above bound can be considerably smaller than the one in (6.1.28) up to a factor of
1/
[
Λ 2 log(1/Λ)

]
, when the second terms are the dominating ones in both bounds.

The following result shows that the bound (6.1.35) obtained in Theorem 6.2 can
be further improved under certain light-tail assumption of SFO.

Corollary 6.2. Under Assumptions 13 and 14, the following statements hold for the
2-RSGD method applied to problem (6.1.1).

a) Let BN is defined in (6.1.22). We have, ∀λ > 0,

Prob
{
‖∇ f (x̄∗)‖2 ≥ 4

[
2LBN +3(1+λ )2 σ2

T

]}
≤ (S+1)exp(−λ

2/3)+2−S;
(6.1.41)

b) Let ε > 0 and Λ ∈ (0,1) be given. If S and N are set to S(Λ) and N(ε) as in
(6.1.32) and (6.1.33), respectively, and the sample size T is set to
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T = T ′(ε,Λ) := 24σ2

ε

[
1+
(

3ln 2(S+1)
Λ

) 1
2
]2

, (6.1.42)

then the 2-RSGD method can compute an (ε,Λ)-solution of problem (6.1.1) in at
most

S(Λ)
[
N(ε)+T ′(ε,Λ)

]
(6.1.43)

calls to the stochastic first-order oracle.

Proof. We provide the proof of part a) only, since part b) follows immediately from
part a) and an argument similar to the one used in the proof of Theorem 6.2.b). Denot-
ing δs,k = G(x̄s,ξk)−∇ f (x̄s), k = 1, . . . ,T , we have g(x̄s)−∇ f (x̄s) = ∑

T
k=1δs,k/T .

Using this observation, Assumption 14 and Lemma 6.1.b), we conclude that, for any
s = 1, . . . ,S and λ > 0,

Prob
{
‖g(x̄s)−∇ f (x̄s)‖2 ≥ 2(1+λ )2 σ2

T

}

= Prob
{
‖∑T

k=1δs,k‖ ≥
√

2T (1+λ )σ
}
≤ exp(−λ 2/3),

which implies that

Prob
{

max
s=1,...,S

‖g(x̄s)−∇ f (x̄s)‖2 ≥ 2(1+λ )2 σ2

T

}
≤ Sexp(−λ

2/3), ∀λ > 0.

(6.1.44)
and that

Prob
{
‖g(x̄∗)−∇ f (x̄∗)‖2 ≥ 2(1+λ )2 σ2

T

}
≤ exp(−λ

2/3), ∀λ > 0. (6.1.45)

The result in part a) then follows by combining relations (6.1.36), (6.1.37), (6.1.44)
and (6.1.45).

In view of (6.1.32), (6.1.33) and (6.1.42), the bound in (6.1.43), after disregarding
a few constant factors, is equivalent to

O
{

log(1/Λ)
ε

+ σ2

ε2 log 1
Λ
+ log2(1/Λ)σ2

ε

}
. (6.1.46)

Clearly, the third term of the above bound is significantly smaller than the corre-
sponding one in (6.1.40) by a factor of 1/Λ .

6.1.2 Stochastic zeroth-order methods

Our problem of interest in this section is problem (6.1.1) with f given in the form of
expectation, i.e.,

f ∗ := inf
x∈Rn

{
f (x) :=

∫

Ξ

F(x,ξ )dP(ξ )
}
. (6.1.47)
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Moreover, we assume that F(x,ξ ) ∈ C 1,1
L (Rn) almost surely, which clearly implies

f (x) ∈ C 1,1
L (Rn). Our goal in this subsection is to specialize the RSGD and 2-RSGD

method, respectively, in Subsections 6.1.2.1 and 6.1.2.2, to deal with the situation
when only stochastic zeroth-order information of f is available.

6.1.2.1 The randomized stochastic gradient free method

Throughout this section, we assume that f is represented by a stochastic zeroth-order
oracle (SZO). More specifically, at the k-th iteration, xk and ξk being the input, the
SZO outputs the quantity F(xk,ξk) such that the following assumption holds:

Assumption 15 For any k ≥ 1, we have

E[F(xk,ξk)] = f (xk). (6.1.48)

To exploit zeroth-order information, we consider a smooth approximation of the
objective function f . It is well-known that the convolution of f with any nonnegative,
measurable and bounded function ψ : Rn → R satisfying

∫
Rn ψ(u)du = 1 is an

approximation of f which is at least as smooth as f . One of the most important
examples of the function ψ is the probability density function. Here, we use the
Gaussian distribution in the convolution. Let u be n-dimensional standard Gaussian
random vector and µ > 0 be the smoothing parameter. Then, a smooth approximation
of f is defined as

fµ(x) = 1
(2π)n/2

∫
f (x+µu)e−

1
2 ‖u‖

2
du = Eu[ f (x+µu)]. (6.1.49)

The following result describes some properties of fµ(·).

Lemma 6.2. If f ∈ C 1,1
L (Rn), then

a) fµ is also Lipschitz continuously differentiable with gradient Lipschitz constant
Lµ ≤ L and

∇ fµ(x) = 1

(2π)
n
2

∫
f (x+µv)− f (x)

µ
ve−

1
2 ‖v‖

2
dv. (6.1.50)

b) for any x ∈ Rn, we have

| fµ(x)− f (x)| ≤ µ2

2 Ln, (6.1.51)

‖∇ fµ(x)−∇ f (x)‖ ≤ µ

2 L(n+3)
3
2 , (6.1.52)

Ev

[∥∥∥ f (x+µv)− f (x)
µ

v
∥∥∥

2
]
≤ 2(n+4)‖∇ f (x)‖2 + µ2

2 L2(n+6)3.(6.1.53)

c) fµ is also convex provided f is convex.
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Proof. TBD
It immediately follows from (6.1.52) that

‖∇ fµ(x)‖2 ≤ 2‖∇ f (x)‖2 + µ2

2 L2(n+3)3, (6.1.54)

‖∇ f (x)‖2 ≤ 2‖∇ fµ(x)‖2 + µ2

2 L2(n+3)3. (6.1.55)

Moreover, denoting
f ∗µ := min

x∈Rn
fµ(x), (6.1.56)

we conclude from (6.1.57) that | f ∗µ − f ∗| ≤ µ2Ln/2 and hence that

−µ
2Ln≤ [ fµ(x)− f ∗µ ]− [ f (x)− f ∗]≤ µ

2Ln. (6.1.57)

Below we modify the RSGD method in subsection (6.1.1.1) to use stochastic
zeroth-order rather than first-order information for solving problem (6.1.47).

A randomized stochastic gradient free (RSGF) method

Input: Initial point x1, iteration limit N, stepsizes {γk}k≥1, probability mass
function PR(·) supported on {1, . . . ,N}.
Step 0. Let R be a random variable with probability mass function PR.
Step k = 1, . . . ,R. Generate uk by Gaussian random vector generator and call the
stochastic zeroth-order oracle for computing Gµ(xk,ξk,uk) given by

Gµ(xk,ξk,uk) =
F(xk+µuk,ξk)−F(xk,ξk)

µ
uk. (6.1.58)

Set
xk+1 = xk− γkGµ(xk,ξk,uk). (6.1.59)

Output xR.

Note that Gµ(xk,ξk,uk) is an unbiased estimator of ∇ fµ(xk). Indeed, by (6.1.50)
and Assumption 15, we have

Eξ ,u[Gµ(x,ξ ,u)] = Eu
[
Eξ [Gµ(x,ξ ,u)|u]

]
= ∇ fµ(x). (6.1.60)

Hence, if the variance σ̃2 ≡ Eξ ,u[‖Gµ(x,ξ ,u)−∇ fµ(x)‖2] is bounded, we can di-
rectly apply the convergence results in Theorem 6.1 to the above RSGF method.
However, there still exist a few problems in this approach. Firstly, we do not know
an explicit expression of the bound σ̃2. Secondly, this approach does not provide any
information regarding how to appropriately specify the smoothing parameter µ . The
latter issue is critical for the implementation of the RSGF method.

By applying the approximation results in Lemma 6.2 to the functions F(·,ξk),
k = 1, . . . ,N, and using a slightly different convergence analysis than the one in
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Theorem 6.1, we are able to obtain much refined convergence results for the above
RSGF method.

Theorem 6.3. Suppose that the stepsizes {γk} and the probability mass function
PR(·) in the RSGF method are chosen such that γk < 1/[2(n+4)L] and

PR(k) := Prob{R = k}= γk−2L(n+4)γ2
k

∑
N
k=1[γk−2L(n+4)γ2

k ]
, k = 1, ...,N. (6.1.61)

Then, under Assumptions 13 and 15,

a) for any N ≥ 1, we have

1
LE[‖∇ f (xR)‖2]≤ 1

∑
N
k=1[γk−2L(n+4)γ2

k ]

[
D2

f +2µ2(n+4)
(
1+L(n+4)2

∑
N
k=1(

γk
4 +Lγ2

k )
)
+2(n+4)σ2

∑
N
k=1γ2

k

]
,

(6.1.62)

where the expectation is taken with respect to R, ξ[N] and u[N], and D f is defined
in (6.1.13);

b) if, in addition, problem (6.1.47) is convex with an optimal solution x∗, then, for
any N ≥ 1,

E[ f (xR)− f ∗]≤ 1
2∑

N
k=1[γk−2(n+4)Lγ2

k ]

[
D2

X +2µ2L(n+4)

∑
N
k=1
[
γk +L(n+4)2γ2

k

]
+2(n+4)σ2

∑
N
k=1γ2

k

]
,

(6.1.63)

where the expectation is taken with respect to R, ξ[N] and u[N], and DX is defined
in (6.1.15).

Proof. Let ζk ≡ (ξk,uk), k ≥ 1, ζ[N] := (ζ1, ...,ζN), and Eζ [N] denote the ex-
pectation w.r.t. ζ[N]. Also denote ∆k ≡ Gµ(xk,ξk,uk)−∇ fµ(xk) ≡ Gµ(xk,ζk)−
∇ fµ(xk), k≥ 1. Using the fact that f ∈C 1,1

L (Rn), Lemma 6.2.a), (6.1.2) and (6.1.59),
we have, for any k = 1, . . . ,N,

fµ(xk+1) ≤ fµ(xk)− γk 〈∇ fµ(xk),Gµ(xk,ζk)〉+ L
2 γ2

k ‖Gµ(xk,ζk)‖2

= fµ(xk)− γk ‖∇ fµ(xk)‖2− γk 〈∇ fµ(xk),∆k〉
+L

2 γ2
k ‖Gµ(xk,ζk)‖2.

(6.1.64)

Summing up these inequalities, re-arranging the terms and noting that f ∗µ ≤ fµ(xN+1),
we obtain

∑
N
k=1γk ‖∇ fµ(xk)‖2≤ fµ(x1)− f ∗µ−∑

N
k=1γk 〈∇ fµ(xk),∆k〉+ L

2 ∑
N
k=1γ

2
k ‖Gµ(xk,ζk)‖2.

(6.1.65)
Now, observe that by (6.1.60),

E[〈∇ fµ(xk),∆k〉|ζ[k−1]] = 0. (6.1.66)

and that by the assumption F(·,ξk) ∈ C 1,1
L (Rn), (6.1.53) (with f = F(·,ξk)), and

(6.1.58),
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E[‖Gµ(xk,ζk)‖2|ζ[k−1]] ≤ 2(n+4)E[‖G(xk,ξk)‖2|ζ[k−1]]+
µ2

2 L2(n+6)3

≤ 2(n+4)
[
E[‖∇ f (xk)‖2|ζ[k−1]]+σ2

]

+ µ2

2 L2(n+6)3,
(6.1.67)

where the second inequality follows from Assumption 13. Taking expectations with
respect to ζ[N] on both sides of (6.1.65) and using the above two observations, we
obtain

∑
N
k=1γk Eζ [N]

[
‖∇ fµ(xk)‖2

]
≤ fµ(x1)− f ∗µ

+ L
2 ∑

N
k=1γ2

k

{
2(n+4)

[
Eζ [N][‖∇ f (xk)‖2]+σ2

]
+ µ2

2 L2(n+6)3
}
.

The above conclusion together with (6.1.54) and (6.1.57) then imply that

∑
N
k=1γk

[
Eζ [N][‖∇ f (xk)‖2]− µ2

2 L2(n+3)3
]
≤ 2 [ f (x1)− f ∗]+2µ2Ln

+2L(n+4)∑N
k=1γ2

k Eζ [N][‖∇ f (xk)‖2]+
[
2L(n+4)σ2 + µ2

2 L3(n+6)3
]

∑
N
k=1γ2

k .

(6.1.68)
By re-arranging the terms and simplifying the constants, we have

∑
N
k=1
{[

γk−2L(n+4)γ2
k

]
Eζ [N][‖∇ f (xk)‖2]

}

≤ 2 [ f (x1)− f ∗]+2L(n+4)σ2
∑

N
k=1γ2

k +2µ2Ln

+ µ2

2 L2
∑

N
k=1
[
(n+3)3γk +L(n+6)3γ2

k

]

≤ 2 [ f (x1)− f ∗]+2L(n+4)σ2
∑

N
k=1γ2

k
+2µ2L(n+4)

[
1+L(n+4)2

∑
N
k=1(

γk
4 +Lγ2

k )
]
.

(6.1.69)

Dividing both sides of the above inequality by ∑
N
k=1
[
γk−2L(n+4)γ2

k

]
and noting

that

E[‖∇ f (xR)‖2] = ER,ζ [N][‖∇ f (xR)‖2] =
∑

N
k=1{[γk−2L(n+4)γ2

k ]Eζ [N]‖∇ f (xk)‖2}
∑

N
k=1[γk−2L(n+4)γ2

k ]
,

we obtain (6.1.62).
We now show part b). Denote νk ≡ ‖xk− x∗‖. First observe that, for any k =

1, . . . ,N,

ν
2
k+1 = ‖xk− γkGµ(xk,ζk)− x∗‖2

= ν
2
k −2γk〈∇ fµ(xk)+∆k,xk− x∗〉+ γ

2
k ‖Gµ(xk,ζk)‖2.

and hence that

ν
2
N+1 = ν

2
1−2∑

N
k=1γk 〈∇ fµ(xk),xk−x∗〉−2∑

N
k=1γk 〈∆k,xk−x∗〉+∑

N
k=1γ

2
k ‖Gµ(xk,ζk)‖2.

Taking expectation w.r.t. ζζ [N] on both sides of the above equality, using relation
(6.1.67) and noting that by (6.1.60), E[〈∆k,xk− x∗〉|ζ[k−1]] = 0, we obtain
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Eζ [N][ν
2
N+1] ≤ ν

2
1 −2∑

N
k=1γk Eζ [N][〈∇ fµ(xk),xk− x∗〉]

+2(n+4)∑N
k=1γ

2
k Eζ [N][‖∇ f (xk)‖2]

+
[
2(n+4)σ2 + µ2

2 L2(n+6)3
]

∑
N
k=1γ

2
k

≤ ν
2
1 −2∑

N
k=1γk Eζ [N][ fµ(xk)− fµ(x∗)]

+2(n+4)L∑
N
k=1γ

2
k Eζ [N][ f (xk)− f ∗]

+
[
2(n+4)σ2 + µ2

2 L2(n+6)3
]

∑
N
k=1γ

2
k

≤ ν
2
1 −2∑

N
k=1γk Eζ [N]

[
f (xk)− f ∗−µ

2Ln
]

+2(n+4)L∑
N
k=1γ

2
k Eζ [N][ f (xk)− f ∗]

+
[
2(n+4)σ2 + µ2

2 L2(n+6)3
]

∑
N
k=1γ

2
k ,

where the second inequality follows from (6.1.20) and the convexity of fµ , and the
last inequality follows from (6.1.57). Re-arranging the terms in the above inequality,
using the facts that ν2

N+1 ≥ 0 and f (xk)≥ f ∗, and simplifying the constants, we have

2∑
N
k=1
[
γk−2(n+4)Lγ

2
k )
]
Eζ [N][ f (xk)− f ∗]

≤ 2∑
N
k=1
[
γk− (n+4)Lγ

2
k )
]
Eζ [N][ f (xk)− f ∗]

≤ ν
2
1 +2µ

2L(n+4)∑N
k=1γk +2(n+4)

[
L2

µ
2(n+4)2 +σ

2]
∑

N
k=1γ

2
k .

The rest of proof is similar to part a) and hence the details are skipped.

Similarly to the RSGD method, we can specialize the convergence results in
Theorem 6.3 for the RSGF method with a constant stepsize policy.

Corollary 6.3. Suppose that the stepsizes {γk} are set to

γk =
1√
n+4

min
{

1
4L
√

n+4
, D̃

σ
√

N

}
, k = 1, . . . ,N, (6.1.70)

for some D̃ > 0. Also assume that the probability mass function PR(·) is set to (6.1.61)
and µ is chosen such that

µ ≤ D f

(n+4)
√

2N
(6.1.71)

where D f and DX are defined in (6.1.13) and (6.1.15), respectively. Then, under
Assumptions 13 and 15, we have

1
LE[‖∇ f (xR)‖2]≤ B̄N :=

12(n+4)LD2
f

N + 4σ
√

n+4√
N

(
D̃+

D2
f

D̃

)
. (6.1.72)

If, in addition, problem (6.1.47) is convex with an optimal solution x∗ and µ is chosen
such that

µ ≤ DX√
(n+4)

,
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then,
E[ f (xR)− f ∗]≤ 5L(n+4)D2

X
N + 2σ

√
n+4√
N

(
D̃+

D2
X

D̃

)
. (6.1.73)

Proof. We prove (6.1.72) only since relation (6.1.73) can be shown by using
similar arguments. First note that by (6.1.70), we have

γk ≤ 1
4(n+4)L , k = 1, . . . ,N, (6.1.74)

∑
N
k=1
[
γk−2L(n+4)γ2

k
]
= Nγ1 [1−2L(n+4)γ1]≥ Nγ1

2 . (6.1.75)

Therefore, using the above inequalities and (6.1.62), we obtain

1
LE[‖∇ f (xR)‖2] ≤ 2D2

f +4µ2(n+4)
Nγ1

+µ
2L(n+4)3 +4(n+4)

[
µ

2L2(n+4)2 +σ
2]

γ1

≤ 2D2
f +4µ2(n+4)

N max
{

4L(n+4), σ
√

(n+4)N
D̃

}

+µ
2L(n+4)2 [(n+4)+1]+ 4

√
n+4D̃σ√

N
,

which, in view of (6.1.71), then implies that

1
LE[‖∇ f (xR)‖2] ≤ 2D2

f
N

[
1+ 1

(n+4)N

][
4L(n+4)+ σ

√
(n+4)N
D̃

]

+
LD2

f
2N [(n+4)+1]+ 4

√
n+4D̃σ√

N

=
LD2

f
N

[
17(n+4)

2 + 8
N + 1

2

]
+ 2σ

√
n+4√
N

[
D2

f
D̃

(
1+ 1

(n+4)N

)
+2D̃

]

≤ 12L(n+4)D2
f

N + 4σ
√

n+4√
N

(
D̃+

D2
f

D̃

)
.

A few remarks about the results obtained in Corollary 6.1 are in order. Firstly,
similar to the RSGD method, we use the same selection of stepsizes {γk} and
probability mass function PR(·) in RSGF method for both convex and nonconvex SP
problems. In particular, in view of (6.1.72), the iteration complexity of the RSGF
method for finding an ε-solution of problem (6.1.47) can be bounded by O(n/ε2).
Moreover, in view of (6.1.73), if the problem is convex, a solution x̄ satisfying
E[ f (x̄)− f ∗]≤ ε can also be found in O(n/ε2) iterations.

Secondly, we need to specify D̃ for the stepsize policy in (6.1.70). According to
(6.1.72) and (6.1.73), an optimal selection of D̃ would be D f and DX , respectively,
for the nonconvex and convex case. With such selections, the bounds in (6.1.72) and
(6.1.73), respectively, reduce to
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1
LE[‖∇ f (xR)‖2] ≤ 12(n+4)LD2

f
N +

8
√

n+4D f σ√
N

, (6.1.76)

E[ f (xR)− f ∗] ≤ 5L(n+4)D2
X

N + 4
√

n+4DX σ√
N

. (6.1.77)

Similarly to the RSGD method, we can establish the complexity of the RSGF
method for finding an (ε,Λ)-solution of problem (6.1.47) for some ε > 0 and
Λ ∈ (0,1). More specifically, by using (6.1.72) and Markov’s inequality, we have

Prob
{
‖∇ f (xR)‖2 ≥ λLB̄N

}
≤ 1

λ
, ∀λ > 0, (6.1.78)

which implies that the total number of calls to the SZO performed by the RSGF
method for finding an (ε,Λ)-solution of (6.1.47) can be bounded by

O

{
nL2D2

f
Λε

+ nL2

Λ 2

(
D̃+

D2
f

D̃

)2
σ2

ε2

}
. (6.1.79)

We will investigate a possible approach to improve the above complexity bound in
next subsection.

6.1.2.2 A two-phase randomized stochastic gradient free method

In this section, we modify the 2-RSGD method to improve the complexity bound in
(6.1.79) for finding an (ε,Λ)-solution of problem (6.1.47).

A two-phase RSGF (2-RSGF) method

Input: Initial point x1, number of runs S, iteration limit N, and sample size T .
Optimization phase:

For s = 1, . . . ,S

Call the RSGF method with input x1, iteration limit N, stepsizes {γk} in
(6.1.70), probability mass function PR in (6.1.61), and the smoothing parameter
µ satisfying (6.1.71). Let x̄s be the output of this procedure.

Post-optimization phase:
Choose a solution x̄∗ from the candidate list {x̄1, . . . , x̄S} such that

‖gµ(x̄∗)‖= min
s=1,...,S

‖gµ(x̄s)‖, gµ(x̄s) := 1
T ∑

T
k=1Gµ(x̄s,ξk,uk), (6.1.80)

where Gµ(x,ξ ,u) is defined in (6.1.58).

The main convergence properties of the 2-RSGF method are summarized in
Theorem 6.4. More specifically, Theorem 6.4.a) establishes the rate of convergence
of the 2-RSGF method with a given set of parameters (S,N,T ), while Theorem 6.4.b)
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shows the complexity of this method for finding an (ε,Λ)-solution of problem
(6.1.47).

Theorem 6.4. Under Assumptions 13 and 15, the following statements hold for the
2-RSGF method applied to problem (6.1.47).

a) Let B̄N be defined in (6.1.72). We have

Prob
{
‖∇ f (x̄∗)‖2 ≥ 8LB̄N +

3(n+4)L2D2
f

2N + 24(n+4)λ
T

[
LB̄N +

(n+4)L2D2
f

N +σ2
]}

≤ S+1
λ

+2−S, ∀λ > 0;
(6.1.81)

b) Let ε > 0 and Λ ∈ (0,1) be given. If S is set to S(Λ) as in (6.1.32), and the
iteration limit N and sample size T , respectively, are set to

N = N̂(ε) := max

{
12(n+4)(6LD f )

2

ε
,

[
72L
√

n+4
(

D̃+
D2

f
D̃

)
σ

ε

]2
}
,(6.1.82)

T = T̂ (ε,Λ) := 24(n+4)(S+1)
Λ

max
{

1, 6σ2

ε

}
, (6.1.83)

then the 2-RSGF method can compute an (ε,Λ)-solution of problem (6.1.47) after
taking at most

2S(Λ)
[
N̂(ε)+ T̂ (ε,Λ)

]
(6.1.84)

calls to the SZO.

Proof. First, observe that by (6.1.52), (6.1.71) and (6.1.72), we have

‖∇ fµ(x)−∇ f (x)‖2 ≤ µ2

4 L2(n+3)3 ≤ (n+4)L2D2
f

8N . (6.1.85)

Using this observation and the definition of x̄∗ in (6.1.80), we obtain

‖gµ(x̄∗)‖2 = min
s=1,...,S

‖gµ(x̄s)‖2 = min
s=1,...,S

‖∇ f (x̄s)+gµ(x̄s)−∇ f (x̄s)‖2

≤ min
s=1,...,S

{
2
[
‖∇ f (x̄s)‖2 +‖gµ(x̄s)−∇ f (x̄s)‖2]}

≤ min
s=1,...,S

{
2
[
‖∇ f (x̄s)‖2 +2‖gµ(x̄s)−∇ fµ(x̄s)‖2 +2‖∇ fµ(x̄s)−∇ f (x̄s)‖2]}

≤ 2 min
s=1,...,S

‖∇ f (x̄s)‖2 +4 max
s=1,...,S

‖gµ(x̄s)−∇ f (x̄s)‖2 +
(n+4)L2D2

f
2N ,

which implies that
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‖∇ f (x̄∗)‖2 ≤ 2‖gµ(x̄∗)‖2 +2‖∇ f (x̄∗)−gµ(x̄∗)‖2

≤ 2‖gµ(x̄∗)‖2 +4‖∇ fµ(x̄∗)−gµ(x̄∗)‖2 +4‖∇ f (x̄∗)−∇ fµ(x̄∗)‖2

≤ 4 min
s=1,...,S

‖∇ f (x̄s)‖2 +8 max
s=1,...,S

‖gµ(x̄s)−∇ f (x̄s)‖2 +
(n+4)L2D2

f
N

+ 4‖∇ fµ(x̄∗)−gµ(x̄∗)‖2 +4‖∇ f (x̄∗)−∇ fµ(x̄∗)‖2

≤ 4 min
s=1,...,S

‖∇ f (x̄s)‖2 +8 max
s=1,...,S

‖gµ(x̄s)−∇ f (x̄s)‖2

+ 4‖∇ fµ(x̄∗)−gµ(x̄∗)‖2 +
3(n+4)L2D2

f
2N , (6.1.86)

where the last inequality also follows from (6.1.85). We now provide certain proba-
bilistic bounds on the individual terms in the right hand side of the above inequality.
Using (6.1.78) (with λ = 2), we obtain

Prob
{

min
s=1,...,S

‖∇ f (x̄s)‖2 ≥ 2LB̄N

}
=

S

∏
s=1

Prob
{
‖∇ f (x̄s)‖2 ≥ 2LB̄N

}
≤ 2−S.

(6.1.87)
Moreover, denote ∆s,k = Gµ(x̄s,ξk,uk)−∇ fµ(x̄s), k = 1, . . . ,T . Note that, similar to
(6.1.67), we have

E[‖Gµ(x̄s,ξk,uk)‖2] ≤ 2(n+4)[E[‖G(x̄s,ξ )‖2]+ µ2

2 L2(n+6)3

≤ 2(n+4)[E[‖∇ f (x̄s)‖2]+σ
2]+2µ

2L2(n+4)3.

It then follows from the previous inequality, (6.1.71) and (6.1.72) that

E[‖∆s,k‖2] = E[‖Gµ(x̄s,ξk,uk)−∇ fµ(x̄s)‖2]≤ E[‖Gµ(x̄s,ξk,uk)‖2]

≤ 2(n+4)
[
LB̄N +σ

2]+2µ
2L2(n+4)3

≤ 2(n+4)
[

LB̄N +σ
2 +

L2D2
f

2N

]
=: DN . (6.1.88)

Noting that gµ(x̄s)−∇ fµ(x̄s) = ∑
T
k=1∆s,k/T , we conclude from (6.1.88), Assump-

tion 13 and Lemma 6.1.a) that, for any s = 1, . . . ,S,

Prob
{
‖gµ(x̄s)−∇ fµ(x̄s)‖2 ≥ λDN

T

}
=Prob

{
‖∑T

k=1∆s,k‖2 ≥ λTDN
}
≤ 1

λ
, ∀λ > 0,

which implies that

Prob
{

max
s=1,...,S

‖gµ(x̄s)−∇ fµ(x̄s)‖2 ≥ λDN
T

}
≤ S

λ
, ∀λ > 0. (6.1.89)

and that

Prob
{
‖gµ(x̄∗)−∇ fµ(x̄∗)‖2 ≥ λDN

T

}
≤ 1

λ
, ∀λ > 0. (6.1.90)
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The result then follows by combining relations (6.1.86), (6.1.87),(6.1.88), (6.1.89)
and (6.1.90).

We now show part b) holds. Clearly, the total number of calls to SZO in the
2-RSGF method is bounded by 2S[N̂(ε)+ T̂ (ε)]. It then suffices to show that x̄∗ is
an (ε,Λ)-solution of problem (6.1.47). Noting that by the definitions of B̄(N) and
N̂(ε), respectively, in (6.1.72) and (6.1.82), we have

B̄N̂(ε) =
12(n+4)LD2

f
N̂(ε)

+ 4σ
√

n+4√
N̂(ε)

(
D̃+

D2
f

D̃

)
≤ ε

36L + ε

18L = ε

12L .

Hence, we have

8LB̄N̂(ε)+
3(n+4)L2D2

f
2N̂(ε)

≤ 2ε

3 + ε

288 ≤ 17ε

24 .

Moreover, by setting λ = [2(S+1)]/Λ and using (6.1.82) and (6.1.83), we obtain

24(n+4)λ
T

[
LB̄N̂(ε)+

(n+4)L2D2
f

N̂(ε)
+σ

2
]
≤ 24(n+4)λ

T

(
ε

12 +
ε

432 +σ
2)

≤ ε

12 +
ε

432 +
ε

6 ≤ 7ε

24 .

Using these two observations and relation (6.1.81) with λ = [2(S+1)]/Λ , we con-
clude that

Prob
{

∇ f (x̄∗)‖2 ≥ ε
}
≤ Prob

{
‖∇ f (x̄∗)‖2 ≥ 8LB̄N̂(ε)+

3(n+4)L2D2
f

2N̂(ε)

+ 24(n+4)λ
T

[
LB̄N̂(ε)+

(n+4)L2D2
f

N̂(ε)
+σ

2
]}

≤ S+1
λ

+2−S = Λ .

Observe that in the view of (6.1.32), (6.1.82) and (6.1.83), the total number of
calls to SZO performed by the 2-RSGF method can be bounded by

O

{
nL2D2

f log(1/Λ)

ε
+nL2

(
D̃+

D2
f

D̃

)2
σ2

ε2 log 1
Λ
+ n log2(1/Λ)

Λ

(
1+ σ2

ε

)}
. (6.1.91)

The above bound is considerably smaller than the one in (6.1.79), up to a factor
of O

(
1/[Λ 2 log(1/Λ)]

)
, when the second terms are the dominating ones in both

bounds.

6.2 Nonconvex stochastic composite optimization

In this section, we consider the following problem
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Ψ
∗ := min

x∈X
{Ψ(x) := f (x)+h(x)}, (6.2.1)

where X is a closed convex set in Euclidean space Rn, f : X → R is continuously
differentiable, but possibly nonconvex, and h is a simple convex function with known
structure, but possibly nonsmooth (e.g. h(x) = ‖x‖1 or h(x)≡ 0). We also assume
that the gradient of f is L-Lipschitz continuous for some L > 0, i.e.,

‖∇ f (y)−∇ f (x)‖ ≤ L‖y− x‖, for any x,y ∈ X , (6.2.2)

or equivalently,

| f (y)− f (x)−〈∇ f (x),y− x〉| ≤ L
2‖y− x‖2, for any x,y ∈ X , (6.2.3)

and Ψ is bounded below over X , i.e. Ψ ∗ is finite. Although f is Lipschitz continuously
differentiable, we assume that only the noisy gradient of f is available via subsequent
calls to a stochastic first-order oracle (SFO) as discussed in the previous section.
Specifically, at the k-th call, k≥ 1, for the input xk ∈X , SFO would output a stochastic
gradient G(xk,ξk), where ξk is a random variable whose distribution is supported
on Ξk ⊆ Rd . Throughout the section, we assume the same assumption 13 as in the
previous section about the Borel functions G(xk,ξk).

In last section, we presented a randomized stochastic gradient (RSGD) method,
for solving the unconstrained nonconvex SP problem, i.e., problem (6.2.1) with
h ≡ 0 and X = Rn. While the RSGD algorithm and its variants can handle the
unconstrained nonconvex SP problems, their convergence cannot be guaranteed for
stochastic composite optimization problems in (6.2.1) where X 6= Rn and/or h(·) is
non-differentiable.

Our goal in this section mainly consists of developing variants of the RSGD
algorithm by taking a mini-batch of samples at each iteration of our algorithm to deal
with the constrained composite problems while preserving the complexity results.
More specifically, we first modify the scheme of the RSGD algorithm to propose
a randomized stochastic mirror descent (RSMD) algorithm to solve constrained
nonconvex stochastic composite problems. Unlike the RSGD algorithm, at each
iteration of the RSMD algorithm, we take multiple samples such that the total
number of calls to the SFO to find a solution x̄ ∈ X such that E[‖gX (x̄)‖2] ≤ ε , is
still O(σ2/ε2), where gX (x̄) is a generalized projected gradient of Ψ at x̄ over X. In
addition, our RSMD algorithm is in a more general setting depending on a general
distance function rather than Euclidean distance. This would be particularly useful
for special structured constrained set (e.g., X being a standard simplex). Secondly,
we present a two-phase randomized stochastic mirror descent (2-RSMD) algorithm,
the RSMD algorithm with a post-optimization phase, to improve the large-deviation
results of the RSMD algorithm. We show that the complexity of this approach can
be further improved under a light-tail assumption about the SFO. Thirdly, under the
assumption that the gradient of f is also bounded on X , we specialize the RSMD
algorithm to give a randomized stochastic gradient free mirror descent (RSMDF)
algorithm, which only uses the stochastic zeroth-order information.
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The remaining part of this section is organized as follows. We first describe some
properties of the projection based on a general distance function in Subsection 6.2.1.
In Subsection 6.2.2, a deterministic first-order method for problem (6.2.1) is pro-
posed, which mainly provides a basis for our stochastic algorithms developed in
later sections. Then, by incorporating a randomized scheme, we present the RSMD
and 2-RSMD algorithms for solving the SP problem (6.2.1) in Subection 6.2.3. In
Subsection 6.2.4, we discuss how to generalize the RSMD algorithm to the case
when only zeroth-order information is available.

6.2.1 Some properties of prox-mapping

As shown in the previous chapters for the convex setting, a general distance gener-
ating function, instead of the usual Euclidean distance function, help us to design
algorithms that can adjust to the geometry of the feasible set. Moreover, sometimes
non-Euclidean prox-mapping can be easier to compute. Our goal in this section is to
generalize such constructions for the nonconvex setting.

Recall a function ν : X → R is said to be a distance generating function with
modulus 1 with respect to ‖·‖, if ν is continuously differentiable and strongly convex
satisfying

〈x− z,∇ν(x)−∇ν(z)〉 ≥ ‖x− z‖2, ∀x,z ∈ X . (6.2.4)

Then, the prox-function associated with ν is defined as

V (z,x) = ν(x)− [ν(z)+ 〈∇ν(z),x− z〉]. (6.2.5)

In this section, we assume that the prox-function V is chosen such that the generalized
projection problem given by

x+ = argminu∈X

{
〈g,u〉+ 1

γ
V (x,u)+h(u)

}
(6.2.6)

is easily solvable for any γ > 0, g ∈Rn and x ∈ X . Apparently, different choices of ν

can be used in the definition of prox-function.
In order to discuss some important properties of the generalized projection defined

in (6.2.6), let us first define

PX (x,g,γ) = 1
γ
(x− x+), (6.2.7)

where x+ is given in (6.2.6). We can see that PX (x,∇ f (x),γ) (see also (3.8.18)) can be
viewed as a generalized projected gradient (or gradient mapping) of Ψ at x. Indeed, if
X =Rn and h vanishes, we would have PX (x,∇ f (x),γ) = ∇ f (x) = ∇Ψ(x). For more
general h, the following result shows that as the size of PX (x,∇ f (x),γ) vanishes, x+

approaches to a stationary point of problem (6.2.1).

Lemma 6.3. Let x ∈ Rn be given and denote g≡ ∇ f (x). Assume that the distance
generating function ν has Lν -Lipschitz gradients. If ‖PX (x,g,γ)‖ ≤ ε for some γ > 0,
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then
−∇ f (x+) ∈ ∂h(x+)+NX (x+)+B(ε(γL+Lν)),

where ∂h(·) denotes the subdifferential of h(·), NX denotes the normal cone given by

NX (x̄) := {d ∈ Rn : 〈d,x− x̄≤ 0∀x ∈ X} (6.2.8)

and B(r) := {x ∈ Rn : ‖x‖ ≤ r}.

Proof. By the optimality condition of (6.4.41), we have −∇ f (x)− 1
γ
(∇ν(x+)−

∇ν(x)) ∈ ∂h(x+)+NX (x+), which implies that

−∇ f (x+)+
[
∇ f (x+)−∇ f (x)− 1

γ
(∇ν(x+)−∇ν(x))

]
∈ ∂h(x+)+NX (x+).

(6.2.9)
Our conclusion immediately follows from the above relation and the simple fact that

‖∇ f (x+)−∇ f (x)− 1
γ
(∇ν(x+)−∇ν(x))‖ ≤ L‖x+− x‖+ Lν

γ
‖x+− x‖

≤ L‖x+− x‖+ Lν

γ
‖x+− x‖

= (γL+Lν)‖PX (x,g,γ)‖.

The following lemma provides a bound for the size of PX (x,g,γ).

Lemma 6.4. Let x+ be given in (6.2.6). Then, for any x ∈ X, g ∈ Rn and γ > 0, we
have

〈g,PX (x,g,γ)〉 ≥ ‖PX (x,g,γ)‖2 + 1
γ

[
h(x+)−h(x)

]
. (6.2.10)

Proof. By the optimality condition of (6.2.6) and the definition of prox-function
in (6.2.5), there exists a p ∈ ∂h(x+) such that

〈g+ 1
γ

[
∇ν(x+)−∇ν(x)

]
+ p,u− x+〉 ≥ 0, for any u ∈ X .

Letting u = x in the above inequality, by the convexity of h and (6.2.4), we obtain

〈g,x− x+〉 ≥ 1
γ
〈∇ν(x+)−∇ν(x),x+− x〉+ 〈p,x+− x〉

≥ 1
γ
‖x+− x‖2 +

[
h(x+)−h(x)

]
,

which in the view of (6.2.7) and γ > 0 clearly imply (6.2.10).

It is well-known that the Euclidean projection is Lipschitz continuous. Below, we
show that this property also holds for the general prox-mapping.

Lemma 6.5. Let x+1 and x+2 be given in (6.2.6) with g replaced by g1 and g2 respec-
tively. Then,

‖x+2 − x+1 ‖ ≤ γ‖g2−g1‖. (6.2.11)

Proof. By the optimality condition of (6.2.6), for any u ∈ X , there exist p1 ∈
∂h(x+1 ) and p2 ∈ ∂h(x+2 ) such that
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〈g1 +
1
γ

[
∇ν(x+1 )−∇ν(x)

]
+ p1,u− x+1 〉 ≥ 0, (6.2.12)

and

〈g2 +
1
γ

[
∇ν(x+2 )−∇ν(x)

]
+ p2,u− x+2 〉 ≥ 0. (6.2.13)

Letting u = x+2 in (6.2.12), by the convexity of h, we have

〈g1,x+2 − x+1 〉 ≥ 1
γ
〈∇ν(x)−∇ν(x+1 ),x

+
2 − x+1 〉+ 〈p1,x+1 − x+2 〉

≥ 1
γ
〈∇ν(x+2 )−∇ν(x+1 ),x

+
2 − x+1 〉+ 1

γ
〈∇ν(x)−∇ν(x+2 ),x

+
2 − x+1 〉

+h(x+1 )−h(x+2 ). (6.2.14)

Similarly, letting u = x+1 in (6.2.13), we have

〈g2,x+1 − x+2 〉 ≥ 1
γ
〈∇ν(x)−∇ν(x+2 ),x

+
1 − x+2 〉+ 〈p2,x+2 − x+1 〉

≥ 1
γ
〈∇ν(x)−∇ν(x+2 ),x

+
1 − x+2 〉+h(x+2 )−h(x+1 ). (6.2.15)

Summing up (6.2.14) and (6.2.15), by the strong convexity (6.2.4) of ν , we obtain

‖g1−g2‖‖x+2 − x+1 ‖ ≥ 〈g1−g2,x+2 − x+1 〉 ≥ 1
γ
‖x+2 − x+1 ‖2,

which gives (6.2.11).

As a consequence of the above lemma, we have PX (x, ·,γ) is Lipschitz continuous.

Proposition 6.1. Let PX (x,g,γ) be defined in (6.2.7). Then, for any g1 and g2 in Rn,
we have

‖PX (x,g1,γ)−PX (x,g2,γ)‖ ≤ ‖g1−g2‖. (6.2.16)

Proof. Noticing (6.2.7), (6.2.12) and (6.2.13), we have

‖PX (x,g1,γ)−PX (x,g2,γ)‖= ‖ 1
γ
(x−x+1 )− 1

γ
(x−x+2 )‖= 1

γ
‖x+2 −x+1 ‖ ≤ ‖g1−g2‖,

where the last inequality follows from (6.2.11).

The following lemma characterizes the solution of the generalized projection and
its proof follows as a special case of Lemma 3.5.

Lemma 6.6. Let x+ be given in (6.2.6). Then, for any u ∈ X, we have

〈g,x+〉+h(x+)+ 1
γ
V (x,x+)≤ 〈g,u〉+h(u)+ 1

γ
[V (x,u)−V (x+,u)]. (6.2.17)
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6.2.2 Nonconvex mirror descent methods

In this subsection, we consider the problem (6.2.1) with f ∈ C 1,1
L (X), and for each

input xk ∈ X , we assume that the exact gradient ∇ f (xk) is available. Using the
exact gradient information, we give a deterministic nonconvex mirror descent (MD)
algorithm for solving (6.2.1), which provides a basis for us to develop the stochastic
first-order algorithms in the next subsection.
A nonconvex mirror descent (MD) algorithm

Input: initial point x1 ∈ X , total number of iterations N, and the stepsizes {γk}
with γk > 0, k ≥ 1.
Step k = 1, . . . ,N. Compute

xk+1 = argminu∈X

{
〈∇ f (xk),u〉+ 1

γk
V (xk,u)+h(u)

}
. (6.2.18)

Output: xR ∈ {xk, . . . ,xN} such that

R = argmink∈{1,...,N}‖gX ,k‖, (6.2.19)

where the gX ,k is given by

gX ,k = PX (xk,∇ f (xk),γk). (6.2.20)

We can see that the above algorithm outputs the iterate with the minimum norm
of the generalized projected gradients. In practice, one may choose the solution with
the minimum function value as the output of the algorithm. However, since f may
not be a convex function, we cannot provide theoretical performance guarantee for
such a selection of the output solution. In the above algorithm, we have not specified
the selection of the stepsizes {γk}. We will return to this issue after establishing the
following convergence results.

Theorem 6.5. Suppose that the stepsizes {γk} in the nonconvex MD algorithm are
chosen such that 0 < γk ≤ 2/L with γk < 2/L for at least one k. Then, we have

‖gX ,R‖2 ≤ LD2
Ψ

∑
N
k=1(γk−Lγ2

k /2)
, (6.2.21)

where

gX ,R = PX (xR,∇ f (xR),γR) and DΨ :=
[
(Ψ(x1)−Ψ∗)

L

] 1
2
. (6.2.22)

Proof. Since f ∈ C 1,1
L (X), it follows from (6.2.3), (6.2.7), (6.2.18) and (6.2.20)

that for any k = 1, . . . ,N, we have

f (xk+1) ≤ f (xk)+ 〈∇ f (xk),xk+1− xk〉+ L
2‖xk+1− xk‖2

= f (xk)− γk〈∇ f (xk),gX ,k〉+ L
2 γ

2
k ‖gX ,k‖2. (6.2.23)
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Then, by Lemma 6.4 with x = xk, γ = γk and g = ∇ f (xk), we obtain

f (xk+1)≤ f (xk)−
[
γk‖gX ,k‖2 +h(xk+1)−h(xk)

]
+ L

2 γ
2
k ‖gX ,k‖2,

which implies
Ψ(xk+1)≤Ψ(xk)−

(
γk− L

2 γ
2
k
)
‖gX ,k‖2. (6.2.24)

Summing up the above inequalities for k = 1, . . . ,N, by (6.2.19) and γk ≤ 2/L, we
have

‖gX ,R‖2
∑

N
k=1
(
γk− L

2 γ
2
k
)
≤ ∑

N
k=1
(
γk− L

2 γ
2
k
)
‖gX ,k‖2

≤Ψ(x1)−Ψ(xk+1)≤Ψ(x1)−Ψ
∗. (6.2.25)

By our assumption, ∑
N
k=1
(
γk−Lγ2

k /2
)
> 0. Hence, dividing both sides of the above

inequality by ∑
N
k=1
(
γk−Lγ2

k /2
)
, we obtain (6.2.21).

The following corollary shows a specialized complexity result for the nonconvex
MD algorithm with one proper constant stepsize policy.

Corollary 6.4. Suppose that in the nonconvex MD algorithm the stepsizes γk = 1/L
for all k = 1, . . . ,N. Then, we have

‖gX ,R‖2 ≤ 2L2D2
Ψ

N . (6.2.26)

Proof. With the constant stepsizes γk = 1/L for all k = 1, . . . ,N, we have

LD2
Ψ

∑
N
k=1(γk−Lγ2

k /2)
=

2L2D2
Ψ

N , (6.2.27)

which together with (6.2.21), clearly imply (6.2.26).

6.2.3 Nonconvex stochastic mirror descent methods

In this subsection, we consider problem (6.2.1), but the exact gradient of f is not
available. We assume that only noisy first-order information of f is available via
subsequent calls to the stochastic first-order oracle SFO. In particular, given the
k-th iteration xk ∈ X of our algorithm, the SFO will output the stochastic gradient
G(xk,ξk), where ξk is a random vector whose distribution is supported on Ξk ⊆ Rd .
We assume the stochastic gradient G(xk,ξk) satisfies Assumption 13.

This subsection proceeds as follows. In Subsection 6.2.3.1, we present a stochastic
variant of the nonconvex MD algorithm incorporated with a randomized stopping
criterion, called the RSMD algorithm. Then, in Subsection 6.2.3.2, we describe a two
phase RSMD algorithm, called the 2-RSMD algorithm, which can significantly re-
duce the large-deviations resulted from the RSMD algorithm. We assume throughout
this section that the norm ‖ · ‖ is associated with the inner product 〈·, ·〉.
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6.2.3.1 A randomized stochastic mirror descent method

Convexity of the objective function often plays an important role on establishing the
convergence results for the current SGD algorithms. Similar to the RSGD method, in
this subsection we give an SGD-type algorithm which does not require the convexity
of the objective function. Moreover, this weaker requirement enables the algorithm
to deal with the case in which the random noises {ξk},k ≥ 1 could depend on the
iterates {xk}.
A randomized stochastic mirror descent (RSMD) algorithm

Input: initial point x1 ∈ X , iteration limit N, the stepsizes {γk} with γk > 0, k≥ 1,
the batch sizes {mk} with mk > 0, k ≥ 1, and the probability mass function PR
supported on {1, . . . ,N}.
Step 0. Let R be a random variable with probability mass function PR.
Step k = 1, . . . ,R−1. Call the SFO mk times to obtain G(xk,ξk,i), i = 1, . . . ,mk,
set

Gk =
1

mk
∑

mk
i=1G(xk,ξk,i), (6.2.28)

and compute

xk+1 = argmin
u∈X

{
〈Gk,u〉+ 1

γk
V (xk,u)+h(u)

}
. (6.2.29)

Output: xR.

We use a randomized iteration count to terminate the RSMD algorithm. In this
algorithm, we also need to specify the stepsizes {γk}, the batch sizes {mk} and
probability mass function PR. We will again address these issues after presenting
some convergence results of the RSMD algorithm.

Theorem 6.6. Suppose that the stepsizes {γk} in the RSMD algorithm are chosen
such that 0 < γk ≤ 1/L with γk < 1/L for at least one k, and the probability mass
function PR are chosen such that for any k = 1, . . . ,N,

PR(k) := Prob{R = k}= γk−Lγ2
k

∑
N
k=1(γk−Lγ2

k )
. (6.2.30)

Then, under Assumption 13,

(a)for any N ≥ 1, we have

E[‖g̃X ,R‖2]≤ LD2
Ψ
+σ2∑

N
k=1(γk/mk)

∑
N
k=1(γk−Lγ2

k )
, (6.2.31)

where the expectation is taken with respect to R and ξ[N] := (ξ1, . . . ,ξN), DΨ is
defined in (6.2.22), and the stochastic projected gradient

g̃X ,k := PX (xk,Gk,γk), (6.2.32)
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with PX defined in(6.2.7);
(b)if, in addition, f in problem (6.2.1) is convex with an optimal solution x∗, and the

stepsizes {γk} are non-decreasing, i.e.,

0≤ γ1 ≤ γ2 ≤ ...≤ γN ≤ 1
L , (6.2.33)

we have

E [Ψ(xR)−Ψ(x∗)]≤ (1−Lγ1)V (x1,x∗)+(σ2/2)∑
N
k=1(γ

2
k /mk)

∑
N
k=1(γk−Lγ2

k )
, (6.2.34)

where the expectation is taken with respect to R and ξ[N]. Similarly, if the stepsizes
{γk} are non-increasing, i.e.,

1
L ≥ γ1 ≥ γ2 ≥ ...≥ γN ≥ 0, (6.2.35)

we have

E [Ψ(xR)−Ψ(x∗)]≤ (1−LγN)V̄ (x∗)+(σ2/2)∑
N
k=1(γ

2
k /mk)

∑
N
k=1(γk−Lγ2

k )
, (6.2.36)

where V̄ (x∗) := maxu∈X V (u,x∗).

Proof. Let δk ≡ Gk−∇ f (xk), k ≥ 1. Since f is smooth, it follows from (6.2.3),
(6.2.7), (6.2.29) and (6.2.32) that, for any k = 1, . . . ,N, we have

f (xk+1) ≤ f (xk)+ 〈∇ f (xk),xk+1− xk〉+ L
2‖xk+1− xk‖2

= f (xk)− γk〈∇ f (xk), g̃X ,k〉+ L
2 γ

2
k ‖g̃X ,k‖2

= f (xk)− γk〈Gk, g̃X ,k〉+ L
2 γ

2
k ‖g̃X ,k‖2 + γk〈δk, g̃X ,k〉. (6.2.37)

So, by Lemma 6.4 with x = xk, γ = γk and g = Gk, we obtain

f (xk+1) ≤ f (xk)−
[
γk‖g̃X ,k‖2 +h(xk+1)−h(xk)

]
+ L

2 γ
2
k ‖g̃X ,k‖2

+γk〈δk,gX ,k〉+ γk〈δk, g̃X ,k −gX ,k〉,

where the projected gradient gX ,k is defined in (6.2.20). Then, from the above inequal-
ity, (6.2.20) and (6.2.32), we obtain

Ψ(xk+1) ≤Ψ(xk)−
(
γk− L

2 γ
2
k
)
‖g̃X ,k‖2 + γk〈δk,gX ,k〉+ γk‖δk‖‖g̃X ,k −gX ,k‖

≤Ψ(xk)−
(
γk− L

2 γ
2
k
)
‖g̃X ,k‖2 + γk〈δk,gX ,k〉+ γk‖δk‖2, (6.2.38)

where the last inequality follows from Proposition 6.1 with x = xk,γ = γk,g1 = Gk
and g2 = ∇ f (xk). Summing up the above inequalities for k = 1, . . . ,N and noticing
that γk ≤ 1/L, we obtain
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∑
N
k=1
(
γk−Lγ

2
k
)
‖g̃X ,k‖2 ≤ ∑

N
k=1
(
γk− L

2 γ
2
k
)
‖g̃X ,k‖2

≤Ψ(x1)−Ψ(xk+1)+∑
N
k=1

{
γk〈δk,gX ,k〉+ γk‖δk‖2

}

≤Ψ(x1)−Ψ
∗+∑

N
k=1

{
γk〈δk,gX ,k〉+ γk‖δk‖2

}
.(6.2.39)

Notice that the iterate xk is a function of the history ξ[k−1] of the generated random pro-
cess and hence is random. By part a) of Assumption 13, we have E[〈δk,gX ,k〉|ξ[k−1]] =
0. In addition, denoting δk,i ≡ G(xk,ξk,i)−∇ f (xk), i = 1, . . . ,mk, k = 1, . . . ,N,
S j = ∑

j
i=1δk,i, j = 1, . . . ,mk, and S0 = 0, and noting that E[〈Si−1,δk,i〉|Si−1] = 0

for all i = 1, . . . ,mk, we have

E[‖Smk‖2] = E
[
‖Smk−1‖2 +2〈Smk−1,δk,mk〉+‖δk,mk‖2]

= E[‖Smk−1‖2]+E[‖δk,mk‖2] = . . .= ∑
mk
i=1E‖δk,i‖2,

which, in view of (6.2.28) and Assumption 13.b), then implies that

E[‖δk‖2] = E
[∥∥∥ 1

mk
∑

mk
i=1δk,i

∥∥∥
2
]
= 1

m2
k
E[‖Smk‖2] = 1

m2
k
∑

mk
i=1E[‖δk,i‖2]≤ σ2

mk
.

(6.2.40)
With these observations, now taking expectations with respect to ξ[N] on both sides
of (6.2.39), we get

∑
N
k=1
(
γk−Lγ

2
k
)
E‖g̃X ,k‖2 ≤Ψ(x1)−Ψ

∗+σ
2
∑

N
k=1(γk/mk).

Then, since ∑
N
k=1
(
γk−Lγ2

k

)
> 0 by our assumption, dividing both sides of the above

inequality by ∑
N
k=1
(
γk−Lγ2

k

)
and noticing that

E[‖g̃X ,R‖2] =
∑

N
k=1(γk−Lγ2

k )E‖g̃X ,k‖
2

∑
N
k=1(γk−Lγ2

k )
,

we have (6.2.31) holds.
We now show part (b) of the theorem. By Lemma 6.6 with x = xk,γ = γk,g = Gk

and u = x∗, we have

〈Gk,xk+1〉+h(xk+1)+
1
γk

V (xk,xk+1)≤〈Gk,x∗〉+h(x∗)+ 1
γk
[V (xk,x∗)−V (xk+1,x∗)],

which together with (6.2.3) and definition of δk give

f (xk+1)+ 〈∇ f (xk)+δk,xk+1〉+h(xk+1)+
1
γk

V (xk,xk+1)

≤ f (xk)+ 〈∇ f (xk),xk+1− xk〉+ L
2‖xk+1− xk‖2 + 〈∇ f (xk)+δk,x∗〉+h(x∗)

+ 1
γk
[V (xk,x∗)−V (xk+1,x∗)].

Simplifying the above inequality, we have
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Ψ(xk+1) ≤ f (xk)+ 〈∇ f (xk),x∗− xk〉+h(x∗)+ 〈δk,x∗− xk+1〉+ L
2‖xk+1− xk‖2

− 1
γk

V (xk,xk+1)+
1
γk
[V (xk,x∗)−V (xk+1,x∗)].

Then, it follows from the convexity of f , (6.2.4) and (6.2.5) that

Ψ(xk+1) ≤ f (x∗)+h(x∗)+ 〈δk,x∗− xk+1〉+
(

L
2 − 1

2γk

)
‖xk+1− xk‖2

+ 1
γk
[V (xk,x∗)−V (xk+1,x∗)]

= Ψ(x∗)+ 〈δk,x∗− xk〉+ 〈δk,xk− xk+1〉+ Lγk−1
2γk
‖xk+1− xk‖2

+ 1
γk
[V (xk,x∗)−V (xk+1,x∗)]

≤Ψ(x∗)+ 〈δk,x∗− xk〉+‖δk‖‖xk− xk+1‖− 1−Lγk
2γk
‖xk+1− xk‖2

+ 1
γk
[V (xk,x∗)−V (xk+1,x∗)]

≤Ψ(x∗)+ 〈δk,x∗− xk〉+ γk
2(1−Lγk)

‖δk‖2 + 1
γk
[V (xk,x∗)−V (xk+1,x∗)],

where the last inequality follows from the fact that ax−bx2/2≤ a2/(2b). Noticing
γk ≤ 1/L, multiplying both sides of the above inequality by (γk−Lγ2

k ) and summing
them up for k = 1, . . . ,N, we obtain

∑
N
k=1(γk−Lγ

2
k ) [Ψ(xk+1)−Ψ(x∗)]≤ ∑

N
k=1(γk−Lγ

2
k )〈δk,x∗− xk〉+∑

N
k=1

γ2
k
2 ‖δk‖2

+∑
N
k=1(1−Lγk) [V (xk,x∗)−V (xk+1,x∗)] . (6.2.41)

Now, if the increasing stepsize condition (6.2.33) is satisfied, we have from
V (xN+1,x∗)≥ 0 that

∑
N
k=1(1−Lγk) [V (xk,x∗)−V (xk+1,x∗)]

= (1−Lγ1)V (x1,x∗)+∑
N
k=2(1−Lγk)V (xk,x∗)−∑

N
k=1(1−Lγk)V (xk+1,x∗)

≤ (1−Lγ1)V (x1,x∗)+∑
N
k=2(1−Lγk−1)V (xk,x∗)−∑

N
k=1(1−Lγk)V (xk+1,x∗)

= (1−Lγ1)V (x1,x∗)− (1−LγN)V (xN+1,x∗)

≤ (1−Lγ1)V (x1,x∗).

Taking expectation on both sides of (6.2.41) with respect to ξ[N], again using the
observations that E[‖δ 2

k ‖]≤ σ2/mk and E[〈δk,gX ,k〉|ξ[k−1]] = 0, then it follows from
the above inequality that

∑
N
k=1(γk−Lγ

2
k )Eξ[N]

[Ψ(xk+1)−Ψ(x∗)]≤ (1−Lγ1)V (x1,x∗)+ σ2

2 ∑
N
k=1(γ

2
k /mk).

Finally, (6.2.34) follows from the above inequality and the arguments similar to the
proof in part (a). Now, if the decreasing stepsize condition (6.2.35) is satisfied, we
have from the definition V̄ (x∗) := maxu∈X V (u,x∗)≥ 0 and V (xN+1,x∗)≥ 0 that
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∑
N
k=1(1−Lγk) [V (xk,x∗)−V (xk+1,x∗)]

= (1−Lγ1)V (x1,x∗)+L∑
N−1
k=1 (γk− γk+1)V (xk+1,x∗)− (1−LγN)V (xN+1,x∗)

≤ (1−Lγ1)V̄ (x∗)+L∑
N−1
k=1 (γk− γk+1)V̄ (x∗)− (1−LγN)V (xN+1,x∗)

≤ (1−LγN)V̄ (x∗),

which together with (6.2.41) and similar arguments used above would give (6.2.36).

A few remarks about Theorem 6.6 are in place. Firstly, if f is convex and the batch
sizes mk = 1, then by properly choosing the stepsizes {γk} (e.g., γk = O(1/

√
k) for

k large), we can still guarantee a nearly optimal rate of convergence for the RSMD
algorithm (see (6.2.34) or (6.2.36)). However, if f is possibly nonconvex and mk = 1,
then the right hand side of (6.2.31) is bounded from below by

LD2
Ψ
+σ2∑

N
k=1γk

∑
N
k=1(γk−Lγ2

k )
≥ σ

2,

which can not guarantee the convergence of the RSMD algorithm, no matter how
the stepsizes {γk} are specified. This is exactly the reason why we consider taking
multiple samples G(xk,ξk,i), i = 1, . . . ,mk, for some mk > 1 at each iteration of the
RSMD method.

Secondly, we need to estimate L to ensure the condition on the stepsize γk. How-
ever, we do not need a very accurate estimation for L (see the discussion after
Corollary 6.1 for more details in the similar case).

Thirdly, from (6.2.39) in the proof of Theorem 6.6, we see that the stepsize policies
can be further relaxed to get a similar result as (6.2.31). More specifically, we can
have the following corollary.

Corollary 6.5. Suppose that the stepsizes {γk} in the RSMD algorithm are chosen
such that 0 < γk ≤ 2/L with γk < 2/L for at least one k, and the probability mass
function PR are chosen such that for any k = 1, . . . ,N,

PR(k) := Prob{R = k}= γk−Lγ2
k /2

∑
N
k=1(γk−Lγ2

k /2)
. (6.2.42)

Then, under Assumption 13, we have

E[‖g̃X ,R‖2]≤ LD2
Ψ
+σ2∑

N
k=1(γk/mk)

∑
N
k=1(γk−Lγ2

k /2)
, (6.2.43)

where the expectation is taken with respect to R and ξ[N] := (ξ1, ...,ξN).

Based on Theorem 6.6, we can establish the following complexity results of the
RSMD algorithm with proper selection of stepsizes {γk} and batch sizes {mk} at
each iteration.

Corollary 6.6. Suppose that in the RSMD algorithm the stepsizes γk = 1/(2L) for
all k = 1, . . . ,N, and the probability mass function PR are chosen as (6.2.30). Also
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assume that the batch sizes mk = m, k = 1, . . . ,N, for some m ≥ 1. Then under
Assumption 13, we have

E[‖gX ,R‖2]≤ 8L2D2
Ψ

N + 6σ2

m and E[‖g̃X ,R‖2]≤ 4L2D2
Ψ

N + 2σ2

m , (6.2.44)

where gX ,R and g̃X ,R are defined in (6.2.20) and (6.2.32), respectively. If, in addition,
f in the problem (6.2.1) is convex with an optimal solution x∗, then

E [Ψ(xR)−Ψ(x∗)]≤ 2LV (x1,x∗)
N + σ2

2Lm . (6.2.45)

Proof. By (6.2.31), we have

E[‖g̃X ,R‖2]≤ LD2
Ψ
+

σ2

m ∑
N
k=1γk

∑
N
k=1(γk−Lγ2

k )
,

which together with γk = 1/(2L) for all k = 1, . . . ,N imply that

E[‖g̃X ,R‖2] =
LD2

Ψ
+

σ2N
2mL

N
4L

=
4L2D2

Ψ

N + 2σ2

m .

Then, by Proposition 6.1 with x = xR,γ = γR,g1 = ∇ f (xR),g2 = Gk, we have from
the above inequality and (6.2.40) that

E[‖gX ,R‖2] ≤ 2E[‖g̃X ,R‖2]+2E[‖gX ,R − g̃X ,R‖2]

≤ 2
(

4L2D2
Ψ

N + 2σ2

m

)
+2E

[
‖Gk−∇ f (xR)‖2]

≤ 8L2D2
Ψ

N + 6σ2

m .

Moreover, since γk = 1/(2L) for all k = 1, . . . ,N, the stepsize conditions (6.2.33)
are satisfied. Hence, if the problem is convex, (6.2.45) can be derived in a similar
way as (6.2.34).

Note that all the bounds in the above corollary depend on m. Indeed, if m is set to
some fixed positive integer constant, then the second terms in the above results will
always majorize the first terms when N is sufficiently large. Hence, the appropriate
choice of m should be balanced with the number of iterations N, which would
eventually depend on the total computational budget given by the user. The following
corollary shows an appropriate choice of m depending on the total number of calls to
the SFO.

Corollary 6.7. Suppose that all the conditions in Corollary 6.6 are satisfied. Given
a fixed total number of calls N̄ to the SFO, if the number of calls to the SFO (number
of samples) at each iteration of the RSMD algorithm is

m =
⌈

min
{

max
{

1, σ
√

6N̄
4LD̃

}
, N̄
}⌉

, (6.2.46)
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for some D̃ > 0, then we have 1/L E[‖gX ,R‖2]≤BN̄ , where

BN̄ := 16LD2
Ψ

N̄ + 4
√

6σ√
N̄

(
D2

Ψ

D̃ + D̃max
{

1,
√

6σ

4LD̃
√

N̄

})
. (6.2.47)

If, in addition, f in problem (6.2.1) is convex, then E[Ψ(xR)−Ψ(x∗)]≤CN̄ , where
x∗ is an optimal solution and

CN̄ := 4LV (x1,x∗)
N̄ +

√
6σ√
N̄

(
V (x1,x∗)

D̃ + D̃
3 max

{
1,

√
6σ

4LD̃
√

N̄

})
. (6.2.48)

Proof. Given the total number of calls to the stochastic first-order oracle N̄ and
the number m of calls to the SFO at each iteration, the RSMD algorithm can perform
at most N = bN̄/mc iterations. Obviously, N ≥ N̄/(2m). With this observation and
(6.2.44), we have

E[‖gX ,R‖2] ≤ 16mL2D2
Ψ

N̄ + 6σ2

m

≤ 16L2D2
Ψ

N̄

(
1+ σ

√
6N̄

4LD̃

)
+max

{
4
√

6LD̃σ√
N̄

, 6σ2

N̄

}

=
16L2D2

Ψ

N̄ + 4
√

6Lσ√
N̄

(
D2

Ψ

D̃ + D̃max
{

1,
√

6σ

4LD̃
√

N̄

})
, (6.2.49)

which gives (6.2.47). The bound (6.2.48) can be obtained in a similar way.

We now would like add a few remarks about the above results in Corollary 6.7.
Firstly, although we use the constant value for mk = m at each iteration, one can also
choose it adaptively during the execution of the RSMD algorithm while monitoring
the convergence. For example, in practice mk could adaptively depend on σ2

k :=
E
[
‖G(xk,ξk)−∇ f (xk)‖2

]
. Another example is to choose growing batch sizes where

one uses a smaller number of samples in the beginning of the algorithm. In particular,
by setting

mk =

⌈
min

{
σ(k2N̄)

1
4

LD̃ , N̄

}⌉
,

we can easily see that the RSMD algorithm still achieves the same rates of conver-
gence as those obtained by using constant bath sizes in Corollary 6.7. Secondly, we
need to specify the parameter D̃ in (6.2.46). It can be seen from (6.2.47) and (6.2.48)
that when N̄ is relatively large such that

max
{

1,
√

6σ/(4LD̃
√

N̄)
}
= 1, i.e., N̄ ≥ 3σ

2/(8L2D̃2), (6.2.50)

an optimal choice of D̃ would be DΨ and
√

3V (x1,x∗) for solving nonconvex and
convex SP problems, respectively. With this selection of D̃, the bounds in (6.2.47)
and (6.2.48), respectively, reduce to

1
LE[‖gX ,R‖2]≤ 16LD2

Ψ

N̄ + 8
√

6DΨ σ√
N̄

(6.2.51)
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and
E[Ψ(x∗)−Ψ(x1)]≤ 4LV (x1,x∗)

N̄ +
2
√

2V (x1,x∗)σ√
N̄

. (6.2.52)

Thirdly, the stepsize policy in Corollary 6.6 and the probability mass function (6.2.30)
together with the number of samples (6.2.46) at each iteration of the RSMD algorithm
provide a unified strategy for solving both convex and nonconvex SP problems. In
particular, the RSMD algorithm exhibits a nearly optimal rate of convergence for solv-
ing smooth convex SP problems, since the second term in (6.2.52) is unimprovable,
while the first term in (6.2.52) can be considerably improved.

6.2.3.2 A two-phase randomized stochastic mirror descent method

In the previous subsection, we present the expected complexity results over many
runs of the RSMD algorithm. Indeed, we are also interested in the performance of
a single run of RSMD. In particular, we intend to establish the complexity results
for finding an (ε,Λ)-solution of the problem (6.2.1), i.e., a point x ∈ X satisfying
Prob{‖gX (x)‖2 ≤ ε} ≥ 1−Λ , for some ε > 0 and Λ ∈ (0,1). Noticing that by the
Markov’s inequality and (6.2.47), we can directly show that

Prob
{
‖gX ,R‖2 ≥ γλLBN̄

}
≤ 1

λ
, for any λ > 0. (6.2.53)

This implies that the total number of calls to the SFO performed by the RSMD
algorithm for finding an (ε,Λ)-solution, after disregarding a few constant factors,
can be bounded by

O
{

1
Λε

+ σ2

Λ 2ε2

}
. (6.2.54)

In this subsection, we present a approach to improve the dependence of the above
bound on Λ . More specifically, we propose a variant of the RSMD algorithm which
has two phases: an optimization phase and a post-optimization phase. The optimiza-
tion phase consists of independent single runs of the RSMD algorithm to generate a
list of candidate solutions, and in the post-optimization phase, we choose a solution
x∗ from these candidate solutions generated by the optimization phase. For the sake
of simplicity, we assume throughout this subsection that the norm ‖ · ‖ in Rn is the
standard Euclidean norm.
A two phase RSMD (2-RSMD) algorithm

Input: Given initial point x1 ∈ X , number of runs S, total N̄ of calls to the SFO
in each run of the RSMD algorithm, and sample size T in the post-optimization
phase.
Optimization phase:

For s = 1, . . . ,S

Call the RSMD algorithm with initial point x1, iteration limit N = bN̄/mc with
m given by (6.2.46), stepsizes γk = 1/(2L) for k = 1, . . . ,N, batch sizes mk =m,
and probability mass function PR in (6.2.30).
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Let x̄s = xRs , s = 1, . . . ,S, be the outputs of this phase.
Post-optimization phase:

Choose a solution x̄∗ from the candidate list {x̄1, . . . , x̄S} such that

‖ḡX (x̄
∗)‖= min

s=1,...,S
‖ḡX (x̄s)‖, ḡX (x̄s) := PX (x̄s, ḠT (x̄s),γRs), (6.2.55)

where ḠT (x) = 1
T ∑

T
k=1G(x,ξk) and PX (x,g,γ) is defined in (6.2.7).

Output: x̄∗.

In the 2-RSMD algorithm, the total number of calls of SFO in the optimization
phase and post-optimization phase is bounded by S× N̄ and S×T , respectively. In the
next theorem, we provide certain bounds of S, N̄ and T for finding an (ε,Λ)-solution
of problem (6.2.1).

We are now ready to state the main convergence properties for the 2-RSMD
algorithm.

Theorem 6.7. Under Assumption 13, the following statements hold for the 2-RSMD
algorithm applied to problem (6.2.1).

(a)Let BN̄ be defined in (6.2.47). Then, for all λ > 0

Prob
{
‖gX (x̄

∗)‖2 ≥ 2
(

4LBN̄ + 3λσ2

T

)}
≤ S

λ
+2−S; (6.2.56)

(b)Let ε > 0 and Λ ∈ (0,1) be given. If the parameters (S, N̄,T ) are set to

S(Λ) := dlog2(2/Λ)e , (6.2.57)

N̄(ε) :=
⌈

max
{

512L2D2
Ψ

ε
,
[(

D̃+
D2

Ψ

D̃

)
128
√

6Lσ

ε

]2
, 3σ2

8L2D̃2

}⌉
,(6.2.58)

T (ε,Λ) :=
⌈

24S(Λ)σ2

Λε

⌉
, (6.2.59)

then the 2-RSMD algorithm computes an (ε,Λ)-solution of the problem (6.2.1)
after taking at most

S(Λ) [N̄(ε)+T (ε,Λ)] (6.2.60)

calls of the stochastic first order oracle.

Proof. We first show part (a). Let gX (x̄s) = PX (x̄s,∇ f (x̄s),γRs). Then, it follows
from the definition of x̄∗ in (6.2.55) that

‖ḡX (x̄
∗)‖2 = min

s=1,...,S
‖ḡX (x̄s)‖2 = min

s=1,...,S
‖gX (x̄s)+ ḡX (x̄s)−gX (x̄s)‖2

≤ min
s=1,...,S

{
2‖gX (x̄s)‖2 +2‖ḡX (x̄s)−gX (x̄s)‖2}

≤ 2 min
s=1,...,S

‖gX (x̄s)‖2 +2 max
s=1,...,S

‖ḡX (x̄s)−gX (x̄s)‖2,

which implies that
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‖gX (x̄
∗)‖2 ≤ 2‖ḡX (x̄

∗)‖2 +2‖gX (x̄
∗)− ḡX (x̄

∗)‖2

≤ 4 min
s=1,...,S

‖gX (x̄s)‖2 +4 max
s=1,...,S

‖ḡX (x̄s)−gX (x̄s)‖2 +2‖gX (x̄
∗)− ḡX (x̄

∗)‖2

≤ 4 min
s=1,...,S

‖gX (x̄s)‖2 +6 max
s=1,...,S

‖ḡX (x̄s)−gX (x̄s)‖2. (6.2.61)

We now provide certain probabilistic bounds to the two terms in the right hand side
of the above inequality. Firstly, from the fact that x̄s, 1≤ s≤ S, are independent and
(6.2.53) (with λ = 2), we have

Prob
{

min
s∈{1,2,...,S}

‖gX (x̄s)‖2 ≥ 2LBN̄

}
=

S

∏
s=1

Prob
{
‖gX (x̄s)‖2 ≥ 2LBN̄

}
≤ 2−S.

(6.2.62)
Moreover, denoting δs,k = G(x̄s,ξk)−∇ f (x̄s), k = 1, . . . ,T , by Proposition 6.1 with
x = x̄s,γ = γRs ,g1 = ḠT (x̄s),g2 = ∇ f (x̄s), we have

‖ḡX (x̄s)−gX (x̄s)‖ ≤ ‖∑T
k=1δs,k/T‖. (6.2.63)

From the above inequality, Assumption 13 and Lemma 6.1.a), for any λ > 0 and any
s = 1, . . . ,S, we have

Prob
{
‖ḡX (x̄s)−gX (x̄s)‖2 ≥ λσ2

T

}
≤ Prob

{
‖∑T

k=1δs,k‖2 ≥ λT σ
2}≤ 1

λ
,

which implies

Prob
{

max
s=1,...,S

‖ḡX (x̄s)−gX (x̄s)‖2 ≥ λσ2

T

}
≤ S

λ
. (6.2.64)

Then, the conclusion (6.2.56) follows from (6.2.61), (6.2.62) and (6.2.64).
We now show part (b). With the settings in part (b), it is easy to count the total

number of calls of the SFO in the 2-RSMD algorithm is bounded up by (6.2.60).
Hence, we only need to show that the x̄∗ returned by the 2-RSMD algorithm is indeed
an (ε,Λ)-solution of the problem (6.2.1). With the choice of N̄(ε) in (6.2.58), we
can see that (6.2.50) holds. So, we have from (6.2.47) and (6.2.58) that

BN̄(ε) =
16LD2

Ψ

N̄(ε)
+ 4

√
6σ√

N̄(ε)

(
D̃+

D2
Ψ

D̃

)
≤ ε

32L + ε

32L = ε

16L .

By the above inequality and (6.2.59), setting λ = 2S/Λ in (6.2.56), we have

8LBN̄(ε)+
6λσ2

T (ε,Λ) ≤ ε

2 +
λΛε

4S = ε,

which together with (6.2.56), (6.2.57) and λ = 2S/Λ imply

Prob
{
‖gX (x̄

∗)‖2 ≥ ε
}
≤ Λ

2 +2−S ≤Λ .
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Hence,x̄∗ is an (ε,Λ)-solution of the problem (6.2.1).

Now, it is interesting to compare the complexity bound in (6.2.60) with the one in
(6.2.54). In view of (6.2.57), (6.2.58) and (6.2.59), the complexity bound in (6.2.60)
for finding an (ε,Λ)-solution, after discarding a few constant factors, is equivalent to

O
{

1
ε

log2
1
Λ
+ σ2

ε2 log2
1
Λ
+ σ2

Λε
log2

2
1
Λ

}
. (6.2.65)

When the second terms are the dominating terms in both bounds, the above bound
(6.2.65) can be considerably smaller than the one in (6.2.54) up to a factor of
1/
[
Λ 2 log2(1/Λ)

]
.

The following theorem shows that under the “light-tail" assumption 14, the bound
(6.2.60) in Theorem 6.7 can be further improved.

Corollary 6.8. Under Assumptions 13 and 14, the following statements hold for the
2-RSMD algorithm applied to problem (6.2.1).

(a)Let BN̄ is defined in (6.2.47). Then, for all λ > 0

Prob
{
‖gX (x̄

∗)‖2 ≥
[
8LBN̄ + 12(1+λ )2σ2

T

]}
≤ Sexp(−λ 2

3 )+2−S;
(6.2.66)

(b)Let ε > 0 and Λ ∈ (0,1) be given. If S and N̄ are set to S(Λ) and N̄(ε) as in
(6.2.57) and (6.2.58), respectively, and the sample size T is set to

T ′(ε,Λ) := 24σ2

ε

[
1+
(

3log2
2S(Λ)

Λ

) 1
2
]2

, (6.2.67)

then the 2-RSMD algorithm can compute an (ε,Λ)-solution of the problem (6.2.1)
after taking at most

S(Λ)
[
N̄(ε)+T ′(ε,Λ)

]
(6.2.68)

calls to the stochastic first-order oracle.

Proof. We only give a sketch of the proof for part (a). The proof of part (b)
follows from part (a) and similar arguments for proving (b) part of Theorem 6.7.
Now, denoting δs,k = G(x̄s,ξk)−∇ f (x̄s), k = 1, . . . ,T , again by Proposition 6.1, we
have (6.2.63) holds. Then, by Assumption 14 and Lemma 6.1.b), for any λ > 0 and
any s = 1, . . . ,S, we have

Prob
{
‖ḡX (x̄s)−gX (x̄s)‖2 ≥ (1+λ )2 2σ2

T

}

≤ Prob
{
‖∑T

k=1δs,k‖ ≥
√

2T (1+λ )σ
}
≤ exp(−λ 2

3 ),

which implies that for any λ > 0

Prob
{

max
s=1,...,S

‖ḡX (x̄s)−gX (x̄s)‖2 ≥ (1+λ )2 2σ2

T

}
≤ Sexp(−λ 2

3 ), (6.2.69)
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Then, the conclusion (6.2.66) follows from (6.2.61), (6.2.62) and (6.2.69).

In view of (6.2.57), (6.2.58) and (6.2.67), the bound in (6.2.68), after discarding a
few constant factors, is equivalent to

O
{

1
ε

log2
1
Λ
+ σ2

ε2 log2
1
Λ
+ σ2

ε
log2

2
1
Λ

}
. (6.2.70)

Clearly, the third term of the above bound is smaller than the third term in (6.2.65)
by a factor of 1/Λ .

In the remaining part of this section, we briefly discuss another variant of the
2-RSMD algorithm, namely, 2-RSMD-V algorithm which can possibly improve the
practical performance of the 2-RSMD algorithm. Similarly to the 2-RSMD algorithm,
this variant also consists of two phases. The only difference exists in that the S runs
of the RSMD algorithm in the optimization phase are not independent of each other
and the output of each run is used as the initial point of the next run, although
the post-optimization phase of the 2-RSMD-V algorithm is the same as that of the
2-RSMD algorithm. We now formally state the optimization phase of the 2-RSMD-V
algorithm as follows.

Optimization phase of 2-RSMD-V algorithm:
For s = 1, . . . ,S

Call the RSMD algorithm with initial point x̄s−1 where x̄0 = x1 and x̄s = xRs ,
s = 1, . . . ,S, are the outputs of the s-th run of the RSMD algoirthm, iteration limit
N = bN̄/mc with m given by (6.2.46), stepsizes γk = 1/(2L) for k = 1, . . . ,N,
batch sizes mk = m, and probability mass function PR in (6.2.30).

As mentioned above, in the 2-RSMD-V algorithm, unlike the 2-RSMD algorithm,
the S candidate solutions are not independent and hence the analysis of Theorem 6.7
cannot be directly applied. However, by slightly modifying the proof of Theorem
3, we can show that the above 2-RSMD-V algorithm exhibits similar convergence
behavior as the 2-RSMD algorithm under certain more restrictive conditions.

Corollary 6.9. Suppose that the feasible set X is bounded and Assumption 13 holds.
Then, the complexity of the 2-RSMD-V algorithm to find an (ε,Λ)-solution of prob-
lem (6.2.1) is bounded by (6.2.65). If in addition, Assumption 14 holds, then this
complexity bound improves to (6.2.70).

Proof. Denote Ψ̄ = maxx∈X Ψ(x) and let Es be the event that ‖gX (x̄s)‖2 ≥ 2LB̂N̄
where

B̂N̄ := 16(Ψ̄−Ψ∗)
N̄ + 4

√
6σ√
N̄

(
Ψ̄−Ψ∗

LD̃ + D̃max
{

1,
√

6σ

4LD̃
√

N̄

})
.

Now note that due to the boundeness of X and continuity of f , Ψ̄ is finite and
therefore the bound B̂N̄ is valid. Also observe that by (6.2.53) (with λ = 2) together
with the fact that B̂N̄ ≥BN̄ , we have

Prob

{
Es |

s−1⋂

j=1

E j

}
≤ 1

2 , s = 1,2, . . . ,S,
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which consequently implies that

Prob
{

min
s∈{1,2,...,S}

‖gX (x̄s)‖2 ≥ 2LB̂N̄

}

= Prob

{
S⋂

s=1

Es

}
=

S

∏
s=1

Prob

{
Es |

s−1⋂

j=1

E j

}
≤ 2−S.

Observing that the above inequality is similar to (6.2.62), the rest of proof is almost
identical to those of Theorem 6.7 and Corollary 6.8 and hence we skip the details.

6.2.4 Stochastic zeroth-order methods for composite problems

In this section, we discuss how to specialize the RSMD algorithm to deal with the
situations where only noisy function values of the problem (6.2.1) are available. More
specifically, we assume that we can only access the noisy zeroth-order information
of f by a stochastic zeroth-order oracle (SZO). For any input xk and ξk, the SZO
would output a quantity F(xk,ξk), where xk is the k-th iterate of our algorithm and
ξk is a random variable whose distribution is supported on Ξ ∈ Rd (noting that Ξ

does not depend on xk). Throughout this section, we assume F(xk,ξk) is an unbiased
estimator of f (xk) that satisfies Assumption 15.

We are going to apply the randomized smoothing techniques to explore the zeroth-
order information of f . Hence, throughout this section, we also assume F(·,ξk)
is smooth, i.e., it is differentiable and its gradients are Lipschitz continuous with
constant L, almost surely with respect to ξk ∈ Ξ , which together with Assumption 15
imply f is smooth and its gradients are Lipschitz continuous with constant L. Also,
throughout this section, we assume that ‖ · ‖ is the standard Euclidean norm.

Similar to Subsection 6.1.2.1, let us define the approximated stochastic gradient of
f at xk as in (6.1.58) and define G(xk,ξk) = ∇xF(xk,ξk). We assume the Assumption
1 holds for G(xk,ξk). Then, by the Assumption 15 and Lemma 6.2.a), we directly get

Ev,ξk
[Gµ(xk,ξk,v)] = ∇ fµ(xk), (6.2.71)

where the expectation is taken with respect to v and ξk.
Now based on the RSMD algorithm, we state an algorithm which only uses

zeroth-order information to solve problem (6.2.1).
A randomized stochastic gradient free mirror descent (RSMDF) algorithm

Input: Given initial point x1 ∈ X , iteration limit N, the stepsizes {γk} with γk > 0,
k ≥ 1, the batch sizes {mk} with mk > 0, k ≥ 1, and the probability mass function
PR supported on {1, . . . ,N}.
Step 0. Let R be a random variable with probability mass function PR.
Step k = 1, . . . ,R− 1. Call the SZO mk times to obtain Gµ(xk,ξk,i,vk,i), i =
1, . . . ,mk, set
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Gµ,k =
1

mk
∑

mk
i=1Gµ(xk,ξk,i,vk,i) (6.2.72)

and compute

xk+1 = argmin
u∈X

{
〈Gµ,k,u〉+ 1

γk
V (xk,u)+h(u)

}
. (6.2.73)

Output: xR.

Compared with RSMD algorithm, we can see at the k-th iteration, the RSMDF
algorithm simply replaces the stochastic gradient Gk by the approximated stochastic
gradient Gµ,k. By (6.2.71), Gµ,k can be simply viewed as an unbiased stochastic
gradient of the smoothed function fµ . However, to apply the results developed in the
previous section, we still need an estimation of the bound on the variations of the
stochastic gradient Gµ,k. In addition, the role that the smoothing parameter µ plays
and the proper selection of µ in the RSMDF algorithm are still not clear now. We
answer these questions in the following series of theorems and their corollaries.

Theorem 6.8. Suppose that the stepsizes {γk} in the RSMDF algorithm are cho-
sen such that 0 < γk ≤ 1/L with γk < 1/L for at least one k, and the probability
mass function PR are chosen as (6.2.30). If ‖∇ f (x)‖ ≤M for all x ∈ X, then under
Assumptions 13 and 15,

(a)for any N ≥ 1, we have

E[‖ḡ
µ,X ,R‖2]≤ LD2

Ψ
+µ2Ln+σ̃2∑

N
k=1(γk/mk)

∑
N
k=1(γk−Lγ2

k )
, (6.2.74)

where the expectation is taken with respect to R, ξ[N] and v[N] := (v1, . . . ,vN), DΨ

is defined in (6.2.22),

σ̃
2 = 2(n+4)[M2 +σ

2 +µ
2L2(n+4)2], (6.2.75)

and
ḡ

µ,X ,k = PX (xk,Gµ,k,γk), (6.2.76)

with PX defined in(6.2.7);
(b)if, in addition, f in problem (6.2.1) is convex with an optimal solution x∗, and the

stepsizes {γk} are non-decreasing as (6.2.33), we have

E [Ψ(xR)−Ψ(x∗)]≤ (1−Lγ1)V (x1,x∗)+(σ̃2/2)∑
N
k=1(γ

2
k /mk)

∑
N
k=1(γk−Lγ2

k )
+µ

2Ln, (6.2.77)

where the expectation is taken with respect to R, ξ[N] and v[N].

Proof. By our assumption that F(·,ξk) is smooth almost surely and (6.1.53)
(applying f = F(·,ξk)), we have
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Evk,ξk
[‖Gµ(xk,ξk,vk)‖2] = Eξk

[Evk [‖Gµ(xk,ξk,vk)‖2]]

≤ 2(n+4)[Eξk
[‖G(xk,ξ )‖2]+ µ2

2 L2(n+6)3

≤ 2(n+4)[Eξk
[‖∇ f (xk)‖2]+σ

2]+2µ
2L2(n+4)3,

where the last inequality follows from Assumption 1 with G(xk,ξk) = ∇xF(xk,ξk).
Then, from (6.2.71), the above inequality, and ‖∇ f (xk)‖ ≤M, we have

Evk,ξk
[‖Gµ(xk,ξk,vk)−∇ fµ(xk)‖2]

= Evk,ξk
[‖Gµ(xk,ξk,vk)‖2 +‖∇ fµ(xk)‖2−2〈Gµ(xk,ξk,vk),∇ fµ(xk)〉]

= Evk,ξk
[‖Gµ(xk,ξk,vk)‖2]+‖∇ fµ(xk)‖2−2〈Evk,ξk

[Gµ(xk,ξk,vk)],∇ fµ(xk)〉
= Evk,ξk

[‖Gµ(xk,ξk,vk)‖2]+‖∇ fµ(xk)‖2−2‖∇ fµ(xk)‖2

≤ Evk,ξk
[‖Gµ(xk,ξk,vk)‖2]≤ 2(n+4)[M2 +σ

2 +µ
2L2(n+4)2] = σ̃

2. (6.2.78)

Now let Ψµ(x) = fµ(x)+h(x) and Ψ ∗µ = minx∈X Ψµ(x). We have from (6.1.57) that

|(Ψµ(x)−Ψ
∗

µ )− (Ψ(x)−Ψ
∗)| ≤ µ

2Ln. (6.2.79)

By Lemma (6.2).a), we have Lµ ≤ L and therefore fµ is smooth and its gradients
are Lipschitz continuous with constant L. With this observation, noticing (6.2.71)
and (6.2.78), viewing Gµ(xk,ξk,vk) as a stochastic gradient of fµ , then by part (a) of
Theorem 6.6 we can directly get

E[‖ḡ
µ,X ,R‖2]≤

LD2
Ψµ

+σ̃2∑
N
k=1(γk/mk)

∑
N
k=1(γk−Lγ2

k )
,

where DΨµ
= [(Ψµ(x1)−Ψ ∗µ )/L]1/2 and the expectation is taken with respect to R,

ξ[N] and v[N]. Then, the conclusion (6.2.74) follows the above inequality and (6.2.79).
We now show part (b). Since f is convex, by Lemma (6.2).c), fµ is also convex.

Again by (6.2.79), we have

E [Ψ(xR)−Ψ(x∗)]≤ E
[
Ψµ(xR)−Ψµ(x∗)

]
+µ

2Ln.

Then, by this inequality and the convexity of fµ , it follows from part (b) of Theo-
rem 6.6 and similar arguments in showing the part (a) of this theorem, the conclusion
(6.2.77) holds.

Using the previous Theorem 6.8, similar to the Corollary 6.6, we can give the
following corollary on the RSMDF algorithm with a certain constant stepsize and
batch size at each iteration.

Corollary 6.10. Suppose that in the RSMDF algorithm the stepsizes γk = 1/(2L) for
all k = 1, . . . ,N, the batch sizes mk = m for all k = 1, . . . ,N, and the probability mass
function PR is set to (6.2.30). Then under Assumptions 13 and 15, we have
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E[‖ḡ
µ,X ,R‖2]≤ 4L2D2

Ψ
+4µ2L2n
N + 2σ̃2

m (6.2.80)

and
E[‖gX ,R‖2]≤ µ2L2(n+3)2

2 +
16L2D2

Ψ
+16µ2L2n
N + 12σ̃2

m , (6.2.81)

where the expectation is taken with respect to R, ξ[N] and v[N], and σ̃ , ḡ
µ,X ,R and gX ,R

are defined in (6.2.75), (6.2.76) and (6.2.20), respectively.
If, in addition, f in the problem (6.2.1) is convex with an optimal solution x∗, then

E [Ψ(xR)−Ψ(x∗)]≤ 2LV (x1,x∗)
N + σ̃2

2Lm +µ
2Ln. (6.2.82)

Proof. (6.2.80) immediately follows from (6.2.74) with γk = 1/(2L) and mk = m
for all k = 1, . . . ,N. Now let g

µ,X ,R = PX (xR,∇ fµ(xR),γR), we have from (6.1.52) and
Proposition 6.1 with x = xR, γ = γR, g1 = ∇ f (xR) and g2 = ∇ fµ(xR) that

E[‖gX ,R −g
µ,X ,R‖2]≤ µ2L2(n+3)2

4 . (6.2.83)

Similarly, by Proposition 6.1 with x = xR, γ = γR, g1 = Ḡµ,k and g2 = ∇ fµ(xR), we
have

E[‖ḡ
µ,X ,R −g

µ,X ,R‖2]≤ σ̃2

m . (6.2.84)

Then, it follows from (6.2.83), (6.2.84) and (6.2.80) that

E[‖gX ,R‖2] ≤ 2E[‖gX ,R −g
µ,X ,R‖2]+2E[‖g

µ,X ,R‖2]

≤ µ2L2(n+3)2

2 +4E[‖g
µ,X ,R − ḡ

µ,X ,R‖2]+4E[‖ḡ
µ,X ,R‖2]

≤ µ2L2(n+3)2

2 + 12σ̃2

m +
16L2D2

Ψ
+16µ2L2n
N .

Moreover, if f is convex, then (6.2.82) immediately follows from (6.2.77), and
the constant stepsizes γk = 1/(2L) for all k = 1, . . . ,N.

Similar to the Corollary 6.6 for the RSMD algorithm, the above results also
depend on the number of samples m at each iteration. In addition, the above results
depend on the smoothing parameter µ as well. The following corollary, analogous to
the Corollary 6.7, shows how to choose m and µ appropriately.

Corollary 6.11. Suppose that all the conditions in Corollary 6.10 are satisfied. Given
a fixed total number of calls to the SZO N̄, if the smoothing parameter satisfies

µ ≤ DΨ√
(n+4)N̄

, (6.2.85)

and the number of calls to the SZO at each iteration of the RSMDF method is

m =

⌈
min

{
max

{√
(n+4)(M2+σ2)N̄

LD̃ ,n+4
}
, N̄
}⌉

, (6.2.86)

for some D̃ > 0, then we have 1/L E[‖gX ,R‖2]≤ B̄N̄ , where
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B̄N̄ := (24θ2+41)LD2
Ψ
(n+4)

N̄ +
32
√

(n+4)(M2+σ2)√
N̄

(
D2

Ψ

D̃ + D̃θ1

)
, (6.2.87)

and

θ1 = max
{

1,
√

(n+4)(M2+σ2)

LD̃
√

N̄

}
and θ2 = max

{
1, n+4

N̄

}
. (6.2.88)

If, in addition, f in the problem (6.2.1) is convex and the smoothing parameter
satisfies

µ ≤
√

V (x1,x∗)
(n+4)N̄ , (6.2.89)

then E[Ψ(xR)−Ψ(x∗)]≤ C̄N̄ , where x∗ is an optimal solution and

C̄N̄ := (5+θ2)LV (x1,x∗)(n+4)
N̄ +

√
(n+4)(M2+σ2)√

N̄

(
4V (x1,x∗)

D̃ + D̃θ1

)
. (6.2.90)

Proof. By the definitions of θ1 and θ2 in (6.2.88) and m in (6.2.86), we have

m =

⌈
max

{√
(n+4)(M2+σ2)N̄

LD̃θ1
, n+4

θ2

}⌉
. (6.2.91)

Given the total number of calls to the SZO N̄ and the the number m of calls to
the SZO at each iteration, the RSMDF algorithm can perform at most N = bN̄/mc
iterations. Obviously, N ≥ N̄/(2m). With this observation N̄ ≥m, θ1 ≥ 1 and θ2 ≥ 1,
by (6.2.81), (6.2.85) and (6.2.91), we have

E[‖gX ,R‖2]

≤ L2D2
Ψ
(n+3)

2N̄ + 24(n+4)(M2+σ2)
m +

24L2D2
Ψ
(n+4)2

mN̄ +
32L2D2

Ψ
m

N̄

(
1+ 1

N̄

)

≤ L2D2
Ψ
(n+4)

2N̄ +
24θ1LD̃

√
(n+4)(M2+σ2)√

N̄
+

24θ2L2D2
Ψ
(n+4)

N̄

+
32L2D2

Ψ

N̄

(√
(n+4)(M2+σ2)N̄

LD̃θ1
+ n+4

θ2

)
+

32L2D2
Ψ

N̄

≤ L2D2
Ψ
(n+4)

2N̄ +
24θ1LD̃

√
(n+4)(M2+σ2)√

N̄
+

24θ2L2D2
Ψ
(n+4)

N̄

+
32LD2

Ψ

√
(n+4)(M2+σ2)

D̃
√

N̄
+

32L2D2
Ψ
(n+4)

N̄ +
32L2D2

Ψ

N̄ ,

which after integrating the terms give (6.2.87). The conclusion (6.2.90) follows
similarly by (6.2.89) and (6.2.82).

We now would like to add a few remarks about the above the results in Corol-
lary 6.11. Firstly, the above complexity bounds are similar to those of the first-order
RSMD method in Corollary 6.7 in terms of their dependence on the total number
of stochastic oracle N̄ called by the algorithm. However, for the zeroth-order case,
the complexity in Corollary 6.11 also depends on the size of the gradient M and
the problem dimension n. Secondly, the value of D̃ has not been specified. It can be
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easily seen from (6.2.87) and (6.2.90) that when N̄ is relatively large such that θ1 = 1
and θ2 = 1, i.e.,

N̄ ≥max
{

(n+4)2(M2+σ2)
L2D̃2 ,n+4

}
, (6.2.92)

the optimal choice of D̃ would be DΨ and 2
√

V (x1,x∗) for solving nonconvex and
convex SP problems, respectively. With this selection of D̃, the bounds in (6.2.87)
and (6.2.90), respectively, reduce to

1
LE[‖gX ,R‖2]≤ 65LD2

Ψ
(n+4)

N̄ +
64
√

(n+4)(M2+σ2)√
N̄

(6.2.93)

and

E[Ψ(xR)−Ψ(x∗)]≤ 6LV (x1,x∗)(n+4)
N̄ +

4
√

V (x1,x∗)(n+4)(M2+σ2)√
N̄

. (6.2.94)

Thirdly, the complexity result in (6.2.90) implies that when Ψ is convex, if ε suf-
ficiently small, then the number of calls to the SZO to find a solution x̄ such that
E[Ψ(x̄)−Ψ ∗]≤ ε can be bounded by O(n/ε2), which only linearly depends on the
dimension n.

6.3 Nonconvex stochastic block mirror descent

In this section, we consider a special class of stochastic composite optimization
problems given by

φ
∗ := min

x∈X
{φ(x) := f (x)+X (x)} . (6.3.1)

Here, f (·) is smooth (but not necessarily convex) and its gradients ∇ f (·) satisfy

‖∇ fi(x+Uiρi)−∇ fi(x)‖i,∗ ≤ Li‖ρi‖i ∀ ρi ∈ Rni , i = 1,2, ...,b. (6.3.2)

It then follows that

f (x+Uiρi)≤ f (x)+ 〈∇ fi(x),ρi〉+ Li
2 ‖ρi‖2

i ∀ρi ∈ Rni ,x ∈ X . (6.3.3)

Moreover, the nonsmooth component X (·) is still convex and separable, i.e.

X (x) = ∑
b
i=1Xi(x(i)) ∀x ∈ X (6.3.4)

where Xi : Rni → R are closed and convex. In addition, we assume that X has a
block structure, i.e.,

X = X1×X2×·· ·×Xb, (6.3.5)

where Xi ⊆ Rni , i = 1, . . . ,b, are closed convex sets with n1 + n2 + . . .+ nb = n.
Our goal is to generalize the stochastic block mirror descent method introduced
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in Section 4.6 for solving the above nonconvex stochastic composite optimization
problem.

Similar to Section 4.6, we use Rni , i = 1, . . . ,b, to denote Euclidean spaces
equipped with inner product 〈·, ·〉 and norm ‖ · ‖i (‖ · ‖i,∗ be the conjugate) such
that ∑

b
i=1ni = n. Let In be the identity matrix in Rn and Ui ∈ Rn×ni , i = 1,2, . . . ,b,

be the set of matrices satisfying (U1,U2, . . . ,Ub) = In. For a given x ∈ Rn, we de-
note its i-th block by x(i) = UT

i x, i = 1, . . . ,b. Note that x = U1x(1)+ . . .+Ubx(b).
Moreover, we define ‖x‖2 = ‖x(1)‖2

1 + . . .+ ‖x(b)‖2
b. and denote its conjugate by

‖y‖2
∗ = ‖y(1)‖2

1,∗+ . . .+‖y(b)‖2
b,∗.

Let νi : Xi→ R be the distance generating function with modulus 1 with respect
to ‖ · ‖i, and Vi be the associated prox-function. For a given x ∈ Xi and y ∈ Rni , we
define the prox-mapping as

argminz∈Xi
〈y,z− x〉+ 1

γ
Vi(x,z)+Xi(z). (6.3.6)

We need to assume that the prox-functions Vi(·, ·), i = 1, . . . ,b, satisfy a quadratic
growth condition:

Vi(x(i),z(i))≤ Q
2 ‖z(i)− x(i)‖2

i ∀z(i),x(i) ∈ Xi, (6.3.7)

for some Q > 0.
In order to discuss the convergence of the SBMD algorithm for solving nonconvex

composite problems, we need to first define an appropriate termination criterion.
Note that if X = Rn and X (x) = 0, then a natural way to evaluate the quality of
a candidate solution x will be ‖∇ f (x)‖. For more general nonconvex composite
problems, we introduce the notion of composite projected gradient so as to evaluate
the quality of a candidate solution. More specifically, for a given x ∈ X , y ∈ Rn and a
constant γ > 0, we define PX (x,y,γ)≡ (PX1(x,y,γ), . . . ,PXb(x,y,γ)) by

PXi(x,y,γ) := 1
γ
[xi− x+i ], i = 1, . . . ,b, (6.3.8)

where
x+i := argminz∈Xi

〈y,z− xi〉+ 1
γ
Vi(xi,z)+Xi(z).

In particular, if y = ∇ f (x), then we call PX (x,∇ f (x),γ) the composite projected
gradient of x w.r.t. γ . It can be easily seen that PX (x,∇ f (x),γ) = ∇ f (x) when X =Rn

and X (x) = 0. Proposition 6.2 below relates the composite projected gradient to
the first-order optimality condition of the composite problem under a more general
setting.

Proposition 6.2. Let x ∈ X be given and PX (x,y,γ) be defined as in (6.3.8) for some
γ > 0. Also let us denote x+ := x−γPX (x,g(x),γ). Then there exists pi ∈ ∂Xi(UT

i x+)
s.t.

UT
i g(x+)+ pi ∈ −NXi(U

T
i x+)+Bi ((Liγ +Q)‖PX (x,g(x),γ)‖i) , i = 1, . . . ,b,

(6.3.9)
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where Bi(ε) := {v ∈ Rni : ‖v‖i,∗ ≤ ε} and NXi(U
T
i x+) denotes the normal cone of Xi

at UT
i x+.

Proof. By the definition of x+, (6.3.6), and (6.3.8), we have UT
i x+=PXi(U

T
i x,UT

i g(x),γ).
Using the above relation and the optimality condition of (6.3.6), we conclude that
there exists pi ∈ ∂Xi(UT

i x+) s.t.

〈UT
i g(x)+ 1

γ

[
∇νi(UT

i x+)−∇νi(UT
i x)
]
+ pi,u−UT

i x+〉 ≥ 0, ∀u ∈ Xi.

Now, denoting ζ = UT
i [g(x)− g(x+)+ 1

γ

[
∇νi(UT

i x+)−∇νi(UT
i x)
]
, we conclude

from the above relation that UT
i g(x+)+ pi + ζ ∈ −NXi(U

T
i x+). Also noting that,

by ‖UT
i [g(x+)− g(x)]‖i,∗ ≤ Li‖UT

i (x+− x)‖i and ‖∇νi(UT
i x+)−∇νi(UT

i x)‖i,∗ ≤
Q‖UT

i (x+− x)‖i,

‖ζ‖i,∗ ≤
(

Li +
Q
γ

)
‖UT

i (x+− x)‖i =
(

Li +
Q
γ

)
γ‖UT

i PX (x,g(x),γ)‖i

= (Liγ +Q)‖UT
i PX (x,g(x),γ)‖i.

Relation (6.3.9) then immediately follows from the above two relations.

A common practice in the gradient descent methods for solving nonconvex prob-
lems (for the simple case when X = Rn and X (x) = 0) is to choose the output
solution x̄N so that

‖g(x̄N)‖∗ = min
k=1,...,N

‖g(xk)‖∗, (6.3.10)

where xk, k= 1, . . . ,N, is the trajectory generated by the gradient descent method.However,
such a procedure requires the computation of the whole vector g(xk) at each iteration
and hence can be expensive if n is large. In this section, we address this problem by
introducing a randomization scheme into the SBMD algorithm as follows. Instead
of taking the best solution from the trajectory as in (6.3.10), we randomly select x̄N
from x1, . . . ,xN according to a certain probability distribution. The basic scheme of
this algorithm is described as follows.
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Algorithm 6.1 The Nonconvex SBMD Algorithm
Let x1 ∈ X , stepsizes {γk}k≥1 s.t. γk < 2/Li, i = 1, . . . ,b, and probabilities pi ∈ [0,1], i = 1, . . . ,b,
s.t. ∑

b
i=1 pi = 1 be given.

for k = 1, . . . ,N do
1. Generate a random variable ik according to

Prob{ik = i}= pi, i = 1, . . . ,b. (6.3.11)

2. Compute the ik-th block of the (stochastic) gradient Gik of f (·) at xk satisfying

E[Gik ] =UT
ik g(xk) and E[‖Gik −UT

ik g(xk)‖2
ik ,∗]≤ σ̄

2
k , (6.3.12)

and update xk by

x(i)k+1 =

{
Pik (x

(i)
k ,Gik (xk,ξk),γk) i = ik,

x(i)k i 6= ik.
(6.3.13)

end for
Set x̄N = xR randomly according to

Prob(R = k) =
γk min

i=1,...,b
pi

(
1− Li

2 γk

)

∑
N
k=1γk min

i=1,...,b
pi

(
1− Li

2 γk

) , k = 1, ...,N. (6.3.14)

We add a few remarks about the above nonconvex SBMD algorithm. Firstly,
observe that we have not yet specified how the gradient Gik is computed. If the
problem is deterministic, then we can simply set Gik =UT

ik g(xk) and σ̄k = 0. However,
if the problem is stochastic, then the computation of Gik is a little complicated
and we cannot simply set Gik =UT

ik ∇F(xk,ξk) (see Corollary 6.13). Secondly, the
probability of choosing xR, R = 1, . . . ,N, as the output solution is given by (6.3.14).
Such a randomization scheme was shown to be critical to establish the complixity
for nonconvex stochastic optimization as shown earlier in this chapter.

Before establishing the convergence properties of the above nonconvex SBMD
algorithm, we will first present a technical result which summarizes some important
properties about the composite prox-mapping and projected gradient. Note that this
result generalizes a few results in Section 6.2.1.

Lemma 6.7. Let xk+1 be defined in (6.3.13), and denote gk ≡ PX (xk,∇ f (xk),γk) and
g̃k ≡ PXik

(xk,Uik Gik ,γk). We have

〈Gik , g̃k)≥ ‖g̃k‖2 + 1
γk
[X (xk+1)−X (xk)] , (6.3.15)

‖g̃k−UT
ik gk‖ik ≤ ‖Gik −Uik ∇ f (xk)‖ik,∗. (6.3.16)

Proof. By the optimality condition of (6.3.6) and the definition of xk+1 in (6.3.13),
there exists p ∈ ∂Xik(xk+1) such that

〈Gik +
1
γk

[
∇νik(U

T
ik xk+1)−∇νik(U

T
ik xk)

]
+ p, 1

γk
(u−UT

ik xk+1)〉 ≥ 0, ∀u ∈ Xik .
(6.3.17)
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Letting u =UT
ik xk in the above inequality and re-arranging terms, we obtain

〈Gik ,
1
γk

UT
ik (xk− xk+1)〉 ≥ 1

γ2
k
〈∇νik(U

T
ik xk+1)−∇νik(U

T
ik xk),UT

ik (xk+1− xk)〉
+〈p, 1

γk
UT

ik (xk+1− xk)〉
≥ 1

γ2
k
〈∇νik(U

T
ik xk+1)−∇νik(U

T
ik xk),UT

ik (xk+1− xk)〉
+ 1

γk

[
Xik(U

T
ik xk+1)−Xik(U

T
ik xk)

]

≥ 1
γ2

k
‖UT

ik (xk+1− xk)‖2 + 1
γk

[
Xik(U

T
ik xk+1)−Xik(U

T
ik xk)

]

= 1
γ2

k
‖UT

ik (xk+1− xk)‖2 + 1
γk
[X (xk+1)−X (xk)],

(6.3.18)
where the second and third inequalities, respectively, follow from the convexity of
Xik and the strong convexity of ν , and the last identity follows from the definition of
xk+1 and the separability assumption about X in (6.3.4). The above inequality, in
view of the fact that γkg̃k =UT

ik (xk− xk+1) due to (6.3.8) and (6.3.13), then implies
(6.3.15).

Now we show that (6.3.16) holds. Let us denote x+k+1 = xk−γkgk. By the optimality
condition of (6.3.6) and the definition of gk, we have, for some q ∈ ∂Xik(x

+
k+1),

〈UT
ik ∇(xk)+

1
γk

[
∇νik(U

T
ik x+k+1)−∇νik(U

T
ik xk)

]
+q, 1

γk
(u−UT

ik x+k+1)〉 ≥ 0, ∀u ∈ Xik .
(6.3.19)

Letting u =UT
ik x+k+1 in (6.3.17) and using an argument similar to (6.3.18), we have

〈Gik ,
1
γk

UT
ik (x

+
k+1− xk+1)〉 ≥ 1

γ2
k
〈∇νik(U

T
ik xk+1)−∇νik(U

T
ik xk),UT

ik (xk+1− x+k+1)〉
+ 1

γk

[
Xik(U

T
ik xk+1)−Xik(U

T
ik x+k+1)

]
.

Similarly, letting u =UT
ik xk+1 in (6.3.19), we have

〈UT
ik ∇(xk),

1
γk

UT
ik (xk+1− x+k+1)〉 ≥ 1

γ2
k
〈∇νik(U

T
ik x+k+1)−∇νik(U

T
ik xk),UT

ik (x
+
k+1− xk+1)〉

+ 1
γk

[
Xik(U

T
ik x+k+1)−Xik(U

T
ik xk+1)

]
.

Summing up the above two inequalities, we obtain

〈Gik −UT
ik ∇(xk),UT

ik (x
+
k+1− xk+1)〉 ≥

1
γk
〈∇νik(U

T
ik xk+1)−∇νik(U

T
ik x+k+1),U

T
ik (xk+1− x+k+1)〉 ≥ 1

γk
‖UT

ik (xk+1− x+k+1)‖2
ik ,

which, in view of the Cauchy-Schwarz inequality, then implies that

1
γk
‖UT

ik (xk+1− x+k+1)‖ik ≤ ‖Gik −UT
ik ∇(xk)‖ik,∗.

Using the above relation and (6.3.8), we have

‖g̃k−UT
ik gk‖ik = ‖ 1

γk
UT

ik (xk− xk+1)− 1
γk

UT
ik (xk− x+k+1)‖ik

= 1
γk
‖UT

ik (x
+
k+1− xk+1)‖ik ≤ ‖Gik −UT

ik ∇(xk)‖ik,∗.
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We are now ready to describe the main convergence properties of the nonconvex
SBMD algorithm.

Theorem 6.9. Let x̄N = xR be the output of the nonconvex SBMD algorithm. We have

E[‖PX (xR,g(xR),γR)‖2]≤ φ(x1)−φ∗+2∑
N
k=1γkσ̄2

k

∑
N
k=1γk min

i=1,...,b
pi

(
1−Li

2 γk

) (6.3.20)

for any N ≥ 1, where the expectation is taken w.r.t. ik,Gik , and R.

Proof. Denote δk≡Gik−UT
ik ∇ f (xk), gk≡PX (xk,∇ f (xk),γk) and g̃k≡PXik

(xk,Uik Gik ,γk)
for any k≥ 1. Note that by (6.3.13) and (6.3.8), we have xk+1−xk =−γkUik g̃k. Using
this observation and (6.3.3), we have, for any k = 1, . . . ,N,

f (xk+1) ≤ f (xk)+ 〈∇ f (xk),xk+1− xk〉+
Lik
2 ‖xk+1− xk‖2

= f (xk)− γk〈∇ f (xk),Uik g̃k〉+
Lik
2 γ

2
k ‖g̃k‖2

ik

= f (xk)− γk〈Gik , g̃k〉+
Lik
2 γ

2
k ‖g̃k‖2

ik + γk〈δk, g̃k〉.

Using the above inequality and Lemma 6.7, we obtain

f (xk+1)≤ f (xk)−
[
γk‖g̃k‖2

ik +X (xk+1)−X (xk)
]
+

Lik
2 γ

2
k ‖g̃k‖2

ik + γk〈δk, g̃k〉,

which, in view of the fact that φ(x) = f (x)+X (x), then implies that

φ(xk+1)≤ φ(xk)− γk

(
1− Lik

2 γk

)
‖g̃k‖2

ik + γk〈δk, g̃k〉. (6.3.21)

Also observe that by (6.3.16), the definition of g̃k, and the fact UT
ik gk =PXik

(xk,∇ f (xk),γk),

‖g̃k−UT
ik gk‖ik ≤ ‖Gik −UT

ik ∇ f (xk)‖ik,∗ = ‖δk‖ik,∗,

and hence that

‖UT
ik gk‖2

ik = ‖g̃k +UT
ik gk− g̃k‖2

ik ≤ 2‖g̃k‖2
ik +2‖UT

ik gk− g̃k‖2
ik

≤ 2‖g̃k‖2
ik +2‖δk‖2

ik,∗,

〈δk, g̃k〉 = 〈δk,UT
ik gk〉+ 〈δk, g̃k−UT

ik gk〉 ≤ 〈δk,UT
ik gk〉+‖δk‖ik,∗‖g̃k−UT

ik gk‖ik

≤ 〈δk,UT
ik gk〉+‖δk‖2

ik,∗.

By using the above two bounds and (6.3.21), we obtain

φ(xk+1)≤ φ(xk)−γk

(
1− Lik

2 γk

)( 1
2‖UT

ik gk‖2
ik −‖δk‖2

ik,∗
)
+γk〈δk,UT

ik gk〉+γk‖δk‖2
ik,∗

for any k = 1, . . . ,N. Summing up the above inequalities and re-arranging the terms,
we obtain
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∑
N
k=1

γk
2

(
1− Lik

2 γk

)
‖UT

ik gk‖2
ik ≤ φ(x1)−φ(xk+1)+∑

N
k=1

[
γk〈δk,UT

ik gk〉+ γk‖δk‖2
ik,∗
]

+∑
N
k=1γk

(
1− Lik

2 γk

)
‖δk‖2

ik,∗

≤ φ(x1)−φ ∗+∑
N
k=1

[
γk〈δk,UT

ik gk〉+2γk‖δk‖2
ik,∗
]
,

where the last inequality follows from the facts that φ(xk+1)≥ φ ∗ and Lik γ2
k ‖δk‖2

ik,∗≥
0. Now denoting ζk = Gik , ζ[k] = {ζ1, . . . ,ζk} and i[k] = {i1, . . . , ik}, taking expec-
tation on both sides of the above inequality w.r.t. ζ[N] and i[N], and noting that by
(6.3.11) and (6.3.12),

Eζk

[
〈δk,UT

ik gk〉|i[k],ζ[k−1]
]
= Eζk

[
〈Gik −UT

ik ∇ f (xk),UT
ik gk〉|i[k],ζ[k−1]

]
= 0,

Eζ[N],i[N]
[‖δk‖2

ik,∗] ≤ σ̄
2
k ,

Eik

[(
1− Lik

2 γk

)
‖UT

ik gk‖2|ζ[k−1], i[k−1]

]
= ∑

b
i=1 pi

(
1− Li

2 γk

)
‖UT

i gk‖2

≥
(

∑
b
i=1‖UT

i gk‖2
)

min
i=1,...,b

pi

(
1− Li

2 γk

)

= ‖gk‖2 min
i=1,...,b

pi

(
1− Li

2 γk

)
,

we conclude that

∑
N
k=1γk min

i=1,...,b
pi

(
1− Li

2 γk

)
Eζ[N],i[N]

[
‖gk‖2]≤ φ(x1)−φ

∗+2∑
N
k=1γkσ̄

2
k .

Dividing both sides of the above inequality by ∑
N
k=1γk min

i=1,...,b
pi

(
1− Li

2 γk

)
, and using

the probability distribution of R given in (6.3.14), we obtain (6.3.20).

We now discuss some consequences for Theorem 6.9. More specifically, we
discuss the rate of convergence of the nonconvex SBMD algorithm for solving
deterministic and stochastic problems, respectively, in Corollaries 6.12 and 6.13.

Corollary 6.12. Consider the deterministic case when σ̄k = 0, k = 1, . . . ,N, in
(6.3.12). Suppose that the random variable {ik} are uniformly distributed, i.e.,

p1 = p2 = . . .= pb =
1
b . (6.3.22)

If {γk} are set to
γk =

1
L̄ ,k = 1, . . . ,N, (6.3.23)

where L̄ := maxi=1,...,b Li, then we have, for any N ≥ 1,

E[‖PX (xR,∇ f (xR),γR)‖2]≤ 2bL̄[φ(x1)−φ∗]
N . (6.3.24)

Proof. By our assumptions about pi and (6.3.23), we have

min
i=1,...,b

pi

(
1− Li

2 γk

)
= 1

b min
i=1,...,b

(
1− Li

2 γk

)
≥ 1

2b , (6.3.25)
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which, in view of (6.3.20) and the fact that σ̄k = 0, then implies that, for any N ≥ 1,

E[‖PX (xR,∇ f (xR),γR)‖2]≤ 2b[φ(x1)−φ∗]
N

1
L̄ = 2bL̄[φ(x1)−φ∗]

N .

Now, let us consider the stochastic case when f (·) is given in the form of expecta-
tion (see (4.6.1)). Suppose that the norms ‖ · ‖i are inner product norms in Rni and
that

E[‖Ui∇F(x,ξ )−gi(x)‖]≤ σ ∀x ∈ X (6.3.26)

for any i= 1, . . . ,b. Also assume that Gik is computed by using a mini-batch approach
with size Tk, i.e.,

Gik =
1
Tk

∑
Tk
t=1Uik ∇F(xk,ξk,t), (6.3.27)

for some Tk ≥ 1, where ξk,1, . . . ,ξk,Tk are i.i.d. samples of ξ .

Corollary 6.13. Assume that the random variables {ik} are uniformly distributed
(i.e., (6.3.22) holds). Also assume that Gik is computed by (6.3.27) for Tk = T and
that {γk} are set to (6.3.23). Then we have

E[‖PX (xR,∇ f (xR),γR)‖2]≤ 2bL̄[φ(x1)−φ∗]
N + 4bσ2

T (6.3.28)

for any N ≥ 1, where L̄ := maxi=1,...,b Li.

Proof. Denote δk,t ≡ Uik [∇F(xk,ξk,t)−∇ f (xk)] and St = ∑
t
i=1δk,i. Noting that

E[〈St−1,δk,t〉|St−1] = 0 for all t = 1, . . . ,Tk, we have

E[‖STk‖2] = E
[
‖STk−1‖2 +2〈STk−1,δk,Tk〉+‖δk,Tk‖2]

= E[‖STk−1‖2]+E[‖δk,Tk‖2] = . . .= ∑
Tk
t=1‖δk,t‖2,

which together with (6.3.27) then imply that the conditions in (6.3.12) hold with
σ̄2

k = σ2/Tk. It then follows from the previous observation and (6.3.20) that

E[‖PX (xR,∇ f (xR),γR)‖2]≤ 2b[φ(x1)−φ∗]
N
L̄

+ 4b
N ∑

N
k=1

σ2

Tk

≤ 2bL̄[φ(x1)−φ∗]
N + 4bσ2

T .

In view of Corollary 6.13, in order to find an ε solution of problem (6.3.1), we
need to have

N = O
(

bL̄
ε
[φ(x1)−φ

∗]
)

and T = O
(

bσ2

ε

)
, (6.3.29)

which implies that the total number of samples of ξ required can be bounded by

O
(
b2L̄σ

2[φ(x1)−φ
∗]/ε

2) .
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6.4 Nonconvex stochastic accelerated gradient descent

In this section we aim to generalize the accelerated gradient descent (AGD) method,
originally designed for smooth convex optimization, to solve more general nonlin-
ear programming (NLP) (possibly nonconvex and stochastic) problems, and thus
to present a unified treatment and analysis for convex, nonconvex and stochastic
optimization.

Our study has also been motivated by the following more practical considerations
in solving nonlinear programming problems, in addition to the theoretical devel-
opment of the AGD method. First, many general nonlinear objective functions are
locally convex. A unified treatment for both convex and nonconvex problems will
help us to make use of such local convex properties. In particular, we intend to under-
stand whether one can apply the well-known aggressive stepsize policy in the AGD
method under a more general setting to benefit from such local convexity. Second,
many nonlinear objective functions arising from sparse optimization and machine
learning consist of both convex and nonconvex components, corresponding to the
data fidelity and sparsity regularization terms respectively. One interesting question
is whether one can design more efficient algorithms for solving these nonconvex
composite problems by utilizing their convexity structure. Third, the convexity of
some objective functions represented by a black-box procedure is usually unknown,
e.g., in simulation-based optimization. A unified treatment and analysis can thus
help us to deal with such structural ambiguity. Fourth, in some cases, the objective
functions are nonconvex with respect to (w.r.t.) a few decision variables jointly, but
convex w.r.t. each one of them separately. Many machine learning/imaging process-
ing problems are given in this form. Current practice is to first run an NLP solver
to find a stationary point, and then a CP solver after one variable is fixed. A more
powerful, unified treatment for both convex and nonconvex problems is desirable to
better handle these types of problems.

In this section, we first consider the classic NLP problem given in the form of

Ψ
∗ = min

x∈Rn
Ψ(x), (6.4.1)

where Ψ(·) is a smooth (possibly nonconvex) function with Lipschitz continuous
gradients, i.e., ∃LΨ > 0 such that (s.t.)

‖∇Ψ(y)−∇Ψ(x)‖ ≤ LΨ‖y− x‖ ∀x,y ∈ Rn, (6.4.2)

In addition, we assume that Ψ(·) is bounded from below. We demonstrate that the
AGD method, when employed with a certain stepsize policy, can find an ε-solution of
(6.4.1), i.e., a point x̄ such that ‖∇Ψ(x̄)‖2 ≤ ε , in at most O(1/ε) iterations, which is
the best-known complexity bound possessed by first-order methods to solve general
NLP problems. Note that if Ψ is convex and a more aggressive stepsize policy is
applied in the AGD method, then the aforementioned complexity bound can be
improved to O(1/ε1/3). In fact, by incorporating a certain regularization technique
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this bound can be improved to O([1/ε
1
4 ] ln1/ε) which is optimal, up to a logarithmic

factor, for convex programming.
We then consider a class of composite problems given by

min
x∈Rn

Ψ(x)+X (x), Ψ(x) := f (x)+h(x), (6.4.3)

where f is smooth, but possibly nonconvex, and its gradients are Lipschitz continuous
with constant L f , h is smooth, convex, and its gradients are Lipschitz continuous with
constant Lh, and X is a simple convex (possibly non-smooth) function with bounded
domain (e.g., X (x) = IX (x) with IX (·) being the indicator function of a convex
compact set X ⊂ Rn). Clearly, we have Ψ is smooth and it gradients are Lipschitz
continuous with constant LΨ = L f +Lh. Since X is possibly non-differentiable, we
need to employ a different termination criterion based on the generalized projected
gradient (or gradient mapping) Pn

R(·, ·, ·) (see (6.3.8) and more precisely (6.4.42)) to
analyze the complexity of the AGD method. We will show that the complexity bound
associated with the AGD method improves the one established in Section 6.2.2 for
the nonconvex mirror descent method applied to problem (6.4.3) in terms of their
dependence on the Lipschtiz constant Lh. In addition, it is significantly better than
the latter bound when L f is small enough (see Subsection 6.4.1.2 for more details).

Finally, we consider stochastic NLP problems in the form of (6.4.1) or (6.4.3),
where only noisy first-order information about Ψ is available via subsequent calls to
a stochastic first-order oracle (SFO). More specifically, at the k-th call, xk ∈Rn being
the input, the SFO outputs a stochastic gradient G(xk,ξk), where {ξk}k≥1 are random
vectors whose distributions Pk are supported on Ξk ⊆Rd . The following assumptions
are also made for the stochastic gradient G(xk,ξk).

Assumption 16 For any x ∈ Rn and k ≥ 1, we have

a) E[G(x,ξk)] = ∇Ψ(x), (6.4.4)
b) E

[
‖G(x,ξk)−∇Ψ(x)‖2]≤ σ

2. (6.4.5)

As shown in the previous two sections, the randomized stochastic gradient (RSGD)
methods can be applied to solve these problems. However, the RSGD method and its
variants are only nearly optimal for solving convex SP problems. Based on the AGD
method, we present a randomized stochastic AGD (RSAGD) method for solving
general stochastic NLP problems and show that if Ψ(·) is nonconvex, then the
RSAGD method can find an ε-solution of (6.4.1), i.e., a point x̄ s.t. E[‖∇Ψ(x̄)‖2]≤ ε

in at most
O
(

LΨ

ε
+ LΨ σ2

ε2

)
(6.4.6)

calls to the SFO. Moreover, if Ψ(·) is convex, then the RSAGD exhibits an optimal
rate of convergence in terms of functional optimality gap, similarly to the accelerated
SGD method. In this case, the complexity bound in (6.4.6) in terms of the residual of
gradients can be improved to
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O

(
L2/3

Ψ

ε1/3 +
L2/3

Ψ
σ2

ε4/3

)
.

We also generalize these complexity analyses to a class of nonconvex stochastic
composite optimization problems by introducing a mini-batch approach into the
RSAGD method and improve a few complexity results presented in Section 6.2 for
solving these stochastic composite optimization problems.

6.4.1 Nonconvex accelerated gradient descent

Our goal in this section is to show that the AGD method, which is originally designed
for smooth convex optimization, also converges for solving nonconvex optimization
problems after incorporating some proper modification. More specifically, we first
present an AGD method for solving a general class of nonlinear optimization prob-
lems in Subsection 6.4.1.1 and then describe the AGD method for solving a special
class of nonconvex composite optimization problems in Subsection 6.4.1.2.

6.4.1.1 Minimization of smooth functions

In this subsection, we assume that Ψ(·) is a differentiable nonconvex function,
bounded from below and its gradient satisfies in (6.4.2). It then follows that

|Ψ(y)−Ψ(x)−〈∇Ψ(x),y− x〉| ≤ LΨ

2 ‖y− x‖2 ∀x,y ∈ Rn. (6.4.7)

While the gradient descent method converges for solving the above class of nonconvex
optimization problems, it does not achieve the optimal rate of convergence, in terms
of the functional optimality gap, when Ψ(·) is convex. On the other hand, the
original AGD method is optimal for solving convex optimization problems, but does
not necessarily converge for solving nonconvex optimization problems. Below, we
present a modified AGD method and show that by properly specifying the stepsize
policy, it not only achieves the optimal rate of convergence for convex optimization,
but also exhibits the best-known rate of convergence for solving general smooth NLP
problems by using first-order methods.
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Algorithm 6.2 The accelerated gradient descent (AGD) algorithm
Input: x0 ∈ Rn, {αk} s.t. α1 = 1 and αk ∈ (0,1) for any k ≥ 2, {βk > 0}, and {λk > 0}.
0. Set the initial points x̄0 = x0 and k = 1.
1. Set

xk = (1−αk)x̄k−1 +αkxk−1. (6.4.8)

2. Compute ∇Ψ(xk) and set

xk = xk−1−λk∇Ψ(xk), (6.4.9)

x̄k = xk−βk∇Ψ(xk). (6.4.10)

3. Set k← k+1 and go to step 1.

Note that, if βk = αkλk ∀k ≥ 1, then we have x̄k = αkxk +(1−αk)x̄k−1. In this
case, the above AGD method is equivalent to one of the simplest variants of the
well-known Nesterov’s method. On the other hand, if βk = λk, k = 1,2, . . ., then it
can be shown by induction that xk = xk−1 and x̄k = xk. In this case, Algorithm 6.2
reduces to the gradient descent method. We will show in this subsection that the
above AGD method actually converges for different selections of {αk}, {βk}, and
{λk} in both convex and nonconvex case.

We are now ready to describe the main convergence properties of the AGD
method.

Theorem 6.10. Let {xk, x̄k}k≥1 be computed by Algorithm 6.2 and Γk be defined in
(8.1.32).

a) If {αk}, {βk}, and {λk} are chosen such that

Ck := 1−LΨ λk− LΨ (λk−βk)
2

2αkΓkλk

(
∑

N
τ=kΓτ

)
> 0 1≤ k ≤ N, (6.4.11)

then for any N ≥ 1, we have

min
k=1,...,N

‖∇Ψ(xk)‖2 ≤ Ψ(x0)−Ψ∗

∑
N
k=1λkCk

. (6.4.12)

b) Suppose that Ψ(·) is convex and that an optimal solution x∗ exists for problem
(6.4.1). If {αk}, {βk}, and {λk} are chosen such that

αkλk ≤ βk <
1

LΨ
, (6.4.13)

α1
λ1Γ1
≥ α2

λ2Γ2
≥ . . . , (6.4.14)

then for any N ≥ 1, we have

min
k=1,...,N

‖∇Ψ(xk)‖2 ≤ ‖x0−x∗‖2
λ1∑

N
k=1Γ

−1
k βk(1−LΨ βk)

, (6.4.15)

Ψ(x̄N)−Ψ(x∗) ≤ ΓN‖x0−x∗‖2
2λ1

. (6.4.16)
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Proof. We first show part a). Denote ∆k := ∇Ψ(xk−1)−∇Ψ(xk). By (6.4.2) and
(6.4.8), we have

‖∆k‖= ‖∇Ψ(xk−1)−∇Ψ(xk)‖ ≤ LΨ‖xk−1− xk‖= LΨ (1−αk)‖x̄k−1− xk−1‖.
(6.4.17)

Also by (6.4.7) and (6.4.9), we have

Ψ(xk) ≤Ψ(xk−1)+ 〈∇Ψ(xk−1),xk− xk−1〉+ LΨ

2 ‖xk− xk−1‖2

= Ψ(xk−1)+ 〈∆k +∇Ψ(xk),−λk∇Ψ(xk)〉+
LΨ λ 2

k
2 ‖∇Ψ(xk)‖2

= Ψ(xk−1)−λk

(
1− LΨ λk

2

)
‖∇Ψ(xk)‖2−λk〈∆k,∇Ψ(xk)〉

≤Ψ(xk−1)−λk

(
1− LΨ λk

2

)
‖∇Ψ(xk)‖2 +λk‖∆k‖ · ‖∇Ψ(xk)‖,(6.4.18)

where the last inequality follows from the Cauchy-Schwarz inequality. Combining
the previous two inequalities, we obtain

Ψ(xk) ≤Ψ(xk−1)−λk

(
1− LΨ λk

2

)
‖∇Ψ(xk)‖2 +LΨ (1−αk)λk‖∇Ψ(xk)‖ · ‖x̄k−1− xk−1‖

≤Ψ(xk−1)−λk

(
1− LΨ λk

2

)
‖∇Ψ(xk)‖2 +

LΨ λ 2
k

2 ‖∇Ψ(xk)‖2 + LΨ (1−αk)
2

2 ‖x̄k−1− xk−1‖2

= Ψ(xk−1)−λk(1−LΨ λk)‖∇Ψ(xk)‖2 + LΨ (1−αk)
2

2 ‖x̄k−1− xk−1‖2, (6.4.19)

where the second inequality follows from the fact that ab ≤ (a2 +b2)/2. Now, by
(6.4.8), (6.4.9), and (6.4.10), we have

x̄k− xk = (1−αk)x̄k−1 +αkxk−1−βk∇Ψ(xk)− [xk−1−λk∇Ψ(xk)]

= (1−αk)(x̄k−1− xk−1)+(λk−βk)∇Ψ(xk).

Dividing both sides of the above equality by Γk, summing them up and noting (8.1.32),
we obtain

x̄k− xk = Γk∑
k
τ=1

(
λτ−βτ

Γτ

)
∇Ψ(xτ).

Using the above identity, the Jensen’s inequality for ‖ · ‖2, and the fact that

∑
k
τ=1

ατ

Γτ
= α1

Γ1
+∑

k
τ=2

1
Γτ

(
1− Γτ

Γτ−1

)
= 1

Γ1
+∑

k
τ=2

(
1
Γτ
− 1

Γτ−1

)
= 1

Γk
, (6.4.20)

we have

‖x̄k− xk‖2 =
∥∥∥Γk∑

k
τ=1

(
λτ−βτ

Γτ

)
∇Ψ(xτ)

∥∥∥
2
=
∥∥∥Γk∑

k
τ=1

ατ

Γτ

[(
λτ−βτ

ατ

)
∇Ψ(xτ)

]∥∥∥
2

≤ Γk∑
k
τ=1

ατ

Γτ

∥∥∥
(

λτ−βτ

ατ

)
∇Ψ(xτ)

∥∥∥
2
= Γk∑

k
τ=1

(λτ−βτ )
2

Γτ ατ
‖∇Ψ(xτ)‖2.(6.4.21)

Replacing the above bound in (6.4.19), we obtain
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Ψ(xk) ≤Ψ(xk−1)−λk(1−LΨ λk)‖∇Ψ(xk)‖2 +
LΨ Γk−1(1−αk)

2

2 ∑
k−1
τ=1

(λτ−βτ )
2

Γτ ατ
‖∇Ψ(xτ)‖2

≤Ψ(xk−1)−λk(1−LΨ λk)‖∇Ψ(xk)‖2 + LΨ Γk
2 ∑

k
τ=1

(λτ−βτ )
2

Γτ ατ
‖∇Ψ(xτ)‖2 (6.4.22)

for any k ≥ 1, where the last inequality follows from the definition of Γk in (8.1.32)
and the fact that αk ∈ (0,1] for all k ≥ 1. Summing up the above inequalities and
using the definition of Ck in (6.4.11), we have

Ψ(xN) ≤Ψ(x0)−∑
N
k=1λk(1−LΨ λk)‖∇Ψ(xk)‖2 + LΨ

2 ∑
N
k=1Γk∑

k
τ=1

(λτ−βτ )
2

Γτ ατ
‖∇Ψ(xτ)‖2

= Ψ(x0)−∑
N
k=1λk(1−LΨ λk)‖∇Ψ(xk)‖2 + LΨ

2 ∑
N
k=1

(λk−βk)
2

Γkαk

(
∑

N
τ=kΓτ

)
‖∇Ψ(xk)‖2

= Ψ(x0)−∑
N
k=1λkCk‖∇Ψ(xk)‖2. (6.4.23)

Re-arranging the terms in the above inequality and noting that Ψ(xN) ≥Ψ ∗, we
obtain

min
k=1,...,N

‖∇Ψ(xk)‖2 (
∑

N
k=1λkCk

)
≤ ∑

N
k=1λkCk‖∇Ψ(xk)‖2 ≤Ψ(x0)−Ψ

∗,

which, in view of the assumption that Ck > 0, clearly implies (6.4.12).
We now show part b). First, note that by (6.4.10), we have

Ψ(x̄k) ≤Ψ(xk)+ 〈∇Ψ(xk), x̄k− xk〉+ LΨ

2 ‖x̄k− xk‖2

= Ψ(xk)−βk‖∇Ψ(xk)‖2 +
LΨ β 2

k
2 ‖∇Ψ(xk)‖2. (6.4.24)

Also by the convexity of Ψ(·) and (6.4.8),

Ψ(xk)− [(1−αk)Ψ(x̄k−1)+αkΨ(x)] = αk [Ψ(xk)−Ψ(x)]+(1−αk) [Ψ(xk)−Ψ(x̄k−1)]

≤ αk〈∇Ψ(xk),xk− x〉+(1−αk)〈∇Ψ(xk),xk− x̄k−1〉
= 〈∇Ψ(xk),αk(xk− x)+(1−αk)(xk− x̄k−1)〉
= αk〈∇Ψ(xk),xk−1− x〉. (6.4.25)

It also follows from (6.4.9) that

‖xk−1− x‖2−2λk〈∇Ψ(xk),xk−1− x〉+λ
2
k ‖∇Ψ(xk)‖2

= ‖xk−1−λk∇Ψ(xk)− x‖2 = ‖xk− x‖2,

and hence that

αk〈∇Ψ(xk),xk−1−x〉= αk
2λk

[
‖xk−1− x‖2−‖xk− x‖2]+ αkλk

2 ‖∇Ψ(xk)‖2. (6.4.26)

Combining (6.4.24), (6.4.25), and (6.4.26), we obtain
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Ψ(x̄k)≤ (1−αk)Ψ(x̄k−1)+αkΨ(x)+ αk
2λk

[
‖xk−1− x‖2−‖xk− x‖2]

−βk

(
1− LΨ βk

2 −
αkλk
2βk

)
‖∇Ψ(xk)‖2

≤ (1−αk)Ψ(x̄k−1)+αkΨ(x)+ αk
2λk

[
‖xk−1− x‖2−‖xk− x‖2]

− βk
2 (1−LΨ βk)‖∇Ψ(xk)‖2, (6.4.27)

where the last inequality follows from the assumption in (6.4.13). Subtracting Ψ(x)
from both sides of the above inequality and using Lemma 3.17 and the fact that
α1 = 1, we conclude that

Ψ(x̄N)−Ψ(x)
ΓN

≤ ∑
N
k=1

αk
2λkΓk

[
‖xk−1− x‖2−‖xk− x‖2]−∑

N
k=1

βk
2Γk

(1−LΨ βk)‖∇Ψ(xk)‖2

≤ ‖x0−x‖2
2λ1

−∑
N
k=1

βk
2Γk

(1−LΨ βk)‖∇Ψ(xk)‖2 ∀x ∈ Rn, (6.4.28)

where the second inequality follows from the simple relation that

∑
N
k=1

αk
λkΓk

[
‖xk−1− x‖2−‖xk− x‖2]≤ α1‖x0−x‖2

λ1Γ1
= ‖x0−x‖2

λ1
(6.4.29)

due to (6.4.14) and the fact that α1 = Γ1 = 1. Hence, (6.4.16) immediately follows
from the above inequality and the assumption in (6.4.13). Moreover, fixing x = x∗,
re-arranging the terms in (6.4.28), and noting the fact that Ψ(x̄N)≥Ψ(x∗), we obtain

min
k=1,...,N

‖∇Ψ(xk)‖2
∑

N
k=1

βk
2Γk

(1−LΨ βk) ≤ ∑
N
k=1

βk
2Γk

(1−LΨ βk)‖∇Ψ(xk)‖2

≤ ‖x∗−x0‖2
2λ1

,

which together with (6.4.13), clearly imply (6.4.15).

We add a few observations about Theorem 6.10. First, in view of (6.4.27), it is
possible to use a different assumption than the one in (6.4.13) on the stepsize policies
for the convex case. In particular, we only need

2−LΨ βk− αkλk
βk

> 0 (6.4.30)

to show the convergence of the AGD method for minimizing smooth convex problems.
However, since the condition given by (6.4.13) is required for minimizing composite
problems in Subsections 6.4.1.2 and 6.4.2.2, we state this assumption for the sake of
simplicity. Second, there are various options for selecting {αk}, {βk}, and {λk} to
guarantee the convergence of the AGD algorithm. Below we provide some of these
selections for solving both convex and nonconvex problems.

Corollary 6.14. Suppose that {αk} and {βk} in the AGD method are set to

αk =
2

k+1 and βk =
1

2LΨ
. (6.4.31)

a) If {λk} satisfies



6.4 Nonconvex stochastic accelerated gradient descent 369

λk ∈
[
βk,
(
1+ αk

4

)
βk
]
∀k ≥ 1, (6.4.32)

then for any N ≥ 1, we have

min
k=1,...,N

‖∇Ψ(xk)‖2 ≤ 6LΨ [Ψ(x0)−Ψ∗]
N . (6.4.33)

b) Assume that Ψ(·) is convex and that an optimal solution x∗ exists for problem
(6.4.1). If {λk} satisfies

λk =
k βk

2 ∀k ≥ 1, (6.4.34)

then for any N ≥ 1, we have

min
k=1,...,N

‖∇Ψ(xk)‖2 ≤ 96L2
Ψ
‖x0−x∗‖2

N(N+1)(N+2) , (6.4.35)

Ψ(x̄N)−Ψ(x∗) ≤ 4LΨ ‖x0−x∗‖2
N(N+1) . (6.4.36)

Proof. We first show part a). Note that by (8.1.32) and (6.4.31), we have

Γk =
2

k(k+1) , (6.4.37)

which implies that

∑
N
τ=kΓτ = ∑

N
τ=k

2
τ(τ+1) = 2∑

N
τ=k
( 1

τ
− 1

τ+1

)
≤ 2

k . (6.4.38)

It can also be easily seen from (6.4.32) that 0 ≤ λk − βk ≤ αkβk/4. Using these
observations, (6.4.31), and (6.4.32), we have

Ck = 1−LΨ

[
λk +

(λk−βk)
2

2αkΓkλk

(
∑

N
τ=kΓτ

)]

≥ 1−LΨ

[(
1+ αk

4

)
βk +

α2
k β 2

k
16

1
kαkΓkβk

]

= 1−βkLΨ

(
1+ αk

4 + 1
16

)

≥ 1−βkLΨ
21
16 = 11

32 , (6.4.39)

λkCk ≥ 11βk
32 = 11

64LΨ
≥ 1

6LΨ
.

Combining the above relation with (6.4.12), we obtain (6.4.33).
We now show part b). Observe that by (6.4.31) and (6.4.34), we have

αkλk =
k

k+1 βk < βk,
α1

λ1Γ1
= α2

λ2Γ2
= . . .= 4LΨ ,

which implies that conditions (6.4.13) and (6.4.14) hold. Moreover, we have

∑
N
k=1Γ

−1
k βk(1−LΨ βk) =

1
4LΨ

∑
N
k=1Γ

−1
k = 1

8LΨ
∑

N
k=1(k+ k2) = N(N+1)(N+2)

24LΨ
.

(6.4.40)
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Using (6.4.37) and the above bounds in (6.4.15) and (6.4.16), we obtain (6.4.35) and
(6.4.36).

We now add a few remarks about the results obtained in Corollary 6.14. First,
the rate of convergence in (6.4.33) for the AGD method is in the same order of
magnitude as that for the gradient descent method. It is also worth noting that by
choosing λk = βk in (6.4.32), the rate of convergence for the AGD method just
changes up to a constant factor. However, in this case, the AGD method is reduced to
the gradient descent method as mentioned earlier in this subsection. Second, if the
problem is convex, by choosing more aggressive stepsize {λk} in (6.4.34), the AGD
method exhibits the optimal rate of convergence in (6.4.36). Moreover, with such a
selection of {λk}, the AGD method can find a solution x̄ such that ‖∇Ψ(x̄)‖2 ≤ ε in
at most O(1/ε

1
3 ) iterations according to (6.4.35).

Observe that {λk} in (6.4.32) for general nonconvex problems is in the order of
O(1/LΨ ), while the one in (6.4.34) for convex problems are more aggressive (in
O(k/LΨ )). An interesting question is whether we can apply the same stepsize policy
in (6.4.34) for solving general NLP problems no matter whether they are convex
or not. We will discuss such a uniform treatment for both convex and nonconvex
optimization for solve a certain class of composite problems in next subsection.

6.4.1.2 Minimization of nonconvex composite functions

In this subsection, we consider a special class of NLP problems given in the form of
(6.4.3). Our goal in this subsection is to show that we can employ a more aggressive
stepsize policy in the AGD method, similar to the one used in the convex case (see
Theorem 6.10.b) and Corollary 6.14.b)), to solve these composite problems, even if
Ψ(·) is possibly nonconvex.

Throughout this subsection, we make the following assumption about the convex
(possibly non-differentiable) component X (·) in (6.4.3).

Assumption 17 There exists a constant M such that ‖x+(y,c)‖ ≤ M for any c ∈
(0,+∞) and x,y ∈ Rn, where

x+(y,c) := argminu∈Rn
{
〈y,u〉+ 1

2c‖u− x‖2 +X (u)
}
. (6.4.41)

Next result shows certain situations which assure that Assumption 17 is satisfied.
Note that we skip its proof since it is simple.

Lemma 6.8. Assumption 17 is satisfied if any one of the following statements holds.

a) X (·) is a proper closed convex function with bounded domain.
b) There exists a constant M such that ‖x+(y)‖ ≤M for any x,y ∈ Rn, where

x+(y)≡ x+(y,+∞) := argminu∈Rn {〈y,u〉+X (u)} .
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Based on the above result, we can give the following examples. Let X ⊆ Rn

be a given convex compact set. It can be easily seen that Assumption 17 holds if
X (x) = IX (x). Here IX is the indicator function of X given by

IX (x) =

{
0 x ∈ X ,

+∞ x /∈ X .

Another important example is given by X (x) = IX (x)+‖x‖1, where ‖ · ‖1 denotes
the l1 norm.

Observe that x+(y,c) in (6.4.41) also gives rise to an important quantity that will
be used frequently in our convergence analysis, i.e.,

PX (x,y,c) := 1
c [x− x+(y,c)]. (6.4.42)

In particular, if y = ∇Ψ(x), then PX (x,y,c) is called the gradient mapping at x,
which has been used as a termination criterion for solving constrained or composite
NLP problems. It can be easily seen that PX (x,∇Ψ(x),c) = ∇Ψ(x) for any c > 0
when X (·) = 0. For more general X (·), the following result shows that as the
size of PX (x,∇Ψ(x),c) vanishes, x+(∇Ψ(x),c) approaches to a stationary point of
problem (6.4.3). Indeed, it follows directly from Lemma 6.3 that Let x ∈Rn be given
and denote g≡ ∇Ψ(x). If ‖PX (x,g,c)‖ ≤ ε for some c > 0, then by Lemma 6.3

−∇Ψ(x+(g,c)) ∈ ∂X (x+(g,c))+B(ε(cLΨ +1)), (6.4.43)

where ∂X (·) denotes the subdifferential of X (·) and B(r) := {x ∈ Rn : ‖x‖ ≤ r}.
Moreover, it follows from Lemma 6.1 that For any y1,y2 ∈ Rn, we have

‖PX (x,y1,c)−PX (x,y2,c)‖ ≤ ‖y1− y2‖. (6.4.44)

We are now ready to describe the AGD algorithm for solving problem (6.4.3),
which differs from Algorithm 6.2 only in Step 2.

Algorithm 6.3 The AGD method for composite optimization
Replace (6.4.9) and (6.4.10) in Step 2 of the Algorithm 1, respectively, by

xk = argminu∈Rn

{
〈∇Ψ(xk),u〉+ 1

2λk
‖u− xk−1‖2 +X (u)

}
, (6.4.45)

x̄k = argminu∈Rn

{
〈∇Ψ(xk),u〉+ 1

2βk
‖u− xk‖2 +X (u)

}
. (6.4.46)

A few remarks about Algorithm 6.3 are in place. First, observe that the subprob-
lems (6.4.45) and (6.4.46) are given in the form of (6.4.41) and hence that under
Assumption 17, the search points xk and xag

k ∀k ≥ 1, will stay in a bounded set. Sec-
ond, we need to assume that X (·) is simple enough so that the subproblems (6.4.45)
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and (6.4.46) are easily computable. Third, in view of (6.4.42) and (6.4.46), we have

PX (xk,∇Ψ(xk),βk) =
1
βk
(xk− x̄k). (6.4.47)

We will use ‖PX (xk,∇Ψ(xk),βk)‖ as a termination criterion in the above AGD method
for composite optimization.

Before establishing the convergence of the above AGD method, we first state a
technical result which shows that the relation in (6.4.7) can be enhanced for composite
functions.

Lemma 6.9. Let Ψ(·) be defined in (6.4.3). For any x,y ∈ Rn, we have

− L f
2 ‖y− x‖2 ≤Ψ(y)−Ψ(x)−〈∇Ψ(x),y− x〉 ≤ LΨ

2 ‖y− x‖2. (6.4.48)

Proof. We only need to show the first relation since the second one follows from
(6.4.7).

Ψ(y)−Ψ(x) =
∫ 1

0
〈∇Ψ(x+ t(y− x)),y− x〉dt

=
∫ 1

0
〈∇ f (x+ t(y− x)),y− x〉dt +

∫ 1

0
〈∇h(x+ t(y− x)),y− x〉dt

= 〈∇ f (x),y− x〉+
∫ 1

0
〈∇ f (x+ t(y− x))−∇ f (x),y− x〉dt

+〈∇h(x),y− x〉+
∫ 1

0
〈∇h(x+ t(y− x))−∇h(x),y− x〉dt

≥ 〈∇ f (x),y− x〉+
∫ 1

0
〈∇ f (x+ t(y− x))−∇ f (x),y− x〉dt + 〈∇h(x),y− x〉

≥ 〈∇Ψ(x),y− x〉− L f
2 ‖y− x‖2 ∀x,y ∈ Rn,

where the first inequality follows from the fact that 〈∇h(x+t(y−x)−∇h(x),y−x〉 ≥
0 due to the convexity of h, and the last inequality follows from the fact that

〈∇ f (x+t(y−x))−∇ f (x),y−x〉≥−‖ f (x+t(y−x))−∇ f (x)‖‖y−x‖≥−L f t‖y−x‖2.

We are now ready to describe the main convergence properties of Algorithm 2 for
solving problem (6.4.3).

Theorem 6.11. Suppose that Assumption 17 holds and that {αk}, {βk}, and {λk} in
Algorithm 6.3 are chosen such that (6.4.13) and (6.4.14) hold. Also assume that an
optimal solution x∗ exists for problem (6.4.3). Then for any N ≥ 1, we have

min
k=1,...,N

‖PX (xk,∇Ψ(xk),βk)‖2 ≤ 2
[
∑

N
k=1Γ

−1
k βk(1−LΨ βk)

]−1

[
‖x0−x∗‖2

2λ1
+

L f
ΓN
(‖x∗‖2 +M2)

]
,

(6.4.49)
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where PX (·, ·, ·) is defined in (6.4.42). If, in addition, L f = 0, then we have

Φ(x̄N)−Φ(x∗)≤ ΓN‖x0−x∗‖2
2λ1

, (6.4.50)

where Φ(x)≡Ψ(x)+X (x).

Proof. By the assumption that Ψ is smooth, we have

Ψ(x̄k)≤Ψ(xk)+ 〈∇Ψ(xk), x̄k− xk〉+ LΨ

2 ‖x̄k− xk‖2. (6.4.51)

Also by Lemma 6.9, we have

Ψ(xk)− [(1−αk)Ψ(x̄k−1)+αkΨ(x)]

≤ αk

[
〈∇Ψ(xk),xk− x〉+ L f

2 ‖xk− x‖2
]

+(1−αk)
[
〈∇Ψ(xk),xk− x̄k−1〉+ L f

2 ‖xk− x̄k−1‖2
]

= 〈∇Ψ(xk),xk−αkx− (1−αk)x̄k−1〉
+

L f αk
2 ‖xk− x‖2 +

L f (1−αk)

2 ‖xk− x̄k−1‖2

≤ 〈∇Ψ(xk),xk−αkx− (1−αk)x̄k−1〉

+
L f αk

2 ‖xk− x‖2 +
L f α2

k (1−αk)

2 ‖x̄k−1− xk−1‖2, (6.4.52)

where the last inequality follows from the fact that xk− x̄k−1 = αk(x̄k−1− xk−1) due
to (6.4.8). Now, using the optimality condition of subproblem (6.4.45) and letting
p ∈ ∂X (xk), we have, for any x ∈ Rn,

1
2λk

[
‖xk− x‖2−‖x̄k− x‖2−‖x̄k− xk‖2]= 1

λk
〈x−xk,xk−xk−1〉≥ 〈∇Ψ(xk)+ p,xk−x〉,

which together with the convexity of X (·) then imply that

〈∇Ψ(xk),xk− x〉+X (xk)≤X (x)+ 1
2λk

[
‖xk−1− x‖2−‖xk− x‖2−‖xk− xk−1‖2]

(6.4.53)
for any x ∈ Rn. Similarly, we obtain

〈∇Ψ(xk), x̄k− x〉+X (x̄k)≤X (x)+ 1
2βk

[
‖xk− x‖2−‖x̄k− x‖2−‖x̄k− xk‖2] .

(6.4.54)
Letting x = αkxk +(1−αk)x̄k−1 in (6.4.54), we have

〈∇Ψ(xk), x̄k−αkxk− (1−αk)x̄k−1〉+X (x̄k)

≤X (αkxk +(1−αk)x̄k−1)+
1

2βk

[
‖xk−αkxk− (1−αk)x̄k−1‖2−‖x̄k− xk‖2]

≤ αkX (xk)+(1−αk)X (x̄k−1)+
1

2βk

[
α

2
k ‖xk− xk−1‖2−‖x̄k− xk‖2] ,

where the last inequality follows from the convexity of X and (6.4.8). Summing up
the above inequality with (6.4.53) (with both sides multiplied by αk), we obtain
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〈∇Ψ(xk), x̄k−αkx− (1−αk)x̄k−1〉+X (x̄k)≤ (1−αk)X (x̄k−1)+αkX (x)

+ αk
2λk

[
‖xk−1− x‖2−‖xk− x‖2]+ αk(λkαk−βk)

2βkλk
‖xk− xk−1‖2− 1

2βk
‖x̄k− xk‖2

≤ (1−αk)X (x̄k−1)+αkX (x)+ αk
2λk

[
‖xk−1− x‖2−‖xk− x‖2]− 1

2βk
‖x̄k− xk‖2,

(6.4.55)

where the last inequality follows from the assumption that αkλk ≤ βk. Combining
(6.4.51), (6.4.52), and (6.4.55), and using the definition Φ(x)≡Ψ(x)+X (x), we
have

Φ(x̄k)≤ (1−αk)Φ(x̄k−1)+αkΦ(x)− 1
2

(
1
βk
−LΨ

)
‖x̄k− xk‖2

+ αk
2λk

[
‖xk−1− x‖2−‖xk− x‖2]+ L f αk

2 ‖xk− x‖2 +
L f α2

k (1−αk)

2 ‖x̄k−1− xk−1‖2.

(6.4.56)

Subtracting Φ(x) from both sides of the above inequality, re-arranging the terms,
and using Lemma 3.17 and relation (6.4.29), we obtain

Φ(x̄N)−Φ(x)
ΓN

+∑
N
k=1

1−LΨ βk
2βkΓk

‖x̄k− xk‖2

≤ ‖x0−x‖2
2λ1

+
L f
2 ∑

N
k=1

αk
Γk
[‖xk− x‖2 +αk(1−αk)‖x̄k−1− xk−1‖2].

Now letting x = x∗ in the above inequality, and observing that by Assumption 17 and
(6.4.8),

‖xk− x∗‖2 +αk(1−αk)‖x̄k−1− xk−1‖2

≤ 2[‖x∗‖2 +‖xk‖2 +αk(1−αk)‖x̄k−1− xk−1‖2]

= 2[‖x∗‖2 +(1−αk)
2‖x̄k−1‖2 +α

2
k ‖xk−1‖2 +αk(1−αk)(‖x̄k−1‖2 +‖xk−1‖2)]

= 2[‖x∗‖2 +(1−αk)‖x̄k−1‖2 +αk‖xk−1‖2]≤ 2(‖x∗‖2 +M2), (6.4.57)

we obtain

Φ(x̄N)−Φ(x∗)
ΓN

+∑
N
k=1

1−LΨ βk
2βkΓk

‖x̄k− xk‖2 ≤ ‖x0−x‖2
2λ1

+L f ∑
N
k=1

αk
Γk
(‖x∗‖2 +M2)

= ‖x0−x‖2
2λ1

+
L f
ΓN
(‖x∗‖2 +M2),

(6.4.58)

where the last inequality follows from (6.4.20). The above relation, in view of (6.4.13)
and the assumption L f = 0, then clearly implies (6.4.50). Moreover, it follows from
the above relation, (6.4.47), and the fact Φ(x̄N)−Φ(x∗)≥ 0 that

∑
N
k=1

βk(1−LΨ βk)
2Γk

‖PX (xk,∇Ψ(xk),βk)‖2 = ∑
N
k=1

1−LΨ βk
2βkΓk

‖x̄k− xk‖2

≤ ‖x0−x∗‖2
2λ1

+
L f
ΓN
(‖x∗‖2 +M2),
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which, in view of (6.4.13), then clearly implies (6.4.49).

As shown in Theorem 6.11, we can have a uniform treatment for both convex
and nonconvex composite problems. More specifically, we allow the same stepsize
policies in Theorem 6.10.b) to be used for both convex and nonconvex composite
optimization. In the next result, we specialize the results obtained in Theorem 6.11
for a particular selection of {αk}, {βk}, and {λk}.

Corollary 6.15. Suppose that Assumption 17 holds and that {αk}, {βk}, and {λk} in
Algorithm 6.3 are set to (6.4.31) and (6.4.34). Also assume that an optimal solution
x∗ exists for problem (6.4.3). Then for any N ≥ 1, we have

min
k=1,...,N

‖PX (xk,∇Ψ(xk),βk)‖2 ≤ 24LΨ

[
4LΨ ‖x0−x∗‖2
N(N+1)(N+2) +

L f
N (‖x∗‖2 +M2)

]
.

(6.4.59)
If, in addition, L f = 0, then we have

Φ(x̄N)−Φ(x∗)≤ 4LΨ ‖x0−x∗‖2
N(N+1) . (6.4.60)

Proof. The results directly follow by plugging the value of Γk in (6.4.37), the value
of λ1 in (6.4.34), and the bound (6.4.40) into (6.4.49) and (6.4.50), respectively.

Clearly, it follows from (6.4.59) that after running the AGD method for at most

N = O(L
2
3
Ψ
/ε

1
3 +LΨ L f /ε) iterations, we have −∇Ψ(x̄N) ∈ ∂X (x̄N)+B(

√
ε). Us-

ing the fact that LΨ = L f +Lh, we can easily see that if either the smooth convex
term h(·) or the nonconvex term f (·) becomes zero, then the previous complexity
bound reduces to O(L2

f /ε) or O(L2
h/ε

1
3 ), respectively.

It is interesting to compare the rate of convergence obtained in (6.4.59) with the
one obtained for the nonconvex mirror descent method applied to problem (6.4.3) .
More specifically, let {pk} and {νk}, respectively, denote the iterates and stepsizes
in the nonconvex mirror descent method. Also assume that the component X (·) in
(6.4.3) is Lipschitz continuous with Lipschitz constant LX . Then, by (6.2.26) , we
have

min
k=1,...,N

‖PX (pk,∇Ψ(pk),νk)‖2 ≤ LΨ [Φ(p0)−Φ(x∗)]
N

≤ LΨ

N (‖∇Ψ(x∗)‖+LX )(‖x∗‖+‖p0‖)+ L2
Ψ

N (‖x∗‖2 +‖p0‖2), (6.4.61)

where the last inequality follows from

Φ(p0)−Φ(x∗) =Ψ(p0)−Ψ(x∗)+X (p0)−X (x∗)

≤ 〈∇Ψ(x∗), p0− x∗〉+ LΨ

2 ‖p0− x∗‖2 +LX ‖p0− x∗‖
≤ (‖∇Ψ(x∗)‖+LX )‖p0− x∗‖+ LΨ

2 ‖p0− x∗‖2

≤ (‖∇Ψ(x∗)‖+LX )(‖x∗‖+‖p0‖)+LΨ (‖x∗‖2 +‖p0‖2).
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Comparing (6.4.59) with (6.4.61), we can make the following observations. First, the
bound in (6.4.59) does not depend on LX while the one in (6.4.61) may depend on
LX . Second, if the second terms in both (6.4.59) and (6.4.61) are the dominating
ones, then the rate of convergence of the AGD method is bounded by O(LΨ L f /N),
which is better than the O(L2

Ψ
/N) rate of convergence possessed by the projected

gradient method, in terms of their dependence on the Lipschitz constant Lh. Third,
consider the case when L f = O(Lh/N2). By (6.4.59), we have

min
k=1,...,N

‖PX (xk,∇Ψ(xk),βk)‖2 ≤ 96L2
Ψ
‖x0−x∗‖2
N3

(
1+ L f N2(‖x∗‖2+M2))

4(L f +Lh)‖x0−x∗‖2

)
,

which implies that the rate of convergence of the AGD method is bounded by

O

(
L2

h
N3

[
‖x0− x∗‖2 +‖x∗‖2 +M2]

)
.

The previous bound is significantly better than the O(L2
h/N) rate of convergence

possessed by the mirror descent method for this particular case. Finally, it should be
noted, however, that the nonconvex mirror descent method in Section 6.2.2 can be
used to solve more general problems as it does not require the domain of X to be
bounded. Instead, it only requires the objective function Φ(x) to be bounded from
below.

6.4.2 Stochastic accelerated gradient descent method

Our goal in this section is to present a stochastic counterpart of the AGD algorithm
for solving stochastic optimization problems. More specifically, we discuss the
convergence of this algorithm for solving general smooth (possibly nonconvex) SP
problems in Subsection 6.4.2.1, and for a special class of composite SP problems in
Subsection 6.4.2.2.

6.4.2.1 Minimization of stochastic smooth functions

In this subsection, we consider problem (6.4.1), where Ψ is differentiable, bounded
from below, and its gradients are Lipschitz continuous with constant LΨ . Moreover,
we assume that the first-order information of Ψ(·) is obtained by the SFO, which
satisfies Assumption 16. It should also be mentioned that in the standard setting for
SP, the random vectors ξk, k = 1,2, . . ., are independent of each other. However, our
assumption here is slightly weaker, since we do not need to require ξk, k = 1,2, . . .,
to be independent.

While Nesterov’s original accelerated gradient descent method has been gener-
alized in Section 4.2 to achieve the optimal rate of convergence for solving both
smooth and nonsmooth convex SP problem, it is unclear whether it converges for non-
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convex SP problems. On the other hand, although the randomized stochastic gradient
(RSGD) method converges for nonconvex SP problems, it cannot achieve the optimal
rate of convergence when applied to convex SP problems. Below, we present a new
SGD-type algorithm, namely, the randomized stochastic AGD (RSAGD) method
which not only converges for nonconvex SP problems, but also achieves an optimal
rate of convergence when applied to convex SP problems by properly specifying the
stepsize policies.

The RSAGD method is obtained by replacing the exact gradients in Algorithm 6.2
with the stochastic ones and incorporating a randomized termination criterion for
nonconvex SP as in the RSGD method. This algorithm is formally described as
follows.

Algorithm 6.4 The randomized stochastic AGD (RSAGD) algorithm
Input: x0 ∈ Rn, {αk} s.t. α1 = 1 and αk ∈ (0,1) for any k ≥ 2, {βk > 0} and {λk > 0}, iteration
limit N ≥ 1, and probability mass function PR(·) s.t.

Prob{R = k}= pk, k = 1, . . . ,N. (6.4.62)

0. Set x̄0 = x0 and k = 1. Let R be a random variable with probability mass function PR.
1. Set xk to (6.4.8).
2. Call the SFO for computing G(xk,ξk) and set

xk = xk−1−λkG(xk,ξk), (6.4.63)

x̄k = xk−βkG(xk,ξk). (6.4.64)

3. If k = R, terminate the algorithm. Otherwise, set k = k+1 and go to step 1.

We now add a few remarks about the above RSAGD algorithm. First, similar to
our discussion in the previous section, if αk = 1, βk = λk ∀k ≥ 1, then the above
algorithm reduces to the classical SGD algorithm. Moreover, if βk = λk ∀k ≥ 1, the
above algorithm reduces to the accelerated SGD method in [52]. Second, we have
used a random number R to terminate the above RSAGD method for solving general
(not necessarily convex) NLP problems. Equivalently, one can run the RSAGD
method for N iterations and then randomly select the search points (xR, x̄R) as the
output of Algorithm 6.4 from the trajectory (xk, x̄k), k = 1, . . . ,N. Note, however, that
the remaining N−R iterations will be surplus.

We are now ready to describe the main convergence properties of the RSAGD
algorithm applied to problem (6.4.1) under the stochastic setting.

Theorem 6.12. Let {xk, x̄k}k≥1 be computed by Algorithm 6.4 and Γk be defined in
(8.1.32). Also suppose that Assumption 16 holds.

a) If {αk}, {βk}, {λk}, and {pk} are chosen such that (6.4.11) holds and

pk =
λkCk

∑
N
τ=1λτCτ

, k = 1, . . . ,N, (6.4.65)
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where Ck is defined in (6.4.11), then for any N ≥ 1, we have

E[‖∇Ψ(xR)‖2]≤ 1
∑

N
k=1λkCk

[
Ψ(x0)−Ψ

∗+ LΨ σ2

2 ∑
N
k=1λ

2
k

(
1+ (λk−βk)

2

αkΓkλ 2
k

∑
N
τ=kΓτ

)]
,

(6.4.66)
where the expectation is taken with respect to R and ξ[N] := (ξ1, ...,ξN).

b) Suppose that Ψ(·) is convex and that an optimal solution x∗ exists for problem
(6.4.1). If {αk}, {βk}, {λk}, and {pk} are chosen such that (6.4.14) holds,

αkλk ≤ LΨ β
2
k , βk < 1/LΨ , (6.4.67)

and
pk =

Γ
−1

k βk(1−LΨ βk)

∑
N
τ=1Γ

−1
τ βτ (1−LΨ βτ )

(6.4.68)

for all k = 1, ...,N, then for any N ≥ 1, we have

E[‖∇Ψ(xR)‖2]≤ (2λ1)
−1‖x0−x∗‖2+LΨ σ2∑

N
k=1Γ

−1
k β 2

k

∑
N
k=1Γ

−1
k βk(1−LΨ βk)

, (6.4.69)

E[Ψ(x̄R)−Ψ(x∗)]≤ ∑
N
k=1βk(1−LΨ βk)

[
(2λ1)

−1‖x0−x∗‖2+LΨ σ2∑
k
j=1Γ

−1
j β 2

j

]

∑
N
k=1Γ

−1
k βk(1−LΨ βk)

. (6.4.70)

Proof. We first show part a). Denote δk := G(xk,ξk)− ∇Ψ(xk) and ∆k :=
∇Ψ(xk−1)−∇Ψ(xk). By (6.4.7) and (6.4.63), we have

Ψ(xk) ≤Ψ(xk−1)+ 〈∇Ψ(xk−1),xk− xk−1〉+ LΨ

2 ‖xk− xk−1‖2

= Ψ(xk−1)+ 〈∆k +∇Ψ(xk),−λk[∇Ψ(xk)+δk]〉+ LΨ λ 2
k

2 ‖∇Ψ(xk)+δk‖2

= Ψ(xk−1)+ 〈∆k +∇Ψ(xk),−λk∇Ψ(xk)〉−λk〈∇Ψ(xk−1),δk〉+ LΨ λ 2
k

2 ‖∇Ψ(xk)+δk‖2

≤Ψ(xk−1)−λk

(
1− LΨ λk

2

)
‖∇Ψ(xk)‖2 +λk‖∆k‖‖∇Ψ(xk)‖+

LΨ λ 2
k

2 ‖δk‖2

−λk〈∇Ψ(xk−1)−LΨ λk∇Ψ(xk),δk〉,

which, in view of (6.4.17) and the fact that ab≤ (a2 +b2)/2, then implies that

Ψ(xk) ≤Ψ(xk−1)−λk

(
1− LΨ λk

2

)
‖∇Ψ(xk)‖2 +λkLΨ (1−αk)‖x̄k−1− xk−1‖‖∇Ψ(xk)‖

+
LΨ λ 2

k
2 ‖δk‖2−λk〈∇Ψ(xk−1)−LΨ λk∇Ψ(xk),δk〉

≤Ψ(xk−1)−λk(1−LΨ λk)‖∇Ψ(xk)‖2 + LΨ (1−αk)
2

2 ‖x̄k−1− xk−1‖2 +
LΨ λ 2

k
2 ‖δk‖2

−λk〈∇Ψ(xk−1)−LΨ λk∇Ψ(xk),δk〉.

Noting that similarly to (6.4.21), we have

‖x̄k−1− xk−1‖2 ≤ Γk−1∑
k−1
τ=1

(λτ−βτ )
2

Γτ ατ
‖∇Ψ(xτ)+δk‖2

= Γk−1∑
k−1
τ=1

(λτ−βτ )
2

Γτ ατ

[
‖∇Ψ(xτ)‖2 +‖δτ‖2 +2〈∇Ψ(xτ),δτ〉

]
.
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Combining the previous two inequalities and using the fact that Γk−1(1−αk)
2 ≤ Γk,

we obtain

Ψ(xk) ≤Ψ(xk−1)−λk(1−LΨ λk)‖∇Ψ(xk)‖2 +
LΨ λ 2

k
2 ‖δk‖2−λk〈∇Ψ(xk−1)−LΨ λk∇Ψ(xk),δk〉

+LΨ Γk
2 ∑

k
τ=1

(λτ−βτ )
2

Γτ ατ

[
‖∇Ψ(xτ)‖2 +‖δτ‖2 +2〈∇Ψ(xτ),δτ〉

]
.

Summing up the above inequalities, we obtain

Ψ(xN) ≤Ψ(x0)−∑
N
k=1λk(1−LΨ λk)‖∇Ψ(xk)‖2−∑

N
k=1λk〈∇Ψ(xk−1)−LΨ λk∇Ψ(xk),δk〉

+∑
N
k=1

LΨ λ 2
k

2 ‖δk‖2 + LΨ

2 ∑
N
k=1Γk∑

k
τ=1

(λτ−βτ )
2

Γτ ατ

[
‖∇Ψ(xτ)‖2 +‖δτ‖2 +2〈∇Ψ(xτ),δτ〉

]

= Ψ(x0)−∑
N
k=1λkCk‖∇Ψ(xk)‖2 + LΨ

2 ∑
N
k=1λ

2
k

(
1+ (λk−βk)

2

αkΓkλ 2
k

∑
N
τ=kΓτ

)
‖δk‖2−∑

N
k=1bk,

where bk = 〈vk,δk〉 and vk = λk∇Ψ(xk−1)−
[
LΨ λ 2

k + LΨ (λk−βk)
2

Γkαk

(
∑

N
τ=kΓτ

)]
∇Ψ(xk).

Taking expectation w.r.t. ξ[N] on both sides of the above inequality and noting that
under Assumption 16, E[‖δk‖2]≤ σ2 and {bk} is a martingale difference since vk
only depends on ξ[k−1] and hence E[bk|ξ[N]] = E[bk|ξ[k−1]] = E[〈vk,δk〉|ξ[k−1]] =
〈vk,E[δk|ξ[k−1]]〉= 0, we have

∑
N
k=1λkCkEξ[N]

[‖∇Ψ(xk)‖2]≤Ψ(x0)−Eξ[N]
[Ψ(xN)]+

LΨ σ2

2 ∑
N
k=1λ

2
k

(
1+ (λk−βk)

2

αkΓkλ 2
k

∑
N
τ=kΓτ

)
.

Dividing both sides of the above relation by ∑
N
k=1λkCk, and using the facts that

Ψ(xN)≥Ψ ∗ and

E[‖∇Ψ(xR)‖2] = ER,ξ[N]
[‖∇Ψ(xR)‖2] =

∑
N
k=1λkCkEξ[N]

[‖∇Ψ(xk)‖2]

∑
N
k=1λkCk

,

we obtain (6.4.66).
We now show part b). By (6.4.7), (6.4.64), and (6.4.25), we have

Ψ(x̄k) ≤Ψ(xk)+ 〈∇Ψ(xk), x̄k− xk〉+ LΨ

2 ‖x̄k− xk‖2

= Ψ(xk)−βk‖∇Ψ(xk)‖2 +βk〈∇Ψ(xk),δk〉+ LΨ β 2
k

2 ‖∇Ψ(xk)+δk‖2

≤ (1−αk)Ψ(x̄k−1)+αkΨ(x)+αk〈∇Ψ(xk),xk−1− x〉
−βk‖∇Ψ(xk)‖2 +βk〈∇Ψ(xk),δk〉+ LΨ β 2

k
2 ‖∇Ψ(xk)+δk‖2. (6.4.71)

Similarly to (6.4.26), we have

αk〈∇Ψ(xk)+δk,xk−1− x〉= αk
2λk

[
‖xk−1− x‖2−‖xk− x‖2]+ αkλk

2 ‖∇Ψ(xk)+δk‖2.

Combining the above two inequalities and using the fact that

‖∇Ψ(xk)+δk‖2 = ‖∇Ψ(xk)‖2 +‖δk‖2 +2〈∇Ψ(xk),δk〉,
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we obtain

Ψ(x̄k) ≤ (1−αk)Ψ(x̄k−1)+αkΨ(x)+ αk
2λk

[
‖xk−1− x‖2−‖xk− x‖2]

− βk

(
1− LΨ βk

2 −
αkλk
2βk

)
‖∇Ψ(xk)‖2 +

(
LΨ β 2

k +αkλk
2

)
‖δk‖2

+ 〈δk,(βk +LΨ β
2
k +αkλk)∇Ψ(xk)+αk(x− xk−1)〉.

Subtracting Ψ(x) from both sides of the above inequality, and using Lemma 3.17
and (6.4.29), we have

Ψ(x̄N)−Ψ(x)
ΓN

≤ ‖x0−x‖2
2λ1

−∑
N
k=1

βk
2Γk

(
2−LΨ βk− αkλk

βk

)
‖∇Ψ(xk)‖2

+ ∑
N
k=1

(
LΨ β 2

k +αkλk
2Γk

)
‖δk‖2 +∑

N
k=1b′k ∀x ∈ Rn,

where b′k =Γ
−1

k 〈δk,(βk+LΨ β 2
k +αkλk)∇Ψ(xk)+αk(x−xk−1)〉. The above inequal-

ity together with the first relation in (6.4.67) then imply that

Ψ(x̄N)−Ψ(x)
ΓN

≤ ‖x0−x‖2
2λ1

−∑
N
k=1

βk
Γk
(1−LΨ βk)‖∇Ψ(xk)‖2

+ ∑
N
k=1

LΨ β 2
k

Γk
‖δk‖2 +∑

N
k=1b′k ∀x ∈ Rn.

Taking expectation (with respect to ξ[N]) on both sides of the above relation, and
noting that under Assumption 16, E[‖δk‖2]≤ σ2 and {b′k} is a martingale difference
by the similar reasoning for {bk} in part a), we obtain, ∀x ∈ Rn,

1
ΓN
Eξ[N]

[Ψ(x̄N)−Ψ(x)]≤ ‖x0−x‖2
2λ1

−∑
N
k=1

βk
Γk
(1−LΨ βk)Eξ[N]

[‖∇Ψ(xk)‖2]+σ
2
∑

N
k=1

LΨ β 2
k

Γk
.

(6.4.72)
Now, fixing x = x∗ and noting that Ψ(x̄N)≥Ψ(x∗), we have

∑
N
k=1

βk
Γk
(1−LΨ βk)Eξ[N]

[‖∇Ψ(xk)‖2]≤ ‖x0−x∗‖2
2λ1

+σ
2
∑

N
k=1

LΨ β 2
k

Γk
,

which, in view of the definition of xR, then implies (6.4.69). It also follows from
(6.4.72) and (6.4.67) that, for any N ≥ 1,

Eξ[N]
[Ψ(x̄N)−Ψ(x∗)]≤ ΓN

(
‖x0−x‖2

2λ1
+σ

2
∑

N
k=1

LΨ β 2
k

Γk

)
,

which, in view of the definition of x̄R, then implies that

E[Ψ(x̄R)−Ψ(x∗)] = ∑
N
k=1

Γ
−1

k βk(1−LΨ βk)

∑
N
τ=1Γ

−1
τ βτ (1−LΨ βτ )

Eξ[N]
[Ψ(x̄k)−Ψ(x∗)]

≤ ∑
N
k=1βk(1−LΨ βk)

[
(2λ1)

−1‖x0−x‖2+LΨ σ2∑
k
j=1Γ

−1
j β 2

j

]

∑
N
k=1Γ

−1
k βk(1−LΨ βk)

.
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We now add a few remarks about the results obtained in Theorem 6.12. First,
note that similar to the deterministic case, we can use the assumption in (6.4.30)
instead of the one in (6.4.67). Second, the expectations in (6.4.66), (6.4.69), and
(6.4.70) are taken with respect to one more random variable R in addition to ξ coming
from the SFO. Specifically, the output of the Algorithm 3 is chosen randomly from
the generated trajectory {(x1, x̄1), . . . ,(xN , x̄N)} according to (6.4.62), as mentioned
earlier in this subsection. Third, the probabilities {pk} depend on the choice of {αk},
{βk}, and {λk}.

Below, we specialize the results obtained in Theorem 6.12 for some particular
selections of {αk}, {βk}, and {λk}.

Corollary 6.16. The following statements hold for Algorithm 6.4 when applied to
problem (6.4.1) under Assumption 16.

a) If {αk} and {λk} in the RSAGD method are set to (6.4.31) and (6.4.32), respec-
tively, {pk} is set to (6.4.65), {βk} is set to

βk = min
{

8
21LΨ

, D̃
σ
√

N

}
, k ≥ 1 (6.4.73)

for some D̃ > 0, and an iteration limit N ≥ 1 is given, then we have

E[‖∇Ψ(xR)‖2]≤ 21LΨ [Ψ(x0)−Ψ∗]
4N + 2σ√

N

(
Ψ(x0)−Ψ∗

D̃ +LΨ D̃
)
=: UN . (6.4.74)

b) Assume that Ψ(·) is convex and that an optimal solution x∗ exists for problem
(6.4.1). If {αk} is set to (6.4.31), {pk} is set to (6.4.68), {βk} and {λk} are set to

βk = min
{

1
2LΨ

,
(

D̃2

L2
Ψ

σ2N3

) 1
4
}

(6.4.75)

and λk =
kLΨ β 2

k
2 , k ≥ 1, (6.4.76)

for some D̃ > 0, and an iteration limit N ≥ 1 is given, then we have

E[‖∇Ψ(xR)‖2]≤ 96L2
Ψ
‖x0−x∗‖2

N(N+1)(N+2) +
2L

1
2

Ψ
σ

3
2

N
3
4

(
6‖x0−x∗‖2

D̃
3
2

+ D̃
1
2

)
, (6.4.77)

E[Ψ(x̄R)−Ψ(x∗)]≤ 48LΨ ‖x0−x∗‖2
N(N+1) + 2σ√

N

(
6‖x0−x∗‖2

D̃ + D̃
)
. (6.4.78)

Proof. We first show part a). It follows from (6.4.32), (6.4.39), and (6.4.73) that

Ck ≥ 1− 21
16 LΨ βk ≥ 1

2 > 0 and λkCk ≥ βk
2 .

Also by (6.4.32), (6.4.37), (6.4.38), and (6.4.73), we have
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λ
2
k

[
1+ (λk−βk)

2

αkΓkλ 2
k

(
∑

N
τ=kΓτ

)]
≤ λ

2
k

[
1+ 1

αkΓkλ 2
k

(
αkβk

4

)2
2
k

]
= λ

2
k +

β 2
k
8

≤
[(

1+ αk
4

)2
+ 1

8

]
β

2
k ≤ 2β

2
k

for any k ≥ 1. These observations together with (6.4.66) then imply that

E[‖∇Ψ(xR)‖2]≤ 2
∑

N
k=1βk

(
Ψ(x0)−Ψ

∗+LΨ σ
2
∑

N
k=1β

2
k
)

≤ 2[Ψ(x0)−Ψ∗]
Nβ1

+2LΨ σ
2
β1

≤ 2[Ψ(x0)−Ψ∗]
N

{
21LΨ

8 + σ
√

N
D̃

}
+ 2LΨ D̃σ√

N
,

which implies (6.4.73).
We now show part b). It can be easily checked that (6.4.14) and (6.4.67) hold in

view of (6.4.75) and (6.4.76). By (6.4.37) and (6.4.75), we have

∑
N
k=1Γ

−1
k βk(1−LΨ βk)≥ 1

2 ∑
N
k=1Γ

−1
k βk =

β1
2 ∑

N
k=1Γ

−1
k , (6.4.79)

∑
N
k=1Γ

−1
k = ∑

N
k=1

k+k2

2 = N(N+1)(N+2)
6 . (6.4.80)

Using these observations, (6.4.37), (6.4.69), (6.4.75), and (6.4.76), we have

E[‖∇Ψ(xR)‖2]≤ 2
β1∑

N
k=1Γ

−1
k

(
‖x0−x∗‖2

LΨ β 2
1

+LΨ σ
2
β

2
1 ∑

N
k=1Γ

−1
k

)

= 2‖x0−x∗‖2
LΨ β 3

1 ∑
N
k=1Γ

−1
k

+2LΨ σ
2
β1 ≤ 12‖x0−x∗‖2

LΨ N(N+1)(N+2)β
3
1 +2LΨ σ

2
β1

≤ 96L2
Ψ
‖x0−x∗‖2

N(N+1)(N+2) +
2L

1
2

Ψ
σ

3
2

N
3
4

(
6‖x0−x∗‖2

D̃
3
2

+ D̃
1
2

)
.

Also observe that by (6.4.75), we have 1− LΨ βk ≤ 1 for any k ≥ 1. Using this
observation, (6.4.70), (6.4.75), (6.4.79), and (6.4.80), we obtain

E[Ψ(x̄R)−Ψ(x∗)]≤ 2
∑

N
k=1Γ

−1
k

[
N(2λ1)

−1‖x0− x∗‖2 +LΨ σ
2
β

2
1 ∑

N
k=1∑

k
j=1Γ

−1
j

]

≤ 12‖x0−x∗‖2
N(N+1) LΨ β

2
1 +

12LΨ σ2β 2
1

N(N+1)(N+2)∑
N
k=1

k(k+1)(k+2)
6

= 12‖x0−x∗‖2
N(N+1)LΨ β 2

1
+

LΨ σ2β 2
1 (N+3)
2

≤ 48LΨ ‖x0−x∗‖2
N(N+1) + 2σ

N
1
2

(
6‖x0−x∗‖2

D̃ + D̃
)
,

where the equality follows from the fact that ∑
N
k=1k(k+1)(k+2) = N(N +1)(N +

2)(N +3)/4.

We now add a few remarks about the results obtained in Corollary 6.16. First, note
that, the stepsizes {βk} in the above corollary depend on the parameter D̃. While the
RSAGD method converges for any D̃ > 0, by minimizing the RHS of (6.4.74) and



6.4 Nonconvex stochastic accelerated gradient descent 383

(6.4.78), the optimal choices of D̃ would be
√
[Ψ(x0)−Ψ(x∗)]/LΨ and

√
6‖x0−x∗‖,

respectively, for solving nonconvex and convex smooth SP problems. With such
selections for D̃, the bounds in (6.4.74), (6.4.77), and (6.4.78), respectively, reduce to

E[‖∇Ψ(xR)‖2]≤ 21LΨ [Ψ(x0)−Ψ∗]
4N + 4σ [LΨ (Ψ(x0)−Ψ∗)]

1
2√

N
, (6.4.81)

E[‖∇Ψ(xR)‖2]≤ 96L2
Ψ
‖x0−x∗‖2
N3 + 4(

√
6LΨ ‖x0−x∗‖)

1
2 σ

3
2

N
3
4

, (6.4.82)

and
E[Ψ(x̄R)−Ψ(x∗)]≤ 48LΨ ‖x0−x∗‖2

N2 + 4
√

6‖x0−x∗‖σ√
N

. (6.4.83)

It should be noted, however, that such optimal choices of D̃ are usually not available,
and that one needs to replace Ψ(x0)−Ψ(x∗) or ‖x0− x∗‖ in the aforementioned op-
timal selections of D̃ with their respective upper bounds in practice. Second, the rate
of convergence of the RSAGD algorithm in (6.4.74) for general nonconvex problems
is the same as that of the RSGD method for smooth nonconvex SP problems (see
Section 6.1). However, if the problem is convex, then the complexity of the RSAGD
algorithm will be significantly better than the latter algorithm. More specifically,
in view of (6.4.83), the RSAGD is an optimal method for smooth stochastic opti-
mization, while the rate of convergence of the RSGD method is only nearly optimal.
Moreover, in view of (6.4.77), if Ψ(·) is convex, then the number of iterations per-
formed by the RSAGD algorithm to find an ε-solution of (6.4.1), i.e., a point x̄ such
that E[‖∇Ψ(x̄)‖2]≤ ε , can be bounded by

O

{(
1

ε
1
3
+ σ2

ε
4
3

)
(LΨ‖x0− x∗‖) 2

3

}
.

In addition to the aforementioned expected complexity results of the RSAGD
method, we can establish their associated large deviation properties. For example, by
Markov’s inequality and (6.4.74), we have

Prob
{
‖∇Ψ(xR)‖2 ≥ λUN

}
≤ 1

λ
∀λ > 0, (6.4.84)

which implies that the total number of calls to the S O performed by the RSAGD
method for finding an (ε,Λ)-solution of problem (6.4.1), i.e., a point x̄ satisfying
Prob{‖∇Ψ(x̄)‖2 ≤ ε} ≥ 1−Λ for some ε > 0 and Λ ∈ (0,1), after disregarding a
few constant factors, can be bounded by

O
{

1
Λε

+ σ2

Λ 2ε2

}
. (6.4.85)

To improve the dependence of the above bound on the confidence level Λ , we can
design a variant of the RSAGD method which has two phases: optimization and
post-optimization phase. The optimization phase consists of independent runs of the
RSAGD method to generate a list of candidate solutions and the post-optimization
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phase then selects a solution from the generated candidate solutions in the optimiza-
tion phase (see Section 6.1 for for more details).

6.4.2.2 Minimization of nonconvex stochastic composite functions

In this subsection, we consider the stochastic composite problem (6.4.3), which
satisfies both Assumptions 16 and 17. Our goal is to show that under the above
assumptions, we can choose the same aggressive stepsize policy in the RSAGD
method no matter if the objective function Ψ(·) in (6.4.3) is convex or not.

We will modify the RSAGD method in Algorithm 6.4 by replacing the stochastic
gradient ∇Ψ(xk,ξk) with

Ḡk =
1

mk
∑

mk
i=1G(xk,ξk,i) (6.4.86)

for some mk ≥ 1, where G(xk,ξk,i), i = 1, . . . ,mk are the stochastic gradients returned
by the i-th call to the SFO at iteration k. The modified RSAGD algorithm is formally
described as follows.

Algorithm 6.5 The RSAGD algorithm for stochastic composite optimization
Replace (6.4.63) and (6.4.64), respectively, in Step 2 of Algorithm 6.4 by

xk = argminu∈Rn

{
〈Ḡk,u〉+ 1

2λk
‖u− xk−1‖2 +X (u)

}
, (6.4.87)

x̄k = argminu∈Rn

{
〈Ḡk,u〉+ 1

2βk
‖u− xk‖2 +X (u)

}
, (6.4.88)

where Ḡk is defined in (6.4.86) for some mk ≥ 1.

A few remarks about the above RSAGD algorithm are in place. First, note that
by calling the SFO multiple times at each iteration, we can obtain a better estimator
for ∇Ψ(xk) than the one obtained by using one call to the SFO as in Algorithm 6.4.
More specifically, under Assumption 16, we have

E[Ḡk] =
1

mk
∑

mk
i=1E[G(xk,ξk,i)] = ∇Ψ(xk),

E[‖Ḡk−∇Ψ(xk)‖2] = 1
m2

k
E
[
‖∑mk

i=1[G(xk,ξk,i)−∇Ψ(xk)]‖2]≤ σ2

mk
,(6.4.89)

where the last inequality follows from (6.2.40). Thus, by increasing mk, we can
decrease the error existing in the estimation of ∇Ψ(xk). We will discuss the appro-
priate choice of mk later in this subsection. Second, since we do not have access to
∇Ψ(xk), we cannot compute the exact gradient mapping, i.e., PX (xk,∇Ψ(xk),βk) as
the one used in Subsection 6.4.1.2 for composite optimization. However, by (6.4.42)
and (6.4.87), we can compute an approximate stochastic gradient mapping given by
PX (xk, Ḡk,βk). Indeed, by (6.4.44) and (6.4.89) , we have
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E[‖PX (xk,∇Ψ(xk),βk)−PX (xk, Ḡk,βk)‖2]≤ E[‖Ḡk−∇Ψ(xk)‖2]≤ σ2

mk
. (6.4.90)

Finally, it is worth mentioning that although several SGD-type algorithms have
been developed for convex programming with mk = 1, the mini-batch SGD method
in Algorithm 6.5 (i.e., mk > 1) is more attractive when computing the projection
subproblems (6.4.87) and (6.4.88) is more expensive than calling the stochastic
first-order oracle.

We are ready to describe the main convergence properties of Algorithm 6.5 for
solving nonconvex stochastic composite problems.

Theorem 6.13. Suppose that {αk}, {βk}, {λk}, and {pk} in Algorithm 6.5 satisfy
(6.4.13), (6.4.14), and (6.4.68). Then under Assumptions 16 and 17, we have

E[‖PX (xR,∇Ψ(xR),βR)‖2]≤ 8
[
∑

N
k=1Γ

−1
k βk(1−LΨ βk)

]−1
[
‖x0−x∗‖2

2λ1
+

L f
ΓN
(‖x∗‖2 +M2)

+ σ
2
∑

N
k=1

βk(4+(1−LΨ βk)
2)

4Γk(1−LΨ βk)mk

]
, (6.4.91)

where the expectation is taken with respect to R and ξk,i, k = 1, ..,N, i = 1, ...,mk. If,
in addition, L f = 0, then we have

E[Φ(x̄R)−Φ(x∗)]≤
[
∑

N
k=1Γ

−1
k βk(1−LΨ βk)

]−1
[
∑

N
k=1βk(1−LΨ βk)

(
‖x0−x∗‖2

2λ1

+ σ
2
∑

k
j=1

β j(4+(1−LΨ β j)
2)

4Γj(1−LΨ β j)m j

)]
, (6.4.92)

where Φ(x)≡Ψ(x)+X (x).

Proof. Denoting δ̄k ≡ Ḡk−∇Ψ(xk) and δ̄[k] ≡ {δ̄1, . . . , δ̄k} for any k ≥ 1, similar
to (6.4.53) and (6.4.54), we have

〈∇Ψ(xk)+ δ̄k,xk− x〉+X (xk)≤X (x)+ 1
2λk

[
‖xk−1− x‖2−‖xk− x‖2−‖xk− xk−1‖2] ,

(6.4.93)

〈∇Ψ(xk)+ δ̄k, x̄k− x〉+X (x̄k)≤X (x)+ 1
2βk

[
‖xk− x‖2−‖x̄k− x‖2−‖x̄k− xk‖2]

(6.4.94)

for any x ∈ Rn. By using the above relations and similar arguments used to obtain
(6.4.55) in the proof of Theorem 6.11, we obtain

〈∇Ψ(xk)+ δ̄k, x̄k−αkx− (1−αk)x̄k−1〉+X (x̄k)≤ (1−αk)X (x̄k−1)+αkX (x)

+ αk
2λk

[
‖xk−1− x‖2−‖xk− x‖2]+ αk(λkαk−βk)

2βkλk
‖xk− xk−1‖2− 1

2βk
‖x̄k− xk‖2

≤ (1−αk)X (x̄k−1)+αkX (x)+ αk
2λk

[
‖xk−1− x‖2−‖xk− x‖2]− 1

2βk
‖x̄k− xk‖2,

(6.4.95)

where the last inequality follows from the assumption that αkλk ≤ βk. Combining
the above relation with (6.4.51) and (6.4.52), and using the definition Φ(x)≡Ψ(x)+
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X (x), we have

Φ(x̄k)≤ (1−αk)Φ(x̄k−1)+αkΦ(x)− 1
2

(
1
βk
−LΨ

)
‖x̄k− xk‖2 + 〈δ̄k,αk(x− xk−1)+ xk− x̄k〉

+ αk
2λk

[
‖xk−1− x‖2−‖xk− x‖2]+ L f αk

2 ‖xk− x‖2 +
L f α2

k (1−αk)

2 ‖x̄k−1− xk−1‖2

≤ (1−αk)Φ(x̄k−1)+αkΦ(x)+ 〈δ̄k,αk(x− xk−1)〉− 1
4

(
1
βk
−LΨ

)
‖x̄k− xk‖2 + βk‖δ̄k‖2

1−LΨ βk

+ αk
2λk

[
‖xk−1− x‖2−‖xk− x‖2]+ L f αk

2 ‖xk− x‖2 +
L f α2

k (1−αk)

2 ‖x̄k−1− xk−1‖2,

where the last inequality follows from the Young’s inequality. Subtracting Φ(x) from
both sides of the above inequality, re-arranging the terms, and using Lemma 3.17
and (6.4.29), we obtain

Φ(x̄N)−Φ(x)
ΓN

+∑
N
k=1

1−LΨ βk
4βkΓk

‖x̄k− xk‖2 ≤ ‖x0−x‖2
2λ1

+∑
N
k=1

αk
Γk
〈δ̄k,x− xk−1〉

+
L f
2 ∑

N
k=1

αk
Γk
[‖xk− x‖2 +αk(1−αk)‖x̄k−1− xk−1‖2]+∑

N
k=1

βk‖δ̄k‖2
Γk(1−LΨ βk)

∀x ∈ Rn.

Letting x = x∗ in the above inequality, and using (6.4.20) and (6.4.57), we have

Φ(x̄N)−Φ(x∗)
ΓN

+∑
N
k=1

1−LΨ βk
4βkΓk

‖x̄k− xk‖2 ≤ ‖x0−x∗‖2
2λ1

+∑
N
k=1

αk
Γk
〈δ̄k,x∗− xk−1〉

+
L f
ΓN
(‖x∗‖2 +M2)+∑

N
k=1

βk‖δ̄k‖2
Γk(1−LΨ βk)

.

Taking expectation from both sides of the above inequality, noting that under As-
sumption 16, E[〈δ̄k,x∗− xk−1〉|δ̄[k−1]] = 0, and using (6.4.89) and the definition of
the gradient mapping in (6.4.42), we conclude

E
δ̄[N]

[Φ(x̄N)−Φ(x∗)]

ΓN
+∑

N
k=1

βk[1−LΨ βk]
4Γk

E
δ̄[N]

[‖PX (xk, Ḡk,βk)‖2]

≤ ‖x0−x∗‖2
2λ1

+
L f
ΓN
(‖x∗‖2 +M2)+σ

2
∑

N
k=1

βk
Γk(1−LΨ βk)mk

,

which, together with the fact that E
δ̄[N]

[‖PX (xk, Ḡk,βk)‖2]≥E
δ̄[N]

[‖PX (xk,∇Ψ(xk),βk)‖2]/2−
σ2/mk due to (6.4.90), then imply that

E
δ̄[N]

[Φ(x̄N)−Φ(x)]

ΓN
+∑

N
k=1

βk(1−LΨ βk)
8Γk

E
δ̄[N]

[‖PX (xk,∇Ψ(xk),βk)‖2]

≤ ‖x0−x∗‖2
2λ1

+
L f
ΓN
(‖x∗‖2 +M2)+σ

2
(

∑
N
k=1

βk
Γk(1−LΨ βk)mk

+∑
N
k=1

βk(1−LΨ βk)
4Γkmk

)

= ‖x0−x∗‖2
2λ1

+
L f
ΓN
(‖x∗‖2 +M2)+σ

2
∑

N
k=1

βk[4+(1−LΨ βk)
2]

4Γk(1−LΨ βk)mk
. (6.4.96)
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Since the above relation is similar to the relation (6.4.72), the rest of proof is also
similar to the last part of the proof for Theorem 6.12 and hence the details are skipped.

Theorem 6.13 shows that by using the RSAGD method in Algorithm 4, we can
have a unified treatment and analysis for stochastic composite problem (6.4.3), no
matter it is convex or not. In the next result, we specialize the results obtained in
Theorem 6.13 for some particular selections of {αk}, {βk}, and {λk}.

Corollary 6.17. Suppose that the stepsizes {αk}, {βk}, and {λk} in Algorithm 4 are
set to (6.4.31) and (6.4.34), respectively, and {pk} is set to (6.4.68). Also assume
that an optimal solution x∗ exists for problem (6.4.3). Then under Assumptions 16
and 17, for any N ≥ 1, we have

E[‖PX (xR,∇Ψ(xR),βR)‖2]≤ 96LΨ

[
4LΨ ‖x0−x∗‖2
N(N+1)(N+2) +

L f
N (‖x∗‖2 +M2)+ 2σ2

LΨ N(N+1)(N+2)∑
N
k=1

k(k+1)
mk

]
.

(6.4.97)
If, in addition, L f = 0, then for any N ≥ 1, we have

E[Φ(x̄R)−Φ(x∗)]≤ 12LΨ ‖x0−x∗‖2
N(N+1) + 4σ2

LΨ N(N+1)(N+2)∑
N
k=1∑

k
j=1

j( j+1)
m j

. (6.4.98)

Proof. Similar to Corollary 6.14.b), we can easily show that (6.4.13) and (6.4.14)
hold. By (6.4.91), (6.4.31), (6.4.34), (6.4.37), and (6.4.40), we have

E[‖PX (xR,∇Ψ(xR),βR)‖2]≤ 192LΨ

N(N+1)(N+2)

[
2LΨ‖x0− x∗‖2 +

N(N+1)L f
2 (‖x∗‖2 +M2)

+ σ
2
∑

N
k=1

17k(k+1)
32LΨ mk

]
,

which clearly implies (6.4.97). By (6.4.92), (6.4.31), (6.4.34), (6.4.37), and (6.4.40),
we have

E[Φ(x̄R)−Φ(x∗)]≤ 24LΨ

N(N+1)(N+2)

[
N
2 ‖x0− x∗‖2 + σ2

4LΨ
∑

N
k=1∑

k
j=1

17 j( j+1)
32LΨ m j

]
,

which implies (6.4.98).

Note that all the bounds in the above corollary depend on {mk} and they may
not converge to zero for all values of {mk}. In particular, if {mk} is set to a positive
integer constant, then the last terms in (6.4.97) and (6.4.98), unlike the other terms,
will not vanish as the algorithm advances. On the other hand, if {mk} is very big, then
each iteration of Algorithm 4 will be expensive due to the computation of stochastic
gradients. Next result provides an appropriate selection of {mk}.
Corollary 6.18. Suppose that the stepsizes {αk}, {βk}, and {λk} in Algorithm 4 are
set to (6.4.31) and (6.4.34), respectively, and {pk} is set to (6.4.68). Also assume that
an optimal solution x∗ exists for problem (6.4.3), an iteration limit N ≥ 1 is given,
and

mk =
⌈

σ2

LΨ D̃2 min
{

k
L f
, k(k+1)N

LΨ

}⌉
, k = 1,2, . . . ,N (6.4.99)
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for some parameter D̃. Then under Assumptions 16 and 17, we have

E[‖PX (xR,∇Ψ(xR),βR)‖2] ≤ 96LΨ

[
4LΨ (‖x0−x∗‖2+D̃2)

N(N+1)(N+2) +
L f (‖x∗‖2+M2+2D̃2)

N

]
.

(6.4.100)

If, in addition, L f = 0, then

E[Φ(x̄R)−Φ(x∗)]≤ 2LΨ

N(N+1)

(
6‖x0− x∗‖2 + D̃2) . (6.4.101)

Proof. By (6.4.99), we have

σ2

LΨ
∑

N
k=1

k(k+1)
mk
≤ D̃2

∑
N
k=1k(k+1)max

{
L f
k , LΨ

k(k+1)N

}
≤ D̃2

∑
N
k=1k(k+1)

{
L f
k + LΨ

k(k+1)N

}

≤ D̃2
[

L f N(N+3)
2 +LΨ

]
,

which together with (6.4.97) imply (6.4.100). If L f = 0, then due to (6.4.99), we have

mk =
⌈

σ2k(k+1)N
L2

Ψ
D̃2

⌉
, k = 1,2, . . . ,N. (6.4.102)

Using this observation, we have

σ2

LΨ
∑

N
k=1∑

k
j=1

j( j+1)
m j
≤ LΨ D̃2(N+1)

2 ,

which, in view of (6.4.98), then implies (6.4.101).

We now add a few remarks about the results obtained in Corollary 6.18. First, we
conclude from (6.4.100) and (6.4.43) that by running Algorithm 4 for at most

O

{[
L2

Ψ
(‖x0−x∗‖2+D̃2)

ε

] 1
3
+

L f LΨ (M2+‖x∗‖2+D̃2)

ε

}

iterations, we have −∇Ψ(x̄R) ∈ ∂X (x̄R)+B(
√

ε). Also at the k-th iteration of this
algorithm, the SFO is called mk times and hence the total number of calls to the SFO
equals to ∑

N
k=1mk. Now, observe that by (6.4.99), we have

∑
N
k=1mk ≤ ∑

N
k=1

(
1+ kσ2

L f LΨ D̃2

)
≤ N + σ2N2

L f LΨ D̃2 . (6.4.103)

Using these two observations, we conclude that the total number of calls to the SFO
performed by Algorithm 4 to find an ε-stationary point of problem (6.4.3) i.e., a
point x̄ satisfying −∇Ψ(x̄) ∈ ∂X (x̄)+B(

√
ε) for some ε > 0, can be bounded by
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O




[

L2
Ψ
(‖x0−x∗‖2+D̃2)

ε

] 1
3
+

L f LΨ (M2+‖x∗‖2+D̃2)

ε
+

[
L

1
2

Ψ
(‖x0−x∗‖2+D̃2)σ3

L
3
2
f D̃3ε

] 2
3

+
L f LΨ (M2+‖x∗‖2+D̃2)2σ2

D̃2ε2

}
. (6.4.104)

Second, note that there are various choices for the parameter D̃ in the definition of mk.
While Algorithm 4 converges for any D̃, an optimal choice would be

√
‖x∗‖2 +M2

for solving composite nonconvex SP problems, if the last term in (6.4.104) is the
dominating one. Third, due to (6.4.101) and (6.4.102), it can be easily shown that
when L f = 0, Algorithm 4 possesses an optimal complexity for solving convex SP
problems which is similar to the one obtained in the Subsection 6.4.2.1 for smooth
problems. Fourth, note that the definition of {mk} in Corollary 6.18 depends on the
iteration limit N. In particular, due to (6.4.99), we may call the SFO many times
(depending on N) even at the beginning of Algorithm 4. In the next result, we specify
a different choice for {mk} which is independent of N. However, the following result
is slightly weaker than the one in (6.4.100) when L f = 0.

Corollary 6.19. Suppose that the stepsizes {αk}, {βk}, and {λk} in Algorithm 4 are
set to (6.4.31) and (6.4.34), respectively, and {pk} is set to (6.4.68). Also assume
that an optimal solution x∗ exists for problem (6.4.3), and

mk =
⌈

σ2k
LΨ D̃2

⌉
, k = 1,2, . . . (6.4.105)

for some parameter D̃. Then under Assumptions 16 and 17, for any N ≥ 1, we have

E[‖PX (xR,∇Ψ(xR),βR)‖2] ≤ 96LΨ

[
4LΨ ‖x0−x∗‖2
N(N+1)(N+2) +

L f (‖x∗‖2+M2)+2D̃2

N

]
.

(6.4.106)

Proof. Observe that by (6.4.105), we have

σ2

LΨ
∑

N
k=1

k(k+1)
mk
≤ D̃2

∑
N
k=1(k+1)≤ D̃2N(N+3)

2 .

Using this observation and (6.4.97), we obtain (6.4.106).

Using Markov’s inequality, (6.4.103), (6.4.105), and (6.4.106), we conclude that
the total number of calls to the SFO performed by Algorithm 4 for finding an (ε,Λ)-
solution of problem (6.4.3), i.e., a point x̄ satisfying Prob{‖PX (x̄,∇Ψ(x̄),c)‖2 ≤
ε} ≥ 1−Λ for any c > 0, some ε > 0 and Λ ∈ (0,1), can be bounded by (6.4.85)
after disregarding a few constant factors. We can also design a two-phase method for
improving the dependence of this bound on the confidence level Λ .

Note that in this section, we focus on the Euclidean setting by assuming that
‖ · ‖ is the Euclidean norm. It should be noted that if the problem is deterministic,
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we can easily extend our results to the non-Euclidean setting by modifying (6.4.26)
and (6.4.53) and using some existing results on prox-mapping discussed in Subsec-
tion 6.2.1. Similar extensions to the non-Euclidean setting for stochastic problems,
however, are more complicated, mainly because the variance reduction inequality in
(6.4.89) requires an inner product norm. One can possibly obtain a similar relation as
in (6.4.89) if the associated norm is given by ‖·‖p for p≥ 2. However, such a relation
does not necessary hold when p < 2. Another possibility is to derive complexity
results by noting that all the norms in Rn are equivalent. However, such complexity
results will have more complicated dependence on the dimension of the problem in
general.

6.5 Nonconvex variance-reduced mirror descent

In this section, we consider the following nonconvex finite-sum problem

Ψ
∗ := min

x∈X
{Ψ(x) := f (x)+h(x)}, (6.5.1)

where X is a closed convex set in Euclidean space Rn, f is the average of m smooth
but possibly nonconvex component functions fi, i.e., f (x) = ∑

m
i=1 fi(x)/m, and h

is a simple convex function with known structure, but possibly nonsmooth (e.g.
h(x) = ‖x‖1 or h(x)≡ 0). We assume that for ∀ i=1,2,...,m, ∃Li > 0, s.t.

‖∇ fi(x)−∇ fi(y)‖∗ ≤ Li‖x− y‖, ∀x,y ∈ X .

Clearly, f has Lipschitz continuous gradients with constant

L f ≤ L≡ 1
m ∑

m
i=1Li. (6.5.2)

Throughout this section, we assume that Ψ is bounded below over X , i.e. Ψ ∗ is finite.
Observe that the problem set up is similar to (6.5.1), the difference is that fi are
possibly nonconvex.

Our goal in this section is to adapt the variance reduction techniques in Section 5.3
into the nonconvex mirror descent method in Section 6.2.2 and demonstrate that
the resulting algorithm can significantly save the number of gradient evaluations
of fi for solving nonconvex finite-sum optimization problems. We will modify the
basic scheme of this algorithm to solve an important class stochastic optimization
problems where f is given by an expectation function.

6.5.1 Basic scheme for deterministic problems

We first focus on the basic case when the number of terms m is fixed. Similar to
the variance-reduced mirror descent method in Section 5.3, the nonconvex variance-
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reduced mirror descent method (see Algorithm 7.13) will compute a full gradient for
every T iterations. However, different from the variance-reduced mirror descent for
solving convex finite-sum problems, the full gradient ∇ f (x̃) will not directly partici-
pate in the computation of the gradient estimator Gk. Instead the gradient estimator
Gk will be computed in a recursive manner based on Gk−1. Another difference from
the variance-reduced mirror descent method exist in that a mini-batch of sample of
size b is used to define Gk. It should be noted, however, that the original algorithmic
scheme of the variance-reduced mirror descent method could still be applied to the
nonconvex finite-sum problems, even though it would not exhibit the best possible
rate of convergence in terms of the total number of required gradient evaluations.

Algorithm 6.6 A nonconvex variance-reduced mirror descent method
Input: x1,γ,T,{θt} and probability distribution Q = {q1, . . . ,qm} on {1, . . . ,m}.
for k = 1,2, . . . ,N do

if k % T == 1 then
Set Gk = ∇ f (xk).

else
Generate i.i.d. samples Ib of size b according to Q.
Set Gk =

1
b ∑i∈Ib (∇ fi(xk)−∇ fi(xk−1))/(qim)+Gk−1.

end if
Set xk+1 = argminx∈X {γ[〈Gk,x〉+h(x)]+V (xk,x)}.

end for
Output xR, where R is uniformly distributed over {1, . . . ,N}.

In order to facilitate the analysis of the algorithm, we will group the iteration
indices k = 1,2, . . . into different epochs given by

{{1,2, . . . ,T},{T +1,T +2, . . . ,2T}, . . . ,{sT +1,sT +2 . . . ,(s+1)T}, . . .}.

In other words, except for the last epoch, each epoch s, s≥ 0, consists of T iterations
starting from sT +1 to (s+1)T , and the last epoch consist of the remaining iterations.
For a given iteration index k = sT +t, we will always use the index k and the pair (s, t)
interchangeably. For notational convenience, we also denote (s,T +1) == (s+1,1).
Sometimes we will simply denote (s, t) by t if the epoch s is clear from the context.

We will use the generalized projected gradient PX (xk,∇ f (xk),γ) defined in (6.2.7)
to evaluate the solution quality at a given search point xk ∈ X . Moreover, replacing
∇ f (xk) with its estimator Gk, we then obtain the stochastic generalized projected
gradient PX (xk,Gk,γ). For notation convenience, we simply denote

gX ,k ≡ PX (xk,∇ f (xk),γ) and g̃X ,k ≡ PX (xk,Gk,γ).

Let us denote δk ≡ Gk−∇ f (xk). Then by Corollary 6.1, we have

‖gX ,k− g̃X ,k‖ ≤ ‖δk‖. (6.5.3)

We first provide a bound on the size of ‖δk‖.
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Lemma 6.10. Let L be defined in (6.5.2) and suppose that the probabilities qi are
set to

qi =
Li
mL (6.5.4)

for i = 1, . . . ,m. If the iteration index k (or equivalently (s, t) represents the t-th
iteration at the s-epoch, then

E[‖δk‖2]≡ E[‖δ(s,t)‖2]≤ L2

b ∑
t
i=2E[‖x(s,i)− x(s,i−1)‖2]. (6.5.5)

Proof. Consider the s-th epoch. For simplicity let us denote δt ≡ δs,t and xt ≡ x(s,t).
It is easy to see that for the first iteration in epoch s, we have δ1 = 0. Note that by the
definition of δt , we have

E[‖δt‖2] = E[‖ 1
b ∑i∈Ib [∇ fi(xt)−∇ fi(xt−1)]/(qim)+Gt−1−∇ f (xt)‖2]

= E[‖ 1
b ∑i∈Ib [∇ fi(xt)−∇ fi(xt−1)]/(qim)− [∇ f (xt)−∇ f (xt−1)]+δt−1]‖2.

Let us denote ζi = [∇ fi(xt)−∇ fi(xt−1)]/(qim). By taking the conditional expectation
w.r.t. i ∈ Ib, we have E[ζi] = ∇ f (xt)−∇ f (xt−1), which together with the above
identity then imply that

E[‖δt‖2] = E[‖ 1
b ∑i∈Ib [ζi− (∇ f (xt)−∇ f (xt−1)‖2]+E[‖δt−1‖2]

≤ 1
b2 ∑i∈IbE[‖ζi‖2]+E[‖δt−1‖2]

= 1
b2 ∑i∈IbE[

1
m2qi
‖∇ fi(xt)−∇ fi(xt−1)‖2]+E[‖δt−1‖2

≤ 1
b ∑

m
j=1

L2
j

m2q j
‖xt − xt−1‖2 +E[‖δt−1‖2

= L2

b ‖xt − xt−1‖2 +E[‖δt−1‖2. (6.5.6)

The result then follows by applying the above inequality inductively.
Now we are ready to prove the main convergence properties of the nonconvex

variance-reduced mirror descent method.

Theorem 6.14. Assume that the probabilities qi are set to (6.5.4) and that

γ = 1/L and b = 17T. (6.5.7)

Then for any k ≥ 1,

E[Ψ(xk+1)]+
1

8L ∑
k
j=1E[‖gX , j‖2]≤ E[Ψ(x1)], ∀k ≥ 1. (6.5.8)

As a consequence,
E[‖gX ,R‖2]≤ 8L

N [Ψ(x1)−Ψ
∗]. (6.5.9)

Proof. Using the smoothness of f and Lemma 6.4, we have for any k ≥ 1,
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f (xk+1)≤ f (xk)+ 〈∇ f (xk),xk+1− xk〉+ L
2‖xk+1− xk‖2

= f (xk)+ 〈Gk,xk+1− xk〉+ L
2‖xk+1− xk‖2−〈δk,xk+1− xk〉

= f (xk)− γ〈Gk, g̃X ,k〉+ Lγ2

2 ‖g̃X ,k‖2 + γ〈δk, g̃X ,k〉
≤ f (xk)− γ

[
‖g̃X ,k‖2 + 1

γ
(h(xk+1−h(xk))

]
+ Lγ2

2 ‖g̃X ,k‖2 + γ〈δk, g̃X ,k〉.

Rearranging the terms in the above inequality and applying the Cauchy–Schwarz
inequality, we obtain

Ψ(xk+1)≤Ψ(xk)− γ‖g̃X ,k‖2 + Lγ2

2 ‖g̃X ,k‖2 + γ〈δk, g̃X ,k〉
≤Ψ(xk)− γ

(
1− Lγ

2 −
q
2

)
‖g̃X ,k‖2 + γ

2q‖δk‖2 (6.5.10)

for any q > 0. Observe that by (6.5.3),

‖gX ,k‖2 = ‖gX ,k− g̃X ,k + g̃X ,k‖2 ≤ 2‖δk‖2 +2‖g̃X ,k‖2.

Multiplying the above inequality for any p > 0 and adding it to (6.5.10), we have

Ψ(xk+1)+ p‖gX ,k‖2 ≤Ψ(xk)−
[
γ(1− Lγ

2 )−2p
]
‖g̃X ,k‖2 +( γ

2q +2p)‖δk‖2.

We now show possible progress made by each epoch of the nonconvex variance-
reduced mirror-descent method. Using (7.4.4) and the fact that xs,t − xs,t−1 =−γ g̃X ,t ,
t = 1, . . . ,T +1 (here we use the notation that (s,T +1) = (s+1,1)), we have

E[‖δ(s,t)‖2]≤ L2

b ∑
t
i=2‖xs,i− xs,i−1‖2 = γ2L2

b ∑
t
i=2‖g̃X ,(s,i)‖2.

Combining the above two inequalities, we obtain

E[Ψ(xs,t+1)]+ pE[‖gX ,(s,t)‖2]≤ E[Ψ(xs,t)]−
[
γ(1− Lγ

2 )−2p
]
E[‖g̃X ,(s,t)‖2]

+ ( γ

2q +2p) γ2L2

b ∑
t
i=2E[‖g̃X ,(s,i)‖2]. (6.5.11)

Taking the telescope sum of the above inequalities, we have for any t = 1, . . . ,T

E[Ψ(xs,t+1)]+ p∑
t
j=1E[‖gX ,(s, j)‖2]≤ E[Ψ(x(s,1))]

−
[
γ(1− Lγ

2 )−2p
]

∑
t
j=1E[‖g̃X ,(s, j)‖2]+ ( γ

2q +2p) γ2L2

b ∑
t
j=1∑

j
i=2E[‖g̃X ,(s,i)‖2]

≤ E[Ψ(x1)]−
[
γ(1− Lγ

2 )−2p
]

∑
t
j=1E[‖g̃X ,(s, j)‖2]

+ ( γ

2q +2p) γ2L2(t−1)
b ∑

t
j=2E[‖g̃X ,(s, j)‖2]

≤ E[Ψ(x(s,1)]−
[
γ(1− Lγ

2 )−2p− ( γ

2q +2p) γ2L2(t−1)
b

]
∑

t
j=1E[‖g̃X , j‖2], (6.5.12)
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for any p > 0 and q > 0. Fixing p = 1/(8L) abnd q = 1/8 in the above inequality,
and using the facts that γ = 1/L, b = 21T , and 1≤ t ≤ T , we observe

γ(1− Lγ

2 )−2p− ( γ

2q +2p) γ2L2(t−1)
b = 1

4L −
17(T−1)

4Lb > 0.

Then for any epochs s≥ 0 and 1≤ t ≤ T , we have

E[Ψ(x(s,t+1))]+
1

8L ∑
t
j=1E[‖gX ,(s,i)‖2]≤ E[Ψ(x(s,1))]. (6.5.13)

Therefore, (6.5.8) easily follows by summing up the first k inequalities in the above
form. In addition, (6.5.9) follows from (6.5.8) (with k = N) due to the definition of
the random variable R and the fact that Ψ(xN+1)≥Ψ ∗.

We are now ready to provide a bound on the total number of gradient evaluations
required by the nonconvex variance-reduced mirror descent method.

Corollary 6.20. Assume that the probabilities qi are set to (6.5.4) and that γ and b
are set to (6.5.7). In addition if T =

√
m, then the total number of gradient evaluations

required by the nonconconvex variance-reduced mirror descent method to find a
solution x̄ ∈ X s.t. E[‖PX (xk,∇ f (xk),γ)‖2]≤ ε can be bounded by

O(m+
√

mL[Ψ(x1)−Ψ∗]
ε

).

Proof. Clearly, the total number of gradient evaluations will be bounded by

(m+bT )
⌈N

T

⌉
= (m+17T 2)

⌈N
T

⌉

By (6.5.9), the total number of iterations performed by this method will be bounded
by N = 8L

ε
[Ψ(x1)−Ψ ∗]. Our result then follows from these observations and the

assumption that T =
√

m.

6.5.2 Generalization for stochastic optimization problems

In this section, we still consider problem (6.5.1), but with f given by

f (x) = E[F(x,ξ )], (6.5.14)

where ξ is a random vector supported on Ξ ⊆ Rd for some d ≥ 1. We make the
following assumptions throughout this subsection.

• F(x,ξ ) is a smooth function with Lipschitz constant L for any ξ ∈ Ξ almost
surely.

• It is possible to generate a realization ξ ∈ Ξ , and to compute ∇F(x,ξ ) and
∇F(y,ξ ) for any given two point x,y ∈ X .

• For any x, we have E[∇F(x,ξ )] = ∇ f (x) and

E[‖∇F(x,ξ )−∇ f (x)‖2]≤ σ
2. (6.5.15)
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We observe that the above assumptions are much stronger than the those required for
the RSGD and RSMD methods.

Algorithm 6.7 A nonconvex variance-reduced mirror descent method
Input: x1,γ,T,{θt}, sample sizes b and m, and epoch index s = 0.
for k = 1,2, . . . ,N do

if k % T == 1 then
Generate an i.i.d. sample Hs = {ξ s

1 , . . . ,ξ
s
m} for the random variable ξ .

Set Gk =
1
m ∑

m
1 ∇F(xk,ξ

s
i ).

Set s← s+1.
else

Generate an i.i.d. sample Ik = {ξ k
1 , . . . ,ξ

k
b } for the random variable ξ .

Set Gk =
1
b ∑

b
i=1(∇F(xk,ξ

k
i )−∇F(xk−1,ξ

k
i ))+Gk−1.

end if
Set xk+1 = argminx∈X {γ[〈Gk,x〉+h(x)]+V (xk,x)}.

end for
Output xR, where R is uniformly distributed over {1, . . . ,N}.

Similar to the previous section, we will first need to provide a bound on the size
of δk = Gk−∇ f (xk).

Lemma 6.11. If the iteration index k (or equivalently (s, t)) represents the t-th itera-
tion at the s-epoch, then

E[‖δk‖2]≡ E[‖δ(s,t)‖2]≤ L2

b ∑
t
i=2E[‖x(s,i)− x(s,i−1)‖2]+ σ2

m . (6.5.16)

Proof. Similar to (6.5.6), we can show that

E[‖δ(s,t)‖2] = L2

b ‖x(s,t)− x(s,t−1)‖2 +E[‖δ(s,t−1)‖2.

Moreover, it can be easily shown that E[‖δ(s,0)‖2] ≤ σ2/m. Combining these two
inequalities, we obtain the result.

Theorem 6.15. Assume that γ and b are set to (6.5.7). We have

E[Ψ(xk+1)]+
1

8L ∑
k
j=1E[‖gX , j‖2]≤ E[Ψ(x1)]+

21kσ2

4Lm ,∀k ≥ 1,

E[‖gX ,R‖2]≤ 8L
N [Ψ(x1)−Ψ

∗]+ 21σ2

4m .

Proof. Using (6.5.16) and an argument similar to the one used in the proof of
(6.5.11), we can show that

E[Ψ(xs,t+1)]+ pE[‖gX ,(s,t)‖2]≤ E[Ψ(xs,t)]−
[
γ(1− Lγ

2 )−2p
]
E[‖g̃X ,(s,t)‖2]

+ ( γ

2q +2p)
[

γ2L2

b ∑
t
i=2E[‖g̃X ,(s,i)‖2]+ σ2

m

]
. (6.5.17)

Therefore, similarly to (6.5.12),
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E[Ψ(xs,t+1)]+ p∑
t
j=1E[‖gX ,(s, j)‖2]≤ E[Ψ(x1)]

−
[
γ(1− Lγ

2 )−2p− ( γ

2q +2p) γ2L2(t−1)
b

]
∑

t
j=1E[‖g̃X , j‖2]+ t( γ

2q +2p)σ2

m ,

for any p > 0 and q > 0. Fixing p = 1/(8L) and q = 1/8 in the above inequality, and
using the facts that γ = 1/L, b = 17T , and 1≤ t ≤ T , we observe

γ(1− Lγ

2 )−2p− ( γ

2q +2p) γ2L2(t−1)
b = 1

4L −
17(T−1)

4Lb > 0.

Then for any epochs s≥ 0 and 1≤ t ≤ T , we have

E[Ψ(x(s,t+1))]+
1

8L ∑
t
j=1E[‖gX ,(s,i)‖2]≤ E[Ψ(x(s,1))]+

17tσ2

4Lm . (6.5.18)

Applying these inequalities inductively, we have

E[Ψ(xk+1)]+
1

8L ∑
k
j=1E[‖gX , j‖2]≤ E[Ψ(x1)]+

17Lσ2

4

(
∑

s−1
i=0

T
m + t

m

)

= E[Ψ(x1)]+
17kσ2

4Lm .

We are now ready to provide a bound on the total number of gradient evaluations
required by the nonconvex variance-reduced mirror descent method for solving
stochastic optimization problems.

Corollary 6.21. Assume that γ and b are set to (6.5.7). For a given accuracy ε > 0,
if m = σ2/ε2 and T =

√
m, then the total number of gradient evaluations required by

the nonconconvex variance-reduced mirror descent method to find a solution x̄ ∈ X
s.t. E[‖PX (xk,∇ f (xk),γ)‖2]≤ ε can be bounded by

O(Lσ [Ψ(x1)−Ψ∗]
ε3/2 ). (6.5.19)

Proof. It follows from Theorem 6.15 that the total number of iterations N and the
sample size m should be bounded by O(L

ε
[Ψ(x1)−Ψ ∗]) and O(σ2/ε), respectively.

Clearly, the total number of gradient evaluations will be bounded by

(m+bT )
⌈N

T

⌉
= (m+17T 2)

⌈N
T

⌉
= O(

√
mN),

which implies the bound in (6.5.19).
We observe that the above complexity bound is much better than the one obtained

RSMD method (see Section 6.2) due to the special structure information we assumed
for the problem. In particular, we need to assume that the function F(x,ξ ) is smooth
for every ξ almost sure. On the other hand, the RSMD only requires f to be smooth.
There are many cases when F is nonsmooth but f becomes smooth. For example,
one can apply the randomized smoothing discussed earlier to transform a nonsmooth
problem into a smooth one. The second assumption that we rely on is the possibility
to fix a random variable ξ when computing gradients at different search points. This
assumption is satisfied in many applications in machine learning, but not necessarily
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in some other applications, e.g., simulation or stochastic dynamic optimization, where
the random variable may depend on the decision variables.

6.6 Randomized accelerated proximal-point methods

In this section, we discuss a different class of acceleration methods based on proximal
point methods for solving nonconvex optimization problems. In these methods, we
first transfer the original nonconvex optimization problem into a series of strongly
convex optimization problems, and then apply accelerations methods for solving
them.

We consider two classes of nonconvex optimization problems that are widely used
in machine learning. The first class of problems intends to minimize the summation
of many terms:

min
x∈X
{ f (x) := 1

m ∑
m
i=1 fi(x)}, (6.6.1)

where X ⊆ Rn is a closed convex set, and fi : X → R, i = 1, . . . ,m, are nonconvex
smooth functions with L-Lipschitz continuous gradients over X , i.e., for some L≥ 0,

‖∇ fi(x1)−∇ fi(x2)‖ ≤ L‖x1− x2‖, ∀x1,x2 ∈ X . (6.6.2)

Moreover, we assume that there exists 0 < µ ≤ L such that (s.t.)

fi(x1)− fi(x2)−〈∇ fi(x2),x1− x2〉 ≥ − µ

2 ‖x1− x2‖2, ∀x1,x2 ∈ X . (6.6.3)

Clearly, (6.6.2) implies (6.6.3) (with µ = L). While in the classical nonlinear pro-
gramming setting one only assumes (6.6.2), by using both conditions (6.6.2) and
(6.6.3) we can explore more structural information for the design of solution methods
of problem (6.6.1). This class of problems cover, for example, the nonconvex compos-
ite problem we discussed in Section 6.4 as a special case. In this section, we intend to
develop more efficient algorithms to solve problems where the condition number L/µ

associated with problem (6.6.1) is large. Some applications of these problems can be
found in variable selection in statistics with f (x) = 1

m ∑
m
i=1hi(x)+ρ p(x), where hi’s

are smooth convex functions, p is a nonconvex function, and ρ > 0 is a relatively
small penalty parameter. Note that some examples of the nonconvex penalties are
given by minimax concave penalty (MCP) or smoothly clipped absolute deviation
(SCAD). It can be shown that the condition number for these problems is usually
larger than m.

In addition to (6.6.1), we consider an important class of nonconvex multi-block
optimization problems with linearly coupled constraints, i.e.,

min
xi∈Xi

∑
m
i=1 fi(xi)

s.t. ∑
m
i=1Aixi = b. (6.6.4)
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Here Xi ⊆ Rdi are closed convex sets, Ai ⊆ Rn×di , b ⊆ Rn, fi : Xi→ R satisfy, for
some µ ≥ 0,

fi(x)− fi(y)−〈∇ fi(y),x− y〉 ≥ − µ

2 ‖x− y‖2, ∀x,y ∈ Xi, (6.6.5)

and fm : Rn→ R has L-Lipschitz continuous gradients, i.e., ∃L≥ 0 s.t.

‖∇ fm(x)−∇ fm(y)‖ ≤ L‖x− y‖, ∀x,y ∈ Rn. (6.6.6)

Moreover, we assume that Xm = Rn and Am is invertible. In other words, we make
the structural assumption that one of the blocks equals the dimension of the variable
in order to guarantee the strong concavity of the Lagrangian dual of the subproblem.
Moreover, we assume that it is relatively easy to compute A−1

m (e.g., Am is the
identity matrix, sparse or symmetric diagonally dominant) to simplify the statement
and analysis of the algorithm (see Remark 6.1 for more discussions). Problem
of this type arises naturally in compressed sensing and distributed optimization.
For instance, consider the compressed sensing problem via nonconvex shrinkage
penalties: minxi∈Xi {p(x) : Ax = b} , where A ∈ Rn×d is a big sensing matrix with
d >> n, and p(x) = ∑

m
i=1 pi(xi) is a nonconvex and separable penalty function. Since

it is easy to find an invertible submatrix in A, w.l.o.g, we assume that the last n
columns of A forms an invertible matrix. We can then view this problem as a special
case of (6.6.4) by grouping the last n components of x into block xm, and dividing
the remaining d−n components into another m−1 blocks.

6.6.1 Nonconvex finite-sum problems

In this section, we develop a randomized accelerated proximal gradient (RapGrad)
method for solving the nonconvex finite-sum optimization problem in (6.6.1) and
demonstrate that it can significantly improve the existing rates of convergence for
solving these problems, especially when their objective functions have large con-
dition numbers. We will describe this algorithm and establish its convergence in
Subsections 6.6.1.1 and 6.6.1.2, respectively.

6.6.1.1 The RapGrad Algorithm

The basic idea of RapGrad is to solve problem (6.6.1) iteratively by using the
proximal-point type method. More specifically, given a current search point x̄`−1

at the l-th iteration, we will employ a randomized accelerated gradient (RaGrad)
obtained by properly modifying the randomized primal-dual gradient method in
Section 5.1, to approximately solve

min
x∈X

1
m ∑

m
i=1 fi(x)+

3µ

2 ‖x− x̄`−1‖2 (6.6.7)
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to compute a new search point x̄`.
The algorithmic schemes for RapGrad and RaGrad are described in Algorithm 6.8

and Algorithm 6.9, respectively. While it seems that we can directly apply the
randomized primal-dual gradient method (or other fast randomized incremental
gradient method) to solve (6.6.7) since it is strongly convex due to (6.6.3), a direct
application of these methods would require us to compute the full gradient from
time to time whenever a new subproblem needs to be solved. Moreover, a direct
application of these existing first-order methods to solve (6.6.7) would result in
some extra logarithmic factor (log(1/ε)) in the final complexity bound. Therefore,
we employed the RaGrad method to solve (6.6.7), which differs from the original
randomized primal-dual gradient method in the following several aspects. Firstly,
different from the randomized primal-dual gradient method, the design and analysis
of RaGrad does not involve the conjugate functions of fi’s, but only first-order
information (function values and gradients). Such an analysis enables us to build
a relation between successive search points x̄`, as well as the convergence of the
sequences x̄`i where the gradients ȳ`i are computed. With these relations at hand, we
can determine the number of iterations s required by Algorithm 6.9 to ensure the
overall RapGrad Algorithm to achieve an accelerated rate of convergence.

Second, the original randomized primal-dual gradient method requires the compu-
tation of only one randomly selected gradient at each iteration, and does not require
the computation of full gradients from time to time. However, it is unclear whether a
full pass of all component functions is required whenever we solve a new proximal
subproblem (i.e., x̄`−1 changes at each iteration). It turns out that by properly initial-
izing a few intertwined primal and gradient sequences in RaGrad using information
obtained from previous subproblems, we will compute full gradient only once for
the very first time when this method is called, and do not need to compute full
gradients any more when solving all other subproblems throughout the RapGrad
method. Indeed, the output yi

s of RaGrad (Algorithm 6.9) represent the gradients of
ψi at the search points xs

i . By using the strong convexity of the objective functions,
we will be able to show that all the search points xi

s, i = 1, . . . ,m, will converge,
similarly to the search point xs, to the optimal solution of the subproblem in (6.6.8)
(see Lemma 6.13 below). Therefore, we can use yi

s to approximate ∇ψi(xs) and thus
remove the necessity of computing the full gradient of xs when solving the next
subproblem.
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Algorithm 6.8 RapGrad for nonconvex finite-sum optimization

Let x̄0 ∈ X , and set x̄0
i = x̄0, ȳ0

i = ∇ fi(x̄0), i = 1, . . . ,m.
for `= 1, . . . ,k do

Set x−1 = x0 = x̄`−1, x0
i = x̄`−1

i , and y0
i = ȳ`−1

i , i = 1, . . . ,m.
Run RaGrad (c.f., Algorithm 6.9) with input x−1, x0, x0

i , y0
i , i = 1, . . . ,m, and s to solve the

following subproblem
min
x∈X

1
m ∑

m
i=1ψi(x)+ϕ(x) (6.6.8)

to obtain output xs, xs
i , ys

i , i= 1, . . . ,m, where ψi(x)≡ψ`
i (x) := fi(x)+µ‖x− x̄`−1‖2, i= 1, . . . ,m,

and ϕ(x)≡ ϕ`(x) := µ

2 ‖x− x̄`−1‖2.
Set x̄` = xs, x̄`i = xs

i and ȳ`i = ys
i +2µ(x̄`−1− x̄`), i = 1, . . . ,m (note ȳ`i = ∇ψ

`+1
i (x̄`i ) always

holds).
end for
return x̄ ˆ̀ for some random ˆ̀∈ [k].

Algorithm 6.9 RaGrad for iteratively solving subproblem (6.6.8)

Input x−1 = x0 ∈ X , x0
i ∈ X , y0

i , i = 1, . . . ,m, number of iterations s. Assume nonnegative param-
eters {αt}, {τt}, {ηt} are given.
for t = 1, . . . ,s do

1. Generate a random variable it uniformly distributed over [m].
2. Update xt and yt according to

x̃t = αt(xt−1− xt−2)+ xt−1. (6.6.9)

xt
i =

{
(1+ τt)

−1(x̃t + τt xt−1
i ), i = it ,

xt−1
i , i 6= it ,

(6.6.10)

yt
i =

{
∇ψi(xt

i), i = it ,
yt−1

i , i 6= it ,
(6.6.11)

ỹi
t = m(yt

i− yt−1
i )+ yt−1

i , ∀i = 1, . . . ,m (6.6.12)

xt = argminx∈X ϕ(x)+
〈 1

m ∑
m
i=1ỹt

i ,x
〉
+ηtVϕ (x,xt−1). (6.6.13)

end for
return xs, xs

i , and ys
i , i = 1, . . . ,m.

Before establishing the convergence of the RapGrad method, we first need to
define an approximate stationary point for problem (6.6.1) suitable for the analysis
of proximal-point type methods. A point x ∈ X is called an approximate stationary
point if it sits within a small neighborhood of a point x̂ ∈ X which approximately
satisfies the first-order optimality condition.

Definition 6.1. A point x ∈ X is called an (ε,δ )-solution of (6.6.1) if there exists
some x̂ ∈ X such that

[d (∇ f (x̂),−NX (x̂))]2 ≤ ε and ‖x− x̂‖2 ≤ δ .

A stochastic (ε,δ )-solution of (6.6.1) is one such that
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E[d (∇ f (x̂),−NX (x̂))]2 ≤ ε and E‖x− x̂‖2 ≤ δ .

Here, d(x,Z) := infz∈Z ‖x− z‖ denotes the distance from x to set Z, and NX (x̂) :=
{x ∈ Rn| 〈x,y− x̂〉 ≤ 0 for all y ∈ X} denotes the normal cone of X at x̂.

To have a better understanding of the above definition, let us consider the uncon-
strained problem (6.6.1), i.e., X = Rn. Suppose that x ∈ X is an (ε,δ )-solution with
δ = ε/L2. Then there exists x̂ ∈ X s.t. ‖∇ f (x̂)‖2 ≤ ε and ‖x− x̂‖2 ≤ ε/L2, which
implies that

‖∇ f (x)‖2 = ‖∇ f (x)−∇ f (x̂)+∇ f (x̂)‖2 ≤ 2‖∇ f (x)−∇ f (x̂)‖2 +2‖∇ f (x̂)‖2

≤ 2L2‖x− x̂‖2 +2‖∇ f (x̂)‖2 ≤ 4ε. (6.6.14)

Moreover, if X is a compact set and x ∈ X is an (ε,δ )-solution, we can bound the
so-called Wolfe gap (see also Section 7.1.1) as follows:

gap(x) := max
z∈X
〈∇ f (x),x− z〉

= max
z∈X
〈∇ f (x)−∇ f (x̂),x− z〉+max

z∈X
〈∇ f (x̂),x− x̂〉+max

z∈X
〈∇ f (x̂), x̂− z〉

≤ L
√

δDX +
√

δ‖∇ f (x̂)‖+
√

εDX ,
(6.6.15)

where DX :=maxx1,x2∈X ‖x1−x2‖. In comparison with the two well-known criterions
in (6.6.14) and (6.6.15), the criterion given in Definition 6.1 seems to be applicable
to a wider class of problems and is particularly suitable for proximal-point type
methods.

We are now ready to state the main convergence properties for RapGrad. The proof
of this result is more involved and hence is put into Subsection 6.6.1.2 separately.

Theorem 6.16. Let the iterates x̄`, `= 1, . . . ,k, be generated by Algorithm 6.8 and ˆ̀
be randomly selected from [k]. Suppose that in Algorithm 6.9, the number of iterations
s = d− logM̃/ logαe with

M̃ := 6
(

5+ 2L
µ

)
max

{
6
5 ,

L2

µ2

}
, α = 1− 2

m
(√

1+16c/m+1
) , c = 2+ L

µ
, (6.6.16)

and other parameters are set to

αt =α, γt =α
−t , τt =

1
m(1−α)−1, and ηt =

α

1−α
, ∀t = 1, . . . ,s. (6.6.17)

Then we have

E
[
d
(

∇ f (x ˆ̀
∗),−NX (x

ˆ̀
∗)
)]2
≤ 36µ

k [ f (x̄0)− f (x∗)],

E‖x̄ ˆ̀− x ˆ̀
∗‖2 ≤ 4µ

kL2 [ f (x̄
0)− f (x∗)],

where x∗ and x`∗ denote the optimal solutions to problem (6.6.1) and the `-th sub-
problem (6.6.7), respectively.
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Theorem 6.16 guarantees, in expectation, the existence of an approximate sta-
tionary point x ˆ̀

∗, which is the optimal solution to the ˆ̀-th subproblem. Though x ˆ̀
∗ is

unknown to us, we can output the computable solution x̄ ˆ̀ since it is close enough
to x ˆ̀
∗. Moreover, its quality can be directly measured by (6.6.14) and (6.6.15) under

certain important circumstances.
In view of Theorem 6.16, we can bound the total number of gradient evaluations

required by RapGrad to yield a stochastic (ε,δ )-solution of (6.6.1). Indeed, observe
that the full gradient is computed only once in the first outer loop, and that for each
subproblem (6.6.1), we only need to compute s gradients with

s =
⌈
− logM̃

logα

⌉
∼O

((
m+

√
m L

µ

)
log
(

L
µ

))
.

Hence, the total number of gradient evaluations performed by RapGrad can be
bounded by

N(ε,δ ) := O
(

m+µ

(
m+

√
m L

µ

)
log
(

L
µ

)
·max

{
1

δL2 ,
1
ε

}
D0
)
,

where D0 := f (x̄0)− f (x∗). As a comparison, the batch version of this algorithm,
obtained by viewing 1

m ∑
m
i=1 fi(x) as a single component, would update all the xt

i and
yt

i for i = 1, . . . ,m, in (6.6.10) and (6.6.11) at each iteration, and hence would require

N̂(ε,δ ) := O
(

m
√

Lµ log
(

L
µ

)
·max

{
1

δL2 ,
1
ε

}
D0
)

gradient evaluations to compute an (ε,δ )-solution of (6.6.1). For problems with
L/µ ≥ m, RapGrad can potentially save the total number of gradient computations
up to a factor of O(

√
m) gradient evaluations than its batch counterpart as well

as other deterministic batch methods. It is also interesting to compare RapGrad
with those variance-reduced stochastic algorithms (see Section 7.4). For simplicity,
consider for the case when δ = ε/L2 and X ≡ Rn. In this case, the complexity
bound of RapGrad, given by O(

√
mLµ/ε), is smaller than the complexity bound

O(
√

mL/ε) by a factor of O(L
1
2 /µ

1
2 ), which must be greater that O(m

1
2 ) due to

L/µ ≥ m.
Theorem 6.16 only shows the convergence of RapGrad in expectation. Similarly

to the nonconvex stochastic gradient descent methods, we can establish and then
further improve the convergence of RapGrad with overwhelming probability by using
a two-phase procedure, where one computes a short list of candidate solutions in the
optimization phase by either taking a few independent runs of RapGrad or randomly
selecting a few solutions from the trajectory of RapGrad, and then chooses the best
solution, e.g., in terms of either (6.6.14) and (6.6.15), in the post-optimization phase.
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6.6.1.2 Convergence analysis for RapGrad

In this section, we will first develop the convergence results for Algorithm 6.9 applied
to the convex finite-sum subproblem (6.6.8), and then using them to establish the
convergence of RapGrad. Observe that the component functions ψi and ϕ in (6.6.8)
satisfy:

1. µ

2 ‖x− y‖2 ≤ ψi(x)− ψi(y)− 〈∇ψi(y),x− y〉 ≤ L̂
2‖x− y‖2, ∀x,y ∈ X , i =

1, . . . ,m,
2. ϕ(x)−ϕ(y)−〈∇ϕ(y),x− y〉 ≥ µ

2 ‖x− y‖2, ∀x,y ∈ X ,

where L̂ = L+2µ .
We first state some simple relations about the iterations generated by Algo-

rithm 6.9.

Lemma 6.12. Let x̂t
i = (1+ τt)

−1(x̃t + τtxt−1
i ), for i = 1, . . . ,m, t = 1, . . . ,s.

Eit [ψ(x̂t
i)] = mψ(xt

i)− (m−1)ψ(xt−1
i ), (6.6.18)

Eit [∇ψ(x̂t
i)] = m∇ψ(xt

i)− (m−1)∇ψ(xt−1
i ) = Eit [ỹ

t
i]. (6.6.19)

Proof. By the definition of x̂t
i , it is easy to see that Eit [x

t
i] =

1
m x̂t

i +
m−1

m xt−1
i , thus Eit [ψi(xt

i)] =
1
m ψi(x̂t

i)+
m−1

m ψi(xt−1
i ), and Eit [∇ψi(xt

i)] =
1
m ∇ψi(x̂t

i)+
m−1

m ∇ψi(xt−1
i ), which combined with the fact ỹt

i = m(yt
i− yt−1

i )+ yt−1
i , gives us the

desired relations.

Lemma 6.13 below describes an important result about Algorithm 6.9, which
improves Proposition 5.1 by showing the convergence of xs

i .

Lemma 6.13. Let the iterates xt and yt , for t = 1, . . . ,s, be generated by Algorithm
6.9 and x∗ be an optimal solution of (6.6.8). If the parameters in Algorithm 6.9
satisfy for all t = 1, . . . ,s−1,

αt+1γt+1 = γt , (6.6.20)
γt+1[m(1+ τt+1)−1]≤ mγt(1+ τt), (6.6.21)

γt+1ηt+1 ≤ γt(1+ηt), (6.6.22)
ηsµ

4 ≥
(m−1)2L̂

m2τs
, (6.6.23)

ηt µ

2 ≥
αt+1L̂
τt+1

+ (m−1)2L̂
m2τt

, (6.6.24)
ηsµ

4 ≥ L̂
m(1+τs)

, (6.6.25)

then we have

Es

[
γs(1+ηs)Vϕ(x∗,xs)+∑

m
i=1

µγs(1+τs)
4 ‖xs

i − x∗‖2
]
≤ γ1η1EsVϕ(x∗,x0)

+∑
m
i=1

γ1[(1+τ1)−1/m]L̂
2 Es‖x0

i − x∗‖2,

where Es[X ] denotes the expectation of a random variable X on i1, . . . , is.
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Proof. By convexity of ψ and optimality of x∗, we have

Qt : = ϕ(xt)+ψ(x∗)+ 〈∇ψ(x∗),xt − x∗〉
−
[
ϕ(x∗)+ 1

m ∑
m
i=1(ψi(x̂t

i)+ 〈∇ψi(x̂t
i),x

∗− x̂t
i〉)
]

≥ ϕ(xt)+ψ(x∗)+ 〈∇ψ(x∗),xt − x∗〉− [ϕ(x∗)+ψ(x∗)]

= ϕ(xt)−ϕ(x∗)+ 〈∇ψ(x∗),xt − x∗〉 (6.6.26)
≥ 〈∇ϕ(x∗)+∇ψ(x∗),xt − x∗〉 ≥ 0. (6.6.27)

For notation convenience, let Ψ(x,z) := ψ(x)−ψ(z)−〈∇ψ(z),x− z〉,

Qt = ϕ(xt)−ϕ(x∗)+ 〈 1
m ∑

m
i=1ỹt

i,x
t − x∗〉+δ t

1 +δ t
2, (6.6.28)

δ
t
1 := ψ(x∗)−〈∇ψ(x∗),x∗〉− 1

m ∑
m
i=1[ψi(x̂t

i)−〈∇ψi(x̂t
i), x̂

t
i〉

+ 〈∇ψi(x̂t
i)−∇ψi(x∗), x̃t〉]

= 1
m ∑

m
i=1[τtΨ(xt−1

i ,x∗)− (1+ τt)Ψ(x̂t
i,x
∗)− τtΨ(xt−1

i , x̂t
i)], (6.6.29)

δ
t
2 := 1

m ∑
m
i=1 [〈∇ψi(x̂t

i)−∇ψi(x∗), x̃t〉−〈ỹt
i−∇ψi(x∗),xt〉+ 〈ỹt

i−∇ψi(x̂t
i),x

∗〉] .

In view of (6.6.19), we have

Eit δ
t
2 =

1
m ∑

m
i=1Eit [〈∇ψi(x̂t

i)−∇ψi(x∗), x̃t〉−〈ỹt
i−∇ψi(x∗),xt〉+ 〈ỹt

i−∇ψi(x̂t
i),x

∗〉]
= 1

m ∑
m
i=1Eit 〈ỹt

i−∇ψi(x∗), x̃t − xt〉. (6.6.30)

Multiplying each Qt by a non-negative γt and summing them up, we obtain

Es [∑
s
t=1γtQt ]≤ Es

{
∑

s
t=1γt [ηtVϕ(x∗,xt−1)− (1+ηt)Vϕ(x∗,xt)−ηtVϕ(xt ,xt−1)]

}

+Es
{

∑
s
t=1∑

m
i=1
[
γt(1+ τt − 1

m )Ψ(xt−1
i ,x∗)− γt(1+ τt)Ψ(xt

i,x
∗)
]}

+Es
{

∑
s
t=1∑

m
i=1γt

[ 1
m 〈ỹt

i−∇ψi(x∗),xt − xt〉− τtΨ(xt−1
i ,xt

i))
]}

≤ Es
[
γ1η1Vϕ(x∗,x0)− (1+ηs)Vϕ(x∗,xs)

]

+Es
{

∑
m
i=1[γ1(1+ τ1− 1

m )Ψ(x0
i ,x
∗)

−γs(1+ τs)Ψ(xs
i ,x
∗)]}−Es[∑

s
t=1γtδt ], (6.6.31)

where

δt : = ηtVϕ(xt ,xt−1)−∑
m
i=1
[ 1

m 〈ỹt
i−∇ψi(x∗), x̃t − xt〉− τtΨ(xt−1

i ,xt
i)
]

= ηtVϕ(xt ,xt−1)− 1
m ∑

m
i=1〈ỹt

i−∇ψi(x∗), x̃t − xt〉+ τtΨ(xt−1
it ,xt

it ), (6.6.32)

the first inequality follows from (6.6.28), (6.6.29), (6.6.45), (6.6.30) and Lemma
6.12, and the second inequality is implied by (6.6.21) and (6.6.22).

By the definition of x̃ in (6.6.9), we have

1
m ∑

m
i=1〈ỹt

i−∇ψi(x∗), x̃t − xt〉
= 1

m ∑
m
i=1[〈ỹt

i−∇ψi(x∗),xt−1− xt〉−αt〈ỹt
i−∇ψi(x∗),xt−2− xt−1〉]
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= 1
m ∑

m
i=1[〈ỹt

i−∇ψi(x∗),xt−1− xt〉−αt〈ỹt−1
i −∇ψi(x∗),xt−2

− xt−1〉−αt〈ỹt
i− ỹt−1

i ,xt−2− xt−1〉]
= 1

m ∑
m
i=1[〈ỹt

i−∇ψi(x∗),xt−1− xt〉−αt〈ỹt−1
i −∇ψi(x∗),xt−2− xt−1〉]

−αt〈∇ψit (x
t
it )−∇ψit (x

t−1
it ),xt−2− xt−1〉

− (1− 1
m )αt〈∇ψit−1(x

t−2
it−1

)−∇ψit−1(x
t−1
it−1

),xt−2− xt−1〉. (6.6.33)

From the relation (6.6.24) and the fact x−1 = x0, we have

∑
s
t=1γt

1
m ∑

m
i=1[〈ỹt

i−∇ψi(x∗),xt−1− xt〉−αt〈ỹt−1
i −∇ψi(x∗),xt−2− xt−1〉]

= γs
1
m ∑

m
i=1〈ỹs

i −∇ψi(x∗),xs−1− xs〉
= γs

1
m ∑

m
i=1〈∇ψi(xs

i )−∇ψi(x∗),xs−1− xs〉
+ γs∑

m
i=1(1− 1

m )〈∇ψi(xs
i )−∇ψi(xs−1

i ),xs−1− xs〉
= γs

1
m ∑

m
i=1〈∇ψi(xs

i )−∇ψi(x∗),xs−1− xs〉
+ γs

(
1− 1

m

)
〈∇ψis(x

s
is)−∇ψis(x

s−1
is ),xs−1− xs〉. (6.6.34)

Now we are ready to bound the last term in (6.6.31) as follows:

s

∑
t=1

γtδt

(a)
= ∑

s
t=1γt [ηtVϕ(xt ,xt−1)− 1

m ∑
m
i=1〈ỹt

i−∇ψi(x∗), x̃t − xt〉+ τtΨ(xt−1
it ,xt

it )]

(b)
= ∑

s
t=1γt

[
ηtVϕ(xt ,xt−1)+αt〈∇ψit (x

t
it )−∇ψit (x

t−1
it ),xt−2− xt−1〉

+(1− 1
m )αt〈∇ψit−1(x

t−2
it−1

)−∇ψit−1(x
t−1
it−1

)〉,xt−2− xt−1 + τtΨ(xt−1
it ,xt

it )
]

+ γs
1
m ∑

m
i=1〈∇ψi(xs

i )−∇ψi(x∗),xs−1− xs〉
− γs(1− 1

m )〈∇ψis(x
s
is)−∇ψis(x

s−1
is ),xs−1− xs〉

(c)
≥ ∑

s
t=1γt

[
ηt r
2 ‖xt − xt−1‖2 +αt〈∇ψit (x

t
it )−∇ψit (x

t−1
it ),xt−2− xt−1〉

+(1− 1
m )αt〈∇ψit−1(x

t−2
it−1

)−∇ψit−1(x
t−1
it−1

),xt−2− xt−1〉

+ τt
2L̂
‖∇ψit (x

t
it )−∇ψit (x

t−1
it )‖2

]

− γs
m ∑

m
i=1〈xs−1− xs,∇ψi(xs

i )−∇ψi(x∗)〉
− γs

(
1− 1

m

)
〈xs−1− xs,∇ψis(x

s
is)−∇ψis(x

s−1
is )〉,

(6.6.35)

where (a) follows from the definition δt in (8.3.8), (b) follows relations (6.6.33) and
(6.6.34) and (c) follows from the fact that Vϕ(xt ,xt−1)≥ r

2‖xt−xt−1‖2,Ψ(xt−1
it ,xt

it )≥
1

2L̂
‖∇ψit (x

t−1
it )−∇ψit (x

t
it )‖2.

By properly regrouping the terms on the right hand side of (6.6.35), we have
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∑
s
t=1γtδt

≥ γs
[

ηsr
4 ‖xs− xs−1‖2− 1

m ∑
m
i=1〈∇ψi(xs

i )−∇ψi(x∗),xs−1− xs〉
]

+ γs
[

ηsr
4 ‖xs− xs−1‖2− (1− 1

m )〈∇ψis(x
s
is)−∇ψis(x

s−1
is ),xs−1− xs〉

+ τs
4L̂
‖∇ψis(x

s
is)−∇ψis(x

s−1
is )‖2

]

+∑
s
t=2γt

[
αt〈∇ψit (x

t
it )−∇ψit (x

t−1
it ),xt−2− xt−1〉+ τt

4L̂
‖∇ψit (x

t
it )−∇ψit (x

t−1
it )‖2

]

+∑
s
t=2
[
γt(1− 1

m )αt〈∇ψit−1(x
t−1
it−1

)−∇ψit−1(x
t−2
it−1

),xt−2− xt−1〉
+

τt−1γt−1
4L̂
‖∇ψit−1(x

t−1
it−1

)−∇ψit−1(x
t−2
it−1

)‖2
]
+∑

s
t=2

γt−1ηt−1r
2 ‖xt−1− xt−2‖2

(a)
≥ γs

[
ηsr
4 ‖xs− xs−1‖2− 1

m ∑
m
i=1〈∇ψi(xs

i )−∇ψi(x∗),xs−1− xs〉
]

+ γs

(
ηsr
4 −

(m−1)2L̂
m2τs

)
‖xs− xs−1‖2

+∑
s
t=2

(
γt−1ηt−1r

2 − γt α
2
t L̂

τt
− (m−1)2γ2

t α2
t L̂

m2γt−1τt−1

)
‖xs− xs−1‖2

(b)
≥ γs

[
ηsr
4 ‖xs− xs−1‖2− 1

m ∑
m
i=1〈∇ψi(xs

i )−∇ψi(x∗),xs−1− xs〉
]
,

where (a) follows from the simple relation that b〈u,v〉− a‖v‖2/2 ≤ b2‖u‖2/(2a),
∀a > 0 and (b) follows from (6.6.20), (6.6.23) and (6.6.24). By using the above
inequality, (6.6.26) and (6.6.31), we obtain

0≤ Es
[
γ1η1Vϕ(x∗,x0)− γs(1+ηs)Vϕ(x∗,xs)

]
− γsηsr

4 Es‖xs− xs−1‖2

+ γsEs
[ 1

m ∑
m
i=1〈∇ψi(xs

i )−∇ψi(x∗),xs−1− xs〉
]

+Es
{

∑
m
i=1[γ1(1+ τ1− 1

m )Ψ(x0
i ,x
∗)− γs(1+ τs)Ψ(xs

i ,x
∗)]
}

(a)
≤ Es[γ1η1Vϕ(x∗,x0)− γs(1+ηs)Vϕ(x∗,xs)]− γsηsr

4 Es‖xs− xs−1‖2

+Es

{
∑

m
i=1[γ1(1+ τ1− 1

m )Ψ(x0
i ,x
∗)− γs(1+τs)

2 Ψ(xs
i ,x
∗)]
}

− γs
1
m ∑

m
i=1Es

[
m(1+τs)

4L̂
‖∇ψi(xs

i )−∇ψi(x∗)‖2−〈∇ψi(xs
i )−∇ψi(x∗),xs−1− xs〉

]

(b)
≤ Es[γ1η1Vϕ(x∗,x0)− γs(1+ηs)Vϕ(x∗,xs)]− γs

[
ηsr
4 − L̂

m(1+τs)

]
Es‖xs− xs−1‖2

+∑
m
i=1Es[γ1(1+ τ1− 1

m )Ψ(x0
i ,x
∗)− γs(1+τs)

2 Ψ(xs
i ,x
∗)]

(c)
≤ Es

[
γ1η1Vϕ(x∗,x0)− γs(1+ηs)Vϕ(x∗,xs)

]

+
γ1[(1+τ1)− 1

m ]L̂
2 ∑

m
i=1Es‖x0

i − x∗‖2− µγs(1+τs)
4 ∑

m
i=1Es‖xs

i − x∗‖2, (6.6.36)

where (a) follows from Ψ(x0
i ,x
∗)≥ 1

2L̂
‖∇ψit (x

0
i )−∇ψit (x

∗)‖2; (b) follows from the
simple relation that b〈u,v〉−a‖v‖2/2≤ b2‖u‖2/(2a), ∀a > 0 and (c) follows from
(6.6.25), strong convexity of ψi and Lipschitz continuity of ∇ψi. This completes the
proof.
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With the help of Lemma 6.13, we now establish the main convergence properties
of Algorithm 6.9.

Theorem 6.17. Let x∗ be an optimal solution of (6.6.8), and suppose that the parame-
ters {αt}, {τt}, {ηt} and {γt} are set as in (6.6.16) and (6.6.17). If ϕ(x) = µ

2 ‖x−z‖2,
for some z ∈ X, then, for any s≥ 1, we have

Es
[
‖x∗− xs‖2] ≤ αs(1+2 L̂

µ
) Es

[
‖x∗− x0‖2 + 1

m ∑
m
i=1‖x0

i − x0‖2
]
,

Es
[ 1

m ∑
m
i=1‖xs

i − xs‖2
]
≤ 6αs(1+2 L̂

µ
) Es

[
‖x∗− x0‖2 + 1

m ∑
m
i=1‖x0

i − x0‖2
]
.

Proof. It is easy to check that (6.6.16) and (6.6.17) satisfy conditions (6.6.20),
(6.6.21), (6.6.22) (6.6.23), (6.6.24), and (6.6.25). Then by Lemma 6.13, we have

Es
[
Vϕ(x∗,xs)+∑

m
i=1

µ

4m‖xs
i − x∗‖2

]
≤ α

sEs

[
Vϕ(x∗,x0)+∑

m
i=1

L̂
2m‖x0

i − x∗‖2
]
.

(6.6.37)

Since ϕ(x) = µ

2 ‖x−z‖2, we have Vϕ(x∗,xs) = µ

2 ‖x∗−xs‖2, and Vϕ(x0,xs) = µ

2 ‖x∗−
x0‖2. Plugging into (6.6.37), we obtain the following two relations:

Es
[
‖x∗− xs‖2] ≤ α

sEs

[
‖x∗− x0‖2 +∑

m
i=1

L̂
mr‖x0

i − x∗‖2
]

≤ α
sEs

[
‖x∗− x0‖2 +∑

m
i=1

L̂
mr (2‖x0

i − x0‖2 +2‖x0− x∗‖2)
]

= αs Es

[
(1+2 L̂

µ
)‖x∗− x0‖2 +∑

m
i=1

2L̂
mµ
‖x0

i − x0‖2
]

≤ αs(1+2 L̂
µ
) Es

[
‖x∗− x0‖2 +∑

m
i=1

1
m‖x0

i − x0‖2
]
,

Es
[ 1

m ∑
m
i=1‖xs

i − x∗‖2
]
≤ 2αsEs

[
‖x∗− x0‖2 +∑

m
i=1

L̂
mµ
‖x0

i − x∗‖2
]

≤ 2αs(1+ 2L̂
µ
)Es
[
‖x∗− x0‖2 + 1

m ∑
m
i=1‖x0

i − x0‖2
]
.

In view of the above two relations, we have

Es
[ 1

m ∑
m
i=1‖xs

i − xs‖2
]
≤ Es

[ 1
m ∑

m
i=12(‖xs

i − x∗‖2 +‖x∗− xs‖2)
]

= 2Es
[ 1

m ∑
m
i=1‖xs

i − x∗‖2
]
+2Es‖x∗− xs‖2

≤ 6αs(1+2 L̂
µ
) Es

[
‖x∗− x0‖2 + 1

m ∑
m
i=1‖x0

i − x0‖2
]
.

In view of Theorem 6.17, Algorithm 6.9 applied to subproblem (6.6.8) exhibits a
fast linear rate of convergence. Actually, as shown below we do not need to solve the
subproblem too accurately, and a constant number of iteration of Algorithm 6.9 for
each subproblem is enough to guarantee the convergence of Algorithm 6.8.

Lemma 6.14. Let the number of inner iterations s ≥ d− log(7M/6)/ logαe with
M := 6(5+2L/µ) be given. Also let the iterates x̄`, ` = 1, . . . ,k, be generated by
Algorithm 6.8, and ˆ̀ be randomly selected from [k]. Then
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E‖x ˆ̀
∗− x̄ ˆ̀−1‖2 ≤ 4(1−Mαs)

kµ(6−7Mαs) [ f (x̄
0)− f (x∗)],

E‖x ˆ̀
∗− x̄ ˆ̀‖2 ≤ 2Mαs

3kµ(6−7Mαs) [ f (x̄
0)− f (x∗)],

where x∗ and x`∗ are the optimal solutions to problem (6.6.1) and the `-th subproblem
(6.6.7), respectively.

Proof. According to Theorem 6.17 (with L̂ = 2µ +L), we have, for `≥ 1,

E‖x`∗− x̄`‖2 ≤ αs(5+ 2L
µ
)E
[
‖x`∗− x̄`−1‖2 +∑

m
i=1

1
m‖x̄`−1

i − x̄`−1‖2
]

≤ Mαs

6 E
[
‖x`∗− x̄`−1‖2 +∑

m
i=1

1
m‖x̄`−1

i − x̄`−1‖2
]
, (6.6.38)

E
[ 1

m ∑
m
i=1‖x̄`i − x̄`‖2

]
≤ 4αs(5+ 2L

µ
) E
[
‖x`∗− x̄`−1‖2 +∑

m
i=1

1
m‖x̄`−1

i − x̄`−1‖2
]

≤Mαs E
[
‖x`∗− x̄`−1‖2 +∑

m
i=1

1
m‖x`−1

i − x̄`−1‖2
]
. (6.6.39)

By induction on (6.6.39) and noting x̄0
i = x̄0, i = 1, . . . ,m, we have

E
[ 1

m ∑
m
i=1‖x̄`i − x̄`‖2

]
≤ ∑

`
j=1(Mαs)`− j+1E‖x j

∗− x̄ j−1‖2.

In view of the above relation and (6.6.38), for `≥ 2, we have

E‖x`∗− x̄`‖2 ≤ Mαs

6 E
[
‖x`∗− x̄`−1‖2 +∑

`−1
j=1(Mαs)`− j‖x j

∗− x̄ j−1‖2
]
.

Summing up both sides of the above inequality from `= 1 to k, we then obtain

∑
k
`=1E‖x`∗− x̄`‖2

≤ Mαs

6 E
[
‖x1
∗− x̄0‖2 +∑

k
`=2

(
‖x`∗− x̄`−1‖2 +∑

`−1
j=1(Mαs)`− j‖x j

∗− x̄ j−1‖2
)]

= Mαs

6 E
[
‖xk
∗− x̄k−1‖2 +∑

k−1
`=1

(
1

1−Mαs − (Mαs)k+1−`
1−Mαs

)
‖x`∗− x̄`−1‖2

]

≤ Mαs

6(1−Mαs)∑
k
`=1E‖x`∗− x̄`−1‖2. (6.6.40)

Using the fact that x`∗ is optimal to the `-th subproblem, and letting x0
∗ = x̄0 (x0

∗ is a
free variable), we have

∑
k
`=1[ψ

`(x`∗)+ϕ`(x`∗)]≤ ∑
k
`=1[ψ

`(x`−1
∗ )+ϕ`(x`−1

∗ )],

which, in view of the definition of ψ` and ϕ`, then implies that

∑
k
`=1E[ f (x`∗)+

3µ

2 ‖x`∗− x̄`−1‖2]≤ ∑
k
`=1E[ f (x`−1

∗ )+ 3µ

2 ‖x`−1
∗ − x̄`−1‖2]. (6.6.41)

Combining (6.6.40) and (6.6.41), we obtain

3µ

2 ∑
k
`=1E‖x`∗− x̄`−1‖2

≤ ∑
k
`=1E{ f (x`−1

∗ )− f (x`∗)}+ 3µ

2 ∑
k
`=1E‖x`−1

∗ − x̄`−1‖2

≤ ∑
k
`=1E{ f (x`−1

∗ )− f (x`∗)}+ 3µ

2 ∑
k
`=1E‖x`∗− x̄`‖2
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≤ ∑
k
`=1E{ f (x`−1

∗ )− f (x`∗)}+ 3µ

2
Mαs

6(1−Mαs)∑
k
`=1E‖x`∗− x̄`−1‖2. (6.6.42)

Using (6.6.42), (6.6.40) and the condition on s, we have

∑
k
`=1E‖x`∗− x̄`−1‖2 ≤ 4(1−Mαs)

µ(6−7Mαs) [ f (x̄
0)− f (x∗)],

∑
k
`=1E‖x`∗− x̄`‖2 ≤ 2Mαs

3µ(6−7Mαs) [ f (x̄
0)− f (x∗)].

Our results then immediately follow since ˆ̀ is chosen randomly in [k].

Now we are ready to prove Theorem 6.16 using all the previous results we have
developed.
Proof of Theorem 6.16. By the optimality condition of the ˆ̀-th subproblem (6.6.7),

∇ψ
ˆ̀
(x ˆ̀
∗)+∇ϕ

ˆ̀
(x ˆ̀
∗) ∈ −NX (x

ˆ̀
∗). (6.6.43)

From the definition of ψ
ˆ̀ and ϕ

ˆ̀, we have

∇ f (x ˆ̀
∗)+3µ(x ˆ̀

∗− x̄ ˆ̀−1) ∈ −NX (x
ˆ̀
∗). (6.6.44)

From the optimality condition of (6.6.13), we obtain

ϕ(xt)−ϕ(x∗)+
〈 1

m ∑
m
i=1ỹt

i,x
t − x∗

〉

≤ ηtVϕ(x∗,xt−1)− (1+ηt)Vϕ(x∗,xt)−ηtVϕ(xt ,xt−1). (6.6.45)

Using the above relation and Lemma 6.14, we have

E‖x̄ ˆ̀−1− x ˆ̀
∗‖2 ≤ 4(1−Mαs)

kµ(6−7Mαs) [ f (x̄
0)− f (x∗)]≤ 4

kµ
[ f (x̄0)− f (x∗)],

E
[
d
(

∇ f (x ˆ̀
∗),−NX (x

ˆ̀
∗)
)]2
≤ E‖3µ(x̄ ˆ̀−1− x ˆ̀

∗)‖2 ≤ 36µ

k [ f (x̄0)− f (x∗)],

E‖x̄ ˆ̀− x ˆ̀
∗‖2 ≤ 2Mαs

3kµ(6−7Mαs) [ f (x̄
0)− f (x∗)]≤ 4Mαs

kµ
[ f (x̄0)− f (x∗)]

≤ 4µ

kL2 [ f (x̄
0)− f (x∗)].

6.6.2 Nonconvex multi-block problems

In this section, we present a randomized accelerated proximal dual (RapDual) al-
gorithm for solving the nonconvex multi-block optimization problem in (6.6.4) and
show the potential advantages in terms of the total number of block updates.

As mentioned earlier, we assume the inverse of the last block of the constraint
matrix is easily computable. Hence, denoting Ai = A−1

m Ai, i = 1, . . . ,m− 1 and
b = A−1

m , we can reformulate problem (6.6.4) as
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min
x∈X , xm∈Rn

f (x)+ fm(xm),

s.t. Ax+ xm = b, (6.6.46)

where f (x) := ∑
m−1
i=1 fi(xi), X = X1 × . . .× Xm−1, A = [A1, . . . ,Am−1], and x =

(x1, . . . ,xm−1). It should be noted that except for some special cases, the compu-
tation of A−1

m requires up to O(n3) arithmetic operations, which will be a one-time
computational cost added on top of the overall computational cost of our algorithm
(see Remark 6.1 below for more discussions).

One may also reformulate problem (6.6.46) in the form of (6.6.1) and directly
apply Algorithm 6.8 to solve it. More specifically, substituting xm with b−Ax in the
objective function of (6.6.46), we obtain

min
x∈X

∑
m−1
i=1 fi(Bix)+ fm(b−Ax), (6.6.47)

where Bi = (0, . . . , I, . . . ,0) with the i-th block given a di× di identity matrix and
hence xi = Bix. However, this method will be inefficient since we enlarge the di-
mension of each fi from di to ∑

m−1
i=1 di and as a result, every block has to be updated

in each iteration. One may also try to apply a nonconvex randomized block mirror
descent method in Section 6.3 to solve the above reformulation. However, such
methods do not apply to the case when fi are both nonconex and nonsmooth. This
motivates us to design the new RapDual method which requires to update only a
single block at a time, applies to the case when fi is nonsmooth and achieves an
accelerated rate of convergence when fi is smooth.

6.6.2.1 The RapDual Algorithm

The main idea of RapDual is similar to the one used to design the RapGrad method
introduced in Section 6.6.1.1. Given the proximal points x̄`−1 and x̄`−1

m from the
previous iteration, we define a new proximal subproblem as

min
x∈X ,xm∈Rn

ψ(x)+ψm(xm)

s.t. Ax+ xm = b, (6.6.48)

where ψ(x) := f (x)+µ‖x− x̄`−1‖2 and ψm(xm) := fm(xm)+µ‖xm−x`−1
m ‖2. Obvi-

ously, RaGrad does not apply directly to this type of subproblem. In this subsection,
we present a new randomized algorithm, named the randomized accelerated dual
(RaDual) method to solve the subproblem in (6.6.48), which will be iteratively called
by the RapDual method to solve problem (6.6.46).

RaDual (c.f. Algorithm 6.11) can be viewed as a randomized primal-dual type
method. Indeed, by the method of multipliers and Fenchel conjugate duality, we have

min
x∈X ,xm∈Rn

{ψ(x)+ψm(xm)+max
y∈Rn
〈∑m

i=1Aixi−b,y〉}
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=min
x∈X
{ψ(x)+max

y∈Rn
[〈Ax−b,y〉+ min

xm∈Rn
{ψm(xm)+ 〈xm,y〉}]}

=min
x∈X
{ψ(x)+max

y∈Rn
[〈Ax−b,y〉−h(y)]}, (6.6.49)

where h(y) := −minxm∈Rn{ψm(xm)+ 〈xm,y〉} = ψ∗m(−y). Observe that the above
saddle point problem is both strongly convex in x and strongly concave in y. Indeed,
ψ(x) is strongly convex due to the added proximal term. Moreover, since ψm has
L̂-Lipschitz continuous gradients, h(y) = ψ∗m(−y) is 1/L̂-strongly convex. Using the
fact that h is strongly convex, we can see that (6.6.52)-(6.6.53) in Algorithm 6.11 is
equivalent to a dual mirror-descent step with a properly chosen distance generating
function Vh(y,yt−1). Specifically,

yt = argminy∈Rn h(y)+ 〈−Ax̃t +b,y〉+ τtVh(y,yt−1)

= argmaxy∈Rn 〈(Ax̃t −b+ τt∇h(yt−1))/(1+ τt),y〉−h(y)

= ∇h∗[(Ax̃t −b+ τt∇h(yt−1))/(1+ τt)].

If we set g0 = ∇h(y0) =−x0
m, then it is easy to see by induction that gt = (τtgt−1 +

Ax̃t−b)/(1+τt), and yt =∇h∗(gt) for all t ≥ 1. Moreover, h∗(g) =maxy∈Rn〈g,y〉−
h(y) = maxy∈Rn〈g,y〉−ψ∗m(−y) = ψm(−g), thus yt = −∇ψm(−gt) is the negative
gradient of ψm at point −gt . Therefore, Algorithm 6.11 does not explicitly depend
on the function h, even though the above analysis does.

Each iteration of Algorithm 6.11 updates only a randomly selected block it
in (6.6.54), making it especially favorable when the number of blocks m is large.
However, similar difficulty as mentioned in Section 6.6.1.1 also appears when we
integrate this algorithm with proximal-point type method to yield the final RapDual
method in Algorithm 6.10. Firstly, Algorithm 6.11 also keeps a few intertwined
primal and dual sequences, thus we need to carefully decide the input and output
of Algorithm 6.11 so that information from previous iterations of RapDual is fully
used. Secondly, the number of iterations performed by Algorithm 6.11 to solve each
subproblem plays a vital role in the convergence rate of RapDual, which should be
carefully predetermined.

Algorithm 6.10 describes the basic scheme of RapDual. At the beginning, all
the blocks are initialized using the output from solving the previous subproblem.
Note that x0

m is used to initialize g, which further helps compute the dual variable
y without using the conjugate function h of ψm. We will derive the convergence
result for Algorithm 6.11 in terms of primal variables and construct relations between
successive search points (x`,xl

m), which will be used to prove the final convergence
of RapDual.
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Algorithm 6.10 RapDual for nonconvex multi-block optimization

Compute A−1
m and reformulate problem (6.6.4) as (6.6.46).

Let x̄0 ∈ X , x̄0
m ∈ Rn, such that Ax̄0 + x̄0

m = b, and ȳ0 =−∇ fm(x̄0
m).

for `= 1, . . . ,k do
Set x−1 = x0 = x̄`−1, x0

m = x̄`−1
m .

Run Algorithm 6.11 with input x−1, x0, x0
m and s to solve the following subproblem

min
x∈X ,xm∈Rn

ψ(x)+ψm(xm)

s.t. Ax+ xm = b, (6.6.50)

to compute output (xs,xs
m), where ψ(x)≡ψ`(x) := f (x)+µ‖x− x̄`−1‖2 and ψm(x)≡ψ`

m(x) :=
fm(xm)+µ‖xm− x̄`−1

m ‖2.
Set x̄` = xs, x̄`m = xs

m.

end forreturn (x̄ ˆ̀
, x̄ ˆ̀

m) for some random ˆ̀∈ [k].

Algorithm 6.11 RaDual for solving subproblem (6.6.48)

Let x−1 = x0 ∈ X , xm ∈ Rn, number of iterations s and nonnegative parameters {αt}, {τt}, {ηt}
be given. Set g0 =−x0

m.
for t = 1, . . . ,s do

1. Generate a random variable it uniformly distributed over [m−1].
2. Update xt and yt according to

x̃t = αt(xt−1−xt−2)+xt−1, (6.6.51)

gt = (τt gt−1 +Ax̃t −b)/(1+ τt), (6.6.52)

yt = argminy∈Rn h(y)+ 〈−Ax̃t +b,y〉+ τtVh(y,yt−1) =−∇ψm(−gt), (6.6.53)

xt
i =

{
argminxi∈Xi

ψi(xi)+ 〈A>i yt ,xi〉+ ηt
2 ‖xi− xt−1

i ‖2, i = it ,
xt−1

i , i 6= it .
(6.6.54)

end for
Compute xs

m = argminxm∈Rn{ψm(xm)+ 〈xm,ys〉}.
return (xs,xs

m).

We first define an approximate stationary point for problem (6.6.4) before estab-
lishing the convergence of RapDual.

Definition 6.2. A point (x,xm) ∈ X×Rn is called an (ε,δ ,σ)-solution of (6.6.4) if
there exists some x̂ ∈ X , and λ ∈ Rn such that

[
d(∇ f (x̂)+A>λ ,−NX (x̂))

]2
≤ ε, ‖∇ fm(xm)+λ‖2 ≤ ε,

‖x− x̂‖2 ≤ δ , ‖Ax+ xm−b‖2 ≤ σ .

A stochastic counterpart is one that satisfies
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E
[
d(∇ f (x̂)+A>λ ,−NX (x̂))

]2
≤ ε, E‖∇ fm(xm)+λ‖2 ≤ ε,

E‖x− x̂‖2 ≤ δ , E‖Ax+ xm−b‖2 ≤ σ .

Consider the unconstrained problem with X = R∑
m−1
i=1 di . If (x,xm) ∈ X ×Rn is an

(ε,δ ,σ)-solution with δ = ε/L2, then exists some x̂∈ X such that ‖∇ f (x̂)‖2 ≤ ε and
‖x− x̂‖2 ≤ δ . By similar argument in (6.6.14), we obtain ‖∇ f (x)‖2 ≤ 4ε . Besides,
the definition of a (ε,δ ,σ)-solution guarantees ‖∇ fm(xm)+λ‖2 ≤ ε and ‖Ax+xm−
b‖2 ≤ σ , which altogether justify that (x,xm) is a reasonably good solution. The
following result shows the convergence of RapDual to find such an approximate
solution. Its proof is involved and will be postponed to Subsection 6.6.2.2.

Theorem 6.18. Let the iterates (x`,x`m) for `= 1, . . . ,k be generated by Algorithm
6.10 and ˆ̀ be randomly selected from [k]. Suppose that in Algorithm 6.11, number of

iterations s =
⌈
− logM̂/ logα

⌉
with

M̂ = (2+ L
µ
) ·max

{
2, L2

µ2

}
and α = 1− 2

(m−1)(
√

1+8c+1)
, (6.6.55)

where
c = Ā2

µµ̄
= (2µ+L)Ā2

µ
and Ā = max

i∈[m−1]
‖Ai‖,

and that other parameters are set to

αt = (m−1)α,γt = α−t ,τt =
α

1−α
, andηt =

(
α−m−2

m−1

)
µ

1−α
,∀t = 1, . . . ,s. (6.6.56)

Then there exists some λ ∗ ∈ Rn such that

E
[
d(∇ f (x ˆ̀

∗)+A>λ
∗,−NX (x

ˆ̀
∗))
]2
≤ 8µ

k

{
f (x̄0)+ fm(x̄0

m)− [ f (x∗)+ fm(x∗m)]
}
,

E‖∇ fm(x
ˆ̀
m)+λ

∗‖2 ≤ 34µ

k

{
f (x̄0)+ fm(x̄0

m)− [ f (x∗)+ fm(x∗m)]
}
,

E‖x ˆ̀−x ˆ̀
∗‖2 ≤ 2µ

kL2

{
f (x̄0)+ fm(x̄0

m)− [ f (x∗)+ fm(x∗m)]
}
,

E‖Ax ˆ̀
+ x ˆ̀

m−b‖2 ≤ 2(‖A‖2+1)µ
kL2

{
f (x̄0)+ fm(x̄0

m)− [ f (x∗)+ fm(x∗m)]
}
,

where (x∗,x∗m) and (x`∗,x`m∗) denote the optimal solutions to (6.6.4) and the `-th
subproblem (6.6.48),respectively.

Theorem 6.18 ensures that our output solution (x ˆ̀
,x ˆ̀

m) is close enough to an
unknown approximate stationary point (x ˆ̀

∗,x
ˆ̀
m∗). According to Theorem 6.18, we

can bound the complexity of RapDual to compute a stochastic (ε,δ ,σ)-solution of
(6.6.4) in terms of block updates in (6.6.54). Note that for each subproblem (6.6.48),
we only need to update s primal blocks with

s =
⌈
− logM̂

logα

⌉
∼ O

(
mĀ
√

L
µ

log
(

L
µ

))
.
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Let D0 := f (x̄0)+ fm(x̄0
m)− [ f (x∗)+ fm(x∗m)]. It can be seen that the total number

of primal block updates required to obtain a stochastic (ε,δ ,σ)-solution can be
bounded by

N(ε,δ ,σ) := O
(

mĀ
√

Lµ log
(

L
µ

)
·max

{
1
ε
, 1

δL2 ,
‖A‖2
σL2

}
D0
)
. (6.6.57)

As a comparison, the batch version of this algorithm would update all the xt
i for

i = 1, . . . ,m, in (6.6.54), and thus would require

N̂(ε,δ ,σ) := O
(

m‖A‖√Lµ log
(

L
µ

)
·max

{
1
ε
, 1

δL2 ,
‖A‖2
σL2

}
D0
)
.

primal block updates to obtain an (ε,δ ,σ)-solution of (6.6.4). Therefore, the benefit
of randomization comes from the difference between ‖A‖ and Ā. Obviously we
always have ‖A‖> Ā, and the relative gap between ‖A‖ and Ā can be large when
all the matrix blocks have close norms. In the case when all the blocks are identical,
i.e. A1 = A2 = . . . = Am−1, we immediately have ‖A‖ =

√
m−1Ā, which means

that RapDual can potentially save the number of primal block updates by a factor of
O(
√

m) than its batch counterpart.
It is also interesting to compare RapDual with the nonconvex randomized block

mirror descent method in Section 6.3. To compare these methods, let us assume that
fi is smooth with L̄-Lipschitz continuous gradient for some L̄≥ µ for any i= 1, . . . ,m.
Also let us assume that σ > ‖A‖2ε/L2, δ = ε/L2, and X = R∑

m−1
i=1 di . Then, after dis-

regarding some constant factors, the bound in (6.6.57) reduces to O(mĀ
√

LµD0/ε),
which is always smaller than the O(m(L̄+LĀ2)D0/ε) complexity bound implied by
Corollary 6.12.

Remark 6.1. In this section, we assume that A−1
m is easily computable. One natural

question is whether we can avoid the computation of A−1
m by directly solving (6.6.4)

instead of its reformulation (6.6.46). To do so, we can iteratively solve the following
saddle-point subproblems in place of the ones in (6.6.49):

min
x∈X ,xm∈Rn

{ψ(x)+ψm(xm)+max
y∈Rn
〈∑m

i=1Aixi−b,y〉}

=min
x∈X
{ψ(x)+max

y∈Rn
[〈Ax−b,y〉+ min

xm∈Rn
{ψm(xm)+ 〈Amxm,y〉}]}

=min
x∈X
{ψ(x)+max

y∈Rn
[〈Ax−b,y〉− h̃(y)]}, (6.6.58)

where A := [A1, . . . ,Am−1] and h̃(y) := maxxm∈Rn {−ψm(xm)−〈Amxm,y〉}. Instead
of keeping h̃(y) in the projection subproblem (6.6.53) as we did for h(y), we need
to linearize it at each iteration by computing its gradients ∇h̃(yt−1) =−AT

mx̄m(yt−1),
where x̄m(yt−1) = argmaxxm∈Rn

{
−ψm(xm)−〈Amxm,yt−1〉

}
. Note that the latter op-

timization problem can be solved by using an efficient first-order method due to
the smoothness and strong concavity of its objective function. As a result, we will
be able to obtain a similar rate of convergence to RapDual without computing A−1

m .
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However, the statement and analysis of the algorithm will be much more complicated
than RapDual in its current form.

6.6.2.2 Convergence analysis for RapDual

In this section, we first show the convergence of Algorithm 6.11 for solving the
convex multi-block subproblem (6.6.50) with

1. ψi(x)−ψi(y)−〈∇ψi(y),x− y〉 ≥ µ

2 ‖x− y‖2, ∀x,y ∈ Xi, i = 1, . . . ,m−1,
2. µ

2 ‖x− y‖2 ≤ ψm(x)−ψm(y)−〈∇ψm(y),x− y〉 ≤ L̂
2‖x− y‖2, ∀x,y ∈ Rn.

Some simple relations about the iterations generated by the Algorithm 6.11 are
characterized in the following lemma, and the proof follows directly from the defini-
tion of x̂ in (6.6.59), thus has been omitted.

Lemma 6.15. Let x̂0 = x0 and x̂t for t = 1, . . . ,s be defined as follows:

x̂t = argminx∈X ψ(x)+ 〈A>yt ,x〉+ ηt
2 ‖x−xt−1‖2, (6.6.59)

where xt and yt are obtained from (6.6.53)-(6.6.54), then we have

Eit
{
‖x− x̂t‖2}= Eit

{
(m−1)‖x−xt‖2− (m−2)‖x−xt−1‖2} , (6.6.60)

Eit
{
‖x̂t −xt−1‖2}= Eit

{
(m−1)‖xt

it − xt−1
it ‖

2} . (6.6.61)

The following lemma 6.16 builds some connections between the input and output
of Algorithm 6.11 in terms of both primal and dual variables.

Lemma 6.16. Let the iterates xt and yt for t = 1, . . . ,s be generated by Algorithm
6.11 and (x∗,y∗) be a saddle point of (6.6.49). Assume that the parameters in
Algorithm 6.11 satisfy for all t = 1, . . . ,s−1

αt+1 = (m−1)α̃t+1, (6.6.62)
γt = γt+1α̃t+1, (6.6.63)

γt+1 ((m−1)ηt+1 +(m−2)µ)≤ (m−1)γt(ηt +µ), (6.6.64)
γt+1τt+1 ≤ γt(τt +1), (6.6.65)

2(m−1)α̃t+1Ā2 ≤ µ̄ηtτt+1, (6.6.66)

where Ā = maxi∈[m−1] ‖Ai‖. Then we have

Es

{
γ1((m−1)η1+(m−2)µ)

2 ‖x∗−x0‖2− (m−1)γs(ηs+µ)
2 ‖x∗−xs‖2

}

+Es

{
γ1τ1Vh(y∗,y0)− γs(τs+1)µ̄

2 Vh(y∗,ys)
}
≥ 0. (6.6.67)

Proof. For any t ≥ 1, since (x∗,y∗) is a saddle point of (6.6.49), we have

ψ(x̂t)−ψ(x∗)+ 〈Ax̂t −b,y∗〉−〈Ax∗−b,yt〉+h(y∗)−h(yt)≥ 0.
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For nonnegative γt , we further obtain

Es
{

∑
s
t=1γt [ψ(x̂t)−ψ(x∗)+ 〈Ax̂t −b,y∗〉−〈Ax∗−b,yt〉+h(y∗)−h(yt)]

}
≥ 0.

(6.6.68)

According to optimality conditions of (6.6.59) and (6.6.53) respectively, and strongly
convexity of ψ and h we obtain

ψ(x̂t)−ψ(x∗)+ µ

2 ‖x∗− x̂t‖2 + 〈A>yt , x̂t −x∗〉
≤ ηt

2

[
‖x∗−xt−1‖2−‖x∗− x̂t‖2−‖x̂t −xt−1‖2] ,

h(yt)−h(y∗)+ 〈−Ax̃t +b,yt − y∗〉
≤ τtVh(y∗,yt−1)− (τt +1)Vh(y∗,yt)− τtVh(yt ,yt−1).

Combining the above two inequalities with relation (6.6.68), we have

Es

{
∑

k
t=1

[
γt ηt

2 ‖x∗−xt−1‖2− γt (ηt+µ)
2 ‖x∗− x̂t‖2− γt ηt

2 ‖x̂t −xt−1‖2
]}

+Es
{

∑
s
t=1γt

[
τtVh(y∗,yt−1)− (τt +1)Vh(y∗,yt)− τtVh(yt ,yt−1)

]}

+Es [∑
s
t=1γt〈A(x̂t − x̃t),y∗− yt〉]≥ 0.

Observe that for t ≥ 1,

Eit
{
〈A(x̂t − x̃t),y∗〉

}
= Eit

{
〈A((m−1)xt − (m−2)xt−1− x̃t),y∗〉

}
.

Applying this and the results (6.6.60), (6.6.61) in Lemma 6.15, we further have

0≤ Es

{
∑

s
t=1

[
γt ((m−1)ηt+(m−2)µ)

2 ‖x∗−xt−1‖2− (m−1)γt (ηt+µ)
2 ‖x∗−xt‖2

]}

+Es
{

∑
s
t=1
[
γtτtVh(y∗,yt−1)− γt(τt +1)Vh(y∗,yt)

]}
+Es {∑s

t=1γtδt}
≤ Es

[
γ1((m−1)η1+(m−2)µ)

2 ‖x∗−x0‖2− (m−1)γs(ηs+µ)
2 ‖x∗−xs‖2

]

+Es[γ1τ1Vh(y∗,y0)− γs(τs +1)Vh(y∗,ys)]+Es[∑
s
t=1γtδt ], (6.6.69)

where

δt =− (m−1)ηt
2 ‖xt

it − xt−1
it ‖

2− τtVh(yt ,yt−1)

+ 〈A((m−1)xt − (m−2)xt−1− x̃t),y∗− yt〉.

and the second inequality follows from (6.6.64) and (6.6.65).
By (6.6.62) and the definition of x̃t in (6.6.51) we have:

∑
s
t=1γtδt =∑

s
t=1

[
− (m−1)γt ηt

2 ‖xt
it − xt−1

it ‖2− γtτtVh(yt ,yt−1)
]

+∑
s
t=1γt(m−1)〈A(xt −xt−1),y∗− yt〉 (6.6.70)

−∑
s
t=1γt(m−1)α̃t〈A(xt−1−xt−2),y∗− yt−1〉
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−∑
s
t=1γt(m−1)α̃t〈A(xt−1−xt−2),yt−1− yt〉

=∑
s
t=1

[
− (m−1)γt ηt

2 ‖xt
it − xt−1

it ‖2− γtτtVh(yt ,yt−1)
]

+ γs(m−1)〈A(xs−xs−1),y∗− ys〉
−∑

s
t=1γt(m−1)α̃t〈A(xt−1−xt−2),yt−1− yt〉, (6.6.71)

where the second equality follows from (6.6.63) and the fact that x0 = x−1.
Since 〈A(xt−1 − xt−2),yt−1 − yt〉 = 〈At−1(xt−1

it−1
− xt−2

it−1
),yt−1 − yt〉 ≤

‖Ait−1‖‖xt−1
it−1
−xt−2

it−1
‖‖yt−yt−1‖ and Vh(yt ,yt−1)≥ µ̄

2 ‖yt−yt−1‖2, from (6.6.71) we
have

∑
s
t=1γtδt ≤∑

s
t=1

[
− (m−1)γt ηt

2 ‖xt
it − xt−1

it ‖2− gt τt µ̄

2 ‖yt ,yt−1‖2
]

+ γs(m−1)〈A(xs−xs−1),y∗− ys〉
−∑

s
t=1γt(m−1)α̃t‖Ait−1‖‖xt−1

it−1
− xt−2

it−1
‖‖yt − yt−1‖

(a)
= γs(m−1)〈A(xs−xs−1),y∗− ys〉− (m−1)γsηs

2 ‖xs
is − xs−1

is ‖2

+∑
s
t=2
[
γt(m−1)α̃t‖Ait−1‖‖xt−1

it−1
− xt−2

it−1
‖‖yt − yt−1‖

− (m−1)γt−1ηt−1
2 ‖xt−1

it−1
− xt−2

it−1
‖2− µ̄γt τt

2 ‖yt − yt−1‖2
]

(b)
≤ γs(m−1)〈A(xs−xs−1),y∗− ys〉− (m−1)γsηs

2 ‖xs
is − xs−1

is ‖2

+∑
s
t=2

(
γ2
t (m−1)2α̃2

t Ā2

2(m−1)γt−1ηt−1
− µ̄γt τt

2

)
‖yt − yt−1‖2

(c)
= γs(m−1)〈A(xs−xs−1),y∗− ys〉− (m−1)γsηs

2 ‖xs
is − xs−1

is ‖2,

where (a) follows from regrouping the terms; (b) follows from the definition Ā =
maxi∈[m−1] ‖Ai‖ and the simple relation that b〈u,v〉−a‖v‖2/2≤ b2‖u‖2/(2a), ∀a >
0; and (c) follows from (6.6.63) and (6.6.66).

By combining the relation above with (6.6.69), we obtain

0≤ Es

[
γ1((m−1)η1+(m−2)µ)

2 ‖x∗−x0‖2− (m−1)γs(ηs+µ)
2 ‖x∗−xs‖2

]

+Es
[
γ1τ1Vh(y∗,y0)− γs(τs +1)Vh(y∗,ys)

]

+Es

[
γs(m−1)〈A(xs−xs−1),y∗− ys〉− (m−1)γsηs

2 ‖xs
is − xs−1

is ‖2
]
. (6.6.72)

Notice the fact that

Es

[
γs(τs+1)

2 Vh(y∗,ys)− γs(m−1)〈A(xs−xs−1),y∗− ys〉+ (m−1)γsηs
2 ‖xs

is − xs−1
is ‖2

]

= Es

[
γs(τs+1)

2 Vh(y∗,ys)− γs(m−1)〈A(xs
is − xs−1

is ),y∗− ys〉+ (m−1)γsηs
2 ‖xs

is − xs−1
is ‖2

]

≥ γsEs

[
(τs+1)µ̄

4 ‖y∗− ys‖2− (m−1)Ā‖xs
is − xs−1

is ‖‖y∗− ys‖+ (m−1)ηs
2 ‖xs

is − xs−1
is ‖2

]
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≥ γsEs

(√
(m−1)(τs+1)µ̄ηs

2 − (m−1)Ā
)
‖xs

is − xs−1
is ‖‖y∗− ys‖ ≥ 0. (6.6.73)

In view of (6.6.72) and (6.6.73), we complete the proof.
Now we present the main convergence result of Algorithm 6.11 in Theorem 6.19,

which eliminates the dependence on dual variables and relates directly the successive
searching points of RapDual.

Theorem 6.19. Let (x∗,y∗) be a saddle point of (6.6.49), and suppose that the pa-
rameters {αt}, {τt}, {ηt} and {γt} are set as in (6.6.55) and (6.6.56), and α̃t = α .
Then, for any s≥ 1, we have

Es
{
‖xs−x∗‖2 +‖xs

m− x∗m‖2}≤ α
sM(‖x0−x∗‖2 +‖x0

m− x∗m‖2),

where x∗m = argminxm∈Rn{ψm(xm)+ 〈xm,y∗〉} and M = 2L̂/µ .

Proof. It is easy to check that (6.6.55) and (6.6.56) satisfy conditions (6.6.62),
(6.6.63), (6.6.64) (6.6.65), and (6.6.66) when µ, µ̄ > 0. Then we have

Es

{
(m−1)γs(ηs+µ)

2 ‖xs−x∗‖2 + γs(τs+1)µ̄
2 Vh(ys,y∗)

}

≤ γ1((m−1)η1+(m−2)µ)
2 ‖x0−x∗‖2 + γ1τ1Vh(y0,y∗).

Therefore, by plugging in those values in (6.6.55) and (6.6.56), we have

Es
[
µ‖xs−x∗‖2 +Vh(ys,y∗)

]
≤ α

s [
µ‖x0−x∗‖2 +2Vh(y0,y∗)

]
, (6.6.74)

Since h(y) has 1/µ-Lipschitz continuous gradients and is 1/L-strongly convex, we
obtain

Vh(ys,y∗)≥ µ

2 ‖∇h(ys)−∇h(y∗)‖2 = µ

2 ‖− xs
m + x∗m‖2, (6.6.75)

Vh(y0,y∗)≤ L̂
2‖∇h(y0)−∇h(y∗)‖2 = L̂

2‖− x0
m + x∗m‖2. (6.6.76)

Combining (6.6.74), (6.6.75) and (6.6.76), we have

Es
{
‖xs−x∗‖2 +‖xs

m− x∗m‖2}≤ α
sM(‖x0−x∗‖2 +‖x0

m− x∗m‖2).

The above theorem shows that subproblem (6.6.50) can be solved efficiently by
Algorithm 6.11 with a linear rate of convergence. In fact, we need not solve it too
accurately. With a fixed and relatively small number of iterations s Algorithm 6.11
can still converge, as shown by the following lemma.

Lemma 6.17. Let the inner iteration number s ≥ d− logM/ logαe with M = 4+
2L/µ be given. Also the iterates (x`,x`m) for `= 1, . . . ,k be generated by Algorithm
6.10 and ˆ̀ be randomly selected from [k]. Then

E
(
‖x`∗− x̄`−1‖2 +‖x`m∗ − x̄`−1

m ‖2
)
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≤ 1
kµ(1−Mαs)

{
f (x̄0)+ fm(x̄0

m)− [ f (x∗)+ fm(x∗m)]
}
,

E
(
‖x`∗− x̄`‖2 +‖x`m∗ − x̄`m‖2

)

≤ Mαs

kµ(1−Mαs)

{
f (x̄0)+ fm(x̄0

m)− [ f (x∗)+ fm(x∗m)]
}
,

where (x∗,x∗m) and (x`∗,x`m∗) are the optimal solutions to (6.6.4) and the `-th subprob-
lem (6.6.48), respectively.

Proof. According to Theorem 6.19, we have

E
(
‖x̄`−x`∗‖2 +‖x̄`m− x`m∗‖2

)
≤ α

sM(‖x̄`−1−x`∗‖2 +‖x̄`−1
m − x`m∗‖2). (6.6.77)

Let us denote (x0
∗,x

0
m∗) = (x̄0, x̄0

m) and by selection, it is feasible to subproblem
(6.6.48) when `= 1. Since (x`∗,x`m∗) is optimal and (x`−1

∗ ,x`−1
m∗ ) is feasible to the `-th

subproblem, we have

ψ
`(x`∗)+ψ

`
m(x

`
m∗)≤ ψ

`(x`−1
∗ )+ψ

`
m(x

`−1
m∗ ).

Plugging in the definition of ψ` and ψ`
m in the above inequality, and summing up

from `= 1 to k, we have

∑
k
`=1[ f (x`∗)+ fm(x`m∗)+µ(‖x`∗− x̄`−1‖2 +‖x`m∗ − x̄`−1

m ‖2)]

≤ ∑
k
`=1[ f (x`−1

∗ )+ fm(x`−1
m∗ )+µ(‖x`−1

∗ − x̄`−1‖2 +‖x`−1
m∗ − x̄`−1

m ‖2)]. (6.6.78)

Combining (6.6.77) and (6.6.78) and noticing that (x0
∗,x

0
m∗) = (x̄0, x̄0

m), we have

µ∑
k
`=1E(‖x`∗− x̄`−1‖2 +‖x`m∗ − x̄`−1

m ‖2) (6.6.79)

≤ ∑
k
`=1{ f (x`−1

∗ )+ fm(x`−1
m∗ )− [ f (x`∗)+ fm(x`m∗)]}

+µ∑
k
`=1E(‖x`∗− x̄`‖2 +‖x`m∗ − x̄`m‖2)

≤ f (x̄0)+ fm(x̄0
m)− [ f (x∗)+ fm(x∗m)]

+µα
sM∑

k
`=1E(‖x`∗− x̄`−1‖2 +‖x`m∗ − x̄`−1

m ‖2). (6.6.80)

In view of (6.6.79) and (6.6.77), we have

∑
k
`=1E

(
‖x`∗− x̄`−1‖2 +‖x`m∗ − x̄`−1

m ‖2
)

≤ 1
µ(1−Mαs)

{
f (x̄0)+ fm(x̄0

m)− [ f (x∗)+ fm(x∗m)]
}

∑
k
`=1E

(
‖x`∗− x̄`‖2 +‖x`m∗ − x̄`m‖2

)

≤ Mαs

µ(1−Mαs)

{
f (x̄0)+ fm(x̄0

m)− [ f (x∗)+ fm(x∗m)]
}
,

which, in view of the fact that ˆ̀ is chosen randomly in [k], implies our results.

Now we are ready to prove the results in Theorem 6.18 with all the results proved
above.
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Proof of Theorem 6.18. By the optimality condition of the ˆ̀-th subproblem (6.6.48),
there exists some λ ∗ such that

∇ψ
ˆ̀
(x ˆ̀
∗)+A>λ

∗ ∈ −NX (x
ˆ̀
∗),

∇ψ
ˆ̀

m(x
ˆ̀
m∗)+λ

∗ = 0,

Ax ˆ̀
∗+ x ˆ̀

m∗ = b. (6.6.81)

Plugging in the definition of ψ
ˆ̀ and ψ

ˆ̀
m, we have

∇ f ˆ̀
(x ˆ̀
∗)+2µ(x ˆ̀

∗− x̄ ˆ̀−1)+A>λ
∗ ∈ −NX (x

ˆ̀
∗), (6.6.82)

∇ f ˆ̀
m(x

ˆ̀
m∗)+2µ(x ˆ̀

m∗ − x̄ ˆ̀−1
m )+λ

∗ = 0. (6.6.83)

Now we are ready to evaluate the quality of the solution (x̄ ˆ̀
, x̄ ˆ̀

m). In view of (6.6.82)
and Lemma 6.17, we have

E
[
d(∇ f ˆ̀

(x ˆ̀
∗)+A>λ

∗,−NX (x
ˆ̀
∗))
]2
≤ E‖2µ(x ˆ̀

∗− x̄ ˆ̀−1)‖2

≤ 4µ

k(1−Mαs)

{
f (x̄0)+ fm(x̄0

m)− [ f (x∗)+ fm(x∗m)]
}

≤ 8µ

k

{
f (x̄0)+ fm(x̄0

m)− [ f (x∗)+ fm(x∗m)]
}
.

Similarly, due to (6.6.83) and Lemma 6.17, we have

E‖∇ f ˆ̀
m(x

ˆ̀
m)+λ

∗‖2 = E‖∇ f ˆ̀
m(x

ˆ̀
m)−∇ f ˆ̀

m(x
ˆ̀
m∗)−2µ(x ˆ̀

m∗ − x ˆ̀−1
m )‖2

≤ 2E{‖∇ f ˆ̀
m(x

ˆ̀
m)−∇ f ˆ̀

m(x
ˆ̀
m∗)‖2 +4µ

2‖x ˆ̀
m∗ − x ˆ̀−1

m ‖2}
≤ E

{
18µ

2‖x ˆ̀
m∗ − x̄ ˆ̀

m‖2 +8µ
2‖x ˆ̀

m∗ − x̄ ˆ̀−1
m ‖2

}

≤ µ
2(8+18Mα

s)E{‖x ˆ̀− x̄ ˆ̀−1‖2 +‖x ˆ̀
m∗ − x̄ ˆ̀−1

m ‖2}
≤ 2µ(4+9Mαs)

k(1−Mαs) E
{

f (x̄0)+ fm(x̄0
m)− [ f (x∗)+ fm(x∗m)]

}

≤ 34µ

k

{
f (x̄0)+ fm(x̄0

m)− [ f (x∗)+ fm(x∗m)]
}
.

By Lemma 6.17 we have

E‖x ˆ̀−x ˆ̀
∗‖2 ≤ Mαs

kµ(1−Mαs)

{
f (x̄0)+ fm(x0

m)− [ f (x∗)+ fm(x∗m)]
}

≤ 2Mαs

kµ

{
f (x̄0)+ fm(x̄0

m)− [ f (x∗)+ fm(x∗m)]
}

≤ 2µ

kL2

{
f (x̄0)+ fm(x̄0

m)− [ f (x∗)+ fm(x∗m)]
}
.

Combining (6.6.81) and Lemma 6.17, we have

E‖Ax̄ ˆ̀
+ x̄ ˆ̀

m−b‖2 = E‖A(x̄ ˆ̀−x ˆ̀
∗)+ x̄ ˆ̀

m− x ˆ̀
m∗‖2

≤ 2E{‖A‖2‖x̄ ˆ̀−x ˆ̀
∗‖2 +‖x̄ ˆ̀

m− x ˆ̀
m∗‖2}
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≤ 2(‖A‖2 +1)E{‖x̄ ˆ̀−x ˆ̀
∗‖2 +‖x̄ ˆ̀

m− x ˆ̀
m∗‖2}

≤ 2(‖A‖2+1)Mαs

kµ(1−Mαs)

{
f (x̄0)+ fm(x̄0

m)− [ f (x∗)+ fm(x∗m)]
}

≤ 2(‖A‖2+1)µ
kL2

{
f (x̄0)+ fm(x̄0

m)− [ f (x∗)+ fm(x∗m)]
}
.

We observe that the main ideas of this RapDual, i.e., using proximal point method
to tranform the nonconvex multi-block problem into a series of convex subproblems,
and using randomized dual method to them, can be applied for solving much more
general multi-block optimization problems for which there does not exist an invertible
block. In this more general case, the saddle-point subproblems will only be strongly
convex in the primal space, but not in the dual space. Therefore, the complexity of
solving the subproblem will only be sublinear, and as a consequence, the overall
complexity will be much worse than O(1/ε). It is also worth noting that the proposed
RapGrad and RapDual implicitly assume that the parameter µ is known, or a (tight)
upper bound of it can be obtained.

6.7 Exercises and notes

1. Consider the problem of minx∈X f (x), where X ⊆ Rn is a closed convex set and
f is a convex function. Assume that we apply either the gradient descent or
accelerated gradient descent method for solving

min
x∈X
{ f (x)+ µ

2 ‖x− x0‖2,

for a given initial point x0 ∈ X and a small enough µ > 0. Please establish the
best possible complexity bound for these methods to find a stationary point so
that the size of the projected gradient is small.

2. Establish the convergence of the RSGF method if the random variable u in (6.1.49)
is not a Gaussian random variable, but a uniform random variable over the standard
Euclidean ball.

3. Develop a stochastic gradient-free mirror descent method similar to 2-RSMD-V
for which only stochastic zeroth-order information is available and establish its
complexity bounds. and large

Notes. The random stochastic gradient descent method for nonconvex optimization
problems was first studied by Ghadimi and Lan in [33]. Ghadimi, Lan and Zhang
generalized this method for solving nonconvex stochastic composite problems in
[35]. Dang and Lan developed the randomized block coordinate descent method
for solving nonconvex problems in [23]. The convergence of accelerated gradient
descent method for solving nonconvex and stochastic optimization problems was
first established by Ghaidimi and Lan in [34]. The gradient estimator used in the
nonconvex variance-reduced mirror descent method was first introduced in [85] in
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convex optimization and analyzed for nonconvex optimization in [27, 108, 108].
Section 7.4 further generalizes the analysis to nonconvex mirror descent setting.
The RapGrad and RapDual methods for nonconvex finite-sum and multi-block
optimization were first introduced by Lan and Yang in [59].



Chapter 7
Projection-free Methods

In this chapter, we present conditional gradient type methods that have attracted
much attention in both machine learning and optimization community recenetly.
These methods call a linear optimization (LO) oracle to minimize a series of linear
functions over the feasible set. We will introduce the classic conditional gradient
(a.k.a. Frank-Wolfe method) and a few of its variants. We will also discuss the
conditional gradient sliding (CGS) algorithm which can skip the computation of
gradients from time to time, and as a result, can achieve the optimal complexity
bounds in terms of not only the number of calls to the LO oracle, but also the number
of gradient evaluations.

7.1 Conditional gradient method

In this section, we study a new class of optimization algorithms, referred to as linear-
optimization-based convex programming (LCP) methods, for solving large-scale
convex programming (CP) problems. Specifically, consider the CP problem of

f ∗ := min
x∈X

f (x), (7.1.1)

where X ⊆Rn is a convex compact set and f : X→R is a closed convex function. The
LCP methods solve problem (7.1.1) by iteratively calling a linear optimization (LO)
oracle, which, for a given input vector p ∈Rn, computes the solution of subproblems
given in the form of

Argminx∈X 〈p,x〉. (7.1.2)

In particular, if p is computed based on first-order information, then we call these
algorithms first-order LCP methods. Clearly, the difference between first-order LCP
methods and the more general first-order methods exists in the restrictions on the
format of subproblems. For example, in the subgradient (mirror) descent method, we
solve the projection (or prox-mapping) subproblems given in the form of

423
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argminx∈X {〈p,x〉+d(x)} . (7.1.3)

Here d : X → R is a certain strongly convex function (e.g., d(x) = ‖x‖2
2/2).

The development of LCP methods has recently regained some interests from both
machine learning and optimization community mainly for the following reasons.

• Low iteration cost. In many cases, the solution of the linear subproblem (7.1.2) is
much easier to solve than the nonlinear subproblem (7.1.3). For example, if X is a
spectrahedron given by X = {x ∈ Rn×n : Tr(x) = 1,x� 0}, the solution of (7.1.2)
can be much faster than that of (7.1.3).

• Simplicity. The CndG method is simple to implement since it does not require the
selection of the distance function d(x) in (7.1.3) and the fine-tuning of stepsizes,
which are required in most other first-order methods (with exceptions to some
extent for a few level-type first-order methods as discussed earlier in Section 3.9).

• Structural properties for the generated solutions. The output solutions of the CndG
method may have certain desirable structural properties, e.g., sparsity and low
rank, as they can often be written as the convex combination of a small number of
extreme points of X .

In this section, we first establish the rate of convergence of the classic conditional
gradient method and its variants, in terms of the number of calls to the LO oracle, for
solving different classes of CP problems under an LO oracle as follows.

a) f is a smooth convex function satisfying

‖ f ′(x)− f ′(y)‖∗ ≤ L‖x− y‖,∀x,y ∈ X . (7.1.4)

b) f is a special nonsmooth function with f given by

f (x) = max
y∈Y

{
〈Ax,y〉− f̂ (y)

}
. (7.1.5)

Here Y ⊆Rm is a convex compact set, A :Rn→Rm a linear operator and f̂ :Y→R
is a simple convex function.

c) f is a general nonsmooth Lipschitz continuous convex function such that

| f (x)− f (y)| ≤M‖x− y‖, ∀x,y ∈ X , (7.1.6)

d) We also discuss the possibility to improve the complexity of the CndG method
under strong convexity assumption about f (·) and with an enhanced LO oracle.

We then present a few new LCP methods, namely the primal averaging CndG (PA-
CndG) and primal-dual averaging CndG (PDA-CndG) algorithms, for solving large-
scale CP problems under an LO oracle. These methods are obtained by replacing
the projection subproblems with linear optimization subproblems in the accelerated
gradient descent method.

Finally, we show that to solve CP problems under an LO oracle is fundamentally
more difficult than to solve CP problems without such restrictions, by establishing a
series of lower complexity bounds for solving different classes of CP problems under
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an LO oracle. We then show that the number of calls to the LO oracle performed by
the aforementioned LCP methods do not seem to be improvable in general.

To fix notation, let X ∈ Rn and Y ∈ Rm be given convex compact sets. Also let
‖ · ‖X and ‖ · ‖Y be the norms (not necessarily associated with inner product) in
Rn and Rm, respectively. For the sake of simplicity, we often skip the subscripts
in the norms ‖ · ‖X and ‖ · ‖Y . For a given norm ‖ · ‖, we denote its conjugate by
‖s‖∗ = max‖x‖≤1〈s,x〉. We use ‖ · ‖1 and ‖ · ‖2, respectively, to denote the regular l1
and l2 norms. Let A : Rn→ Rm be a given linear operator, we use ‖A‖ to denote its
operator norm given by ‖A‖ := max‖x‖≤1 ‖Ax‖. Let f : X → R be a convex function,
we denote its linear approximation at x by

l f (x;y) := f (x)+ 〈 f ′(x),y− x〉. (7.1.7)

Clearly, if f satisfies (7.1.4), then

f (y)≤ l f (x;y)+ L
2‖y− x‖2, ∀x,y ∈ X . (7.1.8)

Notice that the constant L in (7.1.4) and (7.1.8) depends on ‖ · ‖.

7.1.1 Classic conditional gradient

Our goal in this section is to establish the rate of convergence for the classic CndG
method and its variants for solving different classes of CP problems in terms the
number of calls to the LO oracle.

7.1.1.1 Smooth convex problems under an LO oracle

The classic CndG method is one of the earliest iterative algorithms to solve prob-
lem (7.1.1). The basic scheme of this algorithm is stated as follows.

Algorithm 7.1 The Classic Conditional Gradient (CndG) Method
Let x0 ∈ X be given. Set y0 = x0.
for k = 1, . . . do

Call the LO oracle to compute xk ∈ Argminx∈X 〈 f ′(yk−1),x〉.
Set yk = (1−αk)yk−1 +αkxk for some αk ∈ [0,1].

end for

In order to guarantee the convergence of the classic CndG method, we need to
properly specify the stepsizes αk used in the definition of yk. There are two popular
options for selecting αk: one is to set

αk =
2

k+1 , k = 1,2, . . . , (7.1.9)
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and the other is to compute αk by solving a one-dimensional minimization problem:

αk = argminα∈[0,1] f ((1−α)yk−1 +αxk), k = 1,2, . . . . (7.1.10)

We now formally describe the convergence properties of the above classic CndG
method. Observe that we state explicitly in Theorem 7.1 how the rate of convergence
associated with this algorithm depends on distance between the previous iterate
yk−1 and the output of the LO oracle, i.e., ‖xk − yk−1‖. Also observe that, given
a candidate solution x̄ ∈ X , we use the functional optimality gap f (x̄)− f ∗ as a
termination criterion for the algorithm. In Section 7.2, we will show that the CndG
method also exhibit the same rate of convergence in terms of a stronger termination
criterion, i.e., the Wolfe gap given by maxx∈X 〈 f ′(x̄), x̄− x〉. The following quanitity
will be used our convergence analysis.

Γk :=
{

1, k = 1,
(1− γk)Γk−1, k ≥ 2. (7.1.11)

Theorem 7.1. Let {xk} be the sequence generated by the classic CndG method
applied to problem (7.1.1) with the stepsize policy in (7.1.9) or (7.1.10). If f (·)
satisfies (7.1.4), then for any k = 1,2, . . .,

f (yk)− f ∗ ≤ 2L
k(k+1)∑

k
i=1‖xi− yi−1‖2. (7.1.12)

Proof. Let Γk be defined in (7.1.11) with

γk := 2
k+1 . (7.1.13)

It is easy to check that

Γk =
2

k(k+1) and γ2
k

Γk
≤ 2, k = 1,2, . . . . (7.1.14)

Denoting ỹk = (1− γk)yk−1 + γkxk, we conclude from from (7.1.9) (or (7.1.10)) and
the definition of yk in Algorithm 7.1 that f (yk) ≤ f (ỹk). It also follows from the
definition of ỹk that ỹk− yk−1 = γk(xk− yk−1). Letting l f (x;y) be defined in (7.1.7)
and using these two observations, (7.1.8), the definition of xk and the convexity of
f (·), we have

f (yk) ≤ f (ỹk)≤ l f (yk−1; ỹk)+
L
2‖yk− yk−1‖2

= (1− γk) f (yk−1)+ γkl f (yk−1;xk)+
L
2 γ

2
k ‖xk− yk−1‖2

≤ (1− γk) f (yk−1)+ γkl f (yk−1;x)+ L
2 γ

2
k ‖xk− yk−1‖2,

≤ (1− γk) f (yk−1)+ γk f (x)+ L
2 γ

2
k ‖xk− yk−1‖2, ∀x ∈ X . (7.1.15)

Subtracting f (x) from both sides of the above inequality, we obtain

f (yk)− f (x)≤ (1− γk)[ f (yk−1)− f (x)]+ L
2 γ

2
k ‖xk− yk−1‖2, (7.1.16)
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which, in view of Lemma 3.17, then implies that

f (yk)− f (x) ≤ Γk(1− γ1)[ f (y0)− f (x)]+ ΓkL
2 ∑

k
i=1

γ2
i

Γi
‖xi− yi−1‖2

≤ 2L
k(k+1)∑

k
i=1‖xi− yi−1‖2, k = 1,2, . . . , (7.1.17)

where the last inequality follows from the fact that γ1 = 1 and (7.1.14).

We now add a few remarks about the results obtained in Theorem 7.1. Let us
denote

¯̄DX ≡ D̄X ,‖·‖ := max
x,y∈X
‖x− y‖. (7.1.18)

Firstly, note that by (7.1.12) and (7.1.18), we have, for any k = 1, . . .,

f (yk)− f ∗ ≤ 2L
k+1 D̄2

X .

Hence, the number of iterations required by the classic CndG method to find an
ε-solution of problem (7.1.1) is bounded by

O(1)LD̄2
X

ε
. (7.1.19)

Secondly, although the CndG method does not require the selection of the norm
‖ · ‖, the iteration complexity of this algorithm, as stated in (7.1.19), does depend on
‖ · ‖ as the two constants, i.e., L≡ L‖·‖ and D̄X ≡ D̄X ,‖·‖, depend on ‖ · ‖ . However,
since the result in (7.1.19) holds for an arbitrary ‖ · ‖, the iteration complexity of the
classic CndG method to solve problem (7.1.1) can actually be bounded by

O(1) inf
‖·‖

{
L‖·‖D̄2

X ,‖·‖
ε

}
. (7.1.20)

For example, if X is a simplex, a widely-accepted strategy to accelerate gradient type
methods is to set ‖ · ‖= ‖ · ‖1 and d(x) = ∑

n
i=1xi logxi in (7.1.3), in order to obtain

(nearly) dimension-independent complexity results, which only grow mildly with
the increase of the dimension of the problem. On the other hand, the classic CndG
method does automatically adjust to the geometry of the feasible set X in order to
obtain such scalability to high-dimensional problems.

Thirdly, observe that the rate of convergence in (7.1.12) depends on ‖xk− yk−1‖
which usually does not vanish as k increases. For example, suppose {yk}→ x∗ (this
is true if x∗ is a unique optimal solution of (7.1.1)), the distance {‖xk− yk−1‖} does
not necessarily converge to zero unless x∗ is an extreme point of X . In these cases,
the summation ∑

k
i=1‖xi− yi−1‖2 increases linearly with respect k. We will discuss

some techniques in Section 7.1.2 that might help to improve this situation.
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7.1.1.2 Bilinear saddle point problems under an LO oracle

In this subsection, we show that the CndG method, after incorporating some proper
modification, can be used to solve the bilinear saddle point problem with the objective
function f given by (7.1.5) .

Since f given by (7.1.5) is nonsmooth in general, we cannot directly apply
the CndG method. However, recall that the function f (·) in (7.1.5) can be closely
approximated by a class of smooth convex functions. More specifically, for a given
strongly convex function v : Y → R such that

ω(y)≥ ω(x)+ 〈ω ′(x),y− x〉+ σω

2 ‖y− x‖2,∀x,y ∈ Y, (7.1.21)

let us denote cω := argminy∈Y ω(y), W (y) := ω(y)−ω(cω)−〈∇ω(cω),y−cω〉 and

DY ≡ DY,ω := [max
y∈Y

W (y)]1/2. (7.1.22)

Then the function f (·) in (7.1.5) can be closely approximated by

fη(x) := max
y

{
〈Ax,y〉− f̂ (y)−η [V (y)−D2

Y ] : y ∈ Y
}
. (7.1.23)

Indeed, by definition we have 0≤V (y)≤ D2
Y and hence, for any η ≥ 0,

f (x)≤ fη(x)≤ f (x)+η D2
Y , ∀x ∈ X . (7.1.24)

Moreover, it can be shown that fη(·) is differentiable and its gradients are Lipschitz
continuous with the Lipschitz constant given by (see Lemma 3.7)

Lη := ‖A‖2
ησv

. (7.1.25)

In view of this result, we modify the CndG method by replacing the gradient
f ′(yk) in Algorithm 7.1 with the gradient f ′ηk

(yk) for some ηk > 0. Observe that in
the original smoothing scheme in Section 3.5, we first need to define the smooth
approximation function fη in (7.1.23) by specifying in advance the smoothing
parameter η and then apply a smooth optimization method to solve the approximation
problem. The specification of η usually requires explicit knowledge of D̄X , D2

Y and
the target accuracy ε given a priori. However, by using a different analysis, we show
that one can use variable smoothing parameters ηk and thus does not need to know
the target accuracy ε in advance. In addition, wrong estimation on D̄X and D2

Y only
affects the rate of convergence of the modified CndG method by a constant factor.
Our analysis relies on a slightly different construction of fη(·) in (7.1.23) and the
following simple observation.

Lemma 7.1. Let fη(·) be defined in (7.1.23) and η1 ≥ η2 ≥ 0 be given. Then, we
have fη1(x)≥ fη2(x) for any x ∈ X.
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Proof. The result directly follows from the definition of fη(·) in (7.1.23) and the
fact that V (y)−D2

Y ≤ 0.

We are now ready to describe the main convergence properties of this modified
CndG method to solve the bilinear saddle point problems.

Theorem 7.2. Let {xk} and {yk} be the two sequences generated by the CndG
method with f ′(yk) replaced by fηk(yk), where fη(·) is defined in (7.1.5). If the
stepsizes αk, k = 1,2, . . ., are set to (7.1.9) or (7.1.10), and {ηk} satisfies

η1 ≥ η2 ≥ . . . , (7.1.26)

then we have, for any k = 1,2, . . .,

f (yk)− f ∗ ≤ 2
k(k+1)

[
∑

k
i=1

(
iηiD2

Y + ‖A‖
2

σvηi
‖xi− yi−1‖2

)]
. (7.1.27)

In particular, if
ηk =

‖A‖D̄X
DY
√

σvk , (7.1.28)

then we have, for any k = 1,2, . . .,

f (yk)− f ∗ ≤ 2
√

2‖A‖D̄X DY√
σvk , (7.1.29)

where D̄X and DY are defined in (7.1.18) and (7.1.22), respectively.

Proof. Let Γk and γk be defined in (7.1.11) and (7.1.13), respectively. Similarly to
(7.1.16), we have, for any x ∈ X ,

fηk(yk) ≤ (1− γk)[ fηk(yk−1)]+ γk fηk(x)+
Lηk

2 γ
2
k ‖xk− yk−1‖2

≤ (1− γk)[ fηk−1(yk−1)]+ γk fηk(x)+
Lηk

2 γ
2
k ‖xk− yk−1‖2

≤ (1− γk)[ fηk−1(yk−1)]+ γk[ f (x)+ηkD2
Y ]+

Lηk
2 γ

2
k ‖xk− yk−1‖2,

where the second inequality follows from (7.1.26) and Lemma 7.1, and the third
inequality follows from (7.1.24). Now subtracting f (x) from both sides of the above
inequality, we obtain, ∀x ∈ X ,

fηk(yk)− f (x) ≤ (1− γk)[ fηk−1(yk−1)− f (x)]+ γkηkD2
Y +

Lηk
2 γ

2
k ‖xk− yk−1‖2

≤ (1− γk)[ fηk−1(yk−1)− f (x)]+ γkηkD2
Y +

‖A‖2γ2
k

2σvηk
‖xk− yk−1‖2,

which, in view of Lemma 3.17, (7.1.13) and (7.1.14), then implies that, ∀x ∈ X ,

fηk(yk)− f (x)≤ 2
k(k+1)

[
∑

k
i=1

(
iηiD2

Y + ‖A‖
2

σvηi
‖xi− yi−1‖2

)]
, ∀k ≥ 1.

Our result in (7.1.27) then immediately follows from (7.1.24) and the above inequality.
Now it is easy to see that the selection of ηk in (7.1.28) satisfies (7.1.26). By (7.1.27)
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and (7.1.28), we have

f (yk)− f ∗ ≤ 2
k(k+1)

[
∑

k
i=1

(
iηiD2

Y + ‖A‖
2

σvηi
D̄2

X

)]

=
4‖A‖D̄X Dv,Y
k(k+1)

√
σv

∑
k
i=1

√
i≤ 8

√
2‖A‖D̄X DY
3
√

σvk ,

where the last inequality follows from the fact that

∑
k
i=1

√
i≤

∫ k+1

0
tdt ≤ 2

3 (k+1)3/2 ≤ 2
√

2
3 (k+1)

√
k. (7.1.30)

A few remarks about the results obtained in Theorem 7.2 are in order. First,
observe that the specification of ηk in (7.1.28) requires the estimation of a few
problem parameters, including ‖A‖, D̄X , DY and σv. However, wrong estimation on
these parameters will only result in the increase on the rate of convergence of the
modified CndG method by a constant factor. For example, if ηk = 1/

√
k for any

k ≥ 1, then (7.1.27) reduces to

f (yk)− f ∗ ≤ 8
√

2
3
√

k

(
D2

Y +
‖A‖2D̄2

X
σv

)
.

It is worth noting that similar adaptive smoothing schemes can also be used when
one applies the accelerated gradient descent method to solve the bilinear saddle point
problems. Second, suppose that the norm ‖ · ‖ in the dual space associated with Y is
an inner product norm and v(y) = ‖y‖2/2. Also let us denote

D̄Y ≡ D̄Y,‖·‖ := max
x,y∈Y
‖x− y‖. (7.1.31)

In this case, by the definitions of D̄Y and DY in (7.1.31) and (7.1.22), we have
DY ≤ D̄Y . Using this observation and (7.1.29), we conclude that the number of
iterations required by the modified CndG method to solve F 0

‖A‖(X ,Y ) can be bounded
by

O(1)
(
‖A‖D̄X D̄Y

ε

)2
.

7.1.1.3 General nonsmooth problems under an LO oracle

In this subsection, we present a randomized CndG method and establish its rate of
convergence for solving general nonsmooth CP problems under an LO oracle.

The basic idea is to approximate the general nonsmooth CP problems by using
the convolution-based smoothing. The intuition underlying such a approach is that
convolving two functions yields a new function that is at least as smooth as the
smoother one of the original two functions. In particular, let µ denote the density of
a random variable with respect to Lebesgue measure and consider the function fµ

given by
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fµ(x) := ( f ∗µ)(x) =
∫

Rn
f (y)µ(x− y)d(y) = Eµ [x+Z],

where Z is a random variable with density µ . Since µ is a density with respect to
Lebesgue measure, fµ is differentiable. The above convolution-based smoothing
technique has been extensively studied in stochastic optimization. For the sake of
simplicity, we assume throughout this subsection that ‖ ·‖= ‖ ·‖2 and Z is uniformly
distributed over a certain Euclidean ball.

Lemma 7.2. Let ξ be uniformly distributed over the l2-ball B2(0,1) := {x ∈ Rn :
‖x‖2 ≤ 1} and u > 0 is given. Suppose that (7.1.6) holds for any x,y∈ X +uB2(0,1).
Then, the following statements hold for the function fu(·) given by

fu(x) := E[ f (x+uξ )]. (7.1.32)

a) f (x)≤ fu(x)≤ f (x)+Mu;
b) fu(x) has M

√
n/u-Lipschitz continuous gradient with respect to ‖ · ‖2;

c) E[ f ′(x+uξ )] = f ′u(x) and E[‖ f ′(x+uξ )− f ′u(x)‖2]≤M2;
d) If u1 ≥ u2 ≥ 0, then fu1(x)≥ fu2(x) for any x ∈ X.

Proof. TBD

In view of the above result, we can apply the CndG method directly to
minx∈X fu(x) for a properly chosen µ in order to solve the original problem (7.1.1).
The only problem is that we cannot compute the gradient of fu(·) exactly. To address
this issue, we will generate an i.i.d. random sample (ξ1, . . . ,ξT ) for some T > 0 and
approximate the gradient f ′µ(x) by f̃ ′u(x) := 1

T ∑
T
t=1 f ′(x,uξt). After incorporating

the aforementioned randomized smoothing scheme, the CndG method exhibits the
following convergence properties for solving general nonsmooth convex optimization
problems.

Theorem 7.3. Let {xk} and {yk} be the two sequences generated by the classic
CndG method with f ′(yk−1) replaced by the average of the sampled gradients, i.e.,

f̃ ′uk
(yk−1) := 1

Tk
∑

Tk
t=1 f ′(yk−1 +ukξt). (7.1.33)

where fu is defined in (7.1.32) and {ξ1, . . . ,ξTk} is an i.i.d. sample of ξ . If the
stepsizes αk, k = 1,2, . . ., are set to (7.1.9) or (7.1.10), and {uk} satisfies

u1 ≥ u2 ≥ . . . , (7.1.34)

then we have

E[ f (yk)]− f (x)≤ 2M
k(k+1)

[
∑

k
i=1

(
i√
Ti

D̄X + iui +
√

n
ui

D̄2
X

)]
, (7.1.35)

where M is given by (7.1.6). In particular, if

Tk = k and uk =
n1/4D̄X√

k
, (7.1.36)
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then
E[ f (yk)]− f (x)≤ 4(1+2n1/4)MD̄X

3
√

k
,k = 1,2, . . . . (7.1.37)

Proof. Let γk be defined in (7.1.13), similarly to (7.1.15), we have

fuk(yk) ≤ (1− γk) fuk(yk−1)+ γkl fuk
(xk;yk−1)+

M
√

n
2uk

γ
2
k ‖xk− yk−1‖2

≤ (1− γk) fuk−1(yk−1)+ γkl fuk
(xk;yk−1)+

M
√

n
2uk

γ
2
k ‖xk− yk−1‖2,(7.1.38)

where the last inequality follows from the fact that fuk−1(yk−1)≥ fuk(yk−1) due to
Lemma 7.2.d). Let us denote δk := f ′uk

(yk−1)− f̃ ′uk
(yk−1). Noting that by definition

of xk and the convexity of fuk(·),

l fuk
(xk;yk−1) = fuk(yk−1)+ 〈 f ′uk

(yk−1,xk− yk−1〉
= fuk(yk−1)+ 〈 f̃ ′uk

(yk−1),xk− yk−1〉+ 〈δk,xk− yk−1〉
≤ fuk(yk−1)+ 〈 f̃ ′uk

(yk−1),x− yk−1〉+ 〈δk,xk− yk−1〉
= fuk(yk−1)+ 〈 f ′uk

(yk−1),x− yk−1〉+ 〈δk,xk− x〉
≤ fuk(x)+‖δk‖D̄X ≤ f (x)+‖δk‖D̄X +Muk, ∀x ∈ X ,

where the last inequality follows from Lemma 7.2.a), we conclude from (7.1.38) that,
∀x ∈ X ,

fuk(yk)≤ (1− γk) fuk−1(yk−1)+ γk [ f (x)+‖δk‖D̄X +Muk]+
M
√

n
2uk

γ
2
k ‖xk− yk−1‖2,

which implies that

fuk(yk)− f (x)≤ (1− γk)[ fuk−1(yk−1)− f (x)]+ γk [‖δk‖D̄X +Muk]+
M
√

n
2uk

γ
2
k D̄2

X ,

Noting that by Jensen’s inequality and Lemma 7.2.c),

{E[‖δk‖]}2 ≤ E[‖δk‖2] = 1
T 2

k
∑

Tk
t=1E[‖ f ′(yk−1 +ukξk)− f ′uk

(yk−1)‖2]≤ M2

Tk
,

(7.1.39)
we conclude from the previous inequality that

E[ fuk(yk)− f (x)]≤ (1−γk)E[ fuk−1(yk−1)− f (x)]+ γk√
Tk

MD̄X +Mγkuk +
M
√

n
2uk

γ
2
k D̄2

X ,

which, in view of Lemma 3.17, (7.1.13) and (7.1.14), then implies that, ∀x ∈ X ,

E[ fuk(yk)− f (x)]≤ 2
k(k+1)

[
∑

k
i=1

(
i√
Ti

MD̄X +Miui +
M
√

n
ui

D̄2
X

)]
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The result in (7.1.35) follows directly from Lemma 7.2.a) and the above inequality.
Using (7.1.30), (7.1.35) and (7.1.36), we can easily verify that the bound in (7.1.37)
holds.

We now add a few remarks about the results obtained in Theorem 7.3. Firstly,
note that in order to obtain the result in (7.1.37), we need to set Tk = k. This implies
that at the k-th iteration of the randomized CndG method in Theorem 7.3, we need
to take an i.i.d. sample {ξ1, . . . ,ξk} of ξ and compute the corresponding gradients
{ f ′(yk−1,ξ1), . . . , f ′(yk−1,ξk)}. Also note that from the proof of the above result, we
can recycle the generated samples {ξ1, . . . ,ξk} for usage in subsequent iterations.

Secondly, observe that we can apply the randomized CndG method to solve
the bilinear saddle point problems with f given by (7.1.5). In comparison with
the smoothing CndG method in Subsection 7.1.1.2, we do not need to solve the
subproblems given in the form of (7.1.23), but to solve the subproblems

max
y

{
〈A(x+ξi),y〉− f̂ (y) : y ∈ Y

}
,

in order to compute f ′(yk−1,ξi), i = 1, . . . ,k, at the k-th iteration. In particular, if
f̂ (y) = 0, then we only need to solve linear optimization subproblems over the set Y .
To the best of our knowledge, this is the only optimization algorithm that requires
linear optimization in both primal and dual space.

Thirdly, in view of (7.1.37), the number of iterations (calls to the LO oracle)
required by the randomized CndG method to find a solution x̄ such that E[ f (x̄)−
f ∗]≤ ε can be bounded by

Nε := O(1)
√

nM2D̄2
X

ε2 , (7.1.40)

and that the total number of subgradient evaluations can be bounded by

∑
Nε

k=1Tk = ∑
Nε

k=1k = O(1)N2
ε .

7.1.1.4 Strongly convex problems under an enhanced LO oracle

In this subsection, we assume that the objective function f (·) in (7.1.1) is smooth
and strongly convex, i.e., in addition to (7.1.4), it also satisfies

f (y)− f (x)−〈 f ′(x),y− x〉 ≥ µ

2 ‖y− x‖2, ∀x,y ∈ X . (7.1.41)

It is known that the optimal complexity for the general first-order methods to solve
this class of problems is given by by

O(1)
√

L
µ

max
(

log µD̄X
ε

,1
)
.

On the other hand, the number of calls to the LO oracle for the CndG method is
given by O(LD̄2

X/ε).
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Our goal in this subsection is to show that, under certain stronger assumptions on
the LO oracle, we can somehow “improve” the complexity of the CndG method for
solving these strongly convex problems. More specifically, we assume throughout
this subsection that we have access to an enhanced LO oracle, which can solve
optimization problems given in the form of

min{〈p,x〉 : x ∈ X ,‖x− x0‖ ≤ R} (7.1.42)

for some given x0 ∈ X . For example, we can assume that the norm ‖ · ‖ is chosen
such that problem (7.1.42) is relatively easy to solve. In particular, if X is a polytope,
we can set ‖ ·‖= ‖ ·‖∞ or ‖ ·‖= ‖ ·‖1 and then the complexity to solve (7.1.42) will
be comparable to the one to solve (7.1.2). Note however, that such a selection of ‖ · ‖
will possibly increase the value of the condition number given by L/µ . Using similar
technique in Section 4.2.3, we present a shrinking CndG method under the above
assumption on the enhanced LO oracle.

Algorithm 7.2 The Shrinking Conditional Gradient (CndG) Method

Let p0 ∈ X be given. Set R0 = D̄X .
for t = 1, . . . do

Set y0 = pt−1.
for k = 1, . . . ,8L/µ do

Call the enhanced LO oracle to compute xk ∈ Argminx∈Xt−1
〈 f ′(yk−1),x〉, where Xt−1 :=

{x ∈ X : ‖x− pt−1‖ ≤ Rt−1}.
Set yk = (1−αk)yk−1 +αkxk for some αk ∈ [0,1].

end for
Set pt = yk and Rt = Rt−1/

√
2;

end for

Note that an outer (resp., inner) iteration of the above shrinking CndG method
occurs whenever t (resp., k) increases by 1. Observe also that the feasible set Xt
will be reduced at every outer iteration t. The following result summarizes the
convergence properties for this algorithm.

Theorem 7.4. Suppose that conditions (7.1.4) and (7.1.41) hold. If the stepsizes
{αk} in the shrinking CndG method are set to (7.1.9) or (7.1.10), then the number of
calls to the enhanced LO oracle performed by this algorithm to find an ε-solution of
problem (7.1.1) can be bounded by

8L
µ

⌈
max

(
log µR0

ε
,1
)⌉

. (7.1.43)

Proof. Denote K ≡ 8L/µ . We first claim that x∗ ∈ Xt for any t ≥ 0. This relation
is obviously true for t = 0 since ‖y0− x∗‖ ≤ R0 = D̄X . Now suppose that x∗ ∈ Xt−1
for some t ≥ 1. Under this assumption, relation (7.1.17) holds with x = x∗ for inner
iterations k = 1, . . . ,K performed at the t-th outer iteration. Hence, we have

f (yk)− f (x∗)≤ 2L
k(k+1)∑

k
i=1‖xi− yi−1‖2 ≤ 2L

k+1 R2
t−1, k = 1, . . . ,K. (7.1.44)
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Letting k = K in the above relation, and using the facts that pt = yK and f (yK)− f ∗ ≥
µ‖yK− x∗‖2/2, we conclude that

‖pt−x∗‖2≤ 2
µ
[ f (pt)− f ∗] = 2

µ
[ f (yK)− f ∗]≤ 4L

µ(K+1)R2
t−1≤ 1

2 R2
t−1 =R2

t , (7.1.45)

which implies that x∗ ∈ Xt . We now provide a bound on the total number of calls to
the LO oracle (i.e., the total number of inner iterations) performed by the shrinking
CndG method. It follows from (7.1.45) and the definition of Rt that

f (pt)− f ∗ ≤ µ

2 R2
t =

µ

2
R0

2t−1 , t = 1,2, . . . .

Hence the total number of outer iterations performed by the shrinking CndG method
for finding an ε-solution of (7.1.1) is bounded by dmax(log µR0/ε,1)e. This obser-
vation, in view of the fact that K inner iterations are performed at each outer iteration
t, then implies that the total number of inner iterations is bounded by (7.1.43).

7.1.2 New variants of conditional gradient

Our goal in this section is to present a few new LCP methods for CP, obtained
by replacing the projection (prox-mapping) subproblems with linear optimization
subproblems in the accelerated gradient descent method. We will demonstrate that
these methods can exhibit faster rate of convergence under certain circumstances than
the original CndG method. Throughout this section, we focus on smooth CP problems
(i.e., (7.1.4) holds). However, the developed algorithms can be easily modified to
solve saddle point problems, general nonsmooth CP problems and strongly convex
problems, by using similar ideas to those described in Section 7.1.1.

7.1.2.1 Primal averaging CndG method

In this subsection, we present a new LCP method, obtained by incorporating a
primal averaging step into the CndG method. This algorithm is formally described as
follows.

Algorithm 7.3 The Primal Averaging Conditional Gradient (PA-CndG) Method
Let x0 ∈ X be given. Set y0 = x0.
for k = 1, . . . do

Set zk−1 =
k−1
k+1 yk−1 +

2
k+1 xk−1 and pk = f ′(zk−1).

Call the LO oracle to compute xk ∈ Argminx∈X 〈pk,x〉.
Set yk = (1−αk)yk−1 +αkxk for some αk ∈ [0,1].

end for



436 7 Projection-free Methods

It can be easily seen that the PA-CndG method stated above differs from the
classic CndG method in the way that the search direction pk is defined. In particular,
while pk is set to f ′(xk−1) in the classic CndG algorithm, the search direction pk
in PA-CndG is given by f ′(zk−1) for some zk−1 ∈ Conv{x0,x1, . . . ,xk−1}. In other
words, we will need to “average” the primal sequence {xk} before calling the LO
oracle to update the iterates. It is worth noting that the PA-CndG method can be
viewed as a variant of the accelerated gradient descent method, obtained by replacing
the projection (or prox-mapping) subproblem with a simpler linear optimization
subproblem.

By properly choosing the stepsize parameter αk, we have the following conver-
gence results for the PA-CndG method described above.

Theorem 7.5. Let {xk} and {yk} be the sequences generated by the PA-CndG method
applied to problem (7.1.1) with the stepsize policy in (7.1.9) or (7.1.10). Then we
have

f (yk)− f ∗ ≤ 2L
k(k+1)∑

k
i=1‖xi− xi−1‖2 ≤ 2LD̄2

X
k+1 , k = 1,2, . . . , (7.1.46)

where L is given by (7.1.8).

Proof. Let γk and Γk be defined in (7.1.11) and (7.1.13), respectively. Denote
ỹk = (1− γk)yk−1 + γkxk. It can be easily seen from (7.1.9) (or (7.1.10)) and the
definition of yk in Algorithm 7.3 that f (yk) ≤ f (ỹk). Also by definition, we have
zk−1 = (1− γk)yk−1 + γkxk−1 and hence

ỹk− zk−1 = γk(xk− xk−1).

Letting l f (·, ·) be defined in (7.1.7), and using the previous two observations, (7.1.8),
the definition of xk in Algorithm 7.3, and the convexity of f (·), we obtain

f (yk) ≤ f (ỹk)≤ l f (zk−1; ỹk)+
L
2‖ỹk− zk−1‖2

= (1− γk)l f (zk−1;yk−1)+ γkl f (zk−1;xk)+
L
2 γ

2
k ‖xk− xk−1‖2

≤ (1− γk) f (yk−1)+ γkl f (zk−1;x)+ L
2 γ

2
k ‖xk− xk−1‖2

≤ (1− γk) f (yk−1)+ γk f (x)+ L
2 γ

2
k ‖xk− xk−1‖2. (7.1.47)

Subtracting f (x) from both sides of the above inequality, we have

f (yk)− f (x)≤ (1− γk)[ f (yk−1)− f (x)]+ L
2 γ

2
k ‖xk− xk−1‖2,

which, in view of Lemma 3.17, (7.1.14) and the fact that γ1 = 1, then implies that,
∀x ∈ X ,

f (yk)− f (x) ≤ Γk(1− γ1)[ f (y0)− f (x)]+ ΓkL
2 ∑

k
i=1

γ2
i

Γi
‖xi− xi−1‖2

≤ 2L
k(k+1)∑

k
i=1‖xi− xi−1‖2, k = 1,2, . . . .
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We now add a few remarks about the results obtained in Theorem 7.5. Firstly,
similarly to (7.1.19), we can easily see that the number of iterations required by the
PA-CndG method to find an ε-solution of problem (7.1.1) is bounded by O(1)LD̄2

X/ε .
In addition, since the selection of ‖ · ‖ is arbitrary, the iteration complexity of this
method can also be bounded by (7.1.20).

Secondly, while the rate of convergence for the CndG method (cf. (7.1.12))
depends on ‖xk− yk−1‖, the one for the PA-CndG method depends on ‖xk− xk−1‖,
i.e., the distance between the output of the LO oracle in two consecutive iterations.
Clearly, the distance ‖xk−xk−1‖ will depend on the geometry of X and the difference
between pk and pk−1. Let γk be defined in (7.1.13) and suppose that αk is set to
(7.1.9) (i.e., αk = γk). Observe that by definitions of zk and yk in Algorithm 7.3, we
have

zk− zk−1 = (yk− yk−1)+ γk+1(xk− yk)− γk(xk−1− yk−1)

= αk(xk− yk−1)+ γk+1(xk− yk)− γk(xk−1− yk−1)

= γk(xk− yk−1)+ γk+1(xk− yk)− γk(xk−1− yk−1),

which implies that ‖zk − zk−1‖ ≤ 3γkD̄X . Using this observation, (7.1.4) and the
definition of pk, we have

‖pk− pk−1‖∗ = ‖ f ′(zk−1)− f ′(zk−2)‖∗ ≤ 3γk−1LD̄X . (7.1.48)

Hence, the difference between pk and pk−1 vanishes as k increases. By exploiting this
fact, we establish in Corollary 7.1 certain necessary conditions about the LO oracle,
under which the rate of convergence of the PA-CndG algorithm can be improved.

Corollary 7.1. Let {yk} be the sequence generated by the PA-CndG method applied
to problem (7.1.1) with the stepsize policy in (7.1.9). Suppose that the LO oracle
satisfies

‖xk− xk−1‖ ≤ Q‖pk− pk−1‖ρ
∗ , k ≥ 2, (7.1.49)

for some ρ ∈ (0,1] and Q > 0. Then we have, for any k ≥ 1,

f (yk)− f ∗ ≤O(1)





Q2L2ρ+1D̄2ρ

X /
[
(1−2ρ)k2ρ+1

]
, ρ ∈ (0,0.5),

Q2L2D̄X log(k+1)/k2, ρ = 0.5,
Q2L2ρ+1D̄2ρ

X /
[
(2ρ−1)k2

]
, ρ ∈ (0.5,1].

(7.1.50)

Proof. Let γk be defined in (7.1.13). By (7.1.48) and (7.1.49), we have

‖xk− xk−1‖ ≤ Q‖pk− pk−1‖ρ
∗ ≤ Q(3γkLD̄X )

ρ

for any k ≥ 2. The result follows by plugging the above bound into (7.1.46) and
noting that
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∑
k
i=1(i+1)−2ρ ≤





(k+1)−2ρ+1

1−2ρ
, ρ ∈ (0,0.5),

log(k+1), ρ = 0.5,
1

2ρ−1 , ρ ∈ (0.5,1].

The bound obtained in (7.1.50) provides some interesting insights on the relation
between first-order LCP methods and the general optimal first-order methods for
CP. More specifically, if the LO oracle satisfies the Hölder’s continuity condition
(7.1.49) for some ρ ∈ (0.5,1], then we can obtain an O(1/k2) rate of convergence
for the PA-CndG method for solving smooth convex optimization problems.

While these assumptions on the LO oracle seem to quite strong, we provide some
examples below fro which the LO oracle satisfies (7.1.49).

Example 7.1. Suppose X is given by {x ∈ Rn : ‖Bx‖ ≤ 1} and f = ‖Ax−b‖2
2. More-

over, the system Ax−b is overdetermined. Then it can be seen that condition (7.1.49)
will be satisfied.

It is possible to generalize the above example for more general convex sets (e.g.,
strongly convex sets) and for more general convex functions satisfying certain growth
conditions.

7.1.2.2 Primal-dual averaging CndG methods

Our goal in this subsection is to present another new LCP method, namely the primal-
dual averaging CndG method, obtained by introducing a different acceleration scheme
into the CndG method. This algorithm is formally described as follows.

Algorithm 7.4 The Primal-Dual Averaging Conditional Gradient (PDA-CndG)
Method

Let x0 ∈ X be given and set y0 = x0.
for k = 1, . . . do

Set zk−1 =
k−1
k+1 yk−1 +

2
k+1 xk−1.

Set pk =Θ
−1
k ∑

k
i=1[θi f ′(zi−1)], where θi ≥ 0 are given and Θk = ∑

k
i=1θi.

Call the LO oracle to compute xk ∈ Argminx∈X 〈pk,x〉.
Set yk = (1−αk)yk−1 +αkxk for some αk ∈ [0,1].

end for

While the input vector pk to the LO oracle is set to f ′(zk−1) in the PA-CndG
method in the previous subsection, the vector pk in the PDA-CndG method is defined
as a weighted average of f ′(zi−1), i = 1, . . . ,k, for some properly chosen weights θi,
i = 1, . . . ,k. This algorithm can also be viewed as the projection-free version of an
∞-memory variant of the accelerated gradient descent method.

Note that by convexity of f , the function Ψk(x) given by
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Ψk(x) :=
{

0, k = 0,
Θ
−1
k ∑

k
i=1θil f (zi−1;x), k ≥ 1,

(7.1.51)

underestimates f (x) for any x ∈ X . In particular, by the definition of xk in Algo-
rithm 7.4, we have

Ψk(xk)≤Ψk(x)≤ f (x), ∀x ∈ X , (7.1.52)

and hence Ψk(xk) provides a lower bound on the optimal value f ∗ of problem (7.1.1).
In order to establish the convergence of the PDA-CndG method, we first need to
show a simple technical result about Ψk(xk).

Lemma 7.3. Let {xk} and {zk} be the two sequences computed by the PDA-CndG
method. We have

θk l f (zk−1;xk)≤ΘkΨk(xk)−Θk−1Ψk−1(xk−1), k = 1,2, . . . , (7.1.53)

where l f (· ; ·) and Ψk(·) are defined in (7.1.7) and (7.1.51), respectively.

Proof. It can be easily seen from (7.1.51) and the definition of xk in Algorithm 7.4
that xk ∈Argminx∈XΨk(x) and hence that Ψk−1(xk−1)≤Ψk−1(xk). Using the previous
observation and (7.1.51), we obtain

ΘkΨk(xk) = ∑
k
i=1θil f (zi−1;xi) = θk l f (zk−1;xk)+∑

k−1
i=1 θil f (zi−1;xi)

= θkl f (zk−1;xk)+Θk−1Ψk−1(xk)

≥ θkl f (zk−1;xk)+Θk−1Ψk−1(xk−1).

We are now ready to establish the main convergence properties of the PDA-CndG
method.

Theorem 7.6. Let {xk} and {yk} be the two sequences generated by the PDA-CndG
method applied to problem (7.1.1) with the stepsize policy in (7.1.9) or (7.1.10). Also
let {γk} be defined in (7.1.13). If the parameters θk are chosen such that

θkΘ
−1
k = γk, k = 1,2, . . . , (7.1.54)

Then, we have

f (yk)− f ∗ ≤ f (yk)−Ψk(xk)≤ 2L
k(k+1)∑

k
i=1‖xi− xi−1‖2 ≤ 2LD̄2

X
k+1 (7.1.55)

for any k = 1,2, . . ., where L is given by (7.1.8).

Proof. Denote ỹk = (1− γk)yk−1 + γkxk. It follows from (7.1.9) (or (7.1.10)) and
the definition of yk that f (yk) ≤ f (ỹk). Also noting that, by definition, we have
zk−1 = (1− γk)yk−1 + γkxk−1 and hence

ỹk− zk−1 = γk(xk− xk−1).
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Using these two observations, (7.1.8), the definitions of xk in Algorithm 7.4, the
convexity of f and (7.1.53), we obtain

f (yk) ≤ f (ỹk)≤ l f (zk−1; ỹk)+
L
2‖ỹk− zk−1‖2

= (1− γk)l f (zk−1;yk−1)+ γkl f (zk−1;xk)+
L
2 γ

2
k ‖xk− xk−1‖2

= (1− γk) f (yk−1)+ γkl f (xk;zk−1)+
L
2 γ

2
k ‖xk− xk−1‖2

≤ (1− γk) f (yk−1)+ γkθ
−1
k [ΘkΨk(xk)−Θk−1Ψk−1(xk−1)]+

L
2 γ

2
k ‖xk− xk−1‖2.(7.1.56)

Also, using (7.1.54) and the fact that Θk−1 =Θk−θk, we have

γkθ
−1
k [ΘkΨk(xk)−Θk−1Ψk−1(xk−1)] = Ψk(xk)−Θk−1Θ

−1
k Ψk−1(xk−1)

= Ψk(xk)−
(
1−θkΘ

−1
k

)
Ψk−1(xk−1)

= Ψk(xk)− (1− γk)Ψk−1(xk−1).

Combining the above two relations and re-arranging the terms, we obtain

f (yk)−Ψk(xk)≤ (1− γk) [ f (yk−1)−Ψk−1(xk−1)]+
L
2 γ

2
k ‖xk− xk−1‖2,

which, in view of Lemma 3.17, (7.1.13) and (7.1.14), then implies that

f (yk)−Ψk(xk)≤ 2L
k(k+1)∑

k
i=1‖xi− xi−1‖2.

Our result then immediately follows from (7.1.52) and the above inequality.

We now add a few remarks about the results obtained in Theorem 7.6. Firstly,
observe that we can simply set θk = k, k = 1,2, . . . in order to satisfy (7.1.54).
Secondly, in view of the discussion after Theorem 7.5, the rate of convergence for
the PDA-CndG method is exactly the same as the one for the PA-CndG method. In
addition, its rate of convergence is invariant of the selection of the norm ‖ · ‖ (see
(7.1.20)). Thirdly, according to (7.1.55), we can compute an online lower bound
Ψk(xk) on the optimal value f ∗, and terminate the PDA-CndG method based on the
optimality gap f (yk)−Ψk(xk).

Similar to the PA-CndG method, the rate of convergence of the PDA-CndG method
depends on xk− xk−1, which in turn depends on the geometry of X and the input
vectors pk and pk−1 to the LO oracle. One can easily check the closeness between
pk and pk−1. Indeed, by the definition of pk, we have pk = Θ

−1
k [(1− θk)pk−1 +

θk f ′k(zk−1) and hence

pk− pk−1 =Θ
−1
k θk[pk−1 + f ′k(zk−1)] = γk[pk−1 + f ′k(zk−1)], (7.1.57)

where the last inequality follows from (7.1.54). Noting that by (7.1.8), we have
‖ f ′(x)‖∗ ≤ ‖ f ′(x∗)‖∗+LD̄X for any x ∈ X and hence that ‖pk‖∗ ≤ ‖ f ′(x∗)‖∗+LD̄X
due to the definition of pk. Using these observations, we obtain

‖pk− pk−1‖∗ ≤ 2γk[‖ f ′(x∗)‖∗+LD̄X ], k ≥ 1. (7.1.58)
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Hence, under certain continuity assumptions on the LO oracle, we can obtain a result
similar to Corollary 7.1. Note that both stepsize policies in (7.1.9) and (7.1.10) can
be used in this result.

Corollary 7.2. Let {yk} be the sequences generated by the PDA-CndG method ap-
plied to problem (7.1.1) with the stepsize policy in (7.1.9) or (7.1.10). Assume that
(7.1.54) holds. Also suppose that the LO oracle satisfies (7.1.49) for some ρ ∈ (0,1]
and Q > 0. Then we have, for any k ≥ 1,

f (yk)− f ∗ ≤O(1)





LQ2 [‖ f ′(x∗)‖∗+L D̄X ]
2ρ
/
[
(1−2ρ)k2ρ+1

]
, ρ ∈ (0,0.5),

LQ2 [‖ f ′(x∗)‖∗+L D̄X ] log(k+1)/k2, ρ = 0.5,
LQ2 [‖ f ′(x∗)‖∗+L D̄X ]

2ρ
/
[
(2ρ−1)k2

]
, ρ ∈ (0.5,1].

(7.1.59)

Similar to Corollary 7.1, Corollary 7.2 also helps to build some connections
between LCP methods and the more general optimal first-order method.

7.1.3 Lower complexity bound

Our goal in this section is to establish a few lower complexity bounds for solving
different classes of CP problems under an LO oracle. More specifically, we first
introduce a generic LCP algorithm in Subsection 7.1.3.1 and then present a few
lower complexity bounds for these types of algorithms to solve different smooth and
nonsmooth CP problems in Subsections 7.1.3.2 and 7.1.3.3, respectively.

7.1.3.1 A generic LCP algorithm

The LCP algorithms solve problem (7.1.1) iteratively. In particular, at the k-th itera-
tion, these algorithms perform a call to the LO oracle in order to update the iterates
by minimizing a given linear function 〈pk,x〉 over the feasible region X . A generic
framework for these types of algorithms is described as follows.

Algorithm 7.5 A generic LCP algorithm
Let x0 ∈ X be given.
for k = 1,2, . . . , do

Define the linear function 〈pk, ·〉.
Call the LO oracle to compute xk ∈ Argminx∈X 〈pk,x〉.
Output yk ∈ Conv{x0, . . . ,xk}.

end for

Observe the above LCP algorithm can be quite general. Firstly, there are no
restrictions regarding the definition of the linear function 〈pk, ·〉. For example, if
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f is a smooth function, then pk can be defined as the gradient computed at some
feasible solution or a linear combination of some previously computed gradients. If f
is nonsmooth, we can define pk as the gradient computed for a certain approximation
function of f . We can also consider the situation when some random noise or second-
order information is incorporated into the definition of pk. Secondly, the output
solution yk is written as a convex combination of x0, . . . ,xk, and thus can be different
from any points in {xk}. We will show in Sections 7.1.1 and 7.1.2 that Algorithm 8.1
covers, as certain special cases, the classic CndG method and several new LCP
methods to be studied in this paper.

It is interesting to observe the difference between the above LCP algorithm and
the general first-order methods for CP. One one hand, the LCP algorithm can only
solve linear, rather than nonlinear subproblems (e.g., projection or prox-mapping) to
update iterates. On the other hand, the LCP algorithm allows more flexibility in the
definitions of the search direction pk and the output solution yk.

7.1.3.2 Lower complexity bounds for smooth minimization

In this subsection, we consider a class of smooth CP problems, which consist of any
CP problems given in the form of (7.1.1) with f satisfying assumption (7.1.4). Our
goal is to derive a lower bound on the number of calls to the LO oracle required by
any LCP methods for solving this class of problems.

In the same vein as the classic complexity analysis for CP, we assume that the LO
oracle used in the LCP algorithm is resisting, implying that: i) the LCP algorithm
does not know how the solution of (7.1.2) is computed; and ii) in the worst case,
the LO oracle provides the least amount of information for the LCP algorithm to
solve problem (7.1.1). Using this assumption, we will construct a class of worst-case
instances for smooth convex optimization and establish a lower bound on the number
of iterations required by any LCP algorithms to solve these instances.

Theorem 7.7. Let ε > 0 be a given target accuracy. The number of iterations required
by any LCP methods to solve smooth convex optimization problems, in the worst
case, cannot be smaller than

⌈
min

{
n
2 ,

LD̄2
X

4ε

}⌉
−1, (7.1.60)

where D̄X is given by (7.1.18).

Proof. Consider the CP problem of

f ∗0 := min
x∈X0

{
f0(x) := L

2 ∑
n
i=1(x

(i))2
}
, (7.1.61)

where X0 :=
{

x ∈ Rn : ∑
n
i=1x(i) = D,x(i) ≥ 0

}
for some D > 0. It can be easily seen

that the optimal solution x∗ and the optimal value f ∗0 for problem (7.1.61) are given
by



7.1 Conditional gradient method 443

x∗ =
(D

n , . . . ,
D
n

)
and f ∗0 = LD2

n . (7.1.62)

Clearly, this class of problems belong to F 1,1
L,‖·‖(X) with ‖ · ‖= ‖ · ‖2.

Without loss of generality, we assume that the initial point is given by x0 = De1
where e1 = (1,0, . . . ,0) is the unit vector. Otherwise, for an arbitrary x0 ∈ X0, we can
consider a similar problem given by

minx

(
x(1)
)2

+∑
n
i=2

(
x(i)− x(i)0

)2

s.t. x(1)+∑
n
i=2

(
x(i)− x(i)0

)
= D

x(1) ≥ 0
x(i)− x(i)0 ≥ 0, i = 2, . . . ,n.

and adapt our following argument to this problem without much modification.
Now suppose that problem (7.1.61) is to be solved by an LCP algorithm. At the

k-th iteration, this algorithm will call the LO oracle to compute a new search point xk
based on the input vector pk, k = 1, . . .. We assume that the LO oracle is resisting in
the sense that it always outputs an extreme point xk ∈ {De1,De2, . . . ,Den} such that

xk ∈ Argminx∈X0
〈pk,x〉.

Here ei, i = 1, . . . ,n, denotes the i-th unit vector in Rn. In addition, whenever xk is
not uniquely defined, it breaks the tie arbitrarily. Let us denote xk = Depk for some
1≤ pk ≤ n. By definition, we have yk ∈ DConv{x0,x1, . . . ,xk} and hence

yk ∈ DConv{e1,ep1 ,ep2 , . . . ,epk}. (7.1.63)

Suppose that totally q unit vectors from the set {e1,ep1 ,ep2 , . . . ,epk} are linearly
independent for some 1≤ q≤ k+1≤ n. Without loss of generality, assume that the
vectors e1, ep1 , ep2 , . . . , epq−1 are linearly independent. Therefore, we have

f0(yk) ≥ min
x

{
f0(x) : x ∈ DConv{e1,ep1 ,ep2 , . . . ,epk}

}

= min
x

{
f0(x) : x ∈ DConv{e1,ep1 ,ep2 , . . . ,epq−1}

}

= LD2

q ≥ LD2

k+1 ,

where the second identity follows from the definition of f0 in (7.1.61). The above
inequality together with (7.1.62) then imply that

f0(yk)− f ∗0 ≥ LD2

k+1 − LD2

n (7.1.64)

for any k = 1, . . . ,n−1. Let us denote

K̄ :=
⌈

min
{

n
2 ,

LD̄2
X0

4ε

}⌉
−1.
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By the definition of D̄X and X0, and the fact that ‖ · ‖= ‖ · ‖2, we can easily see that
¯̄DX0 =

√
2D and hence that

K̄ =
⌈

1
2 min

{
n, LD2

ε

}⌉
−1.

Using (7.1.64) and the above identity, we conclude that, for any 1≤ k ≤ K̄,

f0(yk)− f ∗0 ≥ LD2

K̄+1 −
LD2

n ≥ 2LD2

min{n,LD2/ε} −
LD2

n

= LD2

min{n,LD2/ε} +
(

LD2

min{n,LD2/ε} −
LD2

n

)
≥ LD2

LD2/ε
+
(

LD2

n − LD2

n

)
= ε.

Our result then immediately follows since (7.1.61) is a special class of problems in
F 1,1

L,‖·‖(X).

We now add a few remarks about the results obtained in Theorem 7.7. First, it can
be easily seen from (7.1.60) that, if n≥ LD̄2

X/(2ε), then the number of calls to the
LO oracle required by any LCP methods for solving smooth convex optimization
problems, in the worst case, cannot be smaller than O(1)LD̄2

X/ε . Second, it is worth
noting that the objective function f0 in (7.1.61) is actually strongly convex. Hence, the
performance of the LCP methods cannot be improved by assuming strong convexity
when n is sufficiently large (see Section 7.1.1.4 for more discussions). This is in sharp
contrast to the general first-order methods whose complexity for solving strongly
convex problems depends on log(1/ε).

Comparing (7.1.60) with a few complexity bounds we obtained for the CndG,
PA-CndG and PDA-CndG methods, we conclude that these algorithms achieve an
optimal bound on the number of calls to the LO oracle for solving smooth convex
optimization if n is sufficiently large. It should be noted, however, that the lower
complexity bound in (7.1.60) was established for the number of calls to the LO
oracles. It is possible that we can achieve better complexity than O(1)LD̄2

X/ε in
terms of the number of gradient computations for smooth convex optimization. We
will discuss this issue in more details in Section 7.2.

7.1.3.3 Lower complexity bounds for nonsmooth minimization

In this subsection, we consider two classes of nonsmooth CP problems. The first
one is a general class of nonsmooth CP problems which consist of any CP problems
given in the form of (7.1.1) with f satisfying (7.1.6). The second one is a special
class of bilinear saddle-point problems, composed of all CP problems (7.1.1) with f
given by (7.1.5). Our goal in this subsection is to derive the lower complexity bounds
for any LCP algorithms to solve these two classes of nonsmooth CP problems.

It can be seen that, if f (·) is given by (7.1.5), then

‖ f ′(x)‖∗ ≤ ‖A‖D̄Y , ∀x ∈ X ,
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where D̄Y is given by (7.1.18). Hence, the saddle point problems with f given by
(7.1.5) are a special class of nonsmooth CP problems.

Theorem 7.8 below provides lower complexity bounds for solving these two
classes of nonsmooth CP problems by using LCP algorithms.

Theorem 7.8. Let ε > 0 be a given target accuracy. Then, the number of iterations
required by any LCP methods to solve the problem classes with f satisfying (7.1.6)
and with f given by (7.1.5), respectively, cannot be smaller than

1
4 min

{
n, M2D̄2

X
2ε2

}
−1 (7.1.65)

and
1
4 min

{
n, ‖A‖

2D̄2
X D̄2

Y
2ε2

}
−1, (7.1.66)

where D̄X and D̄Y are defined in (7.1.18) and (7.1.31), respectively.

Proof. We first show the bound in (7.1.65). Consider the CP problem of

f̂ ∗0 := min
x∈X0

{
f̂ (x) := M

(
∑

n
i=1x2

i
)1/2

}
, (7.1.67)

where X0 :=
{

x ∈ Rn : ∑
n
i=1x(i) = D,x(i) ≥ 0

}
for some D > 0. It can be easily seen

that the optimal solution x∗ and the optimal value f ∗0 for problem (7.1.67) are given
by

x∗ =
(D

n , . . . ,
D
n

)
and f̂ ∗0 = MD√

n . (7.1.68)

Clearly, this class of problems satisfy (7.1.6) with ‖ · ‖= ‖ · ‖2. Now suppose that
problem (7.1.61) is to be solved by an arbitrary LCP method. Without loss of gener-
ality, we assume that the initial point is given by x0 = De1 where e1 = (1,0, . . . ,0)
is the unit vector. Assume that the LO oracle is resisting in the sense that it always
outputs an extreme point solution. By using an argument similar to the one used in
the proof of (7.1.63), we can show that

yk ∈ DConv{e1,ep1 ,ep2 , . . . ,epk}

where epi , i = 1, . . . ,k, are the unit vectors in Rn. Suppose that totally q unit vectors
in the set {e1,ep1 ,ep2 , . . . ,epk} are linearly independent for some 1≤ q≤ k+1≤ n.
We have

f̂0(yk)≥min
x

{
f̂0(x) : x ∈ DConv{e1,ep1 ,ep2 , . . . ,epk}

}
= MD√

q ≥ MD√
k+1

,

where the identity follows from the definition of f̂0 in (7.1.67). The above inequality
together with (7.1.68) then imply that

f̂0(yk)− f̂ ∗0 ≥ MD√
k+1
− LD2√

n (7.1.69)
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for any k = 1, . . . ,n−1. Let us denote

K̄ := 1
4

⌈
min

{
n,

M2D̄2
X0

2ε2

}⌉
−1.

Using the above definition, (7.1.69) and the fact that D̄X0 =
√

2D, we conclude that

f̂0(yk)− f̂ ∗0 ≥ MD√
K̄+1
− MD

n ≥ 2MD
min
{√

n,MD
ε

} − MD√
n ≥ ε

for any 1≤ k≤ K̄. Our result in (7.1.65) then immediately follows since (7.1.67) is a
special class of problems with f satisfying (7.1.6).

In order to prove the lower complexity bound in (7.1.66), we consider a class of
saddle point problems given in the form of

min
x∈X0

max
‖y‖2≤D̃

M〈x,y〉. (7.1.70)

Clearly, these problems belong to S‖A‖(X ,Y ) with A = MI. Noting that prob-
lem (7.1.70) is equivalent to

min
x∈X0

MD̃
(
∑

n
i=1x2

i
)1/2

,

we can show the lower complexity bound in (7.1.66) by using an argument similar to
the one used in the proof of bound (7.1.65).

Observe that while the lower complexity bound in (7.1.65) is in the same order
of magnitude as the one for general first-order methods to solve these problems.
However, the bound in (7.1.65) holds not only for first-order LCP methods, but also
for any other LCP methods, including those based on higher-order information.

In view of Theorem 7.8 and the discussions after Theorem 7.2, the CndG method
when coupled with smoothing technique, is optimal for solving bilinear saddle point
problems with f given by (7.1.5), when n is sufficiently large.

In addition, from (7.1.65) and the discussion after Theorem 7.3, we conclude that
the complexity bound in (7.1.40) on the number of calls to the LO oracle is nearly
optimal for general nonsmooth convex optimization due to the following facts: i)
the above result is in the the same order of magnitude as (7.1.65) with an additional
factor of

√
n; and ii) the termination criterion is in terms of expectation.

7.2 Conditional gradient sliding method

In the previous section, we show that the number of calls to the LO oracle performed
by LCP methods cannot be smaller than O(1/ε) for solving smooth convex opti-
mization problems. Moreover, it has been shown that the CndG method and a few of
its variants can find an ε-solution of (7.1.1) (i.e., a point x̄ ∈ X s.t. f (x̄)− f ∗ ≤ ε) in
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at most O(1/ε) iterations. Note that each iteration of the CndG method requires one
call to the LO oracle and one gradient evaluation. Therefore, the CndG method re-
quires totally O(1/ε) gradient evaluations. Since the aforementioned O(1/ε) bound
on gradient evaluations is significantly worse than the optimal O(1/

√
ε) bound for

smooth convex optimization, a natural question is whether one can further improve
the O(1/ε) complexity bound associated with the CndG method.

Our main goal in this section is to show that, although the number of calls to the
LO oracle cannot be improved for the LCP methods in general, we can substantially
improve their complexity bounds in terms of the number of gradient evaluations. To
this end, we present a new LCP algorithm, referred to as the conditional gradient
sliding (CGS) method, which can skip the computation for the gradient of f from time
to time while still maintaining the optimal bound on the number of calls to the LO
oracle. Our development has been leveraged on the basic idea of applying the CndG
method to the subproblems of the accelerated gradient descent method, rather than to
the original CP problem in (7.1.1) itself. As a result, the same first-order information
of f will be used throughout a large number of CndG iterations. Moreover, the
accuracy of the approximate solutions to these subproblems is measured by the
first-order optimality condition (or Wolfe gap), which allows us to establish the
convergence of an inexact version of the accelerated gradient descent method. It
should be noted, however that one restriction associated with the CGS method is that
we need to require the norm associated with the feasible region X is an inner product
norm.

This section proceeds as follows. Firstly, we show that if f is a smooth convex
function satisfying (7.1.4), then the number of calls to the FO and LO oracles,
respectively, can be bounded by O(1/

√
ε) and O(1/ε). Moreover, if f is smooth

and strongly convex, then the number of calls to the FO oracle can be significantly
reduced to O(log1/ε) while the number of calls to the LO oracle remains the same.
It should be noted that these improved complexity bounds were obtained without
enforcing any stronger assumptions on the LO oracle or the feasible set X .

Secondly, we consider the stochastic case where one can only have access to
a stochastic first-order oracle (SFO) of f , which upon requests, returns unbiased
estimators for the gradient of f . By developing a stochastic counterpart of the CGS
method, i.e., the SCGS algorithm, we show that the number of calls to the SFO and
LO oracles, respectively, can be optimally bounded by O(1/ε2) and O(1/ε) when f
is smooth. In addition, if f is smooth and strongly convex, then the former bound
can be significantly reduced to O(1/ε).

Thirdly, we generalize the CGS and SCGS algorithms to solve an important class
of nonsmooth CP problems that can be closely approximated by a class of smooth
functions. By incorporating an adaptive smoothing technique into the conditional
gradient sliding algorithms, we show that the number of gradient evaluations and
calls to the LO oracle can bounded optimally by O(1/ε) and O(1/ε2), respectively.
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7.2.1 Deterministic conditional gradient sliding

Our goal in this subsection is to present a new LCP method, namely the conditional
gradient sliding (CGS) method, which can skip the computation for the gradient of
f from time to time when performing linear optimization over the feasible region
X . More specifically, we introduce the CGS method for smooth convex problems
in Subsection 7.2.1.1 and generalize it for smooth and strongly convex problems in
Subsection 7.2.1.2.

7.2.1.1 Smooth convex optimization

The basic scheme of the CGS method is obtained by applying the classic condi-
tional gradient (CndG) method to solve the projection subproblems existing in the
accelerated gradient descent (AGD) method approximately. By properly specifying
the accuracy for solving these subproblems, we will show that the resulting CGS
method can achieve the optimal bounds on the number of calls to the FO and LO
oracles for solving problem (7.1.1).

The CGS method is formally described as follows.

Algorithm 7.6 The conditional gradient sliding (CGS) method
Input: Initial point x0 ∈ X and iteration limit N.
Let βk ∈ R++,γk ∈ [0,1], and ηk ∈ R+, k = 1,2, . . ., be given and set y0 = x0.
for k = 1,2, . . . ,N do

zk = (1− γk)yk−1 + γkxk−1, (7.2.1)

xk = CndG( f ′(zk),xk−1,βk,ηk), (7.2.2)

yk = (1− γk)yk−1 + γkxk. (7.2.3)

end for
Output: yN .

procedure u+ = CndG(g, u, β , η)
1. Set u1 = u and t = 1.
2. Let vt be an optimal solution for the subproblem of

Vg,u,β (ut) := max
x∈X
〈g+β (ut −u),ut − x〉. (7.2.4)

3. If Vg,u,β (ut)≤ η , set u+ = ut and terminate the procedure.
4. Set ut+1 = (1−αt)ut +αt vt with

αt = min
{

1, 〈β (u−ut )−g,vt−ut 〉
β‖vt−ut‖2

}
. (7.2.5)

5 Set t← t +1 and go to step 2.
end procedure
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Clearly, the most crucial step of the CGS method is to update the search point xk
by calling the CndG procedure in (7.2.2). Denoting φ(x) := 〈g,x〉+β‖x−u‖2/2, the
CndG procedure can be viewed as a specialized version of the classical conditional
gradient method applied to minx∈X φ(x). In particular, it can be easily seen that
Vg,u,β (ut) in (7.2.4) is equivalent to maxx∈X 〈φ ′(ut),ut − x〉, which is often called
the Wolfe gap, and the CndG procedure terminates whenever Vg,u,β (ut) is smaller
than the pre-specified tolerance η . In fact, this procedure is slightly simpler than the
generic conditional gradient method in that the selection of αt in (7.2.5) explicitly
solves

αt = argminα∈[0,1]φ((1−α)ut +αvt). (7.2.6)

In view of the above discussion, we can easily see that xk obtained in (7.2.2) is an
approximate solution for the projection subproblem

min
x∈X

{
φk(x) := 〈 f ′(zk),x〉+ βk

2 ‖x− xk−1‖2
}

(7.2.7)

such that

〈φ ′k(xk),xk− x〉= 〈 f ′(zk)+βk(xk− xk−1),xk− x〉 ≤ ηk, ∀x ∈ X , (7.2.8)

for some ηk ≥ 0.
Clearly, problem (7.5.6) is equivalent to minx∈X βk/2‖x−xk−1+ f ′(zk)/βk‖2 after

completing the square, and it admits explicit solutions in some special cases, e.g.,
when X is a standard Euclidean ball. However, we focus on the case where (7.5.6) is
solved iteratively by calling the LO oracle.

We now add a few comments about the main CGS method. Firstly, similarly to the
accelerated gradient method, the above CGS method maintains the updating of three
intertwined sequences, namely {xk}, {yk}, and {zk}, in each iteration. The main
difference between CGS and the original AGD exists in the computation of xk. More
specifically, xk in the original AGD method is set to the exact solution of (7.5.6) (i.e.,
ηk = 0 in (7.5.7)), while the subproblem in (7.5.6) is only solved approximately for
the CGS method (i.e., ηk > 0 in (7.5.7)).

Secondly, we say that an inner iteration of the CGS method occurs whenever
the index t in the CndG procedure increments by 1. Accordingly, an outer iteration
of CGS occurs whenever k increases by 1. While we need to call the FO oracle to
compute the gradient f ′(zk) in each outer iteration, the gradient φ ′k(pt) used in the
CndG subroutine is given explicitly by f ′(zk)+βk(p− xk−1). Hence, the main cost
per each inner iteration of the CGS method is to call the LO oracle to solve linear
optimization problem in (7.2.4). As a result, the total number of outer and inner
iterations performed by the CGS algorithm are equivalent to the total number of calls
to the FO and LO oracles, respectively.

Thirdly, observe that the above CGS method is conceptual only since we have not
specified a few parameters, including {βk}, {γk}, and {ηk}, used in this algorithm
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yet. We will come back to this issue after establishing some important convergence
properties for the above generic CGS algorithm.

Theorem 7.9 describes the main convergence properties of the above CGS method.
More specifically, both Theorem 7.9.a) and b) show the convergence of the AGD
method when the projection subproblem is approximately solved according to (7.5.7),
while Theorem 7.9.c) states the convergence of the CndG procedure by using the
Wolfe gap as the termination criterion.

Observe that the following quantity will be used in the convergence analysis of
the CGS algorithm:

Γk :=

{
1 k = 1
Γk−1(1− γk) k ≥ 2.

(7.2.9)

Theorem 7.9. Let Γk be defined in (7.2.9). Suppose that {βk} and {γk} in the CGS
algorithm satisfy

γ1 = 1 and Lγk ≤ βk, k ≥ 1. (7.2.10)

a) If
βkγk
Γk
≥ βk−1γk−1

Γk−1
, k ≥ 2, (7.2.11)

then for any x ∈ X and k ≥ 1,

f (yk)− f (x∗)≤ βkγk
2 D̄2

X +Γk∑
k
i=1

ηiγi
Γi

. (7.2.12)

where x∗ is an arbitrary optimal solution of (7.1.1) and D̄X is defined in (7.1.18).
b) If

βkγk
Γk
≤ βk−1γk−1

Γk−1
, k ≥ 2, (7.2.13)

then for any x ∈ X and k ≥ 1,

f (yk)− f (x∗)≤ β1Γk
2 ‖x0− x∗‖2 +Γk∑

k
i=1

ηiγi
Γi

. (7.2.14)

c) Under the assumptions in either part a) or b), the number of inner iterations
performed at the k-th outer iteration can be bounded by

Tk :=
⌈

6βkD̄2
X

ηk

⌉
, ∀k ≥ 1. (7.2.15)

Proof. We first show part a). Note that by (7.2.1) and (7.2.3), we have yk− zk =
γk(xk− xk−1). By using this observation, (7.1.8) and (7.2.3) we have

f (yk)≤ l f (zk;yk)+
L
2‖yk− zk‖2

= (1− γk)l f (zk;yk−1)+ γkl f (zk;xk)+
Lγ2

k
2 ‖xk− xk−1‖2

= (1− γk)l f (zk;yk−1)+ γkl f (zk;xk)+
βkγk

2 ‖xk− xk−1‖2

− γk
2 (βk−Lγk)‖xk− xk−1‖2

≤ (1− γk) f (yk−1)+ γkl f (zk;xk)+
βkγk

2 ‖xk− xk−1‖2, (7.2.16)
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where the last inequality follows from the convexity of f (·) and (7.2.10). Also
observe that by (7.5.7), we have

〈 f ′(zk)+βk(xk− xk−1),xk− x〉 ≤ ηk, ∀x ∈ X ,

which implies that

1
2‖xk− xk−1‖2 = 1

2‖xk−1− x‖2−〈xk−1− xk,xk− x〉− 1
2‖xk− x‖2

≤ 1
2‖xk−1− x‖2 + 1

βk
〈 f ′(zk),x− xk〉− 1

2‖xk− x‖2 + ηk
βk
. (7.2.17)

Combining (7.2.16) and (7.2.17), we obtain

f (yk)≤ (1− γk) f (yk−1)+ γkl f (zk;x)+ βkγk
2

(
‖xk−1− x‖2−‖xk− x‖2)+ηkγk

≤ (1− γk) f (yk−1)+ γk f (x)+ βkγk
2

(
‖xk−1− x‖2−‖xk− x‖2)+ηkγk,

(7.2.18)

where the last inequality follows from the convexity of f (·). Subtracting f (x) from
both sides of the above inequality, we have

f (yk)− f (x)≤ (1−γk)[ f (yk−1)− f (x)]+ βkγk
2

(
‖xk−1− x‖2−‖xk− x‖2)+ηkγk, ∀x∈X .

which, in view of Lemma 3.17, then implies that

f (yk)− f (x)≤ Γk(1−γ1)
Γ1

[ f (y0)− f (x)]

+Γk∑
k
i=1

βiγi
2Γi

(‖xi−1− x‖2−‖xi− x‖2)+Γk∑
k
i=1

ηiγi
Γi

. (7.2.19)

Our result in part a) then immediately follows from the above inequality, the assump-
tion that γ1 = 1, and the fact that

∑
k
i=1

βiγi
Γi
(‖xi−1− x‖2−‖xi− x‖2)

= β1γ1
Γ1
‖x0− x‖2 +∑

k
i=2

(
βiγi
Γi
− βi−1γi−1

Γi−1

)
‖xi−1− x‖2− βkγk

Γk
‖xk− x‖2

≤ β1γ1
Γ1

D̄2
X +∑

k
i=2

(
βiγi
Γi
− βi−1γi−1

Γi−1

)
D̄2

X = βkγk
Γk

D̄2
X , (7.2.20)

where the inequality follows from the third assumption in (7.2.11) and the definition
of D̄X in (7.1.18).

Similarly, Part b) follows from (7.2.19), the assumption that γ1 = 1, and the fact
that

∑
k
i=1

βiγi
Γi
(‖xi−1− x‖2−‖xi− x‖2)≤ β1γ1

Γ1
‖x0− x‖2− βkγk

Γk
‖xk− x‖2 ≤ β1‖x0− x‖2,

(7.2.21)
due to the assumptions in (7.2.10) and (7.2.13).

Now we show that part c) holds. Let us denote φ ≡ φk and φ ∗ ≡ minx∈X φ(x).
Also let us denote
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λt := 2
t and Λt =

2
t(t−1) . (7.2.22)

It then follows from the above definitions that

Λt+1 = Λt(1−λt+1), ∀ t ≥ 2. (7.2.23)

Let us define ūt+1 := (1−λt+1)ut +λt+1vt . Clearly we have ūt+1−ut = λt+1(vt−ut).
Observe that ut+1 = (1−αt)ut +αtvt and αt is an optimal solution of (7.2.6), and
hence that φ(ut+1)≤ φ(ūt+1). Using this observation, (7.1.8) and the fact that φ has
Lipschitz continuous gradients, we have

φ(ut+1)≤ φ(ūt+1)≤ lφ (ut , ūt+1)+
β

2 ‖ūt+1−ut‖2

≤ (1−λt+1)φ(ut)+λt+1lφ (ut ,vt)+
βλ 2

t+1
2 ‖vt −ut‖2. (7.2.24)

Also observe that by (7.1.7) and the fact that vt solves (7.2.4), we have

lφ (ut ,vt) = φ(ut)+ 〈φ ′(ut),vt −ut〉 ≤ φ(ut)+ 〈φ ′(ut),x−ut〉 ≤ φ(x)

for any x∈X , where the last inequality follows from the convexity of φ(·). Combining
the above two inequalities and re-arranging the terms, we obtain

φ(ut+1)−φ(x)≤ (1−λt+1)[φ(ut)−φ(x)]+
βλ 2

t+1
2 ‖vt −ut‖2, ∀x ∈ X ,

which, in view of Lemma 3.17, then implies that, for any x ∈ X and t ≥ 1,

φ(ut+1)−φ(x)≤Λt+1(1−λ2)[φ(u1)−φ(x)]+Λt+1β∑
t
j=1

λ 2
j+1

2Λ j+1
‖v j−u j‖2

≤ 2β D̄2
X

t+1 , (7.2.25)

where the last inequality easily follows from (7.2.22) and the definition of D̄X in
(7.1.18). Now, let the gap function Vg,u,β be defined in (7.2.4). Also let us denote
∆ j = φ(u j)−φ ∗. It then follows from (7.1.7), (7.2.4), and (7.2.24) that that for any
j = 1, . . . , t,

λ j+1Vg,u,β (u j)≤ φ(u j)−φ(u j+1)+
βλ 2

j+1
2 ‖v j−u j‖2

= ∆ j−∆ j+1 +
βλ 2

j+1
2 ‖v j−u j‖2.

Dividing both sides of the above inequality by Λ j+1 and summing up the resulting
inequalities, we obtain

∑
t
j=1

λ j+1
Λ j+1

Vg,u,β (u j)≤− 1
Λt+1

∆t+1 +∑
t
j=2

(
1

Λ j+1
− 1

Λ j

)
∆ j +∆1 +∑

t
j=1

βλ 2
j+1

2Λ j+1
‖v j−u j‖2

≤ ∑
t
j=2

(
1

Λ j+1
− 1

Λ j

)
∆ j +∆1 +∑

t
j=1

βλ 2
j+1

2Λ j+1
D̄2

X ≤ ∑
t
j=1 j∆ j + tβ D̄2

X ,
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where the last inequality follows from the definitions of λt and Λt in (7.2.22). Using
the above inequality and the bound on ∆ j given in (7.2.25), we conclude that

min
j=1,...,t

Vg,u,β (u j)∑
t
j=1

λ j+1
Λ j+1
≤ ∑

t
j=1

λ j+1
Λ j+1

Vg,u,β (u j)≤ 3tβ D̄2
X ,

which, in view of the fact that ∑
t
j=1λ j+1/Λ j+1 = t(t +1)/2, then clearly implies that

min
j=1,...,t

Vg,u,β (u j)≤ 6β D̄2
X

t+1 , ∀t ≥ 1, (7.2.26)

from which part c) immediately follows.

Clearly, there exist various options to specify the parameters {βk}, {γk}, and {ηk}
so as to guarantee the convergence of the CGS method. In the following corollaries,
we provide two different parameter settings for {βk}, {γk}, and {ηk}, which lead to
optimal complexity bounds on the total number of calls to the FO and LO oracles for
smooth convex optimization.

Corollary 7.3. If {βk}, {γk}, and {ηk} in the CGS method are set to

βk =
3L

k+1 , γk =
3

k+2 , and ηk =
LD̄2

X
k(k+1) , ∀k ≥ 1, (7.2.27)

then for any k ≥ 1,

f (yk)− f (x∗)≤ 15LD̄2
X

2(k+1)(k+2) . (7.2.28)

As a consequence, the total number of calls to the FO and LO oracles per-
formed by the CGS method for finding an ε-solution of (7.1.1) can be bounded

by O

(√
LD̄2

X/ε

)
and O

(
LD̄2

X/ε
)
, respectively.

Proof. We first show Part a). It can be easily seen from (7.2.27) that (7.2.10) holds.
Also note that by (7.2.27), we have

Γk =
6

k(k+1)(k+2) , (7.2.29)

and
βkγk
Γk

= 9L
(k+1)(k+2)

k(k+1)(k+2)
6 = 3Lk

2 ,

which implies that (7.2.11) is satisfied. It then follows from Theorem 7.9.a), (7.2.27),
and (7.2.29) that

f (yk)− f (x∗)≤ 9LD̄2
X

2(k+1)(k+2) +
6

k(k+1)(k+2)∑
k
i=1

ηiγi
Γi

=
15LD̄2

X
2(k+1)(k+2) ,

which implies that the total number of outer iterations performed by the CGS method

for finding an ε-solution can be bounded by N =
√

15LD̄2
X/(2ε). Moreover, it

follows from the bound in (7.2.15) and (7.2.27) that the total number of inner
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iterations can be bounded by

∑
N
k=1Tk ≤ ∑

N
k=1

(
6βkD̄2

X
ηk

+1
)
= 18∑

N
k=1k+N = 9N2 +10N,

which implies that the total number of inner iterations is bounded by O(LD̄2
X/ε).

Observe that in the above result, the number of calls to the LO oracle is not
improvable in terms of their dependence on ε , L, and D̄X for LCP methods. Similarly,
the number of calls to the FO oracle is also optimal in terms of its dependence on ε

and L. It should be noted, however, that we can potentially improve the latter bound
in terms of its dependence on D̄X . Indeed, by using a different parameter setting, we
show in Corollary 7.4 a slightly improved bound on the number of calls to the FO
oracle which only depends on the distance from the initial point to the set of optimal
solutions, rather than the diameter D̄X . This result will play an important role for the
analysis of the CGS method for solving strongly convex problems. The disadvantage
of using this parameter setting is that we need to fix the number of iterations N in
advance.

Corollary 7.4. Suppose that there exists an estimate D0 ≥ ‖x0− x∗‖ and that the
outer iteration limit N ≥ 1 is given. If

βk =
2L
k , γk =

2
k+1 , ηk =

2LD2
0

Nk , (7.2.30)

for any k ≥ 1, then

f (yN)− f (x∗)≤ 6LD2
0

N(N+1) . (7.2.31)

As a consequence, the total number of calls to the FO and LO oracles performed by
the CGS method for finding an ε-solution of (7.1.1), respectively, can be bound by

O

(
D0

√
L
ε

)
(7.2.32)

and

O

(
LD̄2

X
ε

+D0

√
L
ε

)
. (7.2.33)

Proof. It can be easily seen from the definition of γk in (7.2.30) and Γk in (7.2.9)
that

Γk =
2

k(k+1) . (7.2.34)

Using the previous identity and (7.2.30), we have βkγk/Γk = 2L, which implies that
(7.2.13) holds. It then follows from (7.2.14), (7.2.30), and (7.2.34) that

f (yN)− f (x∗)≤ ΓN

(
LD2

0 +∑
N
i=1

ηiγi
Γi

)
= ΓN

(
LD2

0 +∑
N
i=1iηi

)
=

6LD2
0

N(N+1) .

Moreover, it follows from the bound in (7.2.15) and (7.2.30) that the total number of
inner iterations can be bounded by
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∑
N
k=1Tk ≤ ∑

N
k=1

(
6βkD̄2

X
ηk

+1
)
=

6N2D̄2
X

D2
0

+N.

The complexity bounds in (7.2.32) and (7.2.33) then immediately follow from the
previous two inequalities.

In view of the classic complexity theory for convex optimization, the bound on
the total number of calls to FO oracle in (7.2.32) is optimal for smooth convex
optimization. Moreover, in view of the complexity results established in the previous
section, the total number of calls to the LO oracle in (7.2.33) is not improvable for a
wide class of LCP methods. To the best of our knowledge, the CGS method is the
first algorithm in the literature that can achieve these two optimal bounds at the same
time.

Remark 7.1. Observe that in this section, we have assumed that the Euclidean dis-
tance function ‖x− xk−1‖2 has been used in the subproblem (7.5.6). However, one
can also replace it with the more general Bregman distance

V (x,xk−1) := ω(x)− [ω(xk−1)+ 〈ω ′(xk−1),x− xk−1〉]

and relax the assumption that the norms are associated with the inner product,
where ω is a strongly convex function. We can show similar complexity results as
those in Corollaries 7.3 and 7.4 under the following assumptions: i) ω is a smooth
convex function with Lipschitz continuous gradients; and ii) in the CndG subroutine,
the objective function in (7.2.4) and the stepsizes αt in (7.2.5) are replaced by
g+β [ω ′(ut)−ω ′(u)] and 2/(t +1), respectively. However, if ω is nonsmooth (e.g.,
the entropy function), then we cannot obtain these results since the CndG subroutine
cannot be directly applied to the modified subproblem.

7.2.1.2 Strongly convex optimization

In this subsection, we assume that the objective function f is not only smooth (i.e.,
(7.1.8) holds), but also strongly convex, that is, ∃µ > 0 s.t.

f (y)− f (x)−〈 f ′(x),y− x〉 ≥ µ

2 ‖y− x‖2, ∀x,y ∈ X . (7.2.35)

Our goal is to show that a linear rate of convergence, in terms of the number of calls
to the FO oracle, can be obtained by only performing linear optimization over the
feasible region X . In contrast with the shrinking conditional gradient method in the
previous section, here we do not need to enforce any additional assumptions on the
LO oracle. We also show that the total number of calls to the LO oracle is bounded by
O(LD̄2

X/ε), which has been shown to be optimal for strongly convex optimization.
We are now ready to formally describe the CGS method for solving strongly

convex problems, which is obtained by properly restarting the CGS method in
Algorithm 7.6.
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Algorithm 7.7 The CGS method for strongly convex problems
Input: Initial point p0 ∈ X and an estimate δ0 > 0 satisfying f (p0)− f (x∗)≤ δ0.
for s = 1,2, . . .

Call the CGS method in Algorithm 7.6 with input

x0 = ps−1 and N =
⌈

2
√

6L
µ

⌉
, (7.2.36)

and parameters
βk =

2L
k , γk =

2
k+1 , and ηk = ηs,k := 8Lδ02−s

µNk , (7.2.37)

and let ps be its output solution.
end for

In Algorithm 7.7, we restart the CGS method for smooth optimization (i.e.,
Algorithm 7.6) every d2

√
6L/µe iterations. We say that a phase of the above CGS

algorithm occurs whenever s increases by 1. Observe that {ηk} decrease by a factor
of 2 as s increments by 1, while {βk} and {γk} remain the same. The following
theorem shows the convergence of the above variant of the CGS method.

Theorem 7.10. Assume (7.2.35) holds and let {ps} be generated by Algorithm 7.7.
Then,

f (ps)− f (x∗)≤ δ02−s, s≥ 0. (7.2.38)

As a consequence, the total number of calls to the FO and LO oracles performed by
this algorithm for finding an ε-solution of problem (7.1.1) can be bounded by

O
{√

L
µ

⌈
log2 max

(
1, δ0

ε

)⌉}
(7.2.39)

and
O
{

LD̄2
X

ε
+
√

L
µ

⌈
log2 max

(
1, δ0

ε

)⌉}
, (7.2.40)

respectively.

Proof. We prove (7.2.38) by using induction. This inequality holds obviously
when s = 0 due to our assumption on δ0. Now suppose that (7.2.38) holds before the
s-th phase starts, i.e.,

f (ps−1)− f (x∗)≤ δ02−s+1.

Using the above relation and the strong convexity of f , we have

‖ps−1− x∗‖2 ≤ 2
µ
[ f (ps−1)− f (x∗)]≤ 4δ02−s

µ
.

Hence, by comparing the parameter settings in (7.2.37) with those in (7.2.30), we
can easily see that Corollary 7.4 holds with x0 = ps−1, yN = ps, and D2

0 = 4δ02−s/µ ,
which implies that

f (ys)− f (x∗)≤ 6LD2
0

N(N+1) =
24Lδ02−s

µN(N+1) ≤ δ02−s,
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where the last inequality follows from the definition of N in (7.2.36). In order to
show the bounds in (7.2.39) and (7.2.40), it suffices to consider the case when δ0 > ε

(otherwise, the results are obvious). Let us denote

S :=
⌈

log2 max
(

δ0
ε
,1
)⌉

. (7.2.41)

By (7.2.38), an ε-solution of (7.1.1) can be found at the s-th phase for some 1≤ s≤ S.
Since the number of calls to the FO in each phase is bounded by N, the total number
of calls to the FO performed by Algorithm 7.7 is clearly bounded by NS, which is
bounded by (7.2.39). Now, let Ts,k denote the number of calls to LO required at the
the k-th outer iteration in s-th phase. It follows from Theorem 7.9.c) that

Ts,k ≤ 6βkD̄2
X

ηk,s
+1≤ 3µD̄2

X 2sN
2δ0

+1.

Therefore, the total number of calls to the LO can be bounded by

∑
S
s=1∑

N
k=1Ts,k ≤ ∑

S
s=1∑

N
k=1

3µD̄2
X 2sN

2δ0
+NS =

3µD̄2
X N2

2δ0
∑

S
s=12s +NS

≤ 3µD̄2
X N2

2δ0
2S+1 +NS

≤ 6
ε

µD̄2
X N2 +NS, (7.2.42)

which is bounded by (7.2.40) due to the definitions of N and S in (7.2.36) and (7.2.41),
respectively.

In view of the classic complexity theory for convex optimization, the bound on
the total number of calls to FO oracle in (7.2.39) is optimal for strongly convex
optimization. Moreover, in view of the complexity results established in the previous
section, the bound on the total number of calls to the LO oracle in (7.2.40) is also
not improvable for a wide class of linear-optimization based convex programming
methods. CGS is the first optimization method that can achieve these two bounds
simultaneously.

7.2.2 Stochastic conditional gradient sliding method

7.2.2.1 The algorithm and the main convergence results

In this section, we still consider smooth convex optimization problems satisfying
(7.1.4). However, here we only have access to the stochastic first-order information
about f . More specifically, we assume that f is represented by a stochastic first-order
(SFO) oracle, which, for a given search point zk ∈ X , outputs a vector G(zk,ξk) s.t.

E [G(zk,ξk)] = f ′(zk), (7.2.43)

E
[
‖G(zk,ξk)− f ′(zk)‖2

∗
]
≤ σ

2. (7.2.44)
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Our goal in this section is to present a stochastic conditional gradient type algorithm
that can achieve the optimal bounds on the number of calls to SFO and LO oracles.

The stochastic CGS (SCGS) method is obtained by simply replacing the exact
gradients in Algorithm 7.6 with an unbiased estimator computed by the SFO oracle.
The algorithm is formally described as follows.

Algorithm 7.8 The stochastic conditional gradient sliding method
This algorithm is the same as Algorithm 7.6 except that (7.2.2) is replaced by

xk = CndG(gk,xk−1,βk,ηk). (7.2.45)

Here,
gk := 1

Bk
∑

Bk
j=1G(zk,ξk, j) (7.2.46)

and G(zk,ξk, j), j = 1, . . . ,Bk, are stochastic gradients computed by the SFO at zk.

In the above stochastic CGS method, the parameters {Bk} denote the batch sizes
used to compute gk. It can be easily seen from (7.2.43), (7.2.44), and (7.2.46) that

E[gk− f ′(zk)] = 0 and E[‖gk− f ′(zk)‖2
∗]≤ σ2

Bk
(7.2.47)

and hence gk is an unbiased estimator of f ′(zk). Indeed, letting SBk =

∑
Bk
j=1(G(zk,ξk, j)− f ′(zk)), from (7.2.43) and (7.2.44), we have

E
[
‖SBk‖2

∗
]
= E

[
‖SBk−1 +G(zk,ξk,Bk)− f ′(zk)‖2

∗
]

= E
[
‖SBk−1‖2

∗+2〈SBk−1,G(zk,ξk,Bk)− f ′(zk)〉+‖G(zk,ξk,Bk)− f ′(zk)‖2
∗
]

= E
[
‖SBk−1‖2

∗
]
+E

[
‖G(zk,ξk,Bk)− f ′(zk)‖2

∗
]
= . . .

= ∑
Bk
j=1E

[
‖G(zk,ξk, j)− f ′(zk)‖2

∗
]
≤ Bkσ

2.

Note that by (7.2.46), we have

gk− f ′(zk) =
1

Bk
∑

Bk
j=1G(zk,ξk, j)− f ′(zk) =

1
Bk

∑
Bk
j=1

[
G(zk,ξk, j)− f ′(zk)

]
= 1

Bk
SBk .

Therefore, the second relationship in (7.2.47) immediately follows. Since the algo-
rithm is stochastic, we will establish the complexity for finding a stochastic ε-solution,
i.e., a point x̄ ∈ X s.t. E[ f (x̄)− f (x∗)]≤ ε , as well as a stochastic (ε,Λ)-solution, i.e.,
a point x̄ ∈ X s.t. Prob{ f (x̄)− f (x∗)≤ ε} ≥ 1−Λ for some ε > 0 and Λ ∈ (0,1).

Observe that the above SCGS method is conceptual only as we have not yet
specified the parameters {Bk}, {βk}, {γk}, and {ηk}. We will come back to this issue
after establishing the main convergence properties for this algorithm.

Theorem 7.11. Let Γk and D̄X be defined in (7.2.9) and (7.1.18), respectively. Also
assume that {βk} and {γk} satisfy (7.2.10) and (7.2.11).
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a) Under assumptions (7.2.43) and (7.2.44), we have

E [ f (yk)− f (x∗)]≤ Ce := βkγk
2 D̄2

X +Γk∑
k
i=1

[
ηiγi
Γi

+ γiσ
2

2ΓiBi(βi−Lγi)

]
, ∀k ≥ 1,

(7.2.48)
where x∗ is an arbitrary optimal solution of (7.1.1).

b) If (7.2.13) (rather than (7.2.11)) is satisfied, then the results in part a) still hold
by replacing βkγkD̄2

X with β1Γk‖x0− x∗‖2 in the first term of Ce in (7.2.48).
c) Under the assumptions in part a) or b), the number of inner iterations performed

at the k-th outer iterations is bounded by (7.2.15).

Proof. Let us denote δk, j = G(zk,ξk, j) − f ′(zk) and δk ≡ gk − f ′(zk) =

∑
Bk
j=1δk, j/Bk. Note that by (7.2.16) and (7.2.17) (with f ′(zk) replaced by gk), we

have

f (yk)≤ (1− γk) f (yk−1)+ γkl f (zk,xk)+ γk〈gk,x− xk〉+ βkγk
2

[
‖xk−1− x‖2−‖xk− x‖2]

+ηkγk− γk
2 (βk−Lγk)‖xk− xk−1‖2

= (1− γk) f (yk−1)+ γkl f (zk,x)+ γk〈δk,x− xk〉+ βkγk
2

[
‖xk−1− x‖2−‖xk− x‖2]

+ηkγk− γk
2 (βk−Lγk)‖xk− xk−1‖2.

Using the above inequality and the fact that

〈δk,x− xk〉− 1
2 (βk−Lγk)‖xk− xk−1‖2

= 〈δk,x− xk−1〉+ 〈δk,xk−1− xk〉− 1
2 (βk−Lγk)‖xk− xk−1‖2

≤ 〈δk,x− xk−1〉+ ‖δk‖2∗
2(βk−Lγk)

,

we obtain

f (yk)≤ (1− γk) f (yk−1)+ γk f (x)+ βkγk
2

[
‖xk−1− x‖2−‖xk− x‖2]+ηkγk

+ γk〈δk,x− xk−1〉+ γk‖δk‖2∗
2(βk−Lγk)

, ∀x ∈ X . (7.2.49)

Subtracting f (x) from both sides of (7.2.49) and using Lemma 3.17, we have

f (yk)− f (x)≤ Γk(1− γ1) [ f (y0)− f (x)]

+Γk∑
k
i=1

{
βiγi
2Γi

[
‖xk−1− x‖2−‖xk− x‖2]+ ηiγi

Γi

}

+Γk∑
k
i=1

γi
Γi

[
〈δi,x− xi−1〉+ ‖δi‖2∗

2(βi−Lγi)

]

≤ βkγk
2 D̄2

X +Γk∑
k
i=1

ηiγi
Γi

+Γk∑
k
i=1

γi
Γi

[
∑

Bi
j=1B−1

i 〈δi, j,x− xi−1〉+ ‖δi‖2∗
2(βi−Lγi)

]
, (7.2.50)

where the last inequality follows from (7.2.20) and the fact that γ1 = 1. Note that by
our assumptions on the SFO, the random variables δi, j are independent of the search
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point xi−1 and hence E[〈δi, j,x∗− xi−1〉] = 0. In addition, relation (7.2.47) implies
that E[‖δi‖2

∗]≤ σ2/Bi. Using the previous two observations and taking expectation
on both sides of (7.2.50) (with x = x∗), we obtain (7.2.48).

Part b) follows similarly from the bound in (7.2.21) and (7.2.50), and the proof of
part c) is exactly the same as that of Theorem 7.9.c).

Now we provide a set of parameters {βk},{γk},{ηk}, and {Bk} which lead to
optimal bounds on the number of calls to the SFO and LO oracles.

Corollary 7.5. Suppose that {βk},{γk}, {ηk}, and {Bk} in the SCGS method are set
to

βk =
4L

k+2 , γk =
3

k+2 , ηk =
LD̄2

X
k(k+1) , and Bk =

⌈
σ2(k+2)3

L2D̄2
X

⌉
, k ≥ 1. (7.2.51)

Under assumptions (7.2.43) and (7.2.44), we have

E [ f (yk)− f (x∗)]≤ 6LD̄2
X

(k+2)2 +
9LD̄2

X
2(k+1)(k+2) , ∀k ≥ 1. (7.2.52)

As a consequence, the total number of calls to the SFO and LO oracles performed
by the SCGS method for finding a stochastic ε-solution of (7.1.1), respectively, can
be bounded by

O

{√
LD̄2

X
ε

+
σ2D̄2

X
ε2

}
and O

{
LD̄2

X
ε

}
. (7.2.53)

Proof. It can be easily seen from (7.2.51) that (7.2.10) holds. Also by (7.2.51), Γk
is given by (7.2.29) and hence

βkγk
Γk

= 2Lk(k+1)
k+2 ,

which implies that (7.2.11) holds. It can also be easily checked from (7.2.29) and
(7.2.51) that

∑
k
i=1

ηiγi
Γi
≤ kLD̄2

X
2 , ∑

k
i=1

γi
ΓiBi(βi−Lγi)

≤ kLD̄2
X

2σ2 .

Using the bound in (7.2.48), we obtain (7.2.52), which implies that the total number
of outer iterations can be bounded by

O

(√
LD̄2

X
ε

)

under the assumptions (7.2.43) and (7.2.44). The bounds in (7.2.53) then immediately
follow from this observation and the fact that the number of calls to the SFO and LO
oracles are bounded by

∑
N
k=1Bk ≤ ∑

N
k=1

σ2(k+2)3

L2D̄2
X

+N ≤ σ2(N+3)4

4L2D̄2
X

+N,

∑
N
k=1Tk ≤ ∑

N
k=1

(
6βkD̄2

X
ηk

+1
)
≤ 12N2 +13N.
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Now we give a different set of parameters {βk},{γk},{ηk}, and {Bk}, which
can slightly improve the bounds on the number of calls to the SFO in terms of its
dependence on D̄X .

Corollary 7.6. Suppose that there exists an estimate D0 s.t. ‖x0− x∗‖ ≤ D0 ≤ D̄X .
Also assume that the outer iteration limit N ≥ 1 is given. If

βk =
3L
k , γk =

2
k+1 , ηk =

2LD2
0

Nk , and Bk =
⌈

σ2N(k+1)2

L2D2
0

⌉
, k ≥ 1. (7.2.54)

Under assumptions (7.2.43) and (7.2.44),

E [ f (yN)− f (x∗)]≤ 8LD2
0

N(N+1) , ∀N ≥ 1. (7.2.55)

As a consequence, the total number of calls to the SFO and LO oracles performed
by the SCGS method for finding a stochastic ε-solution of (7.1.1), respectively, can
be bounded by

O

{√
LD2

0
ε

+
σ2D2

0
ε2

}
and O

{
LD̄2

X
ε

}
. (7.2.56)

Proof. It can be easily seen from (7.2.54) that (7.2.10) holds. Also by (7.2.54), Γk
is given by (7.2.34) and hence

βkγk
Γk

= 3L,

which implies that (7.2.13) holds. It can also be easily checked from (7.2.34) and
(7.2.54) that

∑
N
i=1

ηiγi
Γi
≤ 2LD2

0, ∑
N
i=1

γi
ΓiBi(βi−Lγi)

≤ ∑
N
i=1

i(i+1)
LBi
≤ LD2

0
σ2 .

Using the bound in (7.2.48) (with βkγkD̄2
X replaced by β1ΓkD2

0 in the definition of
Ce), we obtain (7.2.55), which implies that the total number of outer iterations can
be bounded by

O

(√
LD2

0
ε

)

under the assumptions (7.2.43) and (7.2.44). The bounds in (7.2.56) then immediately
follow from this observation and the fact that the total number calls to the SFO and
LO are bounded by

∑
N
k=1Bk ≤ N∑

N
k=1

σ2(k+1)2

L2D2
0

+N ≤ σ2N(N+1)3

3L2D2
0

+N,

∑
N
k=1Tk ≤ ∑

N
k=1

6βkD̄2
X

ηk
+N ≤ 9N2D̄2

X
D2

0
+N.

According to the complexity bounds in Corollaries 7.5 and 7.6, the total number
of calls to the SFO oracle can be bounded by O(1/ε2), which is optimal in view
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of the classic complexity theory for stochastic convex optimization. Moreover, the
total number of calls to the LO oracle can be bounded by O(1/ε), which is the same
as the CGS method for deterministic smooth convex optimization and hence not
improvable for a wide class of LCP methods.

In view of the results in Corollary 7.6, we can present an optimal algorithm for
solving stochastic strongly convex problems, similarly to the deterministic case.

Algorithm 7.9 The stochastic CGS method for solving strongly convex problems
Input: Initial point p0 ∈ X and an estimate δ0 > 0 satisfying f (p0)− f (x∗)≤ δ0.
for s = 1,2, . . .

Call the stochastic CGS method in Algorithm 7.8 with input

x0 = ps−1 and N =
⌈

4
√

2L
µ

⌉
, (7.2.57)

and parameters

βk =
3L
k , γk =

2
k+1 , ηk = ηs,k := 8Lδ02−s

µNk , and Bk = Bs,k :=
⌈

µσ2N(k+1)2

4L2δ02−s

⌉
, (7.2.58)

and let ps be its output solution.
end for

The main convergence properties of Algorithm 7.9 are described as follows.

Theorem 7.12. Assume that (7.2.35) holds and let {ps} be generated by Algo-
rithm 7.9. Then,

E[ f (ps)− f (x∗)]≤ δ02−s, s≥ 0. (7.2.59)

As a consequence, the total number of calls to the SFO and LO oracles performed by
this algorithm for finding a stochastic ε-solution of problem (7.1.1) can be bounded
by

O
{

σ2

µε
+
√

L
µ

⌈
log2 max

(
1, δ0

ε

)⌉}
(7.2.60)

and
O
{

LD̄2
X

ε
+
√

L
µ

⌈
log2 max

(
1, δ0

ε

)⌉}
, (7.2.61)

respectively.

Proof. In view of Corollary 7.6, (7.2.59) can be proved in a way similar to (7.2.38).
It now remains to show the bounds in (7.2.60) and (7.2.61), respectively, for the total
number of calls to the SFO and LO oracles. It suffices to consider the case when
δ0 > ε , since otherwise the results are obvious. Let us denote

S :=
⌈

log2 max
(

δ0
ε
,1
)⌉

. (7.2.62)

By (7.2.59), a stochastic ε-solution of (7.1.1) can be found at the s-th phase for some
1≤ s≤ S. Since the number of calls to the SFO oracle in each phase is bounded by
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N, the total number of calls to the SFO oracle can be bounded by

∑
S
s=1∑

N
k=1Bk ≤ ∑

S
s=1∑

N
k=1

(
µσ2N(k+1)2

4L2δ02−s +1
)

≤ µσ2N(N+1)3

12L2δ0
∑

S
s=12s +SN ≤ µσ2N(N+1)3

3L2ε
+SN.

Moreover, let Ts,k denote the number of calls to LO oracle required at the the k-th outer
iteration in s-th phase of the stochastic CGS method. It follows from Theorem 7.9.c)
that

Ts,k ≤ 6βkD̄2
X

ηk,s
+1≤ 9µD̄2

X 2sN
4δ0

+1.

Therefore, the total number of calls to the LO oracle can be bounded by

∑
S
s=1∑

N
k=1Ts,k ≤ ∑

S
s=1∑

N
k=1

9µD̄2
X 2sN

4δ0
+NS = 9

4 µD̄2
X N2

δ
−1
0 ∑

S
s=12s +NS

≤ 9
ε

µD̄2
X N2 +NS

which is bounded by (7.2.40) due to the definitions of N and S in (7.2.57) and (7.2.62),
respectively.

According to Theorem 7.12, the total number of calls to the SFO oracle can be
bounded by O(1/ε), which is optimal in view of the classic complexity theory for
strongly convex stochastic optimization. Moreover, the total number of calls to the
LO oracle can be bounded by O(1/ε), which is the same as the deterministic CGS
method for strongly convex optimization and not improvable for a wide class of LCP
methods discussed in the previous section.

7.2.2.2 The large deviation results

For the sake of simplicity, in this subsection we only consider smooth convex op-
timization problems rather than strongly convex problems. In order to develop
some large deviation results associated with the aforementioned optimal complexity
bounds, we need to make some assumptions about the objective function values and
its estimator, F(x,ξ ), given by the SFO. More specifically, we assume that

E [F(x,ξ )] = f (x), and E
[
exp
{
(F(x,ξ )− f (x))2 /M2

}]
≤ exp{1} (7.2.63)

for some M ≥ 0.
We now propose a variant of the SCGS method which has some desirable large

deviation properties. Similar to the 2-RSPG algorithm in Section 6.2, this method
consists of two phases: an optimization phase and a post-optimization phase. In the
optimization phase, we restart the SCGS algorithm for a certain number of times to
generate a list of candidate solutions, and in the post-optimization phase, we choose
a solution x̂ from this list according to a certain rule.
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Algorithm 7.10 A two phase SCGS (2-SCGS) algorithm
Input: Initial point x0 ∈ X , number of restart times S, iteration limit N, and the sample size K in
the post-optimization phase.
Optimizatoin phase:
for s = 1, . . . ,S do

Call the SCGS algorithm with iteration limit N, and the initial point xs−1, where xs = xNs ,
s = 1, . . . ,S, are the outputs of the s-th run of the SCGS algorithm.
end for
Let {x̄s = xNs , s = 1, . . . ,S}, be the output list of candidate solutions.
Post-optimization phase:
Choose a solution x̂ from the candidate list {x̄1, . . . , x̄S} such that

x̂ = argmins=1,...,S{ f̂ (x̄s)}, (7.2.64)

where f̂ (x) = 1
K ∑

K
j=1F(x,ξ j).

Now we are ready to state the large deviation results obtained for the above
2-SCGS algorithm.

Theorem 7.13. Assuming that {βk} and {γk} satisfy (7.2.10) and (7.2.11), under
assumption (7.2.63), we have

Prob
{

f (x̂)− f (x∗)≥ 2
√

2(1+λ )M√
K

+2Ce

}
≤ Sexp

{
−λ

2/3
}
+2−S, (7.2.65)

where x̂ is the output of the 2-SCGS algorithm, x∗ is an arbitrary optimal solution of
(7.1.1), and Ce is defined in (7.2.48).

Proof. It follows from the definition of x̂ in (7.2.64) that

f̂ (x̂)− f (x∗) = min
s=1,...,S

f̂ (x̄s)− f (x∗)

= min
s=1,...,S

{
f̂ (x̄s)− f (x̄s)+ f (x̄s)− f (x∗)

}

≤ min
s=1,...,S

{
| f̂ (x̄s)− f (x̄s)|+ f (x̄s)− f (x∗)

}

≤ max
s=1,...,S

| f̂ (x̄s)− f (x̄s)|+ min
s=1,...,S

{ f (x̄s)− f (x∗)} ,

which implies that

f (x̂)− f (x∗) = f (x̂)− f̂ (x̂)+ f̂ (x̂)− f (x∗)

≤ f (x̂)− f̂ (x̂)+ max
s=1,...,S

| f̂ (x̄s)− f (x̄s)|+ min
s=1,...,S

{ f (x̄s)− f (x∗)}

≤ 2 max
s=1,...,S

| f̂ (x̄s)− f (x̄s)|+ min
s=1,...,S

{ f (x̄s)− f (x∗)} . (7.2.66)

Note that by the Markov’s inequality and (7.2.48), we obtain

Prob{ f (x̄s)− f (x∗)≥ 2Ce} ≤ E[ f (x̄s)− f (x∗)]
2Ce

≤ 1
2 , ∀s = 1, . . . ,S. (7.2.67)
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Let Es be the event that f (x̄s)− f (x∗)≥ 2Ce, note that due to the boundedness of X ,
and the above observation, we have

Prob

{
Es|

s−1⋂

j=1

E j

}
≤ 1

2 ,s = 1, . . . ,S,

which then implies that

Prob
{

min
s=1,...,S

[ f (x̄s)− f (x∗)]≥ 2Ce

}

= Prob

{
S⋂

s=1

Es

}
=

S

∏
s=1

Prob

{
Es|

s−1⋂

j=1

E j

}
≤ 2−S. (7.2.68)

By assumption (7.2.63) and Lemma 4.1, it is clear that

Prob
{
|∑K

j=1 [F(x̄s,ξ j)− f (x̄s)] | ≥
√

2(1+λ )
√

KM2
}
≤ exp

{
−λ

2/3
}
, s= 1, . . . ,S,

which implies

Prob
{
| f̂ (x̄s)− f (x̄s)| ≥

√
2(1+λ )M√

K

}
≤ exp

{
−λ

2/3
}
, s = 1, . . . ,S.

Therefore, we obtain

Prob
{

max
s=1,...,S

| f̂ (x̄s)− f (x̄s)| ≥
√

2(1+λ )M√
K

}
≤ Sexp

{
−λ

2/3
}
. (7.2.69)

Our result in (7.2.65) directly follows from (7.2.66), (7.2.68) and (7.2.69).

Now we state a set of parameters S, N, and K, and the associated bounds on the
number of calls to the SFO and LO oracles.

Corollary 7.7. Suppose that parameters {βk},{γk}, {ηk}, and {Bk} in the 2-SCGS
method are set as in (7.2.51) for each run of SCGS algorithm. Let ε > 0 and Λ ∈ (0,1)
be given, parameters S, N, and K are set to

S(Λ) := dlog2(2/Λ)e , N(ε) :=
⌈√

42LD̄2
X

ε

⌉
, and K(ε,Λ) :=

⌈
32(1+λ )2M2

ε2

⌉
,

(7.2.70)
where λ =

√
3ln(2S/Λ), then the total number of calls to the SFO and LO oracles

performed by the 2-SCGS method in the optimization phase to compute a stochastic
(ε,Λ)-solution of the problem (7.1.1), respectively, can be bounded by

O

{√
LD̄2

X
ε

log2
2
Λ
+

σ2D̄2
X

ε2 log2
2
Λ

}
and O

{
LD̄2

X
ε

log2
2
Λ

}
. (7.2.71)

Proof. By Corollary 7.5, we have



466 7 Projection-free Methods

Ce ≤ 21LD̄2
X

2(N+1)2 ,

together with the definition of S, N and K in (7.2.70), (7.2.65), and λ =
√

3ln(2S/Λ),
we have

Prob{ f (x̂)− f (x∗)≥ ε} ≤Λ ,

i.e. x̂ is a stochastic (ε,Λ)-solution of problem (7.1.1). Moreover, we obtain from
Corollary 7.5 that the bounds for the number of calls to the SFO and LO oracles for
each run of SCGS algorithm as (7.2.53), which immediately implies the bounds in
(7.2.71), as we restart the SCGS algorithm in 2-SCGS method S times.

7.2.3 Generalization to saddle point problems

In this section, we consider an important class of saddle point problems with f given
in the form of:

f (x) = max
y∈Y

{
〈Ax,y〉− f̂ (y)

}
, (7.2.72)

where A : Rn → Rm denotes a linear operator, Y ∈ Rm is a convex compact set,
and f̂ : Y → R is a simple convex function. Since the objective function f given in
(7.2.72) is nonsmooth, we cannot directly apply the CGS method presented in the
previous section. However, as discussed in the previous section, the function f (·) in
(7.2.72) can be closely approximated by a class of smooth convex functions

fτ(x) := max
y

{
〈Ax,y〉− f̂ (y)− τ [V (y)−D2

Y ] : y ∈ Y
}

(7.2.73)

for some τ > 0.
In this subsection, we assume that the feasible region Y and the function f̂ are

simple enough, so that the subproblem in (7.2.73) is easy to solve, and as a result, the
major computational cost for computing the gradient of fτ exists in the evaluation of
the linear operator A and its adjoint operator AT . Our goal is to present a variant of
the CGS method, which can achieve the optimal bounds on the number of calls to
the LO oracle and the number of evaluations for the linear operator A and AT .

Algorithm 7.11 The CGS method for solving saddle point problems
This algorithm is the same as Algorithm 7.6 except that (7.2.2) is replaces by

xk = CndG( f ′τk
(zk),xk−1,βk,ηk), (7.2.74)

for some τk ≥ 0.

We now ready to describe the main convergence properties of this modified CGS
method to solve the saddle point problem in (7.1.1)-(7.2.72).
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Theorem 7.14. Suppose that τ1 ≥ τ2 ≥ . . . ≥ 0. Also assume that {βk} and {γk}
satisfy (7.2.10) (with L replaced by Lτk ) and (7.2.11). Then,

f (yk)− f (x∗)≤ βkγk
2 D̄2

X +Γk∑
k
i=1

γi
Γi

(
ηi + τiD2

Y
)
, ∀k ≥ 1, (7.2.75)

where x∗ is an arbitrary optimal solution of (7.1.1)-(7.2.72). Moreover, the number
of inner iterations performed at the k-th outer iteration can be bounded by (7.2.15).

Proof. First, observe that by the definition of fτ(·) in (7.2.73), and the facts that
V (y)−D2

Y ≤ 0 and τk−1 ≥ τk, we have

fτk−1(x)≥ fτk(x) ∀x ∈ X , ∀k ≥ 1. (7.2.76)

Applying relation (7.2.18) to fτk and using (7.2.76), we obtain

fτk(yk)≤ (1− γk) fτk(yk−1)+ γk fτk(x)+
βkγk

2 (‖xk−1− x‖2−‖xk− x‖2)+ηkγk

≤ (1− γk) fτk−1(yk−1)+ γk
[

f (x)+ τkD2
Y
]

+ βkγk
2 (‖xk−1− x‖2−‖xk− x‖2)+ηkγk

for any x ∈ X , where the second inequality follows from (7.1.24) and (7.2.76).
Subtracting f (x) from the both sides of the above inequality, we have

fτk(yk)− f (x)≤ (1− γk)
[

fτk−1(yk−1)− f (x)
]
+ βkγk

2 (‖xk−1− x‖2−‖xk− x‖2)

+ηkγk + γkτkD2
Y

for any x ∈ X , which, in view of Lemma 3.17 and (7.2.20), then implies that

fτk(yk)− f (x)≤ Γk∑
k
i=1

βiγi
2Γi

(‖xi−1− x‖2−‖xi− x‖2)+Γk∑
k
i=1

γi
Γi

(
ηi + τiD2

Y
)

≤ βkγk
2 D̄2

X +Γk∑
k
i=1

γi
Γi

(
ηi + τiD2

Y
)
. (7.2.77)

Our result in (7.2.75) then immediately follows from the above relation and the fact
that fτk(yk)≥ f (yk) due to (7.1.24). The last part of our claim easily follows from
Theorem 7.9.c).

We now provide two sets of parameters for {βk},{γk},{ηk}, and {τk} which can
guarantee the optimal convergence of the above variant of CGS method for saddle
point optimization.

Corollary 7.8. Assume the outer iteration limit N ≥ 1 is given. If

τk ≡ τ = 2‖A‖D̄X
DY
√

σν N , k ≥ 1, (7.2.78)

and {βk}, {γk}, and {ηk} used in Algorithm 7.11 are set to

βk =
3Lτk
k+1 , γk =

3
k+2 ,and ηk =

Lτk D̄2
X

k2 , k ≥ 1, (7.2.79)



468 7 Projection-free Methods

then the number of linear operator evaluations (for A and AT ) and the number of
calls to the LO oracle performed by Algorithm 7.11 for finding an ε-solution of
problem (7.1.1)-(7.2.72), respectively, can be bounded by

O
{
‖A‖D̄X DY√

σvε

}
and O

{ ‖A‖2D̄2
X D2

Y
σvε2

}
. (7.2.80)

Proof. Observe that Γk is given by (7.2.29) due to the definition of γk in (7.2.79).
By (7.2.29) and (7.2.79), we have

βk
γk

= Lτ (k+2)
k+1 ≥Lτ ,

and
βkγk
Γk

= 3Lτ k
2 ≥ βk−1γk−1

Γk−1
.

The above results indicate that the assumptions in Theorem 7.14 are satisfied. It then
follows from Theorem 7.14, (7.2.78), and (7.2.79) that

f (yN)− f (x∗)≤ 9Lτ D̄2
X

2(N+1)(N+2) +
6

N(N+1)(N+2)∑
N
i=1

[
Lτ D̄2

X
i2 + 2‖A‖D̄X DY√

σν N

]
i(i+1)

2

≤ 9‖A‖D̄X DY
4
√

σν (N+2) +
15‖A‖D̄X DY√

σν N(N+1)(N+2)∑
N
i=1N ≤ 69‖A‖D̄X DY

4
√

σν (N+2) ,

where the second inequality follows from the definition of Lτ in (8.1.93). Moreover,
it follows from (7.2.15) and (7.2.79) that the total number of calls to the LO oracle
can be bounded by

∑
N
k=1Tk ≤ ∑

N
k=1

(
18Lτk D̄2

X
k+1

k2

Lτk D̄2
X
+1
)
≤ 18(N+1)N

2 +N ≤ 9N2 +10N.

The bounds in (7.2.80) then immediately follow from the previous two conclusions.

In the above result, we used a static smoothing technique, in which we need to fix the
number of outer iterations N in advance for obtaining a constant τk in (7.2.78). We
now state a dynamic parameter setting for τk so that the number of outer iterations N
need not to be given a priori.

Corollary 7.9. Suppose that parameter {τk} is now set to

τk =
2‖A‖D̄X
DY
√

σν k , k ≥ 1, (7.2.81)

and the parameters {βk}, {γk}, and {ηk} used in Algorithm 7.11 are set as in (7.2.79).
Then, the number of linear operator evaluations (for A and AT ) and the number
of calls to the LO oracle performed by Algorithm 7.11 for finding an ε-solution of
problem (7.1.1)-(7.2.72), respectively, can also be bounded by (7.2.80).

Proof. Note that γk is defined in (7.2.79), and hence that Γk is given by (7.2.29).
We have
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βk
γk
≥Lτk ,

and
βkγk
Γk

=
3Lτk k

2 = 3‖A‖DY k2

4
√

σvD̄X
≥ βk−1γk−1

Γk−1
.

Therefore, the assumptions in Theorem 7.14 are satisfied. It then follows from
Theorem 7.14, (7.2.79), and (7.2.81) that

f (yk)− f (x∗)≤ 9Lτk D̄2
X

2(k+1)(k+2) +
6

k(k+1)(k+2)∑
k
i=1

[
Lτi D̄

2
X

i2 + 2‖A‖D̄X DY√
σvi

]
i(i+1)

2

≤ 9‖A‖D̄X DY k
4
√

σv(k+1)(k+2) +
15‖A‖D̄X DY√
σvk(k+1)(k+2)∑

k
i=1i≤ 39‖A‖D̄X DY

4(k+2)
√

σv
,

where the second inequality follows from the definition of Lτk in (8.1.93). Similarly
to the proof in Corollary 7.8, we can show that the total number of calls to the LO
oracle in N outer iterations can be bounded by O(N2). The bounds in (7.2.80) then
immediately follow.

Observe that the O(1/ε) bound on the total number of operator evaluations is not
improvable for solving the saddle point problems in (7.1.1)-(7.2.72). Moreover, the
O(1/ε2) bound on the total number of calls to the LO is also optimal for the LCP
methods for solving the saddle point problems in (7.1.1)-(7.2.72).

We now turn our attention to stochastic saddle point problems for which only
stochastic gradients of fτ are available. In particular, we consider the situation when
the original objective function f in (7.1.1) is given by

f (x) = E
[

max
y∈Y
〈Aξ x,y〉− f̂ (y,ξ )

]
, (7.2.82)

where f̂ (·,ξ ) is simple concave function for all ξ ∈ Ξ and Aξ is a random linear
operator such that

E
[
‖Aξ‖2]≤ L2

A (7.2.83)

We can solve this stochastic saddle point problem by replacing (7.2.74) with

xk = CndG(gk,xk−1,βk,ηk) where gk =
1

Bk
∑

Bk
j=1F ′(zk,ξ j) (7.2.84)

for some τk ≥ 0 and Bk ≥ 1. By properly specifying {βk}, {ηk}, {τk}, and {Bk}, we
can show that the number of linear operator evaluations (for Aξ and AT

ξ
) and the

number of calls to the LO performed by this variant of CGS method for finding a
stochastic ε-solution of problem (7.1.1)-(7.2.82) can be bounded by

O
{

L2
AD̄2

X D2
Y

σvε2

}
. (7.2.85)

This result can be proved by combining the techniques in Section 7.2.2 and those in
Theorem 7.14. However, we skip the details of these developments for the sake of
simplicity.
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7.3 Nonconvex conditional gradient method

In this section, we consider the conditional gradient method applied to solve the
following nonconvex optimization problem

f ∗ ≡min
x∈X

f (x). (7.3.1)

Here X ⊆ Rn is a compact convex set and f is differentiable but not necessarily
convex. Moreover, we assume that the gradients of f satisfy

‖∇ f (x)−∇ f (y)‖∗ ≤ L‖x− y‖, ∀x,y ∈ X (7.3.2)

for a given norm ‖ · ‖ in Rn, where ‖ · ‖∗ denotes the conjugate norm of ‖ · ‖.
For a given x̄ ∈ X , we evaluate its accuracy using the Wolfe gap given by

gap(x̄) := max
x∈X
〈∇ f (x̄), x̄− x〉. (7.3.3)

Clearly, x̄ ∈ X satisfies the first-order optimality condition for (7.3.1) if and only if
gap(x̄) = 0.

We study the convergence behavior of the conditional gradient method presented
in Algorithm 7.1 for solving (7.3.1).

Theorem 7.15. Let {yt}k
t=0 be generated by the conditional gradient method in

Algorithm 7.1 applied to (7.3.1). Then we have

min
t=0,...,k

gap(yt−1)≤ 1

∑
k
t=1αt

[
f (y0)− f ∗+ LD̄2

X
2 ∑

k
t=1α

2
t

]
. (7.3.4)

In particular, if k is given in advance and αt = θ/
√

k, t = 1, . . . ,k, for some θ > 0,
then

min
t=0,...,k

gap(yt−1)≤ 1√
k

[
f (y0)− f ∗

θ
+

θLD̄2
X

2

]
, (7.3.5)

where D̄X := maxx,y∈X ‖x− y‖.

Proof. Using the smoothness property of f , the fact that yk = (1−αk)yk−1 +αkxk,
we have

f (yk)≤ f (yk−1)+ 〈∇ f (yk−1),yk− yk−1〉+ L
2‖yk− yk−1‖2

= f (yk−1)+αk〈 f (yk−1,xk− yk−1〉+ Lα2
k

2 ‖xk− yk−1‖2

≤ f (yk−1)+αk〈 f (yk−1,xk− yk−1〉+ Lα2
k

2 D̄2
X

for any k ≥ 1 Summing up the above inequalities and rearranging the terms, we
conclude that

∑
k
t=1αtgap(yt−1) = ∑

k
t=1 (αt〈 f (yk−1,xk− yk−1〉)
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≤ f (y0)− f (yk)+
LD̄2

X
2 ∑

k
t=1α

2
t

≤ f (y0)− f ∗+ LD̄2
X

2 ∑
k
t=1α

2
t ,

which clearly implies (7.3.4).

In view of (7.3.5), the best stepsize policy for αt would be

αt =
θ√

k
, t = 1, . . . ,k,with θ =

√
2[ f (y0)− f ∗]

LD̄2
X

.

In this case, we have

min
t=0,...,k

gap(yt−1)≤ 1√
k

√
2[ f (y0)− f ∗]LD̄2

X .

7.4 Stochastic nonconvex conditional gradient

In this section, we consider the following nonconvex finite-sum problem

f ∗ := min
x∈X
{ f (x)}, (7.4.1)

where X is a closed compact set in Euclidean space Rn, and f can be given as the
average of m smooth but possibly nonconvex component functions fi, i.e., f (x) =
∑

m
i=1 fi(x)/m, or given as an expectation function, i.e., f (x) = E[F(x,ξ )] for some

random variable ξ ⊆ Ξ . Our goal is to develop projection-free stochastic methods
for solving these problems.

7.4.1 Basic scheme for finite-sum problems

We first focus on the basic case when the number of terms m is fixed. Our goal is to
develop a variance-reduced conditional gradient method and establish its convergence
properties.

This method computes a full gradient for every T iterations and use it to recursively
define a gradient estimator Gk, which will be used in the linear optimization problem.
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Algorithm 7.12 Nonconvex variance-reduced conditional gradient for finite-sum
problems

Input: x1,T,{αk} and probability distribution Q = {q1, . . . ,qm} on {1, . . . ,m}.
for k = 1,2, . . . ,N do

if k % T == 1 then
Set Gk = ∇ f (xk).

else
Generate i.i.d. samples Ib of size b according to Q.
Set Gk =

1
b ∑i∈Ib (∇ fi(xk)−∇ fi(xk−1))/(qim)+Gk−1.

end if
Set yk = argminx∈X 〈Gk,x〉.
Set xk+1 = (1−αk)xk +αkyk.

end for
Output xR, where R is a random variable s.t. to

Prob{R = k}= αk

∑
N
k=1αk

,k = 1, . . . ,N.

In order to facilitate the analysis of the algorithm, we will group the iteration
indices k = 1,2, . . . into different epochs given by

{{1,2, . . . ,T},{T +1,T +2, . . . ,2T}, . . . ,{sT +1,sT +2 . . . ,(s+1)T}, . . .}.

In other words, except for the last epoch, each epoch s, s≥ 0, consists of T iterations
starting from sT +1 to (s+1)T , and the last epoch consist of the remaining iterations.
For a given iteration index k = sT +t, we will always use the index k and the pair (s, t)
interchangeably. For notational convenience, we also denote (s,T +1) == (s+1,1).
Sometimes we will simply denote (s, t) by t if the epoch s is clear from the context.

For a given x̄ ∈ X , we evaluate its accuracy using the Wolfe gap given by (7.3.3).
Denoting δk ≡ Gk−∇ f (xk), we can easily see that

gap(xk)≤max
x∈X
〈Gk,xk− x〉+‖δk‖D̄X , (7.4.2)

where D̄X := maxx,y∈X ‖x− y‖.
We first provide a bound on the size of ‖δk‖. Its proof is skipped since it is similar

to that of Lemma 6.10.

Lemma 7.4. Let L be defined in (6.5.2) and suppose that the probabilities qi are set
to

qi =
Li
mL (7.4.3)

for i = 1, . . . ,m. If the iteration index k (or equivalently (s, t) represents the t-th
iteration at the s-epoch, then

E[‖δk‖2]≡ E[‖δs,t‖2]≤ L2

b ∑
t
i=2E[‖xs,i− xs,i−1‖2]. (7.4.4)

Now we are ready to prove the main convergence properties of the nonconvex
variance-reduced conditional gradient method.



7.4 Stochastic nonconvex conditional gradient 473

Theorem 7.16. If the probabilities qi are set to (7.4.3) and the batch size b≥ T, then

E[gap(xR)]≤ f (x1)− f ∗

∑
N
k=1αk

+
LD̄2

X

∑
N
k=1αk

[
3
2 ∑

N
k=1α

2
k +∑

S
s=0

(
∑

T
j=1αs, j max

j=2,...,T
αs, j

)]
,

where S = bN/Tc.
Proof. Using the smoothness property of f and the fact that xk+1 = (1−αk)xk +

αkyk, we have

f (xk+1)≤ f (xk)+ 〈∇ f (xk),xk+1− xk〉+ L
2‖xk+1− xk‖2

= f (xk)+αk〈Gk,xk+1− xk〉+αk〈δk,yk− xk〉+ Lα2
k

2 ‖yk− xk‖2

≤ f (xk)+αk〈Gk,xk+1− xk〉+ 1
2L‖δk‖2 +Lα

2
k ‖yk− xk‖2

= f (xk)−αk max
x∈X
〈Gk,xk− x〉+ 1

2L‖δk‖2 +Lα
2
k ‖yk− xk‖2 (7.4.5)

for any k ≥ 1, where the second inequality follows from the Cauchy Schwarz in-
equality and the third inequality follows from the definition of xk+1. Note that by
(7.4.4) and the definition of xk+1,

E[‖δk‖2] = E[‖δs,t‖2]≤ L2

b ∑
t
i=2E[‖xs,i− xs,i−1‖2]

= L2

b ∑
t
i=2α

2
s,i‖ys,i− xs,i‖2

≤ L2D̄2
X

b ∑
t
i=2α

2
s,i.

Combining the above two inequalities with (7.4.2), we have for any iteration t at
epoch s,

E[ f (xs,t+1)]≤ E[ f (xs,t)]−αs,tE[max
x∈X
〈Gs,t ,xs,t − x〉]+ LD̄2

X
2b ∑

t
i=2α

2
s,i +Lα

2
s,tD̄

2
X

≤ E[ f (xs,t)]−αs,tE[gap(xs,t)]+LD̄2
X

[
αs,t(

1
b ∑

t
i=2α

2
s,i)

1/2 + 1
2b ∑

t
i=2α

2
s,i +α

2
s,t

]
.

(7.4.6)

Summing up these inequalities, we conclude that for any t = 1, . . . ,T ,

E[ f (xs,t+1)]≤ E[ f (xs,1)]−∑
t
j=1αs, jE[gap(xs, j)]

+LD̄2
X ∑

t
j=1

[
αs, j(

1
b ∑

j
i=2α

2
s,i)

1/2 + 1
2b ∑

j
i=2α

2
s,i +α

2
s, j

]
.

Observing

1
2b ∑

t
j=1∑

j
i=2α

2
s,i =

1
2b ∑

t
j=2(t− j+1)α2

s, j ≤ t−1
2b ∑

t
j=2α

2
s, j ≤ 1

2 ∑
t
j=2α

2
s, j

∑
t
j=1αs, j(

1
b ∑

j
i=2α

2
s,i)

1/2 ≤ 1√
b

(
max

j=2,...,T
αs, j

)
∑

t
j=1

√
j−1αs, j

≤ ∑
t
j=1αs, j max

j=2,...,T
αs, j,
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we conclude that for any t = 1, . . . ,T ,

∑
t
j=1αs, jE[gap(xs, j)]≤E[ f (xs,1)]−E[ f (xs,t+1)]

+LD̄2
X

[
3
2 ∑

t
j=1α

2
s, j +∑

t
j=1αs, j max

j=2,...,T
αs, j

]
.

Noting S = bN/Tc and J = N%T , and taking telescope sum over epochs s = 0, . . . ,S,
we obtain

∑
N
k=1αkE[gap(xk)]

≤ f (x1)−E[ f (xN+1)]+LD̄2
X

[
3
2 ∑

N
k=1α

2
k +∑

S
s=0

(
∑

T
j=1αs, j max

j=2,...,T
αs, j

)]

≤ f (x1)− f ∗+LD̄2
X

[
3
2 ∑

N
k=1α

2
k +∑

S
s=0

(
∑

T
j=1αs, j max

j=2,...,T
αs, j

)]
.

Our result immediately follows from the above inequality and the selection of the
random variable R.

We are now ready to specify stepsizes αk and establish the bounds on the total
number of gradient evaluations and linear optimization required by the nonconvex
variance-reduced conditional gradient method.

Corollary 7.10. Assume that the probabilities qi are set to (7.4.3) and that

b = T =
√

m. (7.4.7)

If N is given and
αk = α := 1√

N
, (7.4.8)

then the total number of linear oracles and gradient evaluations required by the
nonconvex variance-reduced conditional gradient method to find a solution x̄ ∈ X s.t.
E[gap(x̄)]≤ ε can be bounded by

O
{

1
ε2

[
f (x1)− f ∗+LD̄2

X
]2}

(7.4.9)

and
O
{

m+
√

m
ε2

[
f (x1)− f ∗+LD̄2

X
]2}

(7.4.10)

respectively.

Proof. Denote S= bN/Tc. Observe that by (7.4.8), ∑
N
k=1αk =Nα , ∑

N
k=1α2

k =Nα2

and

∑
S
s=0

(
∑

T
j=1αs, j max

j=2,...,T
αs, j

)
= ∑

S
s=0∑

T
j=1α

2 ≤ 2Nα
2.

Using these observations in Theorem 7.16, we conclude that
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E[gap(xR)]≤ f (x1)− f ∗
Nα

+
7LD̄2

X α

2 = 1√
N

[
f (x1)− f ∗+ 7LD̄2

X
2

]
.

Hence, the total number of linear oracles will be bounded by (7.4.16). Moreover, the
total number of gradient evaluations will be bounded by

(m+bT )
⌈N

T

⌉
= (2m)

⌈N
T

⌉
= 2m+

√
mN,

and thus by (7.4.17).
In practice, it makes sense to choose a non-uniform distribution to selection the

output solution xR. We provide such an option below with increasing αk so as to put
more weight on the iterations generated later by the algorithm.

Corollary 7.11. Assume that the probabilities qi and batch size b are set to (7.4.3)
and (7.4.7), respectively. If N is given and

αk = α := k1/4

N3/4 , (7.4.11)

then the total number of linear oracles and gradient evaluations required by the
nonconvex variance-reduced conditional gradient method to find a solution x̄ ∈ X s.t.
E[gap(x̄)]≤ ε can be bounded by (7.4.16) and (7.4.17), respectively.

Proof. Denote S = bN/Tc. Observe that by (7.4.11),

∑
N
k=1αk =

1
N3/4 ∑

N
k=1k1/4 ≥ 4

5

√
N,

∑
N
k=1α

2
k = 1

N3/2 ∑
N
k=1k1/2 ≤ 2(N+1)3/2

3N3/2 ≤ 4
√

2
3 ,

∑
S
s=0

(
∑

T
j=1αs, j max

j=2,...,T
αs, j

)
= ∑

S
s=0∑

T
j=1αs, jαs,T ≤ ∑

S
s=0∑

T
j=1αs,T

= T 3/2

N3/2 ∑
S
s=0(s+1)1/2 ≤ 2T 3/2

3N3/2 (S+2)3/2 ≤ 2
√

3.

Using these observations in Theorem 7.16, we conclude that

E[gap(xR)]≤ 5
2
√

N

[
1
2 f (x1)− f ∗+(

√
2+
√

3)LD̄2
X

]
.

Hence, the total number of linear oracles will be bounded by (7.4.16). Moreover, the
total number of gradient evaluations will be bounded by

(m+bT )
⌈N

T

⌉
= (2m)

⌈N
T

⌉
= 2m+

√
mN,

and thus by (7.4.17).
In view of the results in Corollaries 7.12 and 7.11, the nonconvex variance-reduced

conditional gradient method can save up to a factor of
√

m gradient evaluations
without increasing the number of calls to the linear oracle than the deterministic
nonconvex variance-reduced conditional gradient method. Observe that both stepsize
policies in (7.4.8) and (7.4.11) requires us to fix the number of iterations N a priori.
It is possible to relax this assumption, e.g., by setting αk = 1/

√
k. However, this
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stepsize policy will result in a slightly worse rate of convergence result up to some
logarithmic factors than those in Corollaries 7.12 and 7.11.

7.4.2 Generalization for stochastic optimization problems

In this section, we still consider problem (7.4.1), but with f given by

f (x) = E[F(x,ξ )], (7.4.12)

where ξ is a random vector supported on Ξ ⊆ Rd for some d ≥ 1. We make the
following assumptions throughout this subsection.

• F(x,ξ ) is a smooth function with Lipschitz constant L for any ξ ∈ Ξ almost
surely.

• It is possible to generate a realization ξ ∈ Ξ , and to compute ∇F(x,ξ ) and
∇F(y,ξ ) for any given two point x,y ∈ X for a fixed realization ξ .

• For any x, we have E[∇F(x,ξ )] = ∇ f (x) and

E[‖∇F(x,ξ )−∇ f (x)‖2]≤ σ
2. (7.4.13)

These assumptions are the same as those for the nonconvex varaince-reduced mirror-
descent method in Section 7.4, but much stronger than the those required for the
RSMD method in Section 6.2.

Algorithm 7.13 Nonconvex variance-reduced conditional gradient for stochastic
problems

Input: x1,T,{αk} and sample size m.
for k = 1,2, . . . ,N do

if k % T == 1 then
Generate an i.i.d. sample Hs = {ξ s

1 , . . . ,ξ
s
m} for the random variable ξ .

Set Gk =
1
m ∑

m
i=1∇F(xk,ξ

s
i ).

Set s← s+1.
else

Generate an i.i.d. sample Ik = {ξ k
1 , . . . ,ξ

k
b } for the random variable ξ .

Set Gk =
1
b ∑

b
i=1(∇F(xk,ξ

k
i )−∇F(xk−1,ξ

k
i ))+Gk−1.

end if
Set yk = argminx∈X 〈Gk,x〉.
Set xk+1 = (1−αk)xk +αkyk.

end for
Output xR, where R is a random variable s.t. to

Prob{R = k}= αk

∑
N
k=1αk

,k = 1, . . . ,N.
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Similar to the previous section, we will first need to provide a bound on the size of
δk = Gk−∇ f (xk). The proof of this result is almost identical to that of Lemma 6.11
and hence its details are skipped.

Lemma 7.5. If the iteration index k (or equivalently (s, t)) represents the t-th itera-
tion at the s-epoch, then

E[‖δk‖2]≡ E[‖δ(s,t)‖2]≤ L2

b ∑
t
i=2E[‖x(s,i)− x(s,i−1)‖2]+ σ2

m . (7.4.14)

Theorem 7.17. If the probabilities qi are set to (7.4.3) and the batch size b≥ T, then

E[gap(xR)]≤ f (x1)− f ∗

∑
N
k=1αk

+
LD̄2

X

∑
N
k=1αk

[
3
2 ∑

N
k=1α

2
k +∑

S
s=0

(
∑

T
j=1αs, j max

j=2,...,T
αs, j

)]

+ Nσ2

2Lm∑
N
k=1αk

,

where S = bN/Tc.

Proof. The result can be proved similarly toTheorem 7.16 after we replace (6.5.16)
with (7.4.14).

We are now ready to specify stepsizes αk and establish the bounds on the total
number of gradient evaluations and calls to the linear optimization oracle required by
the nonconvex variance-reduced conditional gradient method.

Corollary 7.12. Assume that that b and T are set to (7.4.7). If

αk = α :=
[
( 1

N + σ2

Lm )
1

LD̄2
X

]1/2
(7.4.15)

for some fixed in advance iterations count N, then we have

E[gap(xR)]≤ f (x1)− f ∗√
N

+
7LD̄2

X
2
√

N
+ 4σD̄X√

m .

As a consequence, then the total number of linear oracles and gradient evaluations
required by the nonconvex variance-reduced conditional gradient method to find a
solution x̄ ∈ X s.t. E[gap(x̄)]≤ ε can be bounded by

O

{(
f (x1)− f ∗+LD̄2

X
ε

)2
}

(7.4.16)

and

O

{(
σD̄X

ε

)2
+ σD̄X

ε

(
f (x1)− f ∗+LD̄2

X
ε

)2
}
, (7.4.17)

respectively.

Proof. Denote S = bN/Tc. Observe that by (7.4.15), ∑
N
k=1αk = Nα , ∑

N
k=1α2

k =
Nα2 and
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∑
S
s=0

(
∑

T
j=1αs, j max

j=2,...,T
αs, j

)
= ∑

S
s=0∑

T
j=1α

2 ≤ 2Nα
2.

Using these observations in Theorem 7.17, we conclude that

E[gap(xR)]≤ f (x1)− f ∗
Nα

+
7LD̄2

X α

2 + σ2

2Lmα

= f (x1)− f ∗√
N

+
7LD̄2

X
2
√

N
+ 4σD̄X√

m .

Now if we choose

m = O

{(
σD̄X

ε

)2
}

then an ε-solution will be found in

N = O

{(
f (x1)− f ∗+LD̄2

X
ε

)2
}

iterations. Hence, the total number of linear oracles will be bounded by (7.4.16).
Moreover, the total number of gradient evaluations will be bounded by

(m+bT )
⌈N

T

⌉
= (2m)

⌈N
T

⌉
= 2m+

√
mN,

and thus by (7.4.17).
One can also choose a non-uniform distribution to selection the output solution

xR, similarly to the deterministic case in Corollary 7.11. We leave this as an exercise.

7.5 Stochastic nonconvex conditional gradient sliding

We have so far discussed different types of termination criterions for solving non-
convex optimization problems given in the form of (7.4.1), including one based on
Wolfe gap and the other based on projected gradient. In this section, we first compare
these two criterions and then present a stochastic nonconvex conditional gradient
sliding method for solving problem (7.4.1), which can potentially outperform the
stochastic nonconvex conditional gradient method in the previous section in terms of
the latter criterion based on projected gradient.

7.5.1 Wolfe gap vs projected gradient

Recall that for a given search point x̄ ∈ X , the projected gradient gX (x̄) associated
with problem (7.4.1) is given by (see (6.2.7))

gX (x̄)≡ PX (x,∇ f (x̄),γ) := 1
γ
(x̄− x̄+), (7.5.1)
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where
x̄+ = argminu∈X

{
〈∇ f (x̄),u〉+ 1

γ
V (x̄,u)

}
, (7.5.2)

where V denotes the prox-function (or Bregman distance) associated with the distance
generating function ν . We assume that ν has Lν -Lipschitz gradients and modulus 1.
It then follows from Lemma 6.3 that if

‖gX (x̄)‖ ≤ ε,

then
−∇ f (x̄+) ∈ NX (x̄+)+B(ε(γL+Lν)), (7.5.3)

which, in view of the definitions of the normal cone in (6.2.8) and the Wolfe gap in
(7.3.3) then clearly imply that

gap(x̄+)≤ ε(γL+Lν).

Now suppose that we have a solution x̄ satisfying gap(x̄)≤ ε . It can been easily
seen that

−∇ f (x̄) ∈ NX (x̄)+B(ε). (7.5.4)

Observe that one nice feature about the definition of gap(x̄) is that it does not rely
on the selection of the norm. Now let us provide a bound on the size of projected
gradient for x̄. By the optimality condition of (7.5.2), we have

〈γ∇ f (x̄)+∇ν(x̄+)−∇ν(x̄),x− x̄+〉 ≥ 0,∀x ∈ X .

Letting x = x̄ in the above inequality, we have

〈γ∇ f (x̄), x̄+− x̄〉 ≥ 〈∇ν(x̄)−∇ν(x̄+), x̄− x̄+〉
≥ ‖x̄− x̄+‖2 = γ

2gX (x̄),

which implies that

‖gX (x̄)‖2 ≤ 〈∇ f (x̄), x̄+− x̄〉 ≤ gap(x̄).

In other words, if gap(x̄)≤ ε , in general we can only guarantee that

‖gX (x̄)‖ ≤
√

ε.

Therefore, it appears that the projected gradient is a stronger termination criterion
than the Wolfe gap, even though they both imply that the gradient ∇ f (x̄) (or ∇ f (x̄+))
falls within a small neighborhood of the norma cone NX (x̄) (or NX (x̄+) with similar
magnitude of perturbation (see (7.5.3) and (7.5.4)).
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7.5.2 Projection-free method to drive projected gradient small

Suppose that our goal indeed is to find a solution of problem (7.4.1) with small
projected gradient, i.e., a solution x̄ ∈ X s.t. E[‖gX (x̄)‖2] ≤ ε . First consider the
finite-sum case when f is given by the average of m components. If we apply the
nonconvex variance-reduced conditional gradient method, then the total number of
stochastic gradients and calls to the linear optimization oracle will be bounded by

O
{

m+
√

m
ε2

}
and O

{
1
ε2

}
,

respectively. On the other hand, we apply the nonconvex variance-reduced mirror
descent method in Section 7.4, then the total number of stochastic gradient will be
bounded by O(m+

√
m/ε). Therefore, the number of stochastic gradients required

by the nonconvex variance-reduced conditional gradient method can be worse than
that by the nonconvex variance-reduced mirror descent method up to a factor of
O(1/ε). The same situation happens for the stochastic case when f is given in
the form of expectation. If we apply the nonconvex variance-reduced conditional
gradient method, then the the total number of stochastic gradients and calls to the
linear optimization oracle will be bounded by

O
{

1
ε3

}
and O

{
1
ε2

}
,

respectively. However, the total number of stochastic gradient required by the noncon-
vex variance-reduced mirror descent method will be bounded by O(1/ε3/2). There-
fore, the total number of stochastic gradients required by the nonconvex variance-
reduced conditional gradient method can be worse than that by the nonconvex
variance-reduced mirror descent method up to a factor of O(1/ε3/2).

Our goal in this section is to present the nonconvex stochastic conditional gradient
sliding method for solving problem (7.4.1) and show that it can substantially reduce
the total number of required stochastic gradients than the nonconvex variance-reduced
conditional gradient method, but without increasing the total number of calls to the
linear oracle.

Similar to the conditional gradient sliding method, the basic idea of the nonconvex
stochastic conditional gradient sliding method is to apply the conditional gradient
method for solving the projection subproblem existing in the nonconvex variance-
reduced mirror descent method in Section 7.4. We formally state this algorithm as
follows.

Nonconvex stochastic conditional gradient sliding for finite-sum problems.
Replace the definition of xk+1 in Algorithm 7.13 by

xk+1 = CndG(Gk,xk,1/γ,η), (7.5.5)
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where the procedure CndG is defined in the conditional gradient sliding method (see
Algorithm 7.6).

In (7.5.5), we call the classical conditional gradient method to approximately
solve the projection subproblem

min
x∈X

{
φk(x) := 〈Gk,x〉+ 1

2γ
‖x− xk‖2

}
(7.5.6)

such that

〈φ ′k(xk+1),xk+1− x〉= 〈Gk +(xk+1− xk)/γ,xk+1− x〉 ≤ η , ∀x ∈ X , (7.5.7)

for some η ≥ 0.

Theorem 7.18. Suppose that the probabilities qi are set to (7.4.3). If

b = 10T and γ = 1
L . (7.5.8)

Then we have
E[‖gX ,k‖2]≤ 16L

N [ f (x1)− f ∗]+24Lη . (7.5.9)

Proof. Let us denote x̄k+1 := argminx∈X φk(x), x̂k+1 := argmin〈∇ f (xk),x〉 +
1
2γ
‖x− xk‖2 and g̃k ≡ 1

γ
(xk− xk+1). It follows from (7.5.7) with x = xk that

1
γ
‖xk− xk+1‖2 ≤ 〈Gk,xk− xk+1〉+η .

Using the above relation and the smoothness of f , we have for any k ≥ 1,

f (xk+1)≤ f (xk)+ 〈∇ f (xk),xk+1− xk〉+ L
2‖xk+1− xk‖2

= f (xk)+ 〈Gk,xk+1− xk〉+ L
2‖xk+1− xk‖2−〈δk,xk+1− xk〉

≤ f (xk)− 1
γ
‖xk− xk+1‖2 +ηk +

L
2‖xk+1− xk‖2−〈δk,xk+1− xk〉

≤ f (xk)−
(

1
γ
− L

2 −
q
2

)
‖xk− xk+1‖2 + 1

2q‖δk‖2 +ηk,

for any q > 0. Using the definition of g̃k in the above relation, we have

f (xk+1)≤ f (xk)− γ

(
1− Lγ

2 −
qγ

2

)
‖g̃X ,k‖2 + 1

2q‖δk‖2 +ηk. (7.5.10)

Moreover, by (7.5.7) with x = x̄k+1 and the strong convexity of φk, we obtain

1
2γ
‖xk+1− x̄k+1‖2 ≤ 〈φ ′k(xk+1),xk+1− x̄k+1〉 ≤ ηk. (7.5.11)

Using the simple observation that

gX ,k = (xk− x̂k+1)/γ = [(xk− xk+1)+(xk+1− x̄k+1)+(x̄k+1− x̂k+1)]/γ,

we conclude from (6.2.11) and (7.5.11) that
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‖gX ,k‖2 ≤ 2‖g̃X ,k‖2 +4‖(xk+1− x̄k+1)/γ‖2 +4‖(x̄k+1− x̂k+1)/γ‖2

≤ 2‖g̃X ,k‖2 + 8ηk
γ

+4‖δk‖2.

Multiplying the above inequality for any p > 0 and adding it to (7.5.10), we have

f (xk+1)+ p‖gX ,k‖2 ≤ f (xk)−
[
γ

(
1− Lγ

2 −
qγ

2

)
−2p

]
‖g̃X ,k‖2

+(4p+ 1
2q )‖δk‖2 +(1+ 8p

γ
)ηk.

Now using an argument similar to (6.5.12), we can show that for any epoch s of the
nonconvex stochastic conditional gradient sliding method,

E[ f (xs,t+1)]+ p∑
t
j=1E[‖gX ,(s, j)‖2]

≤ E[ f (xs,1)]−
[
γ

(
1− Lγ

2 −
qγ

2

)
−2p− (4p+ 1

2q )
γ2L2(t−1)

b

]
∑

t
j=1E[‖g̃X ,(s, j)‖2]

+ (1+ 8p
γ
)∑t

j=1ηs, j, (7.5.12)

Fixing γ = 1/L, p = 1/(16L), q = L/2 and b = 10T in the above inequality, and
observing

γ

(
1− Lγ

2 −
qγ

2

)
−2p− (4p+ 1

2q )
γ2L2(t−1)

b = 1
8L −

5(t−1)
4Lb > 0,∀t = 1, . . . ,T,

we have

E[ f (x(s,t+1))]+
1

16L ∑
t
j=1E[‖gX ,(s, j)‖2]≤ E[ f (x(s,1))]+ 3

2 ∑
t
j=1ηs, j. (7.5.13)

Therefore, by summing up the first N inequalities in the above form we obtain

E[ f (xN+1)]+
1

16L ∑
N
k=1E[‖gX ,k‖2]≤ f (x1)+

3
2 ∑

N
k=1ηk.

The result then follows from the above inequality, the definition of the random
variable R and the fact that f (xN+1)≥ f ∗.

Using the above result, we can bound the total number of stochastic gradients and
calls to the linear optimization oracle.

Corollary 7.13. Suppose that the probabilities qi are set to (7.4.3) and that b and
γ are set to (7.5.8) with T =

√
m. Then the total number of stochastic gradients

and calls to the linear optimization oracle performed by the nonconvex stochastic
conditional gradient sliding method to find a solution x̄ ∈ X s.t. E[gX (x̄)]≤ ε will be
bounded by

O
{

m+
√

mL
ε

[ f (x1)− f ∗]
}

(7.5.14)

and
O
{

L3D̄2
X [ f (x1)− f ∗]

ε2

}
, (7.5.15)

respectively.
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Proof. Assume that η = ε/(48L). Clearly, by Theorem 7.18, the total number of
iterations N will be bounded by

32L
ε
[ f (x1)− f ∗].

Therefore, the total number of gradient evaluations will be bounded by

(m+bT )dN
T e ≤ 11m( N√

m +1)e,

which is bounded by (7.5.14). Moreover, in view of Theorem 7.9.c), the number of
call to the linear optimization oracle performed at each iteration can be bounded by

⌈
6D̄2

X
γη

⌉

and hence total number of calls to the linear optimization oracle will be bounded by

N
⌈

6D̄2
X

γη

⌉
,

which is bounded by (7.5.15).
We can develop a similar stochastic nonconvex conditional gradient sliding method

for solving stochastic optimization problem with the objective function given in the
form of expectation. We leave this as an exercise for the readers.

7.6 Exercises and notes

1. Try to provide a game interpretation for the conditional gradient method, simi-
lar to the game interpretation for the accelerated gradient method discussed in
Section 3.4.

2. Similar to the conditional gradient sliding method, try to solve the subproblems in
the primal-dual method in Section 3.6 by using the conditional gradient method
and establish the rate of convergence of the resulting algorithm.

3. Similar to the conditional gradient sliding method, try to solve the subproblems in
the mirror-prox method in Section 3.8 by using the conditional gradient method
and establish the rate of convergence of the resulting algorithm.

Notes. The conditional gradient method was first introduced by Frank and Wolfe
in [28]. The variants of the conditional gradient method obtained by replacing the
projection with linear optimization in the accelerated gradient descent method, was
first introduced by Lan in [54]. Lan [54] also discussed nonsmooth conditional
gradient method and the low complexity bounds on the number of calls to the linear
optimization oracles for solving different classes of convex optimization problems.
Lan and Zhou [63] introduced the conditional gradient methods, which was the first
class of optimization algorithms that can achieve the lower complexity bound for
linear optimization oracles while maintaining the optimal rate of convergence in
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terms of the number of calls to the first-order oracle. The complexity of nonconvex
conditional gradient gradient and conditional gradient sliding methods were analyzed
in [45] and [91], respectively. Lan developed the materials on stochastic nonconvex
conditional gradient in Sections 7.4 and 7.5 when writing the book in the end of 2018
and early 2019, before realizing that some results in Section 7.4 were developed
in [103]. It is worth mentioning that the best complexity result so far, in terms
of gradient computation, for variance-reduced conditional gradient methods was
reported by Reddi et. al. [93] even though their algorithm requires more memory that
the one presented in Section 7.4. Conditional gradient type methods have attracted a
lot of interest in both optimization and machine learning community recently (see,
e.g., [1, 3, 5, 20, 19, 29, 38, 36, 42, 43, 44, 70, 98, 102]).



Chapter 8
Operator Sliding and Decentralized
Optimization

In this chapter, we will further explore the structure properties for solving optimiza-
tion problems. We will identify potential bottlenecks for solving these problems and
develop new techniques that can skip expensive operations from time to time. More
specifically, we first consider a class of composite optimization problems whose
objective function is given by the summation of a general smooth and nonsmooth
component, and present the gradient sliding (GS) algorithm, which can skip the
computation of the gradient for the smooth component from time to time. We then
discuss an accelerated gradient sliding (AGS) method for minimizing the summation
of two smooth convex functions with different Lipschitz constants and show that the
AGS method can skip the gradient computation for one of these smooth components
without slowing down the overall optimal rate of convergence. The AGS method can
further improve the complexity for solving an important class of bilinear saddle point
problems. In addition, we present a new class of decentralized first-order methods for
nonsmooth and stochastic optimization problems defined over multiagent networks.
These methods can skip the inter-node communications while agents solve the primal
subproblems iteratively through linearizations of their local objective functions.

8.1 Gradient sliding for composite optimization

In this section, we consider a class of composite convex programming (CP) problems
given in the form of

Ψ
∗ ≡min

x∈X
{Ψ(x) := f (x)+h(x)+X (x)} . (8.1.1)

Here, X ⊆ Rn is a closed convex set, X is a relatively simple convex function, and
f : X → R and h : X → R, respectively, are general smooth and nonsmooth convex
functions satisfying

f (x)≤ f (y)+ 〈∇ f (y),x− y〉+ L
2‖x− y‖2, ∀x,y ∈ X , (8.1.2)

485
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h(x)≤ h(y)+ 〈h′(y),x− y〉+M‖x− y‖, ∀x,y ∈ X , (8.1.3)

for some L > 0 and M > 0, where h′(x) ∈ ∂h(x). Composite problem of this type
appears in many data analysis applications, where either f or h corresponds to a
certain data fidelity term, while the other components in Ψ denote regularization
terms used to enforce certain structural properties for the obtained solutions.

Throughout this section, we assume that one can access the first-order information
of f and h separately. More specifically, in the deterministic setting, we can compute
the exact gradient ∇ f (x) and a subgradient h′(x) ∈ ∂h(x) for any x ∈ X . We also
consider the stochastic situation where only a stochastic subgradient of the nonsmooth
component h is available. The main goal of this section to provide a better theoretical
understanding on how many number of gradient evaluations of ∇ f and subgradient
evaluations of h′ are needed in order to find a certain approximate solution of (8.1.1).

Most existing first-order methods for solving (8.1.1) require the computation of
both ∇ f and h′ in each iteration. In particular, since the objective function Ψ in
(8.1.1) is nonsmooth, these algorithms would require O(1/ε2) first-order iterations,
and hence O(1/ε2) evaluations for both ∇ f and h′ to find an ε-solution of (8.1.1),
i.e., a point x̄ ∈ X s.t. Ψ(x̄)−Ψ ∗ ≤ ε . Much recent research effort has been directed
to reducing the impact of the Lipschitz constant L on the aforementioned complexity
bounds for composite optimization. For example, we show in Section 4.2 that the
number of evaluations for ∇ f and h′ required to find an ε-solution of (8.1.1) can be
bounded by

O

(√
L f
ε
+ M2

ε2

)
. (8.1.4)

It is also shown in Section 4.2 that similar bounds hold for the stochastic case where
only unbiased estimators for ∇ f and h′ are available. It is observed in Section 4.2
that such a complexity bound is not improvable if one can only access the first-order
information for the summation of f and h all together.

Note, however, that it is unclear whether the complexity bound in (8.1.4) is
optimal if one does have access to the first-order information of f and h separately. In
particular, one would expect that the number of evaluations for ∇ f can be bounded by
O(1/

√
ε), if the nonsmooth term h in (8.1.1) does not appear.However, it is unclear

whether such a bound still holds for the more general composite problem in (8.1.1)
without significantly increasing the bound in (8.1.4) on the number of subgradient
evaluations for h′. It should be pointed out that in many applications the bottleneck of
first-order methods exist in the computation of ∇ f rather than that of h′. To motivate
our discussion, let us mention a few such examples.

a) In many inverse problems, we need to enforce certain block sparsity (e.g., total
variation and overlapped group Lasso) by solving the problem of minx∈Rn ‖Ax−
b‖2

2 + r(Bx). Here A : Rn → Rm is a given linear operator, b ∈ Rm denotes the
collected observations, r : Rp → R is a relatively simple nonsmooth convex
function (e.g., r = ‖ · ‖1), and B : Rn→ Rp is a very sparse matrix. In this case,
evaluating the gradient of ‖Ax−b‖2 requires O(mn) arithmetic operations, while
the computation of r′(Bx) only needs O(n+ p) arithmetic operations.
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b) In many machine learning problems, we need to minimize a regularized loss
function given by minx∈Rn Eξ [l(x,ξ )]+q(Bx). Here l : Rn×Rd → R denotes a
certain simple loss function, ξ is a random variable with unknown distribution, q
is a certain smooth convex function, and B : Rn→ Rp is a given linear operator.
In this case, the computation of the stochastic subgradient for the loss function
Eξ [l(x,ξ )] requires only O(n+ d) arithmetic operations, while evaluating the
gradient of q(Bx) needs O(np) arithmetic operations.

c) In some cases, the computation of ∇ f involves a black-box simulation procedure,
the solution of an optimization problem, or a partial differential equation, while
the computation of h′ is given explicitly.

In all these cases mentioned above, it is desirable to reduce the number of gradient
evaluations of ∇ f to improve the overall efficiency for solving the composite problem
(8.1.1).

In this section, we first present a new class of first-order methods, namely the
gradient sliding algorithms, and show that the number of gradient evaluations for
∇ f required by these algorithms to find an ε-solution of (8.1.1) can be significantly
reduced from (8.1.4) to

O

(√
L
ε

)
, (8.1.5)

while the total number of subgradient evaluations for h′ is still bounded by (8.1.4).
The basic scheme of these algorithms is to skip the computation of ∇ f from time to
time so that only O(1/

√
ε) gradient evaluations are needed in the O(1/ε2) iterations

required to solve (8.1.1). Similar to the conditional gradient sliding method in
Section 7.2, such an algorithmic framework originated from the simple idea of
incorporating an iterative procedure to solve the subproblems in the aforementioned
accelerated proximal gradient methods, although the analysis of these gradient sliding
algorithms appears to be more technical and involved.

We then consider the stochastic case where the nonsmooth term h is represented
by a stochastic oracle (SFO), which, for a given search point ut ∈ X , outputs a vector
H(ut ,ξt) such that (s.t.)

E[H(ut ,ξt)] = h′(ut) ∈ ∂h(ut), (8.1.6)

E[‖H(ut ,ξt)−h′(ut)‖2
∗]≤ σ

2, (8.1.7)

where ξt is a random vector independent of the search points ut . Note that H(ut ,ξt)
is referred to as a stochastic subgradient of h at ut and its computation is often much
cheaper than the exact subgradient h′. Based on the gradient sliding techniques,
we develop a new class of stochastic approximation type algorithms and show that
the total number gradient evaluations of ∇ f required by these algorithms to find a
stochastic ε-solution of (8.1.1), i.e., a point x̄ ∈ X s.t. E[Ψ(x̄)−Ψ ∗]≤ ε , can still be
bounded by (8.1.5), while the total number of stochastic subgradient evaluations can
be bounded by

O

(√
L
ε
+ M2+σ2

ε2

)
.
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We also establish large-deviation results associated with these complexity bounds
under certain “light-tail” assumptions on the stochastic subgradients returned by the
SFO.

Finally, we generalize the gradient sliding algorithms for solving two important
classes of composite problems given in the form of (8.1.1), but with f satisfying
additional or alternative assumptions. We first assume that f is not only smooth, but
also strongly convex, and show that the number of evaluations for ∇ f and h′ can
be significantly reduced from O(1/

√
ε) and O(1/ε2), respectively, to O(log(1/ε))

and O(1/ε). We then consider the case when f is nonsmooth, but can be closely
approximated by a class of smooth functions. By incorporating Nesterov’s smoothing
scheme into the gradient sliding algorithms, we show that the number of gradient
evaluations can be bounded by O(1/ε), while the optimal O(1/ε2) bound on the
number of subgradient evaluations of h′ is still retained.

8.1.1 Deterministic gradient sliding

In this section, we consider the gradient sliding method for solving the deterministic
problem in (8.1.1) where exact subgradients of h are available.

Let us provide a brief review on the proximal gradient methods from which
the proposed gradient sliding algorithms originate, and point out a few problems
associated with these existing algorithms when applied to solve problem (8.1.1).

We start with the simplest proximal gradient method which works for the case
when the nonsmooth component h does not appear or is relatively simple (e.g., h
is affine). Let V (x,u) be the prox-function associated with the distance generating
function ν with modulus 1 (see Section 3.2). For a given x ∈ X , let

mΨ (x,u) := l f (x,u)+h(u)+χ(u), ∀u ∈ X , (8.1.8)

where
l f (x;y) := f (x)+ 〈∇ f (x),y− x〉. (8.1.9)

Clearly, by the convexity of f and (8.1.2), we have

mΨ (x,u)≤Ψ(u)≤ mΨ (x,u)+ L
2‖u− x‖2 ≤ mΨ (x,u)+LV (x,u)

for any u ∈ X , where the last inequality follows from the strong convexity of ν .
Hence, mΨ (x,u) is a good approximation of Ψ(u) when u is “close" enough to x. In
view of this observation, we update the search point xk ∈ X at the k-th iteration of
the proximal gradient method by

xk = argminu∈X
{

l f (xk−1,u)+h(u)+χ(u)+βkV (xk−1,u)
}
, (8.1.10)

Here, βk > 0 is a parameter which determines how well we “trust" the proximity
between mΨ (xk−1,u) and Ψ(u). In particular, a larger value of βk implies less confi-
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dence on mΨ (xk−1,u) and results in a smaller step moving from xk−1 to xk. It can be
shown that the number of iterations required by the proximal gradient method for
finding an ε-solution of (8.1.1) can be bounded by O(1/ε) (see Section 3.1).

The efficiency of the above proximal gradient method can be significantly im-
proved by incorporating a multi-step acceleration scheme. The basic idea of this
scheme is to introduce three closely related search sequences, namely, {xk}, {xk},
and {x̄k}, which will be used to build the model mΨ , control the proximity between
mΨ and Ψ , and compute the output solution, respectively. More specifically, these
three sequences are updated according to

xk = (1− γk)x̄k−1 + γkxk−1, (8.1.11)

xk = argminu∈X
{

Φk(u) := l f (xk,u)+h(u)+χ(u)+βkV (xk−1,u)
}
, (8.1.12)

x̄k = (1− γk)x̄k−1 + γkxk, (8.1.13)

where βk ≥ 0 and γk ∈ [0,1] are given parameters for the algorithm. Clearly, (8.1.11)-
(8.1.13) reduces to (8.1.10), if x̄0 = x0 and γk is set to 1. However, by properly
specifying βk and γk, e.g., βk = 2L/k and γk = 2/(k + 2), one can show that the
above accelerated gradient descent method can find an ε-solution of (8.1.1) in at
most O(1/

√
ε) iterations (see Section 3.3 for the analysis of the scheme in (8.1.11)-

(8.1.13)). Since each iteration of this algorithm requires only one evaluation of ∇ f ,
the total number of gradient evaluations of ∇ f can also be bounded by O(1/

√
ε).

One crucial problem associated with the aforementioned proximal gradient type
methods is that the subproblems (8.1.10) and (8.1.12) are difficult to solve when h is
a general nonsmooth convex function. To address this issue, one can possibly apply
an enhanced accelerated gradient method introduced in Section 4.2. This algorithm
is obtained by replacing h(u) in (8.1.12) with

lh(xk;u) := h(xk)+ 〈h′(xk),u− xk〉 (8.1.14)

for some h′(xk) ∈ ∂h(xk). As a result, the subproblems in this algorithm become
easier to solve. Moreover, with a proper selection of {βk} and {γk}, this approach
can find an ε-solution of (8.1.1) in at most

O

{√
LV (x0,x∗)

ε
+ M2V (x0,x∗)

ε2

}
(8.1.15)

iterations. Since each iteration requires one computation of ∇ f and h′, the total
number of evaluations for f and h′ is bounded by O(1/ε2). This bound in (8.1.15) is
not improvable if one can only compute the subgradient of the composite function
f (x)+h(x) as a whole. However, as mentioned earlier, we do have access to separate
first-order information about f and h in many applications. One interesting problem is
whether we can further improve the performance of proximal gradient type methods
in the latter case.

By presenting the gradient sliding method, we show that one can significantly
reduce the number of gradient evaluations for ∇ f required to solve (8.1.1), while
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maintaining the optimal bound on the total number of subgradient evaluations for
h′. The basic idea of the GS method is to incorporate an iterative procedure to
approximately solve the subproblem (8.1.12) in the accelerated proximal gradient
methods. A critical observation in our development of the GS method is that one
needs to compute a pair of closely related approximate solutions of problem (8.1.12).
One of them will be used in place of xk in (8.1.11) to construct the model mΨ , while
the other one will be used in place of xk in (8.1.13) to compute the output solution x̄k.
Moreover, we show that such a pair of approximation solutions can be obtained by
applying a simple subgradient projection type subroutine. We now formally describe
this algorithm as follows.

Algorithm 8.1 The gradient sliding (GS) algorithm
Input: Initial point x0 ∈ X and iteration limit N.
Let βk ∈ R++,γk ∈ R+, and Tk ∈N , k = 1,2, . . ., be given and set x̄0 = x0.
for k = 1,2, . . . ,N do

1. Set xk = (1− γk)x̄k−1 + γkxk−1, and let gk(·)≡ l f (xk, ·) be defined in (8.1.9).
2. Set

(xk, x̃k) = PS(gk,xk−1,βk,Tk); (8.1.16)

3. Set x̄k = (1− γk)x̄k−1 + γk x̃k.
end for
Output: x̄N .

The PS (prox-sliding) procedure called at step 2 is stated as follows.
procedure (x+, x̃+) = PS(g, x, β , T )

Let the parameters pt ∈ R++ and θt ∈ [0,1], t = 1, . . ., be given. Set u0 = ũ0 = x.
for t = 1,2, . . . ,T do

ut = argminu∈X {g(u)+ lh(ut−1,u)+βV (x,u)+β ptV (ut−1,u)+χ(u)} , (8.1.17)

ũt = (1−θt)ũt−1 +θt ut . (8.1.18)

end for
Set x+ = uT and x̃+ = ũT .

end procedure

Observe that when supplied with an affine function g(·), prox-center x ∈ X ,
parameter β , and sliding period T , the PS procedure computes a pair of approximate
solutions (x+, x̃+) ∈ X×X for the problem of:

argminu∈X {Φ(u) := g(u)+h(u)+βV (x,u)+χ(u)} . (8.1.19)

Clearly, problem (8.1.19) is equivalent to (8.1.12) when the input parameters are set to
(8.1.16). Since the same affine function g(·) = l f (xk−1, ·) has been used throughout
the T iterations of the PS procedure, we skip the computation of the gradients
of f when performing the T projection steps in (8.1.17). This differs from the
accelerated gradient method in Section 4.2, where one needs to compute ∇ f +h′ in
each projection step.
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It should also be noted that there has been some related work on the accelerated
gradient methods with inexact solution of the proximal mapping step (8.1.19). The
results basically state that the approximation error at each step has to decrease very
fast to maintain the accelerated convergence rate. Since (8.1.19) is strongly convex,
one can apply the subgradient method to solve it efficiently. However, one needs to
carefully deal with some difficulties in this intuitive approach. Firstly, one has to
define an appropriate termination criterion for solving (8.1.19). It turns out that using
the natural functional optimality gap as the termination criterion for this subproblem
could not lead to the desirable convergence rates, and we need to use in the GS
algorithm a special termination criterion defined by the summation of the functional
optimality gap and the distance to the optimal solution (see (8.1.21) below). Secondly,
even though (8.1.19) is strongly convex, it is nonsmooth and the strong convexity
modulus decreases as the number of iterations increases. Hence, one has to carefully
determine the specification of these nested (accelerated) subgradient algorithms.
Thirdly, one important modification that we incorporated in the GS mehtod is to use
two different approximate solutions in the two interpolation updates in the accelerated
gradient methods. Otherwise, one could not obtain the optimal complexity bounds
on the computation of both ∇ f and h′.

A few more remarks about the above GS algorithm are in order. Firstly, we say
that an outer iteration of the GS algorithm occurs whenever k in Algorithm 8.1
increments by 1. Each outer iteration of the GS algorithm involves the computa-
tion of the gradient ∇ f (xk−1) and a call to the PS procedure to update xk and x̃k.
Secondly, the PS procedure solves problem (8.1.19) iteratively. Each iteration of
this procedure consists of the computation of subgradient h′(ut−1) and the solution
of the projection subproblem (8.1.17), which is assumed to be relatively easy to
solve (see Section 5.1.1). For notational convenience, we refer to an iteration of the
PS procedure as an inner iteration of the GS algorithm. Thirdly, the GS algorithm
described above is conceptual only since we have not yet specified the selection of
{βk}, {γk}, {Tk}, {pt} and {θt}. We will return to this issue after establishing some
convergence properties of the generic GS algorithm described above.

We first present a result which summarizes some important convergence properties
of the PS procedure.

We are now ready to establish the convergence of the PS procedure.

Proposition 8.1. If {pt} and {θt} in the PS procedure satisfy

θt =
Pt−1−Pt

(1−Pt )Pt−1
with Pt :=

{
1, t = 0,
pt(1+ pt)

−1Pt−1, t ≥ 1,
(8.1.20)

then, for any t ≥ 1 and u ∈ X,

β (1−Pt)
−1V (ut ,u)+ [Φ(ũt)−Φ(u)]≤

Pt(1−Pt)
−1
[
βV (u0,u)+ M2

2β
∑

t
i=1(p2

i Pi−1)
−1
]
, (8.1.21)
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where Φ is defined in (8.1.19).

Proof. By (8.1.3) and the definition of lh in (8.1.14), we have h(ut)≤ lh(ut−1,ut)+
M‖ut −ut−1‖. Adding g(ut)+βV (x,ut)+χ(ut) to both sides of this inequality and
using the definition of Φ in (8.1.19), we obtain

Φ(ut)≤ g(ut)+ lh(ut−1,ut)+βV (x,ut)+χ(ut)+M‖ut −ut−1‖. (8.1.22)

Now applying Lemma 3.5 to (8.1.17), we obtain

g(ut)+ lh(ut−1,ut)+βV (x,ut)+χ(ut)+β ptV (ut−1,ut)

≤ g(u)+ lh(ut−1,u)+βV (x,u)+χ(u)+β ptV (ut−1,u)−β (1+ pt)V (ut ,u)

≤ g(u)+h(u)+βV (x,u)+χ(u)+β ptV (ut−1,u)−β (1+ pt)V (ut ,u)

= Φ(u)+β ptV (ut−1,u)−β (1+ pt)V (ut ,u),

where the second inequality follows from the convexity of h. Moreover, by the strong
convexity of ν ,

−β ptV (ut−1,ut)+M‖ut −ut−1‖ ≤ −β pt
2 ‖ut −ut−1‖2 +M‖ut −ut−1‖ ≤ M2

2β pt
,

where the last inequality follows from the simple fact that −at2/2+bt ≤ b2/(2a)
for any a > 0. Combining the previous three inequalities, we conclude that

Φ(ut)−Φ(u)≤ β ptV (ut−1,u)−β (1+ pt)V (ut ,u)+ M2

2β pt
.

Dividing both sides by 1+ pt and rearranging the terms, we obtain

βV (ut ,u)+
Φ(ut )−Φ(u)

1+pt
≤ β pt

1+pt
V (ut−1,u)+ M2

2β (1+pt )pt
,

which, in view of the definition of Pt in (8.1.20) and Lemma 3.17 (with k = t,
wk = 1/(1+ pt) and Wk = Pt ), then implies that

β

Pt
V (ut ,u)+∑

t
i=1

Φ(ui)−Φ(u)
Pi(1+pi)

≤ βV (u0,u)+ M2

2β
∑

t
i=1

1
Pi(1+pi)pi

= βV (u0,u)+ M2

2β
∑

t
i=1(p2

i Pi−1)
−1, (8.1.23)

where the last identity also follows from the definition of Pt in (8.1.20). Also note
that by the definition of ũt in the PS procedure and (8.1.20), we have

ũt =
Pt

1−Pt

(
1−Pt−1

Pt−1
ũt−1 +

1
Pt (1+pt )

ut

)
.

Applying this relation inductively and using the fact that P0 = 1, we can easily see
that
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ũt =
Pt

1−Pt

[
1−Pt−2

Pt−2
ũt−2 +

1
Pt−1(1+pt−1)

ut−1 +
1

Pt (1+pt )
ut

]

= . . .= Pt
1−Pt

∑
t
i=1

1
Pi(1+pi)

ui,

which, in view of the convexity of Φ , then implies that

Φ(ũt)−Φ(u)≤ Pt
1−Pt

∑
t
i=1

Φ(ui)−Φ(u)
Pi(1+pi)

. (8.1.24)

Combining the above inequality with (8.1.23) and rearranging the terms, we obtain
(8.1.21).

Setting u to be the optimal solution of (8.1.19), we can see that both xk and x̃k are
approximate solutions of (8.1.19) if the right hand side (RHS) of (8.1.21) is small
enough. With the help of this result, we can establish an important recursion from
which the convergence of the GS algorithm easily follows.

Proposition 8.2. Suppose that {pt} and {θt} in the PS procedure satisfy (8.1.20).
Also assume that {βk} and {γk} in the GS algorithm satisfy

γ1 = 1 and βk−Lγk ≥ 0, k ≥ 1. (8.1.25)

Then for any u ∈ X and k ≥ 1,

Ψ(x̄k)−Ψ(u)≤(1− γk)[Ψ(x̄k−1)−Ψ(u)]+ γk(1−PTk)
−1

[
βkV (xk−1,u)−βkV (xk,u)+

M2PTk
2βk

∑
Tk
i=1(p2

i Pi−1)
−1
]
. (8.1.26)

Proof. First, notice that by the definition of x̄k and xk, we have x̄k− xk = γk(x̃k−
xk−1). Using this observation, (8.1.2), the definition of l f in (8.1.9), and the convexity
of f , we obtain

f (x̄k)≤ l f (xk, x̄k)+
L
2‖x̄k− xk‖2

= (1− γk)l f (xk, x̄k−1)+ γkl f (xk, x̃k)+
Lγ2

k
2 ‖x̃k− xk−1‖2

≤ (1− γk) f (x̄k−1)+ γk
[
l f (xk, x̃k)+βkV (xk−1, x̃k)

]

− γkβkV (xk−1, x̃k)+
Lγ2

k
2 ‖x̃k− xk−1‖2

≤ (1− γk) f (x̄k−1)+ γk
[
l f (xk, x̃k)+βkV (xk−1, x̃k)

]

−
(
γkβk−Lγ

2
k
)

V (xk−1, x̃k)

≤ (1− γk) f (x̄k−1)+ γk
[
l f (xk, x̃k)+βkV (xk−1, x̃k)

]
, (8.1.27)

where the third inequality follows from the strong convexity of ν and the last inequal-
ity follows from (8.1.25). By the convexity of h and χ , we have

h(x̄k)+χ(x̄k)≤ (1− γk)[h(x̄k−1)+χ(x̄k−1)]+ γk[h(x̃k)+χ(x̃k)]. (8.1.28)
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Adding up the previous two inequalities, and using the definitions of Ψ in (8.1.1) and
Φk in (8.1.12), we have

Ψ(x̄k)≤ (1− γk)Ψ(x̄k−1)+ γkΦk(x̃k).

Subtracting Ψ(u) from both sides of the above inequality, we obtain

Ψ(x̄k)−Ψ(u)≤ (1− γk)[Ψ(x̄k−1)−Ψ(u)]+ γk[Φk(x̃k)−Ψ(u)]. (8.1.29)

Also note that by the definition of Φk in (8.1.12) and the convexity of f ,

Φk(u)≤ f (u)+h(u)+χ(u)+βkV (xk−1,u) =Ψ(u)+βkV (xk−1,u), ∀u ∈ X .
(8.1.30)

Combining these two inequalities (i.e., replacing the third Ψ(u) in (8.1.29) by φk(u)−
βkV (xk−1,u)), we obtain

Ψ(x̄k)−Ψ(u)≤ (1− γk)[Ψ(x̄k−1)−Ψ(u)]

+ γk[Φk(x̃k)−Φk(u)+βkV (xk−1,u)]. (8.1.31)

Now, in view of the definition of Φk in (8.1.12) and the origin of (xk, x̃k) in (8.1.16),
we can apply Proposition 1 with φ = φk, u0 = xk−1, ut = xk, ũt = x̃k, and β = βk, and
conclude that for any u ∈ X and k ≥ 1,

βk
1−PTk

V (xk,u)+[Φk(x̃k)−Φk(u)]≤
PTk

1−PTk

[
βkV (xk−1,u)+ M2

2βk
∑

Tk
i=1(p2

i Pi−1)
−1
]
.

Plugging the above bound on Φk(x̃k)−Φk(u) into (8.1.31), we obtain (8.1.26).

We are now ready to establish the main convergence properties of the GS algorithm.
Note that the following quantity will be used in our analysis of this algorithm.

Γk =

{
1, k = 1,
(1− γk)Γk−1, k ≥ 2.

(8.1.32)

Theorem 8.1. Assume that {pt} and {θt} in the PS procedure satisfy (8.1.20), and
also that {βk} and {γk} in the GS algorithm satisfy (8.1.25).

a) If for any k ≥ 2,
γkβk

Γk(1−PTk )
≤ γk−1βk−1

Γk−1(1−PTk−1 )
, (8.1.33)

then we have, for any N ≥ 1,

Ψ(x̄N)−Ψ(x∗)≤Bd(N) := ΓN β1
1−PT1

V (x0,x∗)

+ M2ΓN
2 ∑

N
k=1∑

Tk
i=1

γkPTk
Γkβk(1−PTk )p2

i Pi−1
, (8.1.34)
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where x∗ ∈ X is an arbitrary optimal solution of problem (8.1.1), and Pt and Γk
are defined in (8.1.20) and (8.1.32), respectively.

b) If X is compact, and for any k ≥ 2,

γkβk
Γk(1−PTk )

≥ γk−1βk−1
Γk−1(1−PTk−1 )

, (8.1.35)

then (8.1.34) still holds by simply replacing the first term in the definition of
Bd(N) with γNβNV̄ (x∗)/(1−PTN ), where V̄ (u) = maxx∈X V (x,u).

Proof. We conclude from (8.1.26) and Lemma 3.17 that

Ψ(x̄N)−Ψ(u)≤ ΓN
1−γ1

Γ1
[Ψ(x̄0)−Ψ(u)]

+ΓN∑
N
k=1

βkγk
Γk(1−PTk )

[V (xk−1,u)−V (xk,u)]

+ M2ΓN
2 ∑

N
k=1∑

Tk
i=1

γkPTk
Γkβk(1−PTk )p2

i Pi−1

= ΓN∑
N
k=1

βkγk
Γk(1−PTk )

[V (xk−1,u)−V (xk,u)]

+ M2ΓN
2 ∑

N
k=1∑

Tk
i=1

γkPTk
Γkβk(1−PTk )p2

i Pi−1
, (8.1.36)

where the last identity follows from the fact that γ1 = 1. Now it follows from (8.1.33)
that

∑
N
k=1

βkγk
Γk(1−PTk )

[V (xk−1,u)−V (xk,u)]

≤ β1γ1
Γ1(1−PT1 )

V (x0,u)− βN γN
ΓN(1−PTN )V (xN ,u)≤ β1

1−PT1
V (x0,u), (8.1.37)

where the last inequality follows from the facts that γ1 = Γ1 = 1, PTN ≤ 1, and
V (xN ,u) ≥ 0. The result in part a) then clearly follows from the previous two in-
equalities with u = x∗. Moreover, using (8.1.35) and the fact V (xk,u)≤ V̄ (u) , we
conclude that

∑
N
k=1

βkγk
Γk(1−PTk )

[V (xk−1,u)−V (xk,u)]

≤ β1
1−PT1

V̄ (u)−∑
N
k=2

[
βk−1γk−1

Γk−1(1−PTk−1 )
− βkγk

Γk(1−PTk )

]
V̄ (u)

= γN βN
ΓN(1−PTN )V̄ (u). (8.1.38)

Part b) then follows from the above observation and (8.1.36) with u = x∗.

Clearly, there are various options for specifying the parameters {pt}, {θt}, {βk},
{γk}, and {Tk} to guarantee the convergence of the GS algorithm. Below we provide
a few such selections which lead to the best possible rate of convergence for solving
problem (8.1.1). In particular, Corollary 8.1.a) provides a set of such parameters for
the case when the feasible region X is unbounded and the iteration limit N is given a



496 8 Operator Sliding and Decentralized Optimization

priori, while the one in Corollary 8.1.b) works only for the case when X is compact,
but does not require N to be given in advance.

Corollary 8.1. Assume that {pt} and {θt} in the PS procedure are set to

pt =
t
2 and θt =

2(t+1)
t(t+3) , ∀ t ≥ 1. (8.1.39)

a) If N is fixed a priori, and {βk}, {γk}, and {Tk} are set to

βk =
2L
vk , γk =

2
k+1 , and Tk =

⌈
M2Nk2

D̃L2

⌉
(8.1.40)

for some D̃ > 0, then

Ψ(x̄N)−Ψ(x∗)≤ 2L
N(N+1)

[
3V (x0,x∗)+2D̃

]
, ∀N ≥ 1. (8.1.41)

b) If X is compact, and {βk}, {γk}, and {Tk} are set to

βk =
9L(1−PTk )

2(k+1) , γk =
3

k+2 , and Tk =
⌈

M2(k+1)3

D̃L2

⌉
, (8.1.42)

for some D̃ > 0, then

Ψ(x̄N)−Ψ(x∗)≤ L
(N+1)(N+2)

(
27V̄ (x∗)

2 + 8D̃
3

)
, ∀N ≥ 1. (8.1.43)

Proof. We first show part a). By the definitions of Pt and pt in (8.1.20) and (8.1.39),
we have

Pt =
tPt−1
t+2 = . . .= 2

(t+1)(t+2) . (8.1.44)

Using the above identity and (8.1.39), we can easily see that the condition in (8.1.20)
holds. It also follows from (8.1.44) and the definition of Tk in (8.1.40) that

PTk ≤ PTk−1 ≤ . . .≤ PT1 ≤ 1
3 . (8.1.45)

Now, it can be easily seen from the definition of βk and γk in (8.1.40) that (8.1.25)
holds. It also follows from (8.1.32) and (8.1.40) that

Γk =
2

k(k+1) . (8.1.46)

By (8.1.40), (8.1.45), and (8.1.46), we have

γkβk
Γk(1−PTk )

= 2L
1−PTk

≤ 2L
1−PTk−1

=
γk−1βk−1

Γk−1(1−PTk−1)
,

from which (8.1.33) follows. Now, by (8.1.44) and the fact that pt = t/2, we have

∑
Tk
i=1

1
p2

i Pi−1
= 2∑

Tk
i=1

i+1
i ≤ 4Tk, (8.1.47)

which, together with (8.1.40) and (8.1.46), then imply that



8.1 Gradient sliding for composite optimization 497

∑
Tk
i=1

γkPTk
Γkβk(1−PTk )p2

i Pi−1
≤ 4γkPTk Tk

Γkβk(1−PTk )
= 4k2

L(Tk+3) . (8.1.48)

Using this observation, (8.1.34), (8.1.45), and (8.1.46), we have

Bd(N)≤ 4LV (x0,x∗)
N(N+1)(1−PT1 )

+ 4M2

LN(N+1)∑
N
k=1

k2

Tk+3

≤ 6LV (x0,x∗)
N(N+1) + 4M2

LN(N+1)∑
N
k=1

k2

Tk+3 ,

which, in view of Theorem 8.1.a) and the definition of Tk in (8.1.40), then clearly
implies (8.1.41).

Now let us show that part b) holds. It follows from (8.1.45), and the definition of
βk and γk in (8.1.42) that

βk ≥ 3L
k+1 ≥ Lγk (8.1.49)

and hence that (8.1.25) holds. It also follows from (8.1.32) and (8.1.42) that

Γk =
6

k(k+1)(k+2) , k ≥ 1, (8.1.50)

and hence that
γkβk

Γk(1−PTk )
= k(k+1)

2
9L

2(k+1) =
9Lk

4 , (8.1.51)

which implies that (8.1.35) holds. Using (8.1.42), (8.1.45), (8.1.47), and (8.1.49), we
have

∑
Tk
i=1

γkPTk
Γkβk(1−PTk )p2

i Pi−1
≤ 4γkPTk Tk

Γkβk(1−PTk )
=

4k(k+1)2PTk Tk

9L(1−PTk )
2

= 8k(k+1)2(Tk+1)(Tk+2)
9LTk(Tk+3)2 ≤ 8k(k+1)2

9LTk
. (8.1.52)

Using this observation, (8.1.42), (8.1.50), and Theorem 8.1.b), we conclude that

Ψ(x̄N)−Ψ(x∗)≤ γN βNV̄ (x∗)
(1−PTN ) + M2ΓN

2 ∑
N
k=1

8k(k+1)2

9LTk

≤ γN βNV̄ (x∗)
(1−PTN ) + 8LD̃

3(N+1)(N+2)

≤ L
(N+1)(N+2)

(
27V̄ (x∗)

2 + 8D̃
3

)
.

Observe that by (8.1.18) and (8.1.44), when the selection of pt = t/2, the definition
of ũt in the PS procedure can be simplified as

ũt =
(t+2)(t−1)

t(t+3) ũt−1 +
2(t+1)
t(t+3) ut .

In view of Corollary 8.1, we can establish the complexity of the GS algorithm for
finding an ε-solution of problem (8.1.1).

Corollary 8.2. Suppose that {pt} and {θt} are set to (8.1.39). Also assume that there
exists an estimate DX > 0 s.t.
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V (x,y)≤ D2
X , ∀x,y ∈ X . (8.1.53)

If {βk}, {γk}, and {Tk} are set to (8.1.40) with D̃ = 3D2
X/2 for some N > 0, then the

total number of evaluations for ∇ f and h′ can be bounded by

O

(√
LD2

X
ε

)
(8.1.54)

and

O

{
M2D2

X
ε2 +

√
LD2

X
ε

}
, (8.1.55)

respectively. Moreover, the above two complexity bounds also hold if X is bounded,
and {βk}, {γk}, and {Tk} are set to (8.1.42) with D̃ = 81D2

X/16.

Proof. In view of Corollary 8.1.a), if {βk}, {γk}, and {Tk} are set to (8.1.40),
the total number of outer iterations (or gradient evaluations) performed by the GS
algorithm to find an ε-solution of (8.1.1) can be bounded by

N ≤
√

L
ε

[
3V (x0,x∗)+2D̃

]
≤
√

6LD2
X

ε
. (8.1.56)

Moreover, using the definition of Tk in (8.1.40), we conclude that the total number of
inner iterations (or subgradient evaluations) can be bounded by

∑
N
k=1Tk ≤ ∑

N
k=1

(
M2Nk2

D̃L2 +1
)
≤ M2N(N+1)3

3D̃L2 +N = 2M2N(N+1)3

9D2
X L2 +N,

which, in view of (8.1.56), then clearly implies the bound in (8.1.55). Using Corol-
lary 8.1.b) and similar arguments, we can show that the complexity bounds (8.1.54)
and (8.1.55) also hold when X is bounded, and {βk}, {γk}, and {Tk} are set to (8.1.42)
.

In view of Corollary 8.2, the GS algorithm can achieve the optimal complexity
bound for solving problem (8.1.1) in terms of the number of evaluations for both ∇ f
and h′.

It is also worth noting that we can relax the requirement on DX in (8.1.53) to
V (x0,x∗)≤ D2

X or maxx∈X V (x,x∗)≤ D2
X , respectively, when the stepsize policies in

(8.1.40) or in (8.1.42) is used. Accordingly, we can tighten the complexity bounds in
(8.1.54) and (8.1.55) by a constant factor.

8.1.2 Stochastic gradient sliding

We now consider the situation when the computation of stochastic subgradients of h
is much easier than that of exact subgradients. This situation happens, for example,
when h is given in the form of an expectation or as the summation of many nonsmooth
components. By presenting a stochastic gradient sliding (SGS) method, we show that
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similar complexity bounds as in Section 8.1.1 for solving problem (8.1.1) can still
be obtained in expectation or with high probability, but the iteration cost of the SGS
method can be substantially smaller than that of the GS method.

More specifically, we assume that the nonsmooth component h is represented
by a stochastic oracle (SFO) satisfying (8.1.6) and (8.1.7). Sometimes, we augment
(8.1.7) by a “light-tail” assumption:

E[exp(‖H(u,ξ )−h′(u)‖2
∗/σ

2)]≤ exp(1). (8.1.57)

It can be easily seen that (8.1.57) implies (8.1.7) by Jensen’s inequality.
The stochastic gradient sliding (SGS) algorithm is obtained by simply replacing

the exact subgradients in the PS procedure with the stochastic subgradients returned
by the SFO. This algorithm is formally described as follows.

Algorithm 8.2 The stochastic gradient sliding (SGS) algorithm
The algorithm is the same as GS except that the identity (8.1.17) in the PS procedure is replaced
by

ut = argminu∈X {g(u)+ 〈H(ut−1,ξt−1),u〉+βV (x,u)+β ptV (ut−1,u)+χ(u)} . (8.1.58)

The above modified PS procedure is called the SPS (stochastic PS) procedure.

We add a few remarks about the above SGS algorithm. Firstly, in this algorithm,
we assume that the exact gradient of f will be used throughout the Tk inner iterations.
This is different from the stochastic accelerated gradient method in Section 4.2,
where one needs to compute ∇ f at each subgradient projection step. Secondly, let us
denote

l̃h(ut−1,u) := h(ut−1)+ 〈H(ut−1,ξt−1),u−ut−1〉. (8.1.59)

It can be easily seen that (8.1.58) is equivalent to

ut = argminu∈X
{

g(u)+ l̃h(ut−1,u)+βV (x,u)+β ptV (ut−1,u)+χ(u)
}
. (8.1.60)

This problem reduces to (8.1.17) if there is no stochastic noise associated with the
SFO, i.e., σ = 0 in (8.1.7). Thirdly, note that we have not provided the specification
of {βk}, {γk}, {Tk}, {pt} and {θt} in the SGS algorithm. Similarly to Section 8.1.1,
we will return to this issue after establishing some convergence properties about the
generic SPS procedure and SGS algorithm.

The following result describes some important convergence properties of the SPS
procedure.

Proposition 8.3. Assume that {pt} and {θt} in the SPS procedure satisfy (8.1.20).
Then for any t ≥ 1 and u ∈ X,
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β (1−Pt)
−1V (ut ,u)+ [Φ(ũt)−Φ(u)]≤ βPt(1−Pt)

−1V (ut−1,u) +

Pt(1−Pt)
−1

∑
t
i=1(piPi−1)

−1
[
(M+‖δi‖∗)2

2β pi
+ 〈δi,u−ui−1〉

]
, (8.1.61)

where Φ is defined in (8.1.19),

δt := H(ut−1,ξt−1)−h′(ut−1), and h′(ut−1) = E[H(ut−1,ξt−1)]. (8.1.62)

Proof. Let l̃h(ut−1,u) be defined in (8.1.59). Clearly, we have l̃h(ut−1,u)−
lh(ut−1,u) = 〈δt ,u−ut−1〉. Using this observation and (8.1.22), we obtain

Φ(ut)≤ g(u)+ lh(ut−1,ut)+βV (x,ut)+χ(ut)+M‖ut −ut−1‖
= g(u)+ l̃h(ut−1,ut)−〈δt ,ut −ut−1〉+βV (x,ut)+χ(ut)+M‖ut −ut−1‖
≤ g(u)+ l̃h(ut−1,ut)+βV (x,ut)+χ(ut)+(M+‖δt‖∗)‖ut −ut−1‖,

where the last inequality follows from the Cauchy-Schwarz inequality. Now applying
Lemma 3.5 to (8.1.58), we obtain

g(ut)+ l̃h(ut−1,ut)+βV (x,ut)+β ptV (ut−1,ut)+χ(ut)

≤ g(u)+ l̃h(ut−1,u)+βV (x,u)+β ptV (ut−1,u)+χ(u)−β (1+ pt)V (ut ,u)

= g(u)+ lh(ut−1,u)+ 〈δt ,u−ut−1〉
+βV (x,u)+β ptV (ut−1,u)+χ(u)−β (1+ pt)V (ut ,u)

≤Φ(u)+β ptV (ut−1,u)−β (1+ pt)V (ut ,u)+ 〈δt ,u−ut−1〉,

where the last inequality follows from the convexity of h and (8.1.19). Moreover, by
the strong convexity of ν ,

−β ptV (ut−1,ut)+(M+‖δt‖∗)‖ut −ut−1‖

≤ −β pt
2 ‖ut −ut−1‖2 +(M+‖δt‖∗)‖ut −ut−1‖ ≤ (M+‖δt‖∗)2

2β pt
,

where the last inequality follows from the simple fact that −at2/2+bt ≤ b2/(2a)
for any a > 0. Combining the previous three inequalities, we conclude that

Φ(ut)−Φ(u)≤ β ptV (ut−1,u)−β (1+ pt)V (ut ,u)+
(M+‖δt‖∗)2

2β pt
+ 〈δt ,u−ut−1〉.

Now dividing both sides of the above inequality by 1+ pt and re-arranging the terms,
we obtain

βV (ut ,u)+
Φ(ut )−Φ(u)

1+pt
≤ β pt

1+pt
V (ut−1,u)+

(M+‖δt‖∗)2

2β (1+pt )pt
+
〈δt ,u−ut−1〉

1+pt
,

which, in view of Lemma 3.17, then implies that
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β

Pt
V (ut ,u)+∑

t
i=1

Φ(ui)−Φ(u)
Pi(1+pi)

≤ βV (u0,u)

+∑
t
i=1

[
(M+‖δi‖∗)2

2βPi(1+pi)pi
+
〈δi,u−ui−1〉

Pi(1+pi)

]
. (8.1.63)

The result then immediately follows from the above inequality and (8.1.24).

It should be noted that the search points {ut} generated by different calls to the
SPS procedure in different outer iterations of the SGS algorithm are distinct from
each other. To avoid ambiguity, we use uk,t , k ≥ 1, t ≥ 0, to denote the search points
generated by the SPS procedure in the k-th outer iteration. Accordingly, we use

δk,t−1 := H(uk,t−1,ξt−1)−h′(uk,t−1), k ≥ 1, t ≥ 1, (8.1.64)

to denote the stochastic noises associated with the SFO. Then, by (8.1.61), the
definition of Φk in (8.1.12), and the origin of (xk, x̃k) in the SGS algorithm, we have

βk(1−PTk)
−1V (xk,u)+ [Φk(x̃k)−Φk(u)]≤ βkPTk(1−PTk)

−1V (xk−1,u) +

PTk(1−PTk)
−1

∑
Tk
i=1

1
piPi−1

[
(M+‖δk,i−1‖∗)

2

2βk pi
+ 〈δk,i−1,u−uk,i−1〉

]
(8.1.65)

for any u ∈ X and k ≥ 1.

With the help of (8.1.65), we are now ready to establish the main convergence
properties of the SGS algorithm.

Theorem 8.2. Suppose that {pt}, {θt}, {βk}, and {γk} in the SGS algorithm satisfy
(8.1.20) and (8.1.25).

a) If relation (8.1.33) holds, then under Assumptions (8.1.6) and (8.1.7), we have,
for any N ≥ 1,

E [Ψ(x̄N)−Ψ(x∗)]≤ B̃d(N) := ΓN β1
1−PT1

V (x0,u)

+ΓN∑
N
k=1∑

Tk
i=1

(M2+σ2)γkPTk
βkΓk(1−PTk )p2

i Pi−1
, (8.1.66)

where x∗ is an arbitrary optimal solution of (8.1.1), and Pt and Γk are defined in
(8.1.18) and (8.1.32), respectively.

b) If in addition, X is compact and Assumption (8.1.57) holds, then

Prob
{

Ψ(x̄N)−Ψ(x∗)≥ B̃d(N)+λBp(N)
}
≤ exp

{
−2λ

2/3
}
+ exp{−λ} ,

(8.1.67)
for any λ > 0 and N ≥ 1, where

B̃p(N) := σΓN

{
2V̄ (x∗)∑N

k=1∑
Tk
i=1

[
γkPTk

Γk(1−PTk )piPi−1

]2
}1/2

+ΓN∑
N
k=1∑

Tk
i=1

σ2γkPTk
βkΓk(1−PTk )p2

i Pi−1
. (8.1.68)
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c) If X is compact and relation (8.1.35) (instead of (8.1.33)) holds, then both part a)
and part b) still hold by replacing the first term in the definition of B̃d(N) with
γNβNV̄ (x∗)/(1−PTN ).

Proof. Using (8.1.31) and (8.1.65), we have

Ψ(x̄k)−Ψ(u)≤ (1− γk)[Ψ(x̄k−1)−Ψ(u)]+ γk

{
βk

1−PTk
[V (xk−1,u)−V (xk,u)]+

PTk
1−PTk

∑
Tk
i=1

1
piPi−1

[
(M+‖δk,i−1‖∗)

2

2βk pi
+ 〈δk,i−1,u−uk,i−1〉

]}
.

Using the above inequality and Lemma 3.17, we conclude that

Ψ(x̄N)−Ψ(u)≤ ΓN(1− γ1)[Ψ(x̄0)−Ψ(u)]

+ΓN∑
N
k=1

βkγk
Γk(1−PTk )

[V (xk−1,u)−V (xk,u)]+ΓN∑
N
k=1

γkPTk
Γk(1−PTk )

∑
Tk
i=1

1
piPi−1

[
(M+‖δk,i−1‖∗)

2

2βk pi
+ 〈δk,i−1,u−uk,i−1〉

]
.

The above relation, in view of (8.1.37) and the fact that γ1 = 1, then implies that

Ψ(x̄N)−Ψ(u)≤ βk
1−PT1

V (x0,u)+ΓN∑
N
k=1

γkPTk
Γk(1−PTk )

∑
Tk
i=1

1
piPi−1

[
M2+‖δk,i−1‖2∗

βk pi
+ 〈δk,i−1,u−uk,i−1〉

]
. (8.1.69)

We now provide bounds on the RHS of (8.1.69) in expectation or with high probabil-
ity.

We first show part a). Note that by our assumptions on the SFO, the random
variable δk,i−1 is independent of the search point uk,i−1 and hence E[〈∆k,i−1,x∗−
uk,i〉] = 0. In addition, Assumption 8.1.7 implies that E[‖δk,i−1‖2

∗]≤ σ2. Using the
previous two observations and taking expectation on both sides of (8.1.69) (with
u = x∗), we obtain (8.1.66).

We now show that part b) holds. Note that by our assumptions on the SFO and
the definition of uk,i, the sequence {〈δk,i−1,x∗−uk,i−1〉}k≥1,1≤i≤Tk is a martingale-
difference sequence. Denoting

αk,i :=
γkPTk

Γk(1−PTk )piPi−1
,

and using the large-deviation theorem for martingale-difference sequence and the
fact that
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E
[
exp
{

α
2
k,i〈δk,i−1,x∗−uk,i〉2/

(
2α

2
k,iV̄ (x∗)σ2)}]

≤ E
[
exp
{

α
2
k,i‖δk,i−1‖2

∗‖x∗−uk,i‖2/
(
2V̄ (x∗)σ2)}]

≤ E
[
exp
{
‖δk,i−1‖2

∗V (uk,i,x∗)/
(
V̄ (x∗)σ2)}]

≤ E
[
exp
{
‖δk,i−1‖2

∗/σ
2}]≤ exp{1},

we conclude that

Prob
{

∑
N
k=1∑

Tk
i=1αk,i〈δk,i−1,x∗−uk,i−1〉> λσ

√
2V̄ (x∗)∑N

k=1∑
Tk
i=1α2

k,i

}

≤ exp{−λ 2/3},∀λ > 0.
(8.1.70)

Now let
Sk,i :=

γkPTk
βkΓk(1−PTk )p2

i Pi−1

and S := ∑
N
k=1∑

Tk
i=1Sk,i. By the convexity of exponential function, we have

E
[
exp
{

1
S ∑

N
k=1∑

Tk
i=1Sk,i‖δk,i‖2

∗/σ2
}]

≤ E
[

1
S ∑

N
k=1∑

Tk
i=1Siexp

{
‖δk,i‖2

∗/σ2
}]
≤ exp{1}.

where the last inequality follows from Assumption 8.1.57. Therefore, by Markov’s
inequality, for all λ > 0,

Prob
{

∑
N
k=1∑

Tk
i=1Sk,i‖δk,i−1‖2

∗ > (1+λ )σ2
∑

N
k=1∑

Tk
i=1Sk,i

}

= Prob
{

exp
{

1
S ∑

N
k=1∑

Tk
i=1Sk,i‖δk,i−1‖2

∗/σ2
}
≥ exp{1+λ}

}
≤ exp{−λ}.

(8.1.71)
Our result now directly follows from (8.1.69), (8.1.70) and (8.1.71). The proof of
part c) is very similar to part a) and b) in view of the bound in (8.1.38), and hence
the details are skipped.

We now provide some specific choices for the parameters {βk}, {γk}, {Tk}, {pt},
and {θt} used in the SGS algorithm. In particular, while the stepsize policy in
Corollary 8.3.a) requires the number of iterations N given a priori, such an assumption
is not needed in Corollary 8.3.b) given that X is bounded. However, in order to provide
some large-deviation results associated with the rate of convergence for the SGS
algorithm (see (8.1.74) and (8.1.77) below), we need to assume the boundness of X
in both Corollary 8.3.a) and Corollary 8.3.b).

Corollary 8.3. Assume that {pt} and {θt} in the SPS procedure are set to (8.1.39).

a) If N is given a priori, {βk} and {γk} are set to (8.1.40), and {Tk} is given by

Tk =
⌈

N(M2+σ2)k2

D̃L2

⌉
(8.1.72)

for some D̃ > 0. Then under Assumptions (8.1.6) and (8.1.7), we have
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E [Ψ(x̄N)−Ψ(x∗)]≤ 2L
N(N+1)

[
3V (x0,x∗)+4D̃

]
, ∀N ≥ 1. (8.1.73)

If in addition, X is compact and Assumption (8.1.57) holds, then

Prob
{

Ψ(x̄N)−Ψ(x∗)≥ 2L
N(N+1)

[
3V (x0,x∗)+4(1+λ )D̃+

4λ

√
D̃V̄ (x∗)√

3

]}

≤ exp
{
−2λ

2/3
}
+ exp{−λ} , ∀λ > 0, ∀N ≥ 1. (8.1.74)

b) If X is compact, {βk} and {γk} are set to (8.1.42), and {Tk} is given by

Tk =
⌈
(M2+σ2)(k+1)3

D̃L2

⌉
(8.1.75)

for some D̃ > 0. Then under Assumptions (8.1.6) and (8.1.7), we have

E [Ψ(x̄N)−Ψ(x∗)]≤ L
(N+1)(N+2)

[
27V̄ (x∗)

2 + 16D̃
3

]
, ∀N ≥ 1. (8.1.76)

If in addition, Assumption (8.1.57) holds, then

Prob
{

Ψ(x̄N)−Ψ(x∗)≥ L
N(N+2)

[
27V̄ (x∗)

2 + 8
3 (2+λ )D̃+

12λ

√
2D̃V̄ (x∗)√

3

]}

≤ exp
{
−2λ

2/3
}
+ exp{−λ} , ∀λ > 0, ∀N ≥ 1. (8.1.77)

Proof. We first show part a). It can be easily seen from (8.1.46) that (8.1.25) holds.
Moreover, Using (8.1.40), (8.1.45), and (8.1.46), we can easily see that (8.1.33) holds.
By (8.1.45), (8.1.46), (8.1.48), (8.1.66), and (8.1.72), we have

B̃d(N)≤ 4LV (x0,x∗)
N(N+1)(1−PT1 )

+
8(M2+σ2)
LN(N+1) ∑

N
k=1

k2

Tk+3

≤ 6L
N(N+1) +

8(M2+σ2)
LN(N+1) ∑

N
k=1

k2

Tk+3

≤ 2L
N(N+1)

[
3V (x0,x∗)+4D̃

]
, (8.1.78)

which, in view of Theorem 8.2.a), then clearly implies (8.1.73). Now observe that by
the definition of γk in (8.1.40) and relation (8.1.46),

∑
Tk
i=1

[
γkPTk

Γk(1−PTk )piPi−1

]2
=
(

2k
Tk(Tk+3)

)2
∑

Tk
i=1(i+1)2

=
(

2k
Tk(Tk+3)

)2 (Tk+1)(Tk+2)(2Tk+3)
6 ≤ 8k2

3Tk
,

which together with (8.1.46), (8.1.48), and (8.1.68) then imply that
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B̃p(N)≤ 2σ

N(N+1)

[
2V̄ (x∗)∑N

k=1
8k2

3Tk

]1/2
+ 8σ2

LN(N+1)∑
N
k=1

k2

Tk+3

≤ 2σ

N(N+1)

[
16D̃L2V̄ (x∗)
3(M2+σ2)

]1/2
+ 8D̃Lσ2

N(N+1)(M2+σ2)

≤ 8L
N(N+1)

(√
D̃V̄ (x∗)√

3
+ D̃

)
.

Using the above inequality, (8.1.78), Theorem 8.2.b), we obtain (8.1.74).
We now show that part b) holds. Note that Pt and Γk are given by (8.1.44) and

(8.1.50), respectively. It then follows from (8.1.49) and (8.1.51) that both (8.1.25)
and (8.1.35) hold. Using (8.1.52), the definitions of γk and βk in (8.1.42), (8.1.75),
and Theorem 8.2.c), we conclude that

E [Ψ(x̄N)−Ψ(x∗)]≤ γN βNV̄ (x∗)
(1−PTN ) +ΓN(M2 +σ

2)∑N
k=1∑

Tk
i=1

γkPTk
βkΓk(1−PTk )p2

i Pi−1

≤ γN βNV̄ (x∗)
(1−PTN ) + 16LD̃

3(N+1)(N+2)

≤ L
(N+1)(N+2)

(
27V̄ (x∗)

2 + 16D̃
3

)
. (8.1.79)

Now observe that by the definition of γk in (8.1.42), the fact that pt = t/2, (8.1.44),
and (8.1.50), we have

∑
Tk
i=1

[
γkPTk

Γk(1−PTk )piPi−1

]2
=
(

k(k+1)
Tk(Tk+3)

)2
∑

Tk
i=1(i+1)2

=
(

k(k+1)
Tk(Tk+3)

)2 (Tk+1)(Tk+2)(2Tk+3)
6 ≤ 8k4

3Tk
,

which together with (8.1.50), (8.1.52), and (8.1.68) then imply that

B̃p(N)≤ 6
N(N+1)(N+2)

[
σ

(
2V̄ (x∗)∑N

k=1
8k4

3Tk

)1/2
+ 4σ2

9L ∑
N
k=1

k(k+1)2

Tk

]

= 6
N(N+1)(N+2)

[
σ

(
8V̄ (x∗)D̃L2N(N+1)

3(M2+σ2)

)1/2
+ 4σ2LD̃N

9(M2+σ2)

]

≤ 6L
N(N+2)

(
2
√

2V̄ (x∗)D̃√
3

+ 4D̃
9

)
.

The relation in (8.1.77) then immediately follows from the above inequality, (8.1.79),
and Theorem 8.2.c).

Corollary 8.4 below states the complexity of the SGS algorithm for finding
a stochastic ε-solution of (8.1.1), i.e., a point x̄ ∈ X s.t. E[Ψ(x̄)−Ψ ∗] ≤ ε for
some ε > 0, as well as a stochastic (ε,Λ)-solution of (8.1.1), i.e., a point x̄ ∈ X
s.t. Prob{Ψ(x̄)−Ψ ∗ ≤ ε}> 1−Λ for some ε > 0 and Λ ∈ (0,1). Since this result
follows as an immediate consequence of Corollary 8.3, we skipped the details of its
proof.
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Corollary 8.4. Suppose that {pt} and {θt} are set to (8.1.39). Also assume that there
exists an estimate DX > 0 s.t. (8.1.53) holds.

a) If {βk} and {γk} are set to (8.1.40), and {Tk} is given by (8.1.72) with D̃ =
3D2

X/(4) for some N > 0, then the number of evaluations for ∇ f and h′, respec-
tively, required by the SGS algorithm to find a stochastic ε-solution of (8.1.1) can
be bounded by

O

(√
LD2

X
ε

)
(8.1.80)

and

O

{
(M2+σ2)D2

X
ε2 +

√
LD2

X
ε

}
. (8.1.81)

b) If in addition, Assumption (8.1.57) holds, then the number of evaluations for ∇ f
and h′, respectively, required by the SGS algorithm to find a stochastic (ε,Λ)-
solution of (8.1.1) can be bounded by

O

{√
LD2

X
ε

max
(
1, log 1

Λ

)}
(8.1.82)

and

O

{
M2D2

X
ε2 max

(
1, log2 1

Λ

)
+

√
LD2

X
ε

max
(
1, log 1

Λ

)}
. (8.1.83)

c) The above bounds in part a) and b) still hold if X is bounded, {βk} and {γk} are
set to (8.1.42), and {Tk} is given by (8.1.75) with D̃ = 81D2

X/(32).

Observe that both bounds in (8.1.80) and (8.1.81) on the number of evaluations
for ∇ f and h′ are essentially not improvable. In fact, it is interesting to note that
only O(1/

√
ε) gradient evaluations is required by this stochastic approximation type

algorithm applied to solve the composite problem in (8.1.1).

8.1.3 Strongly convex and structured nonsmooth problems

We intend to show that the gradient sliding techniques developed in Sections 8.1.1
and 8.1.2 can be further generalized to some other important classes of CP problems.
More specifically, we first study in Subsection 8.1.3.1 the composite CP problems
in (8.1.1) with f being strongly convex, and then consider in Subsection 8.1.3.2
the case where f is a special nonsmooth function given in a bi-linear saddle point
form. Throughout this subsection, we assume that the nonsmooth component h is
represented by a SFO (see Section 1). It is clear that our discussion covers also the
deterministic composite problems as certain special cases by setting σ = 0 in (8.1.7)
and (8.1.57).
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8.1.3.1 Strongly convex optimization

In this section, we assume that the smooth component f in (8.1.1) is strongly convex,
i.e., ∃µ > 0 such that

f (x)≥ f (y)+ 〈∇ f (y),x− y〉+µV (y,x), ∀x,y ∈ X . (8.1.84)

One way to solve these strongly convex composite problems is to apply the afore-
mentioned stochastic accelerated gradient descent method (or accelerated stochastic
approximation algorithm) which would require O(1/ε) evaluations for ∇ f and h′ to
find an ε-solution of (8.1.1) (Section 4.2). However, we will show in this subsection
that this bound on the number of evaluations for ∇ f can be significantly reduced
to O(log(1/ε)), by properly restarting the SGS algorithm in Section 8.1.2. This
multi-phase stochastic gradient sliding (M-SGS) algorithm is formally described as
follows.

Algorithm 8.3 The multi-phase stochastic gradient sliding (M-SGS) algorithm
Input: Initial point y0 ∈ X , iteration limit N0, and an initial estimate ∆0 s.t. Ψ(y0)−Ψ ∗ ≤ ∆0.
for s = 1,2, . . . ,S do

Run the SGS algorithm with x0 = ys−1, N = N0, {pt} and {θt} in (8.1.39), {βk} and {γk} in
(8.1.40), and {Tk} in (8.1.72) with D̃ = ∆0/(µ2s), and let ys be its output solution.
end for
Output: yS.

We now establish the main convergence properties of the M-SGS algorithm
described above.

Theorem 8.3. If N0 =
⌈

2
√

5L/(µ)
⌉

in the M-SGS algorithm, then

E[Ψ(ys)−Ψ
∗]≤ ∆0

2s , s≥ 0. (8.1.85)

As a consequence, the total number of evaluations for ∇ f and H, respectively,
required by the M-SGS algorithm to find a stochastic ε-solution of (8.1.1) can be
bounded by

O
(√

L
µ

log2 max
{

∆0
ε
,1
})

(8.1.86)

and
O
(

M2+σ2

µε
+
√

L
µ

log2 max
{

∆0
ε
,1
})

. (8.1.87)

Proof. We show (8.1.85) by induction. Note that (8.1.85) clearly holds for s =
0 by our assumption on ∆0. Now assume that (8.1.85) holds at phase s− 1, i.e.,
Ψ(ys−1)−Ψ ∗ ≤ ∆0/2(s−1) for some s≥ 1. In view of Corollary 8.3 and the definition
of ys, we have
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E[Ψ(ys)−Ψ
∗|ys−1]≤ 2L

N0(N0+1)

[
3V (ys−1,x∗)+4D̃

]

≤ 2L
N2

0

[
3
µ
(Ψ(ys−1)−Ψ

∗)+4D̃
]
.

where the second inequality follows from the strong convexity of Ψ and (??). Now
taking expectation on both sides of the above inequality w.r.t. ys−1, and using the
induction hypothesis and the definition of D̃ in the M-SGS algorithm, we conclude
that

E[Ψ(ys)−Ψ
∗]≤ 2L

N2
0

5∆0
µ2s−1 ≤ ∆0

2s ,

where the last inequality follows from the definition of N0. Now, by (8.1.85), the
total number of phases performed by the M-SGS algorithm can be bounded by
S = dlog2 max

{
∆0
ε
,1
}
e. Using this observation, we can easily see that the total

number of gradient evaluations of ∇ f is given by N0S, which is bounded by (8.1.86).
Now let us provide a bound on the total number of stochastic subgradient evaluations
of h′. Without loss of generality, let us assume that ∆0 > ε . Using the previous bound
on S and the definition of Tk, the total number of stochastic subgradient evaluations
of h′ can be bounded by

∑
S
s=1∑

N0
k=1Tk ≤ ∑

S
s=1∑

N0
k=1

(
µN0(M2+σ2)k2

∆0L2 2s +1
)

≤ ∑
S
s=1

[
µN0(M2+σ2)

3∆0L2 (N0 +1)32s +N0

]

≤ µN0(N0+1)3(M2+σ2)
3∆0L2 2S+1 +N0S

≤ 4µN0(N0+1)3(M2+σ2)
3εL2 +N0S.

This observation, in view of the definition of N0, then clearly implies the bound in
(8.1.87).

We now add a few remarks about the results obtained in Theorem 8.3. Firstly,
the M-SGS algorithm possesses optimal complexity bounds in terms of the number
of gradient evaluations for ∇ f and subgradient evaluations for h′, while existing
algorithms only exhibit optimal complexity bounds on the number of stochastic sub-
gradient evaluations (see Section 4.2). Secondly, in Theorem 8.3, we only establish
the optimal convergence of the M-SGS algorithm in expectation. It is also possible to
establish the optimal convergence of this algorithm with high probability by making
use of the light-tail assumption in (8.1.57) and a domain shrinking procedure.

8.1.3.2 Structured nonsmooth problems

Our goal in this subsection is to further generalize the gradient sliding algorithms
to the situation when f is nonsmooth, but can be closely approximated by a certain
smooth convex function.

More specifically, we assume that f is given in the form of
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f (x) = max
y∈Y
〈Ax,y〉− J(y), (8.1.88)

where A : Rn→Rm denotes a linear operator, Y is a closed convex set, and J : Y →R
is a relatively simple, proper, convex, and lower semi-continuous (l.s.c.) function (i.e.,
problem (8.1.91) below is easy to solve). Observe that if J is the convex conjugate of
some convex function F and Y ≡ Y , then problem (8.1.1) with f given in (8.1.88)
can be written equivalently as

min
x∈X

h(x)+F(Ax),

Similarly to the previous subsection, we focus on the situation when h is represented
by a SFO. Stochastic composite problems in this form have wide applications in
machine learning, for example, to minimize the regularized loss function of

min
x∈X

Eξ [l(x,ξ )]+F(Ax),

where l(·,ξ ) is a convex loss function for any ξ ∈ Ξ and F(Kx) is a certain regular-
ization.

Since f in (8.1.88) is nonsmooth, we cannot directly apply the gradient sliding
methods developed in the previous sections. However, the function f (·) in (8.1.88)
can be closely approximated by a class of smooth convex functions. More specifically,
for a given strongly convex function ω : Y → R such that

ω(y)≥ ω(x)+ 〈∇ω(x),y− x〉+ 1
2‖y− x‖2,∀x,y ∈ Y, (8.1.89)

let us denote cω := argminy∈Y ω(y), W (y)≡W (cω ,y) :=ω(y)−ω(cω)−〈∇ω(cω),y−
cω〉 and

DY := [max
y∈Y

W (y)]1/2. (8.1.90)

Then the function f (·) in (8.1.88) can be closely approximated by

fη(x) := max
y
{〈Ax,y〉− J(y)−η W (y) : y ∈ Y} . (8.1.91)

Indeed, by definition we have 0≤W (y)≤ D2
Y and hence, for any η ≥ 0,

f (x)−ηD2
Y ≤ fη(x)≤ f (x), ∀x ∈ X . (8.1.92)

Moreover, fη(·) is differentiable and its gradients are Lipschitz continuous with the
Lipschitz constant given by

Lη := ‖A‖2
η

. (8.1.93)

We are now ready to present a smoothing stochastic gradient sliding (S-SGS)
method and study its convergence properties.
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Theorem 8.4. Let (x̄k,xk) be the search points generated by a smoothing stochastic
gradient sliding (S-SGS) method, which is obtained by replacing f with fη(·) in the
definition of gk in the SGS method. Suppose that {pt} and {θt} in the SPS procedure
are set to (8.1.39). Also assume that {βk} and {γk} are set to (8.1.40) and that Tk is
given by (8.1.72) with D̃ = 3D2

X/4 for some N ≥ 1, where DX is given by (8.1.53). If

η = 2
√

3‖A‖DX
NDY

,

then the total number of outer iterations and inner iterations performed by the S-SGS
algorithm to find an ε-solution of (8.1.1) can be bounded by

O
(
‖A‖DX DY

ε

)
(8.1.94)

and

O

{
(M2+σ2)‖A‖2V (x0,x∗)

ε2 +
‖A‖DY

√
V (x0,x∗)

ε

}
, (8.1.95)

respectively.

Proof. Let us denote Ψη(x) = fη(x)+h(x)+χ(x). In view of (8.1.73) and (8.1.93),
we have

E[Ψη(x̄N)−Ψη(x)]≤ 2Lη

N(N+1)

[
3V (x0,x)+4D̃

]

= 2‖A‖2
ηN(N+1)

[
3V (x0,x)+4D̃

]
, ∀x ∈ X , N ≥ 1.

Moreover, it follows from (8.1.92) that

Ψη(x̄N)−Ψη(x)≥Ψ(x̄N)−Ψ(x)−ηD2
Y .

Combining the above two inequalities, we obtain

E[Ψ(x̄N)−Ψ(x)]≤ 2‖A‖2
ηN(N+1)

[
3V (x0,x)+4D̃

]
+ηD2

Y , ∀x ∈ X ,

which implies that

E[Ψ(x̄N)−Ψ(x∗)]≤ 2‖A‖2
ηN(N+1)

[
3D2

X +4D̃
]
+ηD2

Y . (8.1.96)

Plugging the value of D̃ and η into the above bound, we can easily see that

E[Ψ(x̄N)−Ψ(x∗)]≤ 4
√

3‖A‖DX DY
N , ∀x ∈ X , N ≥ 1.

It then follows from the above relation that the total number of outer iterations to
find an ε-solution of problem (8.1.88) can be bounded by

N̄(ε) = 4
√

3‖A‖DX DY
ε

.
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Now observe that the total number of inner iterations is bounded by

∑
N̄(ε)
k=1 Tk = ∑

N̄(ε)
k=1

[
(M2+σ2)N̄(ε)k2

D̃L2
η

+1
]
= ∑

N̄(ε)
k=1

[
(M2+σ2)N̄(ε)k2

D̃L2
η

+1
]
.

Combining these two observations, we conclude that the total number of inner
iterations is bounded by (8.4).

In view of Theorem 8.4, by using the smoothing SGS algorithm, we can sig-
nificantly reduce the number of outer iterations, and hence the number of times to
access the linear operator A and AT , from O(1/ε2) to O(1/ε) in order to find an
ε-solution of (8.1.1), while still maintaining the optimal bound on the total number
of stochastic subgradient evaluations for h′. It should be noted that, by using the
result in Theorem 8.2.b), we can show that the aforementioned savings on the access
to the linear operator A and AT also hold with overwhelming probability under the
light-tail assumption in (8.1.57) associated with the SFO.

8.2 Accelerated gradient sliding

In this section, we show that one can skip gradient computations without slowing
down the convergence of gradient descent type methods for solving certain structured
convex programming (CP) problems. To motivate our study, let us first consider the
following classic bilinear saddle point problem (SPP):

ψ
∗ := min

x∈X

{
ψ(x) := f (x)+max

y∈Y
〈Ax,y〉− J(y)

}
. (8.2.1)

Here, X ⊆Rn and Y ⊆Rm are closed convex sets, A : Rn→Rm is a linear operator, J
is a relatively simple convex function, and f : X → R is a continuously differentiable
convex function satisfying

0≤ f (x)− l f (u,x)≤ L
2‖x−u‖2, ∀x,u ∈ X , (8.2.2)

for some L > 0, where l f (u,x) := f (u)+ 〈∇ f (u),x−u〉 denotes the first-order Tay-
lor expansion of f at u. Observe that problem (8.2.1) is different from the prob-
lem discussed in Section 8.1.3.2, whose objective function consists of a general
nonsmooth convex function h (rather than a smooth convex function f ), although
both problems contain a structured nonsmooth component given by in the form of
maxy∈Y 〈Ax,y〉− J(y).

Since ψ is a nonsmooth convex function, traditional nonsmooth optimization
methods, e.g., the subgradient method, would require O(1/ε2) iterations to find an ε-
solution of (8.2.1), i.e., a point x̄ ∈ X s.t. ψ(x̄)−ψ∗ ≤ ε . As discussed in Section 3.6,
we can approximate ψ by a smooth convex function
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ψ
∗
ρ := min

x∈X

{
ψρ(x) := f (x)+hρ(x)

}
, (8.2.3)

with

hρ(x) := max
y∈Y
〈Ax,y〉− J(y)−ρW (y0,y) (8.2.4)

for some ρ > 0, where y0 ∈Y and W (y0, ·) is a strongly convex function. By properly
choosing ρ and applying the optimal gradient method to (8.2.3), one can compute an
ε-solution of (8.2.1) in at most

O

(√
L
ε
+ ‖A‖

ε

)
(8.2.5)

iterations. Such complexity bounds can also be achieved by primal-dual type methods
and their equivalent form as the alternating direction method of multipliers.

One problem associated with the smoothing scheme and the related methods
mentioned above is that each iteration of these methods require both the computation
of ∇ f and the evaluation of the linear operators (A and AT ). As a result, the total
number of gradient and linear operator evaluations will both be bounded by O(1/ε).
However, in many applications the computation of ∇ f is often much more expensive
than the evaluation of the linear operators A and AT . This happens, for example,
when the linear operator A is sparse (e.g., total variation, overlapped group lasso
and graph regularization), while f involves a more expensive data-fitting term. In
Section 8.1, we considered some similar situation and proposed a gradient sliding
(GS) algorithm to minimize a class of composite problems whose objective function
is given by the summation of a general smooth and nonsmooth component. We show
that one can skip the computation of the gradient for the smooth component from
time to time, while still maintaining the O(1/ε2) iteration complexity bound. More
specifically, by applying the GS method to problem (8.2.1), we can show that the
number of gradient evaluations of ∇ f will be bounded by

O

(√
L
ε

)
, (8.2.6)

which is significantly better than (8.2.5). Unfortunately, the total number of evalua-
tions for the linear operators A and AT will be bounded by

O

(√
L
ε
+ ‖A‖

2

ε2

)
, (8.2.7)

which is much worse than (8.2.5). An important question is whether one can still
preserve the optimal O(1/ε) complexity bound in (8.2.5) for solving (8.2.1) by
utilizing only O(1/

√
ε) gradient computations of ∇ f to find an ε-solution of (8.2.1).

If so, we could be able to keep the total number of iterations relatively small, but
significantly reduce the total number of required gradient computations.
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In order to address the aforementioned issues associated with existing solution
methods for (8.2.1), we introduce in this section a different approach to exploit
the structural information of (8.2.1). Firstly, instead of concentrating solely on
nonsmooth optimization as in Section 8.1, we study the following smooth composite
optimization problem:

φ
∗ := min

x∈X
{φ(x) := f (x)+h(x)} . (8.2.8)

Here f and h are smooth convex functions satisfying (8.2.2) and

0≤ h(x)− lh(u,x)≤ M
2 ‖x−u‖2, ∀x,u ∈ X , (8.2.9)

respectively. It is worth noting that problem (8.2.8) can be viewed as a special
cases of (8.2.1) or (8.2.3) (with J = h∗ being a strongly convex function, Y = Rn,
A = I and ρ = 0). Under the assumption that M ≥ L, we present a novel accelerated
gradient sliding (AGS) method which can skip the computation of ∇ f from time to
time. We show that the total number of required gradient evaluations of ∇ f and ∇h,
respectively, can be bounded by

O

(√
L
ε

)
and O

(√
M
ε

)
(8.2.10)

to find an ε-solution of (8.2.8). Observe that the above complexity bounds are
sharper than the complexity bound obtained by the accelerated gradient method (see
Section 3.3) for smooth convex optimization, which is given by

O

(√
L+M

ε

)
.

In particular, for the AGS method, the Lipschitz constant M associated with ∇h does
not affect at all the number of gradient evaluations of ∇ f . Clearly, the higher ratio
of M/L will potentially result in more savings on the gradient computation of ∇ f .
Moreover, if f is strongly convex with modulus µ , then the above two complexity
bounds in (8.2.10) can be significantly reduced to

O
(√

L
µ

log 1
ε

)
and O

(√
M
µ

log 1
ε

)
, (8.2.11)

respectively, which also improves the accelerated gradient descent method applied to
(8.2.8) in terms of the number gradient evaluations of ∇ f . Observe that in the classic
black-box setting, the complexity bounds in terms of gradient evaluations of ∇ f and
∇h are intertwined, and a larger Lipschitz constant M will result in more gradient
evaluations of ∇ f , even though there is no explicit relationship between ∇ f and M.
In our development, we break down the black-box assumption by assuming that we
have separate access to ∇ f and ∇h rather than ∇φ as a whole. To the best of our
knowledge, these types of separate complexity bounds as in (8.2.10) and (8.2.11)
have never been obtained before for smooth convex optimization.
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Secondly, we apply the above AGS method to the smooth approximation prob-
lem (8.2.3) in order to solve the aforementioned bilinear SPP in (8.2.1). By choosing
the smoothing parameter properly, we show that the total number of gradient eval-
uations of ∇ f and operator evaluations of A (and AT ) for finding an ε-solution of
(8.2.1) can be bounded by

O

(√
L
ε

)
and O

(
‖A‖

ε

)
, (8.2.12)

respectively. In comparison with the original smoothing scheme and other existing
methods for solving (8.2.1), our method can provide significant savings on the
number of gradient computations of ∇ f without increasing the complexity bound on
the number of operator evaluations of A and AT . In comparison with the GS method
in Section 3.3, our method can reduce the number of operator evaluations of A and
AT from O(1/ε2) to O(1/ε). Moreover, if f is strongly convex with modulus µ , the
above two bounds will be significantly reduced to

O
(√

L
µ

log 1
ε

)
and O

(
‖A‖√

ε

)
, (8.2.13)

respectively. To the best of our knowledge, this is the first time that these tight
complexity bounds were obtained for solving the classic bilinear saddle point problem
(8.2.1).

It should be noted that, even though the idea of skipping the computation of ∇ f is
similar to Section 3.3, the AGS method presented in this paper significantly differs
from the GS method in Section 3.3. In particular, each iteration of GS method consists
of one accelerated gradient iteration together with a bounded number of subgradient
iterations. On the other hand, each iteration of the AGS method is composed of an
accelerated gradient iteration nested with a few other accelerated gradient iterations
to solve a different subproblem. The development of the AGS method seems to be
more technical than GS and its convergence analysis is also nontrivial.

8.2.1 Composite smooth optimization

In this subsection, we present an accelerated gradient sliding (AGS) algorithm
for solving the smooth composite optimization problem in (8.2.8) and discuss its
convergence properties. Our main objective is to show that the AGS algorithm can
skip the evaluation of ∇ f from time to time and achieve better complexity bounds in
terms of gradient computations than the classical optimal first-order methods applied
to (8.2.8) (e.g., the accelerated gradient descent method in Section 3.3). Without loss
of generality, throughout this section we assume that M ≥ L in (8.2.2) and (8.2.9).

The AGS method evolves from the gradient sliding (GS) algorithm in Section 8.1,
which was designed to solve a class of composite convex optimization problems
with the objective function given by the summation of a smooth and nonsmooth
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component. The basic idea of the GS method is to keep the nonsmooth term inside
the projection (or proximal mapping) in the accelerated gradient method and then
to apply a few subgradient descent iterations to solve the projection subproblem.
Inspired by GS, we suggest to keep the smooth term h that has a larger Lipschitz
constant in the proximal mapping in the accelerated gradient method, and then to
apply a few accelerated gradient iterations to solve this smooth subproblem. As a
consequence, the proposed AGS method involves two nested loops (i.e., outer and
inner iterations), each of which consists of a set of modified accelerated gradient
descent iterations (see Algorithm 8.4). At the k-th outer iteration, we first build a
linear approximation gk(u) = l f (xk,u) of f at the search point xk ∈X and then call the
ProxAG procedure in (8.2.18) to compute a new pair of search points (xk, x̃k)∈X×X .
Let V (x,u) be the prox-function associated with the distance generating function ν

with modulus 1 so that

V (x,u)≥ 1
2‖x−u‖2 ∀x,y ∈ X . (8.2.14)

The ProxAG procedure can be viewed as a subroutine to compute a pair of approxi-
mate solutions to

min
u∈X

gk(u)+h(u)+βV (xk−1,u), (8.2.15)

where gk(·) is defined in (8.2.17), and xk−1 is called the prox-center at the k-th outer
iteration. It is worth mentioning that there are two essential differences associated
with the steps (8.2.16)-(8.2.20) from the standard accelerated gradient iterations.
Firstly, we use two different search points, i.e., xk and xk, respectively, to update
xk to compute the linear approximation and xk to compute the output solution in
(8.2.19). Secondly, we employ two parameters, i.e., γk and λk, to update xk and xk,
respectively, rather than just one single parameter.

The ProxAG procedure in Algorithm 8.4 performs Tk inner accelerated gradient
iterations to solve (8.2.15) with certain properly chosen starting points ũ0 and u0. It
should be noted, however, that the accelerated gradient iterations in (8.2.20)-(8.2.22)
also differ from the standard accelerated gradient iterations in the sense that the
definition of the search point ut involves a fixed search point x. Since each inner
iteration of the ProxAG procedure requires one evaluation of ∇h and no evaluation
of ∇ f , the number of gradient evaluations of ∇h will be greater than that of ∇ f as
long as Tk > 1. On the other hand, if λk ≡ γk and Tk ≡ 1 in the AGS method, and
αt ≡ 1, and pt ≡ qt ≡ 0 in the ProxAG procedure, then (8.2.18) becomes

xk = x̃k = argminu∈X gk(u)+ lh(xk,u)+βkV (xk−1,u).

In this case, the AGS method reduces to a variant of the accelerated gradient descent
method.

Our goal in the remaining part of this section is to establish the convergence of the
AGS method and to provide theoretical guidance to specify quite a few parameters,
including {γk}, {βk}, {Tk}, {λk}, {αt}, {pt}, and {qt}, used in the generic statement
of this algorithm. In particular, we will provide upper bounds on the number of outer
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Algorithm 8.4 Accelerated gradient sliding (AGS) algorithm for solving (8.2.8)
Choose x0 ∈ X . Set x0 = x0.
for k = 1, . . . ,N do

xk =(1− γk)xk−1 + γkxk−1, (8.2.16)

gk(·) =l f (xk, ·), (8.2.17)

(xk, x̃k) =ProxAG(gk,xk−1,xk−1,λk,βk,Tk), (8.2.18)

xk =(1−λk)xk−1 +λk x̃k. (8.2.19)

end for
Output xN .

procedure (x+, x̃+) = ProxAG(g,x,x,λ ,β ,γ,T )
Set ũ0 = x and u0 = x.
for t = 1, . . . ,T do

ut = (1−λ )x+λ (1−αt)ũt−1 +λαt ut−1, (8.2.20)

ut = argminu∈X g(u)+ lh(ut ,u)+βV (x,u)+(β pt +qt)V (ut−1,u), (8.2.21)

ũt = (1−αt)ũt−1 +αt ut , (8.2.22)

end for
Output x+ = uT and x̃+ = ũT .

end procedure

and inner iterations, corresponding to the number of gradient evaluations of ∇ f and
∇h, respectively, performed by the AGS method to find an ε-solution to (8.2.8).

We will first study the convergence properties of the ProxAG procedure from
which the convergence of the AGS method immediately follows. In our analysis, we
measure the quality of the output solution computed at the k-th call to the ProxAG
procedure by

Qk(x,u) :=gk(x)−gk(u)+h(x)−h(u). (8.2.23)

Indeed, if x∗ is an optimal solution to (8.2.8), then Qk(x,x∗) provides a linear approx-
imation for the functional optimality gap φ(x)−φ(x∗) = f (x)− f (x∗)+h(x)−h(x∗)
obtained by replacing f with gk. The following result describes some relationship
between φ(x) and Qk(·, ·).

Lemma 8.1. For any u ∈ X, we have

φ(xk)−φ(u)

≤(1− γk)[φ(xk−1)−φ(u)]+Qk(xk,u)− (1− γk)Qk(xk−1,u)

+ L
2‖xk− xk‖2.

(8.2.24)

Proof. By (8.2.2), (8.2.8), (8.2.17), and the convexity of f (·), we have
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φ(xk)− (1− γk)φ(xk−1)− γkφ(u)

≤gk(xk)+
L
2‖xk− xk‖2 +h(xk)

− (1− γk) f (xk−1)− (1− γk)h(xk−1)− γk f (u)− γkh(u)

≤gk(xk)+
L
2‖xk− xk‖2 +h(xk)

− (1− γk)gk(xk−1)− (1− γk)h(xk−1)− γkgk(u)− γkh(u)

=Qk(xk,u)− (1− γk)Qk(xk−1,u)+ L
2‖xk− xk‖2.

ut

We need to derive some useful equalities for our convergence analysis. Let {αt}
be the parameters used in the ProxAG procedure (see (8.2.20) and (8.2.22)) and
consider the sequence {Λt}t≥1 defined by

Λt =

{
1 t = 1,
(1−αt)Λt−1 t > 1.

(8.2.25)

By Lemma 3.17, we have

1 = Λt

[
1−α1

Λ1
+∑

t
i=1

αi
Λi

]
= Λt(1−α1)+Λt ∑

t
i=1

αi
Λi
, (8.2.26)

where the last identity follows from the fact that Λ1 = 1 in (8.2.25). Similarly,
applying Lemma 3.17 to the recursion ũt = (1−αt)ũt−1 +αtut in (8.2.22), we have

ũt = Λt

[
(1−α1)ũ0 +∑

t
i=1

αi
Λi

ui

]
. (8.2.27)

In view of (8.2.26) and the fact that ũ0 = x in the description of the ProxAG procedure,
the above relation indicates that ũt is a convex combination of x and {ui}t

i=1.

With the help of the above technical results, we are now ready to derive some
important convergence properties for the ProxAG procedure in terms of the error
measure Qk(·, ·). For the sake of notational convenience, when we work on the k-th
call to the ProxAG procedure, we drop the subscript k in (8.2.23) and just denote

Q(x,u) := g(x)−g(u)+h(x)−h(x). (8.2.28)

In a similar vein, we also define

x := (1− γ)x+ γx and x+ := (1−λ )x+λ x̃+. (8.2.29)

Comparing the above notations with (8.2.16) and (8.2.19), we can observe that x and
x+, respectively, represent xk and xk in the k-th call to the ProxAG procedure.

Lemma 8.2. Consider the k-th call to the ProxAG procedure in Algorithm 8.4 and let
Λt and x+ be defined in (8.2.25) and (8.2.29) respectively. If the parameters satisfy
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λ ≤ 1,ΛT (1−α1) = 1− γ

λ
, and β pt +qt ≥ λMαt , (8.2.30)

then

Q(x+,u)− (1− γ)Q(x,u)≤ΛT ∑
T
t=1

ϒt (u)
Λt

, ∀u ∈ X , (8.2.31)

where

ϒt(u) :=λβαt [V (x,u)−V (x,ut)+ ptV (ut−1,u)− (1+ pt)V (ut ,u)] (8.2.32)
+λαtqt [V (ut−1,u)−V (ut ,u)]. (8.2.33)

Proof. Let us fix any arbitrary u ∈ X and denote

v := (1−λ )x+λu, and ut := (1−λ )x+λ ũt . (8.2.34)

Our proof consists of two major parts. We first prove that

Q(x+,u)− (1− γ)Q(x,u)≤ Q(uT ,v)−
(

1− λ

γ

)
Q(u0,v), (8.2.35)

and then estimate the right-hand-side of (8.2.35) through the following recurrence
property:

Q(ut ,v)− (1−αt)Q(ut−1,v)≤ϒt(u). (8.2.36)

The result in (8.2.31) then follows as an immediate consequence of (8.2.35) and
(8.2.36). Indeed, by Lemma 3.17 applied to (8.2.36) (with k = t, Ck = Λt , ck = αt ,
δk = Q(ut ,v), and Bk =ϒt(u)), we have

Q(uT ,v)≤ΛT

[
1−α1

Λ1
Q(u0,v)−∑

T
t=1

ϒt (u)
Λt

]

=
(

1− λ

γ

)
Q(u0,v)−ΛT ∑

T
t=1

ϒt (u)
Λt

,

where last inequality follows from (8.2.30) and the fact that Λ1 = 1 in (8.2.25). The
above relation together with (8.2.35) then clearly imply (8.2.31).

We start with the first part of the proof regarding (8.2.35). By (8.2.28) and the
linearity of g(·), we have

Q(x+,u)− (1− γ)Q(x,u)

=g(x+− (1− γ)x− γu)+h(x+)− (1− γ)h(x)− γh(u)

=g(x+− x+ γ(x−u))+h(x+)−h(x)+ γ(h(x)−h(u)).

(8.2.37)

Now, noting that by the relation between u and v in (8.2.34), we have

γ(x−u) = γ

λ
(λx−λu) = γ

λ
(x− v). (8.2.38)

In addition, by (8.2.34) and the convexity of h(·), we obtain
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γ

λ
[h(v)− (1−λ )h(x)−λh(u)]≤ 0,

or equivalently,

γ(h(x)−h(u))≤ γ

λ
(h(x)−h(v)). (8.2.39)

Applying (8.2.38) and (8.2.39) to (8.2.37), and using the definition of Q(·, ·) in
(8.2.28), we obtain

Q(x+,u)− (1− γ)Q(x,u)≤ Q(x+,v)−
(

1− λ

γ

)
Q(x,v).

Noting that ũ0 = x and x̃ = ũT in the description of the ProxAG procedure, by (8.2.29)
and (8.2.34) we have x+ = uT and u0 = x. Therefore, the above relation is equivalent
to (8.2.35), and we conclude the first part of the proof.

For the second part of the proof regarding (8.2.36), first observe that by the
definition of Q(·, ·) in (8.2.28), the convexity of h(·), and (8.2.9),

Q(ut ,v)− (1−αt)Q(ut−1,v)

=λαt(g(ut)−g(u))+h(ut)− (1−αt)h(ut−1)−αth(v)

≤λαt(g(ut)−g(u))+ lh(ut ,ut)+
M
2 ‖ut −ut‖2

− (1−αt)lh(ut ,ut−1)−αt lh(ut ,v)

=λαt(g(ut)−g(u))+ lh(ut ,ut − (1−αt)ut−1−αtv)+ M
2 ‖ut −ut‖2.

(8.2.40)

Also note that by (8.2.20), (8.2.22), and (8.2.34),

ut − (1−αt)ut−1−αtv = (ut −ut−1)+αt(ut−1− v)

=λ (ũt − ũt−1)+λαt(ũt−1−u) = λ (ũt − (1−αt)ũt−1)−λαtu

=λαt(ut −u).

By a similar argument as the above, we have

ut −ut = λ (ũt − (1−αt)ũt−1)−λαtut−1 = λαt(ut −ut−1). (8.2.41)

Using the above two identities in (8.2.40), we have

Q(ut ,v)− (1−αt)Q(ut−1,v)

≤λαt

[
g(ut)−g(u)+ lh(ut ,ut)− lh(ut ,u)+

Mλαt
2 ‖ut −ut−1‖2

]
.

Moreover, it follows from Lemma 3.5 applied to (8.2.21) that

g(ut)−g(u)+ lh(ut ,ut)− lh(ut ,u)

≤β (V (x,u)−V (ut ,u)−V (x,ut))

+(β pt +qt)(V (ut−1,u)−V (ut ,u)−V (ut−1,ut)).

(8.2.42)
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Also by (8.2.14) and (8.2.30), we have

Mλαt
2 ‖ut −ut−1‖2 ≤ Mλαt

2 V (ut−1,ut)≤ (β pt +qt)V (ut−1,ut). (8.2.43)

Combining the above three relations, we conclude (8.2.36). ut

In the following proposition, we provide certain sufficient conditions under which
the the right-hand-side of (8.2.31) can be properly bounded. As a consequence, we
obtain a recurrence relation for the ProxAG procedure in terms of Q(xk,u).

Proposition 8.4. Consider the k-th call to the ProxAG procedure. If (8.2.30) holds,

αt qt
Λt

=
αt+1qt+1

Λt+1
and αt (1+pt )

Λt
=

αt+1 pt+1
Λt+1

(8.2.44)

for any 1≤ t ≤ T −1, then we have

Q(x+,u)− (1− γ)Q(x,u)

≤λαT [β (1+ pT )+qT ]
[
V (x,u)−V (x+,u)

]
− β

2γ
‖x+− x‖2,

(8.2.45)

where x+ and x are defined in (8.2.29).

Proof. To prove the proposition it suffices to estimate the right-hand-side of
(8.2.31). We make three observations regarding the terms in (8.2.31) and (8.2.32).
First, by (8.2.26),

λβΛT ∑
T
t=1

αt
Λt

V (x,u) = λβ (1−ΛT (1−α1))V (x,u).

Second, by (8.2.14), (8.2.26), (8.2.27), (8.2.30), and the fact that ũ0 = x and x̃+ = ũT
in the ProxAG procedure, we have

λβΛT ∑
T
t=1

αt
Λt

V (x,ut)≥ γβ

2 ·
ΛT

(1−ΛT (1−α1))
∑

T
t=1

αt
Λt
‖x−ut‖2

≥ γβ

2

∥∥∥x− ΛT
1−ΛT (1−α1)

∑
T
i=1

αt
Λt

ut

∥∥∥
2

= γβ

2

∥∥∥x− ũT−ΛT (1−α1)ũ0
1−ΛT (1−α1)

∥∥∥
2

= γβ

2

∥∥∥x− λ

γ
ũT −

(
1− λ

γ

)
ũ0

∥∥∥
2

= β

2γ

∥∥γx−λ x̃+− (γ−λ )x
∥∥2

= β

2γ
‖x− x+‖2,

where the last equality follows from (8.2.29). Third, by (8.2.44), the fact that Λ1 = 1
in (8.2.25), and the relations that u0 = x and uT = x+ in the ProxAG procedure, we
have
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λβΛT ∑
T
t=1

αt
Λt
[ptV (ut−1,u)− (1+ pt)V (ut ,u)]

+λΛT ∑
T
t=1

αt qt
Λt

[V (ut−1,u)−V (ut ,u)]

=λβΛT

[
α1 p1V (u0,u)−∑

T−1
i=1

(
αt (1+pt )

Λt
− αt+1 pt+1

Λt+1

)
V (ut ,u)

−αT (1+pT )
ΛT

V (uT ,u)
]
+λαT qT [V (u0,u)−V (uT ,u)]

=λβ [ΛT α1 p1V (u0,u)−αT (1+ pT )V (uT ,u)]+λαT qT [V (u0,u)−V (uT ,u)]

=λβ
[
ΛT α1 p1V (x,u)−αT (1+ pT )V (x+,u)

]
+λαT qT [V (x,u)−V (x+,u)].

Using the above three observations in (8.2.31), we have

Q(x+,u)− (1− γ)Q(x,u)

≤λβ
[
(1−ΛT (1−α1)+ΛT α1 p1)V (x,u)−αT (1+ pT )V (x+,u)

]

+λαT qT [V (x,u)−V (x+,u)]− β

2γ
‖x− x+‖2.

Comparing the above equation with (8.2.45), it now remains to show that

αT (1+ pT ) = ΛT α1 p1 +1−ΛT (1−α1). (8.2.46)

By (8.2.26), the last relation in (8.2.44), and the fact that Λ1 = 1, we have

αt+1 pt+1
Λt+1

= αt pt
Λt

+ αt
Λt

= . . .= α1 p1
Λ1

+∑
t
i=1

αi
Λi

= α1 p1 +
1−Λt (1−α1)

Λt
.

Using the second relation in (8.2.44) to the above equation, we have

αt (1+pt )
Λt

= α1 p1 +
1−Λt (1−α1)

Λt
,

which implies αt(1+ pt) = Λtα1 p1 +1−Λt(1−α1) for any 1≤ t ≤ T . ut

With the help of the above proposition and Lemma 8.1, we are now ready to
establish the convergence of the AGS method. Note that the following sequence will
the used in the analysis of the AGS method:

Γk =

{
1 k = 1
(1− γk)Γk−1 k > 1.

(8.2.47)

Theorem 8.5. Suppose that (8.2.30) and (8.2.44) hold. If

γ1 = 1 and βk ≥ Lγk, (8.2.48)

then
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φ(xk)−φ(u)

≤Γk ∑
k
i=1

λiαTi (βi(1+pTi )+qTi )

Γi
(V (xi−1,u)−V (xi,u)),

(8.2.49)

where Γk is defined in (8.2.47).

Proof. It follows from Proposition 8.4 that for all u ∈ X ,

Qk(xk,u)− (1− γk)Qk(xk−1,u)

≤λkαTk(βk(1+ pTk)+qTk)(V (xk−1,u)−V (xk,u))− βk
2γk
‖xk− xk‖2.

Substituting the above bound to (8.2.24) in Lemma 8.1, and using (8.2.48), we have

φ(xk)−φ(u)

≤(1− γk)[φ(xk−1)−φ(u)]

+λkαTk(βk(1+ pTk)+qTk)(V (xk−1,u)−V (xk,u)),

which, in view of Lemma 3.17 (with ck = γk, Ck = Γk, and δk = φ(xk)−φ(u)), then
implies that

φ(xk)−φ(u)

≤Γk

[
1−γ1

Γ1
(φ(x0)−φ(u))

+ ∑
k
i=1

λiαTi (βi(1+pTi )+qTi )

Γi
(V (xi−1,u)−V (xi,u))

]

=Γk ∑
k
i=1

λiαTi (βi(1+pTi )+qTi )

Γi
(V (xi−1,u)−V (xi,u)),

where the last equality follows from the fact that γ1 = 1 in (8.2.48). ut

There are many possible selections of parameters that satisfy the assumptions of
the above theorem. In the following corollaries we describe two different ways to
specify the parameters of Algorithm 8.4 that lead to the optimal complexity bounds
in terms of the number of gradient evaluations of ∇ f and ∇h.

Corollary 8.5. Consider problem (8.2.8) with the Lipschitz constants in (8.2.2) and
(8.2.9) satisfing M ≥ L. Suppose that the parameters of Algorithm 8.4 are set to

γk =
2

k+1 , Tk ≡ T :=
⌈√

M
L

⌉
,

λk =

{
1 k = 1,
γk(T+1)(T+2)

T (T+3) k > 1,
and βk =

3Lγk
kλk

.

(8.2.50)

Also assume that the parameters in the first call to the ProxAG procedure (k = 1) are
set to
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αt =
2

t+1 , pt =
t−1

2 , and qt =
6M

t , (8.2.51)

and the parameters in the remaining calls to the ProxAG procedure (k > 1) are set to

αt =
2

t+2 , pt =
t
2 , and qt =

6M
k(t+1) . (8.2.52)

Then the numbers of gradient evaluations of ∇ f and ∇h performed by the AGS
method to compute an ε-solution of (8.2.8) can be bounded by

N f :=
√

30LV (x0,x∗)
ε

(8.2.53)

and

Nh :=
√

30MV (x0,x∗)
ε

+

√
30LV (x0,x∗)

ε
(8.2.54)

respectively, where x∗ is a solution to (8.2.8).

Proof. Let us start with verification of (8.2.30), (8.2.44), and (8.2.48) for the
purpose of applying Theorem 8.5. We will consider the first call to the ProxAG
procedure (k = 1) and the remaining calls (k > 1) separately.

When k = 1, by (8.2.50) we have λ1 = γ1 = 1, and β1 = 3L, hence (8.2.48) holds
immediately. By (8.2.51) we can observe that Λt = 2/(t(t + 1)) satisfies (8.2.25),
and that

αt qt
Λt
≡ 6M, and αt (1+pt )

Λt
= t(t+1)

2 =
αt+1 pt+1

Λt+1
,

hence (8.2.44) holds. In addition, by (8.2.50) and (8.2.51) we have λ = γ = 1 and
α1 = 1 in (8.2.30), and that

β pt +qt ≥ qt =
6M

t > 2M
t+1 = λMαt .

Therefore (8.2.30) also holds.
For the case when k > 1, we can observe from (8.2.52) that Λt = 6/(t +1)(t +2)

satisfies (8.2.25), αtqt/Λt ≡ 2M/(k), and that

αt (1+pt )
Λt

= (t+1)(t+2)
6 =

αt+1 pt+1
Λt+1

.

Therefore (8.2.44) holds. Also, from (8.2.50) and noting that k,T ≥ 1, we have

3
k > 3γk

2 = 3λk
2

(
1− 2

(T+1)(T+2)

)
≥ 3λk

2

(
1− 2

2·3
)
= λk. (8.2.55)

Applying the above relation to the definition of βk in (8.2.50) we have (8.2.48). It
now suffices to verify (8.2.30) in order to apply Theorem 8.5. Applying (8.2.50),
(8.2.52), (8.2.55), and noting that k≥ 2 and that ΛT = 6/(T +1)(T +2) with T ≥ 1,
we can verify in (8.2.30) that
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λ = γ(T+1)(T+2)
T (T+3) = 2

k+1

(
1+ 2

T (T+3)

)
≤ 2

3

(
1+ 2

1·4
)
= 1,

ΛT (1−α1) =
2

(T+1)(T+2) = 1− T (T+3)
(T+1)(T+2) = 1− γ

λ
,

β pt +qt > qt =
2M
t+1 · 3

k > 2λM
t+1 ≥ λMαt .

Therefore, the conditions in (8.2.30) are satisfied.
We are now ready to apply Theorem 8.5. In particular, noting that αt(1+ pt)≡ 1

from (8.2.51) and (8.2.52), we obtain from (8.2.49) (with u = x∗) that

φ(xk)−φ
∗ ≤ Γk ∑

k
i=1 ξi(V (xi−1,x∗)−V (xi,x∗)), (8.2.56)

where

ξi :=
λi(βi+αTi qTi )

Γi
, (8.2.57)

Substituting (8.2.50) and (8.2.51) to (8.2.57), and noting that Γi = 2/(i(i+1)) by
(8.2.47), we have

ξ1 =β1 +αT qT = 3L+ 12M
T (T+1) , and

ξi =
λiβi
Γi

+
λiαTi qTi

Γi
= 3Lγi

iΓi
+ γi

Γi

(Ti+1)(Ti+2)
Ti(Ti+3)

2
Ti+2

6M
i(Ti+1)

≡3L+ 12M
T (T+3) ,∀i > 1.

Applying the above two results regarding ξi to (8.2.56), and noting that ξ1 > ξ2, we
have

φ(xk)−φ
∗

≤Γk

[
ξ1(V (x0,x∗)−V (x1,x∗))+∑

k
i=2ξi(V (xi−1,x∗)−V (xi,x∗))

]

=Γk [ξ1(V (x0,x∗)−V (x1,x∗))+ξ2(V (x1,x∗)−V (xk,x∗))]

≤Γkξ1V (x0,x∗)

= 2
k(k+1)

(
3L+ 12M

T (T+1)

)
V (x0,x∗)

≤ 30L
k(k+1)V (x0,x∗),

where the last inequality is due to the fact that T ≥
√

M/L.
From the above inequality, the number of calls to the ProxAG procedure for

computing an ε-solution of (8.2.8) is bounded by N f in (8.2.53). This is also the
bound for the number of gradient evaluations of ∇ f . Moreover, the number of
gradient evaluations of ∇h is bounded by

T N f ≤
(√

M
L +1

)
N f =

√
30MV (x0,x∗)

ε
+

√
30LV (x0,x∗)

ε
= Nh. (8.2.58)

ut
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In the above corollary, the constant factors in (8.2.53) and (8.2.54) are both given
by
√

30. In the following corollary, we provide a slightly different set of parameters
for Algorithm 8.4 that results in a tighter constant factor for (8.2.53).

Corollary 8.6. Consider problem (8.2.8) with the Lipschitz constants in (8.2.2) and
(8.2.9) satisfing M ≥ L. Suppose that the parameters in the first call to the ProxAG
procedure (k = 1) are set to

αt =
2

t+1 , pt =
t−1

2 , and qt =
7LT (T+1)

4t , (8.2.59)

and that the parameters in the k-th call (k > 1) are set to

pt ≡ p :=
√

M
L , αt ≡ α := 1

p+1 , and qt ≡ 0. (8.2.60)

If the other parameters in Algorithm 8.4 satisfy

γk =
2

k+1 ,Tk :=





⌈√
8M
7L

⌉
, k = 1

⌈
ln(3)

− ln(1−α)

⌉
, k > 1,

λk :=

{
1, k = 1

γk
1−(1−α)Tk

, k > 1,
and βk :=

{
L, k = 1
9Lγk
2kλk

, k > 1,

(8.2.61)

where α is defined in (8.2.60), then the numbers of gradient evaluations of ∇ f and
∇h performed by the AGS method to find an ε-solution to problem (8.2.8) can be
bounded by

N f := 3
√

LV (x0,x∗)
ε

(8.2.62)

and

Nh :=(1+ ln3)N f

(√
M
L +1

)

≤7
(√

MV (x0,x∗)
ε

+

√
LV (x0,x∗)

ε

)
,

(8.2.63)

respectively.

Proof. Let us verify (8.2.30), (8.2.48), and (8.2.44) first, so that we could apply
Theorem 8.5. We consider the case when k = 1 first. By the definition of γk and βk in
(8.2.61), it is clear that (8.2.48) is satisfied when k = 1. Also, by (8.2.59) we have
that Λt = 2/(t(t +1)) in (8.2.25),

αt qt
Λt
≡ 7LT1(T1+1)

4 , and αt (1+pt )
Λt

= t(t+1)
2 =

αt+1 pt+1
Λt+1

,
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hence (8.2.44) also holds. Moreover, by (8.2.59) and (8.2.61), we can verify in
(8.2.30) that

λ = γ = 1,ΛT1(1−α1) = 0 = 1− γ

λ
,

and

β pt +qt ≥ qt >
7LT 2

4t = 8M
4t > Mαt .

Therefore the relations in (8.2.30) are all satisfied.
Now we consider the case when k > 1. By (8.2.25) and (8.2.60), we observe that

Λt = (1−α)t−1 for all t ≥ 1. Moreover, from the definition of Tk in (8.2.61), we can
also observe that

(1−α)Tk ≤ 1
3 .

Four relations can be derived based on the aforementioned two observations, (8.2.60),
and (8.2.61). First,

αt qt
Λt
≡ 0, αt (1+pt )

Λt
= 1

(1−α)t−1 =
αt+1 pt+1

Λt+1
,

which verifies (8.2.44). Second,

βk =
9L(1−(1−α)Tk )

2k ≥ 3L
k > Lγk,

which leads to (8.2.48). Third, noting that k ≥ 2, we have

γk
1−ΛTk (1−α) = λk =

γk
1−(1−α)Tk

≤ 3γk
2 = 3

k+1 ≤ 1.

Fourth,

βk p
λkMα

= 9Lγk p(p+1)
2kλ 2

k M
=

9Lp(p+1)(1−(1−α)Tk)
2

2kγkM

= 9(k+1)
4k ·

(
Lp(p+1)

M

)
·
(
1− (1−α)Tk

)2

> 9
4 ·1 · 4

9 = 1.

The last two relations imply that (8.2.30) holds.
Summarizing the above discussions regarding both the cases k = 1 and k > 1,

applying Theorem 8.5, and noting that αt(1+ pt)≡ 1, we have

φ(xk)−φ(u)≤ Γk ∑
k
i=1 ξi(V (xi−1,u)−V (xi,u)), ∀u ∈ X , (8.2.64)

where

ξi :=
λi(βi+αTi qTi )

Γi
.
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It should be observed from the definition of γk in (8.2.61) that Γi := 2/(i(i+ 1))
satisfies (8.2.47). Using this observation, applying (8.2.59), (8.2.60), and (8.2.61) to
the above equation we have

ξ1 = β1 +αT1qT1 = L+ 7L
2 = 9L

2

and

ξi =
λiβi
Γi
≡ 9L

2 , ∀i > 1.

Therefore, (8.2.64) becomes

φ(xk)−φ(u)≤ 9L
k(k+1) (V (x0,u)−V (xk,u))

≤ 9L
k(k+1)V (x0,u).

(8.2.65)

Setting u = x∗ in the above inequality, we observe that the number of calls to
the ProxAG procedure for computing an ε-solution of (8.2.8) is bounded by N f
in (8.2.62). This is also the bound for the number of gradient evaluations of ∇ f .
Moreover, by (8.2.60), (8.2.61), and (8.2.62) we conclude that the number of gradient
evaluations of ∇h is bounded by

∑
N f
k=1Tk =T1 +∑

N f
k=2Tk ≤

(√
8M
7L +1

)
+(N f −1)

(
ln3

− ln(1−α) +1
)

≤
(√

8M
7L +1

)
+(N f −1)

( ln3
α

+1
)

=

(√
8M
7L +1

)
+(N f −1)

((√
M
L +1

)
ln3+1

)

<(1+ ln3)N f

(√
M
L +1

)

<7
(√

MV (x0,x∗)
ε

+

√
LV (x0,x∗)

ε

)
.

Here the second inequity is from the property of logarithm functions that − ln(1−
α)≥ α for α ∈ [0,1). ut

Since M ≥ L in (8.2.2) and (8.2.9), the results obtained in Corollaries 8.5 and 8.6
indicate that the number of gradient evaluations of ∇ f and ∇h that Algorithm 8.4
requires for computing an ε-solution of (8.2.8) can be bounded by O(

√
L/ε) and

O(
√

M/ε), respectively. Such a result is particularly useful when M is significantly
larger, e.g., M = O(L/ε), since the number of gradient evaluations of ∇ f would
not be affected at all by the large Lipschitz constant of the whole problem. It is
interesting to compare the above result with the best known so-far complexity bound
under the traditional black-box oracle assumption. If we treat problem (8.2.8) as
a general smooth convex optimization and study its oracle complexity, i.e., under
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the assumption that there exists an oracle that outputs ∇φ(x) for any test point x
(and ∇φ(x) only), it has been shown that the number of calls to the oracle cannot
be smaller than O(

√
(L+M)/ε) for computing an ε-solution. Under such “single

oracle” assumption, the complexity bounds in terms of gradient evaluations of ∇ f
and ∇h are intertwined, and a larger Lipschitz constant M will result in more gradient
evaluations of ∇ f , even though there is no explicit relationship between ∇ f and M.
However, the results in Corollaries 8.5 and 8.6 suggest that we can study the oracle
complexity of problem (8.2.8) based on the assumption of two separate oracles: one
oracle O f to compute ∇ f for any test point x, and the other one Oh to compute ∇h(y)
for any test point y. In particular, these two oracles do not have to be called at the
same time, and hence it is possible to obtain separate complexity bounds O(

√
L/ε)

and O(
√

M/ε) on the number of calls to O f and Oh, respectively.

We now consider a special case of (8.2.8) where f is strongly convex. More
specifically, we assume that there exists µ > 0 such that

µV (u,x)≤ f (x)− l f (u,x)≤ L
2‖x−u‖2, ∀x,u ∈ X . (8.2.66)

Under the above assumption, we develop a multi-stage AGS algorithm that can skip
computation of ∇ f from time to time, and compute an ε-solution of (8.2.8) with

O
(√

L
µ

log 1
ε

)
(8.2.67)

gradient evaluations of ∇ f (see Alagorithm 8.5). It should be noted that, under the
traditional black-box setting, where one could only access ∇ψ(x) for each inquiry x,
the number of evaluations of ∇ψ(x) required to compute an ε-solution is bounded by

O
(√

L+M
µ

log 1
ε

)
. (8.2.68)

Algorithm 8.5 The multi-stage accelerated gradient sliding (M-AGS) algorithm
Choose v0 ∈ X , accuracy ε , iteration limit N0, and initial estimate ∆0 such that φ(v0)−φ ∗ ≤ ∆0.
for s = 1, . . . ,S do

Run the AGS algorithm with x0 = vs−1, N = N0, and parameters in Corollary 8.6, and let
vs = xN .
end for
Output vS.

Theorem 8.6 below describes the main convergence properties of the M-AGS
algorithm.

Theorem 8.6. Suppose that M ≥ L in (8.2.9) and (8.2.66). If the parameters in
Algorithm 8.5 are set to
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N0 = 3
√

2L
µ

and S = log2 max
{

∆0
ε
,1
}
, (8.2.69)

then its output vS must be an ε-solution of (8.2.1). Moreover, the total number of
gradient evaluations of ∇ f and ∇h performed by Algorithm 8.5 can be bounded by

N f := 3
√

2L
µ

log2 max
{

∆0
ε
,1
}

(8.2.70)

and

Nh :=(1+ ln3)N f

(√
M
L +1

)

<9
(√

L
µ
+
√

M
µ

)
log2 max

{
∆0
ε
,1
}
,

(8.2.71)

respectively.

Proof. With input x0 = vs−1 and N = N0, we conclude from (8.2.65) in the proof
of Corollary 8.6 (with u = x∗ a solution to (8.2.8)) that

φ(xN)−φ
∗ ≤ 9L

N0(N0+1)V (x0,x∗)≤ µ

2 V (x0,x∗),

where the last inequality follows from (8.2.69). Using the facts that the input of the
AGS algorithm is x0 = vs−1 and that the output is set to vs = xN , we conclude

φ(vs)−φ
∗ ≤ µ

2 V (vs−1,x∗)≤ 1
2 (φ(vs−1)−φ

∗),

where the last inequality is due to the strong convexity of φ(·). It then follows from
the above relation, the definition of ∆0 in Algorithm 8.5, and (8.2.69) that

φ(vS)−φ
∗ ≤ 1

2S (φ(v0)−φ
∗)≤ ∆0

2S ≤ ε.

Comparing Algorithms 8.4 and 8.5, we can observe that the total number of gradient
evaluations of ∇ f in Algorithm 8.5 is bounded by N0S, and hence we have (8.2.70).
Moreover, comparing (8.2.62) and (8.2.63) in Corollary 8.6, we conclude (8.2.71).

ut

In view of Theorem 8.6, the total number of gradient evaluations of ∇h required
by the M-AGS algorithm to compute an ε-solution of (8.2.8) is the same as the
traditional result (8.2.68). However, by skipping the gradient evaluations of ∇ f from
time to time in the M-AGS algorithm, the total number of gradient evaluations of
∇ f is improved from (8.2.68) to (8.2.67). Such an improvement becomes more
significant as the ratio M/L increases.
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8.2.2 Composite bilinear saddle point problems

Our goal in this section is to show the advantages of the AGS method when applied to
our motivating problem, i.e., the composite bilinear saddle point problem in (8.2.1).
In particular, we show in Section 8.2.2.1 that the AGS algorithm can be used to solve
(8.2.1) by incorporating the smoothing technique discussed in Section 3.6 and derive
new complexity bounds in terms of the number of gradient computations of ∇ f and
operator evaluations of A and AT . Moreover, we demonstrate in Section 8.2.2.2 that
even more significant saving on gradient computation of ∇ f can be obtained when f
is strongly convex in (8.2.1) by incorporating the multi-stage AGS method.

8.2.2.1 Saddle point problems

Our goal in this section is to extend the AGS algorithm from composite smooth
optimization to nonsmooth optimization. By incorporating the smoothing technique
in Section 3.6, we can apply AGS to solve the composite saddle point problem (8.2.1).
Throughout this section, we assume that the dual feasible set Y in (8.2.1) is bounded,
i.e., there exists y0 ∈ Y such that

DY := [max
v∈Y

W (y0,v)]1/2 (8.2.72)

is finite, where W (·, ·) is the prox-function associated with Y with modulus 1.
Let ψρ be the smooth approximation of ψ defined in (8.2.3). It can be easily

shown that

ψρ(x)≤ ψ(x)≤ ψρ(x)+ρD2
Y , ∀x ∈ X . (8.2.73)

Therefore, if ρ = ε/(2D2
Y ), then an (ε/2)-solution to (8.2.3) is also an ε-solution to

(8.2.1). Moreover, it follows that problem (8.2.3) is given in the form of (8.2.8) (with
h(x) = hρ(x)) and satisfies (8.2.9) with M = ‖A‖2/(ρ). Using these observations,
we are ready to summarize the convergence properties of the AGS algorithm for
solving problem (8.2.1).

Proposition 8.5. Let ε > 0 be given and assume that 2‖A‖2D2
Y > εL. If we apply the

AGS method in Algorithm 8.4 to problem (8.2.3) (with h = hρ and ρ = ε/(2D2
Y )), in

which the parameters are set to (8.2.59)–(8.2.61) with M = ‖A‖2/(ρ), then the total
number of gradient evaluations of ∇ f and linear operator evaluations of A (and AT )
in order to find an ε-solution of (8.2.1) can be bounded by

N f := 3
(√

2LV (x0,x∗)
ε

)
(8.2.74)

and
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NA := 14
(√

2LV (x0,x∗)
ε

+
2‖A‖DY

√
V (x0,x∗)

ε

)
, (8.2.75)

respectively.

Proof. By (8.2.73) we have ψ∗ρ ≤ ψ∗ and ψ(x)≤ ψρ(x)+ρD2
Y for all x ∈ X , and

hence

ψ(x)−ψ
∗ ≤ ψρ(x)−ψ

∗
ρ +ρD2

Y , ∀x ∈ X .

Using the above relation and the fact that ρ = ε/(2D2
Y ) we conclude that if ψρ(x)−

ψ∗ρ ≤ ε/2, then x is an ε-solution to (8.2.1). To finish the proof, it suffices to consider
the complexity of AGS for computing an ε/2-solution of (8.2.3). By Corollary
8.6, the total number of gradient evaluations of ∇ f is bounded by (8.2.74). Note
that the evaluation of ∇hρ is equivalent to 2 evaluations of linear operators: one
computation of form Ax for computing the maximizer y∗(x) for problem (8.2.4), and
one computation of form AT y∗(x) for computing ∇hρ(x). Using this observation, and
substituting M = ‖A‖2/ρ to (8.2.63), we conclude (8.2.75). ut

According to Proposition 8.5, the total number of gradient evaluations of ∇ f and
linear operator evaluations of both A and AT are bounded by

O

(√
L
ε

)
(8.2.76)

and

O

(√
L
ε
+ ‖A‖

ε

)
(8.2.77)

respectively, for computing an ε-solution of the saddle point problem (8.2.1). There-
fore, if L ≤ O(‖A‖2/ε), then the number of gradient evaluations of ∇ f will not
be affected by the dominating term O(‖A‖/ε). This result significantly improves
the best known so-far complexity results for solving the bilinear saddle point prob-
lem (8.2.1). Specifically, it improves the complexity regarding number of gradient
computations of ∇ f from O(1/ε) associated with the smoothing technique or primal-
dual type methods to O(1/

√
ε), and also improves the complexity regarding operator

evaluations involving A from O(1/ε2) associated with the gradient sliding methods
to O(1/ε).

8.2.2.2 Strongly convex composite saddle point problems

In this subsection, we still consider the SPP in (8.2.1), but assume that f is strongly
convex (i.e., (8.2.66) holds). In this case, it has been shown previously in the literature
that O(‖A‖/√ε) first-order iterations, each one of them involving the computation of
∇ f , and the evaluation of A and AT , are needed in order to compute an ε-solution of
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(8.2.1) (e.g., Section 3.6). However, we demonstrate in this subsection that the com-
plexity with respect to the gradient evaluation of ∇ f can be significantly improved
from O(1/

√
ε) to O(log(1/ε)).

Such an improvement can be achieved by properly restarting the AGS method
applied to to solve a series of smooth optimization problem of form (8.2.3), in
which the smoothing parameter ρ changes over time. The proposed multi-stage AGS
algorithm with dynamic smoothing is stated in Algorithm 8.6.

Algorithm 8.6 The multi-stage AGS algorithm with dynamic smoothing
Choose v0 ∈ X , accuracy ε , smoothing parameter ρ0, iteration limit N0, and initial estimate ∆0 of
(8.2.1) such that ψ(v0)−ψ∗ ≤ ∆0.
for s = 1, . . . ,S do

Run the AGS algorithm to problem (8.2.3) with ρ = 2−s/2ρ0 (where h = hρ in AGS). In the
AGS algorithm, set x0 = vs−1, N = N0, and parameters in Corollary 8.6, and let vs = xN .
end for
Output vS.

Theorem 8.7 describes the main convergence properties of Algorithm 8.6.

Theorem 8.7. Let ε > 0 be given and suppose that the Lipschitz constant L in (8.2.66)
satisfies

D2
Y‖A‖2 max

{√
15∆0

ε
,1
}
≥ 2∆0L.

If the parameters in Algorithm 8.6 are set to

N0 = 3
√

2L
µ
, S = log2 max

{
15∆0

ε
,1
}
, and ρ0 =

4∆0
D2

Y 2S/2 , (8.2.78)

then the output vS of this algorithm must be an ε-solution (8.2.1). Moreover, the total
number of gradient evaluations of ∇ f and operator evaluations involving A and AT

performed by Algorithm 8.6 can be bounded by

N f := 3
√

2L
µ

log2 max
{

15∆0
ε

,1
}

(8.2.79)

and

NA := 18
√

L
µ

log2 max
{

15∆0
ε

,1
}
+ 56DY ‖A‖√

µ∆0
·max

{√
15∆0

ε
,1
}
, (8.2.80)

respectively.

Proof. Suppose that x∗ is an optimal solution to (8.2.1). By (8.2.65) in the proof of
Corollary 8.6, in the s-th stage of Algorithm 8.6 (calling AGS with input x0 = vs−1,
output vs = xN , and iteration number N = N0), we have
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ψρ(vs)−ψρ(x∗) = ψρ(xN)−ψρ(x∗)

≤ 9L
N0(N0+1)V (x0,x∗)≤ µ

2 V (x0,x∗) =
µ

2 V (vs−1,x∗),

where the last two inequalities follow from (8.2.78), respectively. Moreover, by
(8.2.73) we have ψ(vs)≤ ψρ(vs)+ρD2

Y and ψ∗ = ψ(x∗)≥ ψρ(x∗), hence

ψ(vs)−ψ
∗ ≤ ψρ(vs)−ψρ(x∗)+ρD2

Y .

Combing the above two equations and using the strong convexity of ψ(·), we have

ψ(vs)−ψ
∗ ≤ µ

2 V (vs−1,x∗)+ρD2
Y

≤ 1
2 [ψ(vs−1)−ψ

∗]+ρD2
Y = 1

2 [ψ(vs−1)−ψ
∗]+2−s/2

ρ0D2
Y ,

where the last equality is due to the selection of ρ in Algorithm 8.6. Reformulating
the above relation as

2s[ψ(vs)−ψ
∗]≤ 2s−1[ψ(vs−1)−ψ

∗]+2s/2
ρ0D2

Y ,

and summing the above inequalities from s = 1, . . . ,S, we have

2S(ψ(vS)−ψ
∗)

≤∆0 +ρ0D2
Y ∑

S
s=12s/2 = ∆0 +ρ0D2

Y

√
2(2S/2−1)√

2−1
< ∆0 +

7
2 ρ0D2

Y 2S/2 = 15∆0,

where the first inequality follows from the fact that ψ(v0)−ψ∗ ≤ ∆0 and the last
equality is due to (8.2.78). By (8.2.78) and the above result, we have ψ(vS)−ψ∗ ≤ ε .
Comparing the descriptions of Algorithms 8.4 and 8.6, we can clearly see that the
total number of gradient evaluations of ∇ f in Algorithm 8.6 is given N0S, hence we
have (8.2.79).

To complete the proof it suffices to estimate the total number of operator evalua-
tions involving A and AT . Note that in the s-th stage of Algorithm 8.6, the number of
operator evaluations involving A is equivalent to twice the number of evaluations of
∇hρ in the AGS algorithm, which, in view of (8.2.63) in Corollary 8.6, is given by

2(1+ ln3)N
(√

M
L +1

)

=2(1+ ln3)N

(√
‖A‖2
ρL +1

)
= 2(1+ ln3)N0

(√
2s/2‖A‖2

ρ0L +1

)
,

where we used the relation M = ‖A‖2/ρ (see Section 8.2.2.1) in the first equality
and relations ρ = 2−s/2ρ0 and N = N0 from Algorithm 8.6 in the last equality. It
then follows from the above result and (8.2.78) that the total number of operator
evaluations involving A in Algorithm 8.6 can be bounded by
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∑
S
s=12(1+ ln3)N0

(√
2s/2‖A‖2

ρ0L +1

)

=2(1+ ln3)N0S+ 2(1+ln3)N0‖A‖√
ρ0L ∑

S
s=12s/4

=2(1+ ln3)N0S+ 3
√

2(1+ln3)DY ‖A‖2S/4√
µ∆0

· 21/4(2S/4−1)
21/4−1

<2(1+ ln3)N0S+ 56DY ‖A‖√
µ∆0
·2S/2

<18
√

L
µ

log2 max
{

15∆0
ε

,1
}
+ 56DY ‖A‖√

µ∆0
·max

{√
15∆0

ε
,1
}
.

ut

By Theorem 8.7, the total number of operator evaluations involving A performed
by Algorithm 8.6 to compute an ε-solution of (8.2.8) can be bounded by

O
(√

L
µ

log 1
ε
+ ‖A‖√

ε

)
,

which matches with the best-known complexity result (e.g., Section 3.6). However,
the total number of gradient evaluations of ∇ f is now bounded by

O
(√

L
µ

log 1
ε

)
,

which drastically improves existing results from O(1/
√

ε) to O(log(1/ε)).

8.3 Communication sliding and decentralized optimization

In this section, we consider the following decentralized optimization problem which
is cooperatively solved by the network of m agents:

f ∗ := min
x

f (x) := ∑
m
i=1 fi(x) (8.3.1)

s.t. x ∈ X , X := ∩m
i=1Xi,

where fi : Xi→ R is a convex and possibly nonsmooth objective function of agent i.
Note that fi and Xi are private and only known to agent i. Throughout the paper, we
assume the feasible set X is nonempty.

In this section, we also consider the situation where one can only have access to
noisy first-order information (function values and subgradients) of the functions fi,
i = 1, . . . ,m. This happens, for example, when the function fi’s are given in the form
of expectation, i.e.,

fi(x) := Eξi [Fi(x;ξi)], (8.3.2)
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where the random variable ξi models a source of uncertainty and the distribution
P(ξi) is not known in advance. As a special case of (8.3.2), fi may be given as the
summation of many components, i.e.,

fi(x) := ∑
l
j=1 f j

i (x), (8.3.3)

where l ≥ 1 is a large number. Stochastic optimization problem of this type has
great potential of applications in data analysis, especially in machine learning. In
particular, problem (8.3.2) corresponds to the minimization of generalized risk and is
particularly useful for dealing with online (streaming) data distributed over a network,
while problem (8.3.3) aims at the collaborative minimization of empirical risk.

Currently the dominant approach to solve (8.3.1) is to collect all agents’ private
data on a server (or cluster) and to apply centralized machine learning techniques.
However, this centralization scheme would require agents to submit their private data
to the service provider without much control on how the data will be used, in addition
to incurring high setup cost related to the transmission of data to the service provider.
Decentralized optimization provides a viable approach to deal with these data privacy
related issues. Each network agent i is associated with the local objective function
fi(x) and all agents intend to cooperatively minimize the system objective f (x) as
the sum of all local objective fi’s in the absence of full knowledge about the global
problem and network structure. A necessary feature in decentralized optimization
is, therefore, that the agents must communicate with their neighboring agents to
propagate the distributed information to every location in the network.

Many of current studies on optimization over networks have been focused on
incremental gradient methods (see Section 5.2). All of these incremental methods are
not fully decentralized in a sense that they require a special star network topology
in which the existence of a central authority is necessary for operation. To consider
a more general distributed network topology without a central authority, one can
possibly generalize the subgradient descent methods by requiring each node to
compute a local subgradient and followed by the communication with neighboring
agents iteratively. However, subgradient methods converge slowly, achieving an rate
of convergence as O(1/ε2) to obtain an ε-optimal solution, i.e., a point x̂ ∈ X , s.t.,
E[ f (x̂)− f ∗]≤ ε . While the subgradient computation at each step can be inexpensive,
due to the fact that one iteration in decentralized optimization is equivalent to at
least one communication round among agents, these methods can incur a significant
latency for solving (8.3.1). In fact, CPUs in these days can read and write the memory
at over 10 - 100 GB per second whereas communication over TCP/IP is about 100
MB per second. Therefore, the gap between intra-node computation and inter-node
communication is about 3 orders of magnitude. The communication start-up cost
itself is also not negligible as it usually takes a few milliseconds. Improvements on
communication complexity can be obtained when the objective function (8.3.1) is
smooth and/or strongly convex.

Besides subgradient based methods, another well-known type of decentralized
algorithms relies on dual methods, where at each step for a fixed dual variable, the
primal variables are solved to minimize some local Lagrangian related function,
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then the dual variables associated with the consistency constraints are updated
accordingly. In particular, decentralized alternating direction method of multipliers
(ADMM) algorithms have received much attention recently. For relatively simple
convex functions fi, the decentralized ADMM has been shown to require O(1/ε)
communications. An improved O(log1/ε) complexity bound on communication
rounds can be achieved for decentralized ADMM if stronger assumptions, i.e.,
smoothness and strong convexity, are imposed on fi. Although dual type methods
usually require fewer numbers of iterations (hence, fewer communication rounds)
than the subgradient based methods, the local Lagrangian minimization problem
associated with each agent cannot be solved efficiently in many cases, especially
when the problem is constrained.

While decentralized algorithms for solving deterministic optimization problems
have been extensively studied during the past few years, there exists only limited
research on decentralized stochastic optimization, for which only noisy gradient
information of functions fi, i = 1, . . . ,m, in (8.3.1) can be easily computed. Existing
decentralized stochastic first-order methods for problem (8.3.1) require O(1/ε2)
inter-node communications and intra-node gradient computations to obtain an ε-
optimal solution for solving general convex problems. When the objective functions
are strongly convex, multiagent mirror descent method for decentralized stochastic
optimization can achieve an O(1/ε) complexity bound.All these previous works in
decentralized stochastic optimization suffered from high communication costs due to
the coupled scheme for stochastic subgradient evaluation and communication, i.e.,
each evaluation of stochastic subgradient will incur one round of communication.

Inspired the gradient sliding methods in Section 8.1, the main goal of this section
is to develop dual based decentralized algorithms for solving (8.3.1) which are
communication efficient and have local subproblems approximately solved by each
agent through the utilization of (noisy) first-order information of fi. More specifically,
we will provide a theoretical understanding on how many rounds of inter-node
communications and intra-node (stochastic) subgradient computations of fi are
required in order to find a certain approximate solution of (8.3.1) in which fi’s are
convex or strongly convex, but not necessarily smooth, and their exact first-order
information is not necessarily computable.

More specifically, we first introduce a new decentralized primal-dual type method,
called decentralized communication sliding (DCS), where the agents can skip com-
munications while solving their local subproblems iteratively through successive
linearizations of their local objective functions. We show that agents can still find
an ε-optimal solution in O(1/ε) (resp., O(1/

√
ε)) communication rounds while

maintaining the O(1/ε2) (resp., O(1/ε)) bound on the total number of intra-node
subgradient evaluations when the objective functions are general convex (resp.,
strongly convex). The bounds on the subgradient evaluations are actually comparable
to those optimal complexity bounds required for centralized nonsmooth optimization
under certain conditions on the target accuracy, and hence are not improvable in
general.

We then present a stochastic decentralized communication sliding method, de-
noted by SDCS, for solving stochastic optimization problems and show complexity
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bounds similar to those of DCS on the total number of required communication
rounds and stochastic subgradient evaluations. In particular, only O(1/ε) (resp.,
O(1/

√
ε)) communication rounds are required while agents perform up to O(1/ε2)

(resp., O(1/ε)) stochastic subgradient evaluations for general convex (resp., strongly
convex) functions. Only requiring the access to stochastic subgradient at each itera-
tion, SDCS is particularly efficient for solving problems with fi given in the form
of (8.3.2) and (8.3.3). In the former case, SDCS requires only one realization of the
random variable at each iteration and provides a communication-efficient way to
deal with streaming data and decentralized machine learning. In the latter case, each
iteration of SDCS requires only one randomly selected component, leading up to a
factor of O(l) savings on the total number of subgradient computations over DCS.

To fix notation, all vectors are viewed as column vectors, and for a vector x ∈
Rd , we use x> to denote its transpose. For a stacked vector of xi’s, we often use
(x1, . . . ,xm) to represent the column vector [x>1 , . . . ,x

>
m ]
>. We denote by 0 and 1 the

vector of all zeros and ones whose dimensions vary from the context. The cardinality
of a set S is denoted by |S|. We use Id to denote the identity matrix in Rd×d . We use
A⊗B for matrices A ∈ Rn1×n2 and B ∈ Rm1×m2 to denote their Kronecker product of
size Rn1m1×n2m2 . For a matrix A ∈ Rn×m, we use Ai j to denote the entry of i-th row
and j-th column. For any m≥ 1, the set of integers {1, . . . ,m} is denoted by [m].

8.3.1 Problem formulation

In Subsections 8.3.1.1 and 8.3.1.2 we introduce the saddle point reformulation of
(8.3.1) and define appropriate gap functions which will be used for the convergence
analysis of our algorithms. Moreover, in Subsection 8.3.1.3 we provide a brief review
on the distance generating function and prox-function.

8.3.1.1 Problem Formulation

Consider a multiagent network system whose communication is governed by an
undirected graph G = (N ,E ), where N = [m] indexes the set of agents, and E ⊆
N ×N represents the pairs of communicating agents. If there exists an edge from
agent i to j which we denote by (i, j), agent i may send its information to agent j
and vice versa. Thus, each agent i ∈N can directly receive (resp., send) information
only from (resp., to) the agents in its neighborhood

Ni = { j ∈N | (i, j) ∈ E }∪{i}, (8.3.4)

where we assume that there always exists a self-loop (i, i) for all agents i ∈N . Then,
the associated Laplacian L ∈ Rm×m of G is L := D−A where D is the diagonal
degree matrix, and A ∈ Rm×m is the adjacency matrix with the property that Ai j = 1
if and only if (i, j) ∈ E and i 6= j, i.e.,
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Li j =




|Ni|−1 if i = j
−1 if i 6= j and (i, j) ∈ E
0 otherwise.

(8.3.5)

We consider a reformulation of problem (8.3.1) which will be used in the devel-
opment of our decentralized algorithms. We introduce an individual copy xi of the
decision variable x for each agent i ∈N and impose the constraint xi = x j for all
pairs (i, j) ∈ E . The transformed problem can be written compactly by using the
Laplacian matrix L:

min
x

F(x) := ∑
m
i=1 fi(xi) (8.3.6)

s.t. Lx = 0, xi ∈ Xi, for all i = 1, . . . ,m,

where x = (x1, . . . ,xm) ∈ X1× . . .×Xm, F : X1× . . .×Xm → R, and L = L⊗ Id ∈
Rmd×md . The constraint Lx = 0 is a compact way of writing xi = x j for all agents
i and j which are connected by an edge. By construction,L is symmetric positive
semidefinite and its null space coincides with the “agreement” subspace, i.e., L1 = 0
and 1>L = 0. To ensure each node gets information from every other node, we need
the following assumption.

Assumption 18 The graph G is connected.

Under Assumption 18, problem (8.3.1) and (8.3.6) are equivalent. We let Assumption
18 be a blanket assumption for the rest of the paper.

We next consider a reformulation of the problem (8.3.6) as a saddle point problem.
By the method of Lagrange multipliers, problem (8.3.6) is equivalent to the following
saddle point problem:

min
x∈X

[
F(x)+ max

y∈Rmd
〈Lx,y〉

]
, (8.3.7)

where X := X1× . . .×Xm and y = (y1, . . . ,ym) ∈ Rmd are the Lagrange multipliers
associated with the constraints Lx = 0. We assume that there exists an optimal
solution x∗ ∈X of (8.3.6) and that there exists y∗ ∈Rmd such that (x∗,y∗) is a saddle
point of (8.3.7). In fact, since our objective function F(x) is convex, strong duality
holds if constraint qualification (CQ) condition holds. In particular, CQ condition
states that there exists x̄ ∈ X such that Lx̄ = 0, which is implied by the assumption
that there exists an optimal solution to (8.3.6).

8.3.1.2 Gap Functions: Termination Criteria

Given a pair of feasible solutions z = (x,y) and z̄ = (x̄, ȳ) of (8.3.7), we define the
primal-dual gap function Q(z; z̄) by

Q(z; z̄) := F(x)+ 〈Lx, ȳ〉− [F(x̄)+ 〈Lx̄,y〉]. (8.3.8)
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Sometimes we also use the notations Q(z; z̄) :=Q(x,y; x̄, ȳ) or Q(z; z̄) :=Q(x,y; z̄)=
Q(z; x̄, ȳ). One can easily see that Q(z∗;z)≤ 0 and Q(z;z∗)≥ 0 for all z ∈ X×Rmd ,
where z∗ = (x∗,y∗) is a saddle point of (8.3.7). For compact sets X⊂Rmd , Y ⊂Rmd ,
the gap function

sup
z̄∈X×Y

Q(z; z̄) (8.3.9)

measures the accuracy of the approximate solution z to the saddle point problem
(8.3.7).

However, the saddle point formulation (8.3.7) of our problem of interest (8.3.1)
may have an unbounded feasible set. We adopt the perturbation-based termination cri-
terion and propose a modified version of the gap function in (8.3.9). More specifically,
we define

gY (s,z) := sup
ȳ∈Y

Q(z;x∗, ȳ)−〈s, ȳ〉, (8.3.10)

for any closed set Y ⊆ Rmd , z ∈ X×Rmd and s ∈ Rmd . If Y = Rmd , we omit the
subscript Y and simply use the notation g(s,z).

This perturbed gap function allows us to bound the objective function value and
the feasibility separately. We first define the following terminology.

Definition 8.1. A point x ∈ X is called an (ε,δ )-solution of (8.3.6) if

F(x)−F(x∗)≤ ε and ‖Lx‖ ≤ δ . (8.3.11)

We say that x has primal residual ε and feasibility residual δ .

Similarly, a stochastic (ε,δ )-solution of (8.3.6) can be defined as a random point
x̂ ∈ X s.t. E[F(x̂)−F(x∗)] ≤ ε and E[‖Lx̂‖] ≤ δ for some ε,δ > 0. Note that for
problem (8.3.6), the feasibility residual measures the disagreement among the local
copies xi, for i ∈N .

In the following proposition, we establish the relationship between the perturbed
gap function (8.3.10) and the approximate solutions to problem (8.3.6). Although
the proposition was originally developed for deterministic cases, the extension of
this to stochastic cases is straightforward.

Proposition 8.6. For any Y ⊂Rmd such that 0∈Y , if gY (Lx,z)≤ ε <∞ and ‖Lx‖≤
δ , where z = (x,y) ∈ X×Rmd , then x is an (ε,δ )-solution of (8.3.6). In particular,
when Y = Rmd , for any s such that g(s,z) ≤ ε < ∞ and ‖s‖ ≤ δ , we always have
s = Lx.

Proof. TBD

8.3.1.3 Prox-function

We assume that the individual constraint set Xi for each agent in problem (8.3.1) are
equipped with norm ‖ · ‖Xi , and their associated prox-functions associated with the
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distance generating function ωi are given by Vi(·, ·). Moreover, we assume that each
Vi(·, ·) shares the same strongly convex modulus ν = 1, i.e.,

Vi(xi,ui)≥ 1
2‖xi−ui‖2

Xi
, ∀xi,ui ∈ Xi, i = 1, . . . ,m. (8.3.12)

We define the norm associated with the primal feasible set X = X1× . . .×Xm of
(8.3.7) as follows:1

‖x‖2 ≡ ‖x‖2
X := ∑

m
i=1‖xi‖2

Xi
, (8.3.13)

where x = (x1, . . . ,xm) ∈ X for any xi ∈ Xi. Therefore, the corresponding prox-
function V(·, ·) can be defined as

V(x,u) := ∑
m
i=1Vi(xi,ui), ∀x,u ∈ X. (8.3.14)

Note that by (8.3.12) and (8.3.13), it can be easily seen that

V(x,u)≥ 1
2‖x−u‖2, ∀x,u ∈ X. (8.3.15)

Throughout the paper, we endow the dual space where the multipliers y of (8.3.7)
reside with the standard Euclidean norm ‖ · ‖2, since the feasible region of y is
unbounded. For simplicity, we often write ‖y‖ instead of ‖y‖2 for a dual multiplier
y ∈ Rmd .

Given the prox-function Vi, we assume that the objective functions associated
with agent i satisify

µVi(y,x)≤ fi(x)− fi(y)−〈 f ′i (y),x− y〉 ≤M‖x− y‖, ∀x,y ∈ Xi, (8.3.16)

for some M,µ ≥ 0 and f ′i (y) ∈ ∂ fi(y), where ∂ fi(y) denotes the subdifferential of fi
at y, and Xi ⊆Rd is a closed convex constraint set of agent i. Clearly, fi’s are strongly
convex if µ > 0.

8.3.2 Decentralized communication sliding

In this section, we introduce a primal-dual algorithmic framework, namely, the
decentralized communication sliding (DCS) method, for solving the saddle point
problem (8.3.7) in a decentralized fashion. Moreover, we will establish complexity
bounds on the required number of inter-node communication rounds as well as
the total number of required subgradient evaluations. Throughout this section, we
consider the deterministic case where exact subgradients of fi’s are available.

1 We can define the norm associated with X in a more general way, e.g., ‖x‖2 := ∑
m
i=1 pi‖xi‖2

Xi
, ∀x =

(x1, . . . ,xm)∈X, for some pi > 0, i = 1, . . . ,m. Accordingly, the prox-function V(·, ·) can be defined
as V(x,u) := ∑

m
i=1 piVi(xi,ui), ∀x,u ∈ X. This setting gives us flexibility to choose pi’s based on

the information of individual Xi’s, and the possibility to further refine the convergence results.
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8.3.2.1 The DCS Algorithm

The basic scheme of the DCS algorithm is inspired by the primal-dual method in
Section 3.6. When applied to our saddle point reformulation defined in (8.3.7), for any
given initial points x0 = x−1 ∈ X and y0 ∈ Rmd , and certain nonnegative parameters
{αk}, {τk} and {ηk}, the primal-dual method updates (xk,yk) according to

x̃k = αk(xk−1−xk−2)+xk−1, (8.3.17)

yk = argminy∈Rmd 〈−Lx̃k,y〉+ τk
2 ‖y−yk−1‖2, (8.3.18)

xk =argminx∈X

{
Φ

k(x) := 〈Lyk,x〉+F(x)+ηkV(xk−1,x)
}
. (8.3.19)

In each iteration of the primal-dual method, only the computation of the matrix-
vector products Lx̃k and Lyk will involve the communication among different agents,
while the other computations such as the updating of x̃k,yk and xk can be performed
separately by each agent. Under the assumption that the subproblem (8.3.19) can be
easily solved, we can show that by properly choosing the algorithmic parameters αk,
τk and ηk one can find an ε-solution, i.e., a point x̄ ∈ X such that F(x̄)−F(x∗)≤ ε

and ‖Lx̄‖ ≤ ε , within O(1/ε) iterations. This implies that one can find such an
ε-solution in O(1/ε) rounds of communication, which already improves the exist-
ing O(1/ε2) communication complexity for decentralized nonsmooth optimization.
However, such a communication complexity bound is not quite meaningful because
F is a general nonsmooth convex function and it is often difficult to solve the primal
subproblem (8.3.19) explicitly.

One natural way to address this issue is to approximately solve (8.3.19) through
an iterative subgradient descent method. Inside this iterative subgradient descent
method, we do not need to re-compute the matrix-vector products Lx̃k and Lyk,
and hence no communication cost is involved. However, a straightforward pursuit
of this approach, i.e., to solve the subproblem accurately enough at each iteration,
does not necessarily yield the best complexity bound in terms of the total number of
subgradient computations. To achieve the best possible complexity bounds in terms
of both subgradient computation and communication, the proposed DCS method
(along with its analysis) are in fact more complicated than the aforementioned
inexact primal-dual method in the following two aspects. Firstly, while in most
inexact first-order methods one usually computes only one approximate solution
of the subproblems, in the proposed DCS method we need to generate a pair of
closely related approximate solutions xk = (xk

1, . . . ,x
k
m) and x̂k = (x̂k

1, . . . , x̂
k
m) to the

subproblem in (8.3.19). Secondly, we need to modify the primal-dual method in a way
such that one of these sequence (i.e.,{x̂k}) will be used in the the extrapolation step
in (8.3.17), while the other sequence {xk} will act as the prox-center in V(xk−1,x)
(see (8.3.19)).

We formally describe our DCS method in Algorithm 8.7. An outer iteration of the
DCS algorithm occurs whenever the index k in Algorithm 8.7 is incremented by 1.
More specifically, each primal estimate x0

i is locally initialized from some arbitrary
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Algorithm 8.7 DCS from agent i’s perspective

Let x0
i = x−1

i = x̂0
i ∈ Xi, y0

i ∈ Rd for i ∈ [m] and the nonnegative parameters {αk}, {τk}, {ηk}
and {Tk} be given.
for k = 1, . . . ,N do

Update zk
i = (x̂k

i ,y
k
i ) according to

x̃k
i = αk(x̂k−1

i − xk−2
i )+ xk−1

i , (8.3.20)

vk
i = ∑ j∈Ni Li j x̃k

j , (8.3.21)

yk
i = argminyi∈Rd 〈−vk

i ,yi〉+ τk
2 ‖yi− yk−1

i ‖2 = yk−1
i + 1

τk
vk

i , (8.3.22)

wk
i = ∑ j∈Ni Li jyk

j, (8.3.23)

(xk
i , x̂

k
i ) = CS( fi,Xi,Vi,Tk,ηk,wk

i ,x
k−1
i ). (8.3.24)

end forreturn zN
i =

(
∑

N
k=1θk

)−1
∑

N
k=1θkzk

i

The CS (Communication-Sliding) procedure called at (8.3.24) is stated as follows.
procedure: (x, x̂) = CS(φ ,U,V,T,η ,w,x)
Let u0 = û0 = x and the parameters {βt} and {λt} be given.
for t = 1, . . . ,T do

ht−1 = φ
′(ut−1) ∈ ∂φ(ut−1), (8.3.25)

ut = argminu∈U
[
〈w+ht−1,u〉+ηV (x,u)+ηβtV (ut−1,u)

]
. (8.3.26)

end for
Set

ûT :=
(
∑

T
t=1λt

)−1
∑

T
t=1λt ut . (8.3.27)

Set x = uT and x̂ = ûT .
end procedure

point in Xi, and x−1
i and x̂0

i are also set to be the same value. At each time step k ≥ 1,
each agent i ∈N computes a local prediction x̃k

i using these three previous primal
iterates (ref. (8.3.20)), and sends it to all of the nodes in its neighborhood, i.e., to
all agents j ∈ Ni. In (8.3.21)-(8.3.22), each agent i then calculates the neighborhood
disagreement vk

i using the messages received from agents in Ni, and updates the
dual subvector yk

i . Then, another round of communication occurs in (8.3.23) when
calculating wk

i based on these updated dual variables. Therefore, each outer iteration
k involves two communication rounds, one for the primal estimates and the other for
the dual variables. Lastly, each agent i approximately solves the proximal projection
subproblem (8.3.19), i.e.,

argminu∈U 〈w,u〉+φ(u)+ηV (x,u) (8.3.28)

with u = xi, U = Xi, w = wk
i , φ = fi, η = ηk and V =Vi, by calling the CS procedure

for T = Tk iterations in (8.3.24).
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Each iteration performed by the CS procedure, referred to as an inner iteration
of the DCS method, is equivalent to a subgradient descent step applied to (8.3.28).
More specifically, each inner iteration consists of the computation of the subgradient
φ ′(ut−1) in (8.3.25) and the solution of the projection subproblem in (8.3.26). Note
that the objective function of (8.3.26) consists of two parts: 1) the inner product of u
and the summation of w and the current subgradient φ ′(ut−1); and 2) two Bregman
distances requiring that the new iterate lies near x and ut−1. By using the definition
of Bregman distance, we can see that (8.3.26) is equivalent to

ut = argminu∈U
[
〈w+ht−1−η∇ω(x)−ηβt∇ω(ut−1),u〉+η(1+βt)ω(u)

]
.

Similar to mirror-descent type methods, we assume that this problem is easy to
solve. Also observe that the same dual information w = wk

i (see (8.3.23)) has been
used throughout the T = Tk iterations of the CS procedure, and hence no additional
communication is required within the procedure, which explains the name of the
DCS method.

Observe that the DCS method, in spirit, has been inspired by the gradient sliding
method (Section 8.1). However, the gradient sliding method focuses on how to save
gradient evaluations for solving certain structured convex optimization problems,
rather than how to save communication rounds (or matrix-vector products) for
decentralized optimization, and its algorithmic scheme is also quite different from
the DCS method. It should also be note that the description of the algorithm is only
conceptual at this moment since we have not specified the parameters {αk}, {ηk},
{τk}, {Tk}, {βt} and {λt} yet. We will later instantiate this generic algorithm when
we state its convergence properties.

8.3.2.2 Convergence of DCS on General Convex Functions

We now establish the main convergence properties of the DCS algorithm. More
specifically, we provide in Lemma 8.3 an estimate on the gap function defined in
(8.3.8) together with stepsize policies which work for the general nonsmooth convex
case with µ = 0 (cf. (8.3.16)). The proof of this lemma can be found in Section 8.3.5.

Lemma 8.3. Let the iterates (x̂k,yk), k = 1, . . . ,N be generated by Algorithm 8.7 and
ẑN be defined as ẑN :=

(
∑

N
k=1θk

)−1
∑

N
k=1θk(x̂k,yk). If the objective fi, i = 1, . . . ,m,

are general nonsmooth convex functions, i.e., µ = 0 and M > 0, let the parameters
{αk}, {θk}, {ηk}, {τk} and {Tk} in Algorithm 8.7 satisfy

θk
(Tk+1)(Tk+2)ηk

Tk(Tk+3) ≤ θk−1
(Tk−1+1)(Tk−1+2)ηk−1

Tk−1(Tk−1+3) , k = 2, . . . ,N, (8.3.29)

αkθk = θk−1, k = 2, . . . ,N, (8.3.30)
θkτk = θ1τ1, k = 2, . . . ,N, (8.3.31)

αk‖L‖2 ≤ ηk−1τk, k = 2, . . . ,N, (8.3.32)

θN‖L‖2 ≤ θ1τ1ηN , (8.3.33)
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and the parameters {λt} and {βt} in the CS procedure of Algorithm 8.7 be set to

λt = t +1, βt =
t
2 , ∀t ≥ 1. (8.3.34)

Then, we have for all z := (x,y) ∈ X×Rmd ,

Q(ẑN ;z)≤
(
∑

N
k=1θk

)−1
[
(T1+1)(T1+2)θ1η1

T1(T1+3) V(x0,x)

+ θ1τ1
2 ‖y0‖2 + 〈ŝ,y〉+∑

N
k=1

4mM2θk
(Tk+3)ηk

]
, (8.3.35)

where ŝ := θNL(x̂N−xN−1)+θ1τ1(yN−y0) and Q is defined in (8.3.8). Furthermore,
for any saddle point (x∗,y∗) of (8.3.7), we have

θN
2

(
1− ‖L‖2

ηN τN

)
max{ηN‖x̂N−xN−1‖2,τN‖y∗−yN‖2} (8.3.36)

≤ (T1+1)(T1+2)θ1η1
T1(T1+3) V(x0,x∗)+ θ1τ1

2 ‖y∗−y0‖2 +∑
N
k=1

4mM2θk
ηk(Tk+3) .

In the following theorem, we provide a specific selection of {αk}, {θk}, {ηk},
{τk} and {Tk} satisfying (8.3.29)-(8.3.33). Using Lemma 8.3 and Proposition 8.6,
we also establish the complexity of the DCS method for computing an (ε,δ )-solution
of problem (8.3.6) when the objective functions are general convex.

Theorem 8.8. Let x∗ be an optimal solution of (8.3.6), the parameters {λt} and
{βt} in the CS procedure of Algorithm 8.7 be set to (8.3.34), and suppose that {αk},
{θk}, {ηk}, {τk} and {Tk} are set to

αk = θk = 1, ηk = 2‖L‖, τk = ‖L‖, and Tk =
⌈

mM2N
‖L‖2D̃

⌉
, ∀k = 1, . . . ,N, (8.3.37)

for some D̃ > 0. Then, for any N ≥ 1, we have

F(x̂N)−F(x∗)≤ ‖L‖N

[
3V(x0,x∗)+ 1

2‖y0‖2 +2D̃
]

(8.3.38)

and

‖Lx̂N‖ ≤ ‖L‖N

[
3
√

6V(x0,x∗)+4D̃+4‖y∗−y0‖
]
, (8.3.39)

where x̂N = 1
N ∑

N
k=1x̂k, and y∗ is an arbitrary dual optimal solution.

Proof. It is easy to check that (8.3.37) satisfies conditions (8.3.29)-(8.3.33). Par-
ticularly,

(T1+1)(T1+2)
T1(T1+3) = 1+ 2

T 2
1 +3T1

≤ 3
2 .

Therefore, by plugging in these values to (8.3.35), we have

Q(ẑN ;x∗,y)≤ ‖L‖N

[
3V(x0,x∗)+ 1

2‖y0‖2 +2D̃
]
+ 1

N 〈ŝ,y〉. (8.3.40)
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Letting ŝN = 1
N ŝ, then from (8.3.36), we have

‖ŝN‖ ≤ ‖L‖N

[
‖x̂N−xN−1‖+‖yN−y∗‖+‖y∗−y0‖

]

≤ ‖L‖N

[
3
√

6V(x0,x∗)+‖y∗−y0‖2 +4D̃+‖y∗−y0‖
]
.

Furthermore, by (8.3.40), we have

g(ŝN , ẑN)≤ ‖L‖N

[
3V(x0,x∗)+ 1

2‖y0‖2 +2D̃
]
.

Applying Proposition 8.6 to the above two inequalities, the results in (8.3.38) and
(8.3.39) follow immediately.

We now make some remarks about the results obtained in Theorem 8.8. Firstly,
even though one can choose any D̃ > 0 (e.g., D̃ = 1) in (8.3.37), the best selection of
D̃ would be V(x0,x∗) so that the first and third terms in (8.3.40) are about the same
order. In practice, if there exists an estimate DX > 0 s.t.

V(x1,x2)≤ D2
X, ∀x1,x2 ∈ X, (8.3.41)

then we can set D̃ = D2
X.

Secondly, the complexity of the DCS method directly follows from (8.3.38) and
(8.3.39). For simplicity, let us assume that X is bounded, D̃ = D2

X and y0 = 0. We
can see that the total number of inter-node communication rounds and intra-node
subgradient evaluations required by each agent for finding an (ε,δ )-solution of
(8.3.6) can be bounded by

O
{
‖L‖max

(
D2

X
ε
, DX+‖y∗‖

δ

)}
and O

{
mM2 max

(
D2

X
ε2 ,

D2
X+‖y∗‖2
D2

Xδ 2

)}
, (8.3.42)

respectively. In particular, if ε and δ satisfy

ε

δ
≤ D2

X
DX+‖y∗‖ , (8.3.43)

then the previous two complexity bounds in (8.3.42), respectively, reduce to

O
{ ‖L‖D2

X
ε

}
and O

{
mM2D2

X
ε2

}
. (8.3.44)

Thirdly, it is interesting to compare DCS with the centralized mirror descent
method (Section 3.2) applied to (8.3.1). In the worst case, the Lipschitz constant
of f in (8.3.1) can be bounded by M f ≤ mM, and each iteration of the method will
incur m subgradient evaluations. Hence, the total number of subgradient evaluations
performed by the mirror descent method for finding an ε-solution of (8.3.1), i.e., a
point x̄ ∈ X such that f (x̄)− f ∗ ≤ ε , can be bounded by

O
{

m3M2D2
X

ε2

}
, (8.3.45)
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where D2
X characterizes the diameter of X , i.e., D2

X := maxx1,x2∈X V (x1,x2). Noting
that D2

X/D2
X =O(1/m), and that the second bound in (8.3.44) states only the number

of subgradient evaluations for each agent in the DCS method, we conclude that the
total number of subgradient evaluations performed by DCS is comparable to the
classic mirror descent method as long as (8.3.43) holds and hence not improvable in
general.

Finally, observe that the parameter setting (8.3.37) requires the knowledge of
the norm of Laplacian matrix L, i.e., ‖L‖ = max‖x‖≤1{‖Lx‖2}. If we use l2-norm
for the primal space, ‖L‖ will be the maximum eigenvalue of L. We can estimate
it using power iteration method or simply bound it by the maximum degree of the
graph. If we use l1-norm in the primal space, then ‖L‖ will be the L1,2-norm for

‖L‖, i.e., ‖L‖= ‖L‖1,2 =
(
∑

md
i=1‖Li‖2

1
)1/2

= 2
√

d∑
m
j=1deg2

j , where Li’s denote the
row vectors of L and deg j denotes the degree of node j. The estimation of ‖L‖
will involve a few rounds of communication, however, these initial setup costs are
independent of the target accuracy ε of the solution. It should also be noted that
the number of inner iterations Tk given in (8.3.37) is fixed as a constant in order
to achieve the best complexity bounds. In practice, it is reasonable to choose Tk
dynamically so that a smaller number of inner iterations will be performed in the first
few outer iterations. One simple strategy would be to set

Tk = min
(

ck,
⌈

mM2N
‖L‖2D̃

⌉)

for some constant c > 0. While theoretically such a selection of Tk will result in
slightly worse complexity bounds (up to an O(log(1/ε)) factor) in terms of sub-
gradient computations and communication rounds, it may improve the practical
performance of the DCS method especially in the beginning of the execution of this
method.

8.3.2.3 Boundedness of ‖y∗‖

In this subsection, we will provide a bound on the optimal dual multiplier y∗. By
doing so, we show that the complexity of DCS algorithm (as well as the stochastic
DCS algorithm in Section 8.3.3) only depends on the parameters for the primal
problem along with the smallest nonzero eigenvalue of L and the initial point y0,
even though these algorithms are intrinsically primal-dual type methods.

Theorem 8.9. Suppose that fi’s are Lipschitz continuous, i.e., the subgradients of fi
are bounded by a constant M f w.r.t. ‖ · ‖2. Let x∗ be an optimal solution of (8.3.6).
Then there exists an optimal dual multiplier y∗ for (8.3.7) s.t.

‖y∗‖2 ≤
√

mM f
σ̃min(L)

, (8.3.46)

where σ̃min(L) denotes the smallest nonzero eigenvalue of L.
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Proof. Since we only relax the linear constraints in problem (8.3.6) to obtain the
Lagrange dual problem (8.3.7), it follows from the strong Lagrange duality and the
existence of x∗ to (8.3.6) that an optimal dual multiplier y∗ for problem (8.3.7) must
exist. It is clear that

y∗ = y∗N +y∗C,

where y∗N and y∗C denote the projections of y∗ over the null space and the column
space of LT , respectively.

We consider two cases. Case 1) y∗C = 0. Since y∗N belongs to the null space of
LT , LT y∗ = LT y∗N = 0, which implies that for any c ∈ R, cy∗ is also an optimal dual
multiplier of (8.3.7). Therefore, (8.3.46) clearly holds, because we can scale y∗ to an
arbitrary small vector.

Case 2) y∗C 6= 0. Using the fact that LT y∗ = LT y∗C and the definition of a saddle
point of (8.3.7), we conclude that y∗C is also an optimal dual multiplier of (8.3.7).
Since y∗C in the column space of L, we have

‖LT y∗C‖2
2 = (y∗C)

T LLT y∗C = (y∗C)
T UT

ΛUy∗C ≥ λ̃min(LLT )‖Uy∗C‖2
2 = σ̃

2
min(L)‖y∗C‖2

2,

where U is an orthonormal matrix whose rows consist of the eigenvectors of LLT ,
Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues,
λ̃min(LLT ) denotes the smallest nonzero eigenvalue of LLT , and σ̃min(L) denotes
the smallest nonzero eigenvalue of L. In particular,

‖y∗C‖2 ≤ ‖L
T y∗C‖2

σ̃min(L)
. (8.3.47)

Moreover, if we denote the saddle point problem defined in (8.3.7) as follows:

L (x,y) := F(x)+ 〈Lx,y〉.

By the definition of a saddle point of (8.3.7), we have L (x∗,y∗C)≤L (x,y∗C), i.e.,

F(x∗)−F(x)≤ 〈−LT y∗C,x−x∗〉.

Hence, from the definition of subgradients, we conclude that −LT y∗C ∈ ∂F(x∗),
which together with the fact that fi’s are Lipschitz continuous implies that

‖LT y∗C‖2 = ‖( f ′1(x
∗
1), f ′2(x

∗
2), . . . , f ′m(x

∗
m))‖2 ≤

√
mM f .

Our result in (8.3.46) follows immediately from the above relation, (8.3.47) and the
fact that y∗C is also an optimal dual multiplier of (8.3.7).

Observe that our bound for the dual multiplier y∗ in (8.3.46) contains only the
primal information. Given an initial dual multiplier y0, this result can be used to
provide an upper bound on ‖y0−y∗‖ in Theorems 8.8-8.12 throughout this paper.
Note also that we can assume y0 = 0 to simplify these complexity bounds.
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8.3.2.4 Convergence of DCS on Strongly Convex Functions

In this subsection, we assume that the objective functions fi’s are strongly convex
(i.e., µ > 0 (8.3.16)).

We next provide in Lemma 8.4 an estimate on the gap function defined in (8.3.8)
together with stepsize policies which work for the strongly convex case. The proof
of this lemma can be found in Section 8.3.5.

Lemma 8.4. Let the iterates (x̂k,yk), k = 1, . . . ,N be generated by Algorithm 8.7 and
ẑN be defined as ẑN :=

(
∑

N
k=1θk

)−1
∑

N
k=1θk(x̂k,yk). If the objective fi, i = 1, . . . ,m

are strongly convex functions, i.e., µ,M > 0, let the parameters {αk}, {θk}, {ηk}
and {τk} in Algorithm 8.7 satisfy (8.3.30)-(8.3.33) and

θkηk ≤ θk−1(µ +ηk−1), k = 2, . . . ,N, (8.3.48)

and the parameters {λt} and {βt} in the CS procedure of Algorithm 8.7 be set to

λt = t, β
(k)
t = (t+1)µ

2ηk
+ t−1

2 , ∀t ≥ 1. (8.3.49)

Then, we have for all z ∈ X×Rmd

Q(ẑN ;z)≤
(
∑

N
k=1θk

)−1
[
θ1η1V(x0,x)+ θ1τ1

2 ‖y0‖2 + 〈ŝ,y〉

+∑
N
k=1∑

Tk
t=1

2mM2θk
Tk(Tk+1)

t
(t+1)µ+(t−1)ηk

]
, (8.3.50)

where ŝ := θNL(x̂N−xN−1)+θ1τ1(yN−y0) and Q is defined in (8.3.8). Furthermore,
for any saddle point (x∗,y∗) of (8.3.7), we have

θN
2

(
1− ‖L‖2

ηN τN

)
max{ηN‖x̂N−xN−1‖2,τN‖y∗−yN‖2} (8.3.51)

≤ θ1η1V(x0,x∗)+ θ1τ1
2 ‖y∗−y0‖2 +∑

N
k=1∑

Tk
t=1

2mM2θk
Tk(Tk+1)

t
(t+1)µ+(t−1)ηk

.

In the following theorem, we provide a specific selection of {αk}, {θk}, {ηk},
{τk} and {Tk} satisfying (8.3.30)-(8.3.33) and (8.3.48). Also, by using Lemma 8.4
and Proposition 8.6, we establish the complexity of the DCS method for computing an
(ε,δ )-solution of problem (8.3.6) when the objective functions are strongly convex.
The choice of variable stepsizes rather than using constant stepsizes will accelerate
its convergence rate.

Theorem 8.10. Let x∗ be an optimal solution of (8.3.6), the parameters {λt} and
{βt} in the CS procedure of Algorithm 8.7 be set to (8.3.49) and suppose that {αk},
{θk}, {ηk}, {τk} and {Tk} are set to

αk =
k

k+1 , θk = k+1, ηk =
kµ

2 , τk =
4‖L‖2
(k+1)µ , and

Tk =
⌈√

2m
D̃

MN
µ

max
{√

2m
D̃

4M
µ
,1
}⌉

,
(8.3.52)
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∀k = 1, . . . ,N, for some D̃ > 0. Then, for any N ≥ 2, we have

F(x̂N)−F(x∗)≤ 2
N(N+3)

[
µV(x0,x∗)+ 2‖L‖2

µ
‖y0‖2 +2µD̃

]
, (8.3.53)

and

‖Lx̂N‖ ≤ 8‖L‖
N(N+3)

[
3
√

2D̃+V(x0,x∗)+ 7‖L‖
µ
‖y∗−y0‖

]
, (8.3.54)

where x̂N = 2
N(N+3)∑

N
k=1(k+1)x̂k, and y∗ is an arbitrary dual optimal solution.

Proof. It is easy to check that (8.3.52) satisfies conditions (8.3.30)-(8.3.33) and
(8.3.48). Moreover, we have

∑
N
k=1∑

Tk
t=1

2mM2θk
Tk(Tk+1)

t
(t+1)µ+(t−1)ηk

= ∑
N
k=1

2mM2θk
Tk(Tk+1)µ ∑

Tk
t=1

2t
2(t+1)+(t−1)k

≤ ∑
N
k=1

2mM2θk
Tk(Tk+1)µ

(
1
2 +∑

Tk
t=2

2t
(t−1)(k+1)

)

≤ ∑
N
k=1

mM2(k+1)
Tk(Tk+1)µ +∑

N
k=1

8mM2(Tk−1)
Tk(Tk+1)µ ≤ 2µD̃.

Therefore, by plugging in these values to (8.3.50), we have

Q(ẑN ;x∗,y)≤ 2
N(N+3)

[
µV(x0,x∗)+ 2‖L‖2

µ
‖y0‖2 +2µD̃+ 〈ŝ,y〉

]
. (8.3.55)

Furthermore, from (8.3.51), we have for N ≥ 2

‖x̂N−xN−1‖2 ≤ 8
µ(N+1)(N−1)

[
µV(x0,x∗)+ 2‖L‖2

µ
‖y0−y∗‖2 +2µD̃

]
, (8.3.56)

‖y∗−yN‖2 ≤ Nµ

(N−1)‖L‖2
[
µV(x0,x∗)+ 2‖L‖2

µ
‖y0−y∗‖2 +2µD̃

]
.

Let sN := 2
N(N+3) ŝ, then by using (8.3.56), we have for N ≥ 2

‖sN‖ ≤ 2
N(N+3)

[
(N +1)‖L‖‖x̂N−xN−1‖+ 4‖L‖2

µ
‖yN−y∗‖+ 4‖L‖2

µ
‖y∗−y0‖

]

≤ 8‖L‖
N(N+3)

[
3

√
2D̃+V(x0,x∗)+ 2‖L‖2

µ2 ‖y0−y∗‖2 + ‖L‖
µ
‖y∗−y0‖

]

≤ 8‖L‖
N(N+3)

[
3
√

2D̃+V(x0,x∗)+ 7‖L‖
µ
‖y∗−y0‖

]
.

From (8.3.55), we further have

g(ŝN , ẑN)≤ 2
N(N+3)

[
µV(x0,x∗)+ 2‖L‖2

µ
‖y0‖2 +2µD̃

]
.

Applying Proposition 8.6 to the above two inequalities, the results in (8.3.53) and
(8.3.54) follow immediately.
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We now make some remarks about the results obtained in Theorem 8.10. Firstly,
similar to the general convex case, the best choice for D̃ (cf. (8.3.52)) would be
V(x0,x∗) so that the first and the third terms in (8.3.55) are about the same order. If
there exists an estimate DX > 0 satisfying (8.3.41), we can set D̃ = D2

X.
Secondly, the complexity of the DCS method for solving strongly convex problems

follows from (8.3.53) and (8.3.54). For simplicity, let us assume that X is bounded,
D̃ = D2

X and y0 = 0. We can see that the total number of inter-node communication
rounds and intra-node subgradient evaluations performed by each agent for finding
an (ε,δ )-solution of (8.3.6) can be bounded by

O

{
max

(√
µD2

X
ε

,

√
‖L‖

δ

(
DX + ‖L‖‖y

∗‖
µ

))}
and

O
{

mM2

µ
max

(
1
ε
, ‖L‖

µδ

(
1

DX
+ ‖L‖‖y

∗‖
D2

Xµ

))}
,

(8.3.57)

respectively. In particular, if ε and δ satisfy

ε

δ
≤ µ2D2

X
‖L‖(µDX+‖L‖‖y∗‖) , (8.3.58)

then the complexity bounds in (8.3.57), respectively, reduce to

O

{√
µD2

X
ε

}
and O

{
mM2

µε

}
. (8.3.59)

Thirdly, we compare DCS method with the centralized mirror descent method
(Section 3.2) applied to (8.3.1). In the worst case, the Lipschitz constant and strongly
convex modulus of f in (8.3.1) can be bounded by M f ≤ mM, and µ f ≥ mµ , re-
spectively, and each iteration of the method will incur m subgradient evaluations.
Therefore, the total number of subgradient evaluations performed by the mirror
descent method for finding an ε-solution of (8.3.1), i.e., a point x̄ ∈ X such that
f (x̄)− f ∗ ≤ ε , can be bounded by

O
{

m2M2

µε

}
. (8.3.60)

Observed that the second bound in (8.3.59) states only the number of subgradient
evaluations for each agent in the DCS method, we conclude that the total number
of subgradient evaluations performed by DCS is comparable to the classic mirror
descent method as long as (8.3.58) holds and hence not improvable in general for the
nonsmooth strongly convex case.

8.3.3 Stochastic decentralized communication sliding

In this section, we consider the stochastic case where only the noisy subgradient
information of the functions fi, i = 1, . . . ,m, is available or easier to compute. This
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situation happens when the function fi’s are given either in the form of expectation
or as the summation of lots of components. This setting has attracted considerable
interest in recent decades for its applications in a broad spectrum of disciplines
including machine learning, signal processing, and operations research. We present
a stochastic communication sliding method, namely the stochastic decentralized
communication sliding (SDCS) method, and show that the similar complexity bounds
as in Section 8.3.2 can still be obtained in expectation or with high probability.

8.3.3.1 The SDCS Algorithm

The first-order information of the function fi, i = 1, . . . ,m, can be accessed by a
stochastic oracle (SO), which, given a point ut ∈ X , outputs a vector Gi(ut ,ξ t

i ) such
that

E[Gi(ut ,ξ t
i )] = f ′i (u

t) ∈ ∂ fi(ut), (8.3.61)

E[‖Gi(ut ,ξ t
i )− f ′i (u

t)‖2
∗]≤ σ

2, (8.3.62)

where ξ t
i is a random vector which models a source of uncertainty and is independent

of the search point ut , and the distribution P(ξi) is not known in advance. We call
Gi(ut ,ξ t

i ) a stochastic subgradient of fi at ut .
The SDCS method can be obtained by simply replacing the exact subgradients in

the CS procedure of Algorithm 8.7 with the stochastic subgradients obtained from
SO. This difference is described in Algorithm 8.8.

Algorithm 8.8 SDCS
The projection step (8.3.25)-(8.3.26) in the CS procedure of Algorithm 8.7 is replaced by

ht−1 = H(ut−1,ξ t−1), (8.3.63)

ut = argminu∈U
[
〈w+ht−1,u〉+ηV (x,u)+ηβtV (ut−1,u)

]
, (8.3.64)

where H(ut−1,ξ t−1) is a stochastic subgradient of φ at ut−1.

We add a few remarks about the SDCS algorithm. Firstly, as in DCS, no additional
communications of the dual variables are required when the subgradient projection
(8.3.64) is performed for Tk times in the inner loop. This is because the same wk

i has
been used throughout the Tk iterations of the Stochastic CS procedure. Secondly, the
problem will reduce to the deterministic case if there is no stochastic noise associated
with the SO, i.e., when σ = 0 in (8.3.62). Therefore, in Section 8.3.5, we investigate
the convergence analysis for the stochastic case first and then simplify the analysis
for the deterministic case by setting σ = 0.
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8.3.3.2 Convergence of SDCS on General Convex Functions

We now establish the main convergence properties of the SDCS algorithm. More
specifically, we provide in Lemma 8.5 an estimate on the gap function defined in
(8.3.8) together with stepsize policies which work for the general convex case with
µ = 0 (cf. (8.3.16)). The proof of this lemma can be found in Section 8.3.5.

Lemma 8.5. Let the iterates (x̂k,yk) for k = 1, . . . ,N be generated by Algorithm 8.8,
ẑN be defined as ẑN :=

(
∑

N
k=1θk

)−1
∑

N
k=1θk(x̂k,yk), and Assumptions (8.3.61)-

(8.3.62) hold. If the objective fi, i= 1, . . . ,m, are general nonsmooth convex functions,
i.e., µ = 0 and M > 0, let the parameters {αk}, {θk}, {ηk}, {τk} and {Tk} in Al-
gorithm 8.8 satisfy (8.3.29)-(8.3.33), and the parameters {λt} and {βt} in the CS
procedure of Algorithm 8.8 be set as (8.3.34). Then, for all z ∈ X×Rmd ,

Q(ẑN ;z)≤
(
∑

N
k=1θk

)−1
{

(T1+1)(T1+2)θ1η1
T1(T1+3) V(x0,x)+ θ1τ1

2 ‖y0‖2 + 〈ŝ,y〉 (8.3.65)

+∑
N
k=1∑

Tk
t=1∑

m
i=1

2θk
Tk(Tk+3)

[
(t +1)〈δ t−1,k

i ,xi−ut−1
i 〉+

4(M2+‖δ t−1,k
i ‖2∗)

ηk

]}
,

where ŝ := θNL(x̂N−xN−1)+θ1τ1(yN−y0) and Q is defined in (8.3.8). Furthermore,
for any saddle point (x∗,y∗) of (8.3.7), we have

θN
2

(
1− ‖L‖2

ηN τN

)
max{ηN‖x̂N−xN−1‖2,τN‖y∗−yN‖2} (8.3.66)

≤ (T1+1)(T1+2)θ1η1
T1(T1+3) V(x0,x∗)+ θ1τ1

2 ‖y∗−y0‖2

+∑
N
k=1∑

Tk
t=1∑

m
i=1

2θk
Tk(Tk+3)

[
(t +1)〈δ t−1,k

i ,x∗i −ut−1
i 〉+

4(M2+‖δ t−1,k
i ‖2∗)

ηk

]
.

In the following theorem, we provide a specific selection of {αk}, {θk}, {ηk}, {τk}
and {Tk} satisfying (8.3.29)-(8.3.33). Also, by using Lemma 8.5 and Proposition 8.6,
we establish the complexity of the SDCS method for computing an (ε,δ )-solution of
problem (8.3.6) in expectation when the objective functions are general convex.

Theorem 8.11. Let x∗ be an optimal solution of (8.3.6), the parameters {λt} and
{βt} in the CS procedure of Algorithm 8.8 be set as (8.3.34), and suppose that {αk},
{θk}, {ηk}, {τk} and {Tk} are set to

αk = θk = 1, ηk = 2‖L‖, τk = ‖L‖, and Tk =
⌈

m(M2+σ2)N
‖L‖2D̃

⌉
, ∀k = 1, . . . ,N,

(8.3.67)
for some D̃ > 0. Then, under Assumptions (8.3.61) and (8.3.62), we have for any
N ≥ 1

E[F(x̂k)−F(x∗)]≤ ‖L‖N

[
3V(x0,x∗)+ 1

2‖y0‖2 +4D̃
]
, (8.3.68)

and
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E[‖Lx̂N‖]≤ ‖L‖N

[
3
√

6V(x0,x∗)+8D̃+4‖y∗−y0‖
]
. (8.3.69)

where x̂N = 1
N ∑

N
k=1x̂k, and y∗ is an arbitrary dual optimal solution.

Proof. It is easy to check that (8.3.67) satisfies conditions (8.3.29)-(8.3.33). More-
over, by (8.3.10), we can obtain

g(ŝN , ẑN) = max
y

Q(ẑN ;x∗,y)−
(
∑

N
k=1θk

)−1 〈ŝ,y〉 (8.3.70)

≤
(
∑

N
k=1θk

)−1
{

(T1+1)(T1+2)θ1η1
T1(T1+3) V(x0,x∗)+ θ1τ1

2 ‖y0‖2

+∑
N
k=1∑

Tk
t=1∑

m
i=1

2θk
Tk(Tk+3)

[
(t +1)〈δ t−1,k

i ,x∗i −ut−1
i 〉+

4(M2+‖δ t−1,k
i ‖2∗)

ηk

]}
,

where sN =
(
∑

N
k=1θk

)−1 ŝ. Particularly, from Assumption (8.3.61) and (8.3.62),

E[δ t−1,k
i ] = 0, E[‖δ t−1,k

i ‖2
∗]≤ σ

2, ∀i ∈ {1, . . . ,m}, t ≥ 1, k ≥ 1,

and from (8.3.67)
(T1+1)(T1+2)

T1(T1+3) = 1+ 2
T 2

1 +3T1
≤ 3

2 .

Therefore, by taking expectation over both sides of (8.3.70) and plugging in these
values into (8.3.70), we have

E[g(ŝN , ẑN)]≤
(
∑

N
k=1θk

)−1
{

(T1+1)(T1+2)θ1η1
T1(T1+3) V(x0,x)+ θ1τ1

2 ‖y0‖2

+∑
N
k=1

8m(M2+σ2)θk
(Tk+3)ηk

}
≤ ‖L‖N

[
3V(x0,x∗)+ 1

2‖y0‖2 +4D̃
]
, (8.3.71)

with

E[‖ŝN‖] = 1
NE[‖ŝ‖]≤

‖L‖
N E

[
‖x̂N−xN−1‖+‖yN−y∗‖+‖y∗−y0‖

]
.

Note that from (8.3.66) and Jensen’s inequality, we have

(E[‖x̂N−xN−1])2 ≤ E[‖x̂N−xN−1‖2]≤ 6V(x0,x∗)+‖y∗−y0‖+8D̃,

(E[‖y∗−yN‖])2 ≤ E[‖y∗−yN‖2]≤ 12V(x0,x∗)+2‖y∗−y0‖+16D̃.

Hence,

E[‖ŝN‖]≤ ‖L‖N

[
3
√

6V(x0,x∗)+8D̃+4‖y∗−y0‖
]
.

Applying Proposition 8.6 to the above inequality and (8.3.71), the results in (8.3.68)
and (8.3.69) follow immediately.
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We now make some observations about the results obtained in Theorem 8.11.
Firstly, one can choose any D̃> 0 (e.g., D̃= 1) in (8.3.67), however, the best selection
of D̃ would be V(x0,x∗) so that the first and third terms in (8.3.71) are about the
same order. In practice, if there exists an estimate DX > 0 satisfying (8.3.41), we can
set D̃ = D2

X.
Secondly, the complexity of SDCS method immediately follows from (8.3.68)

and (8.3.69). Under the above assumption, with D̃ = D2
X and y0 = 0, we can see that

the total number of inter-node communication rounds and intra-node subgradient
evaluations required by each agent for finding a stochastic (ε,δ )-solution of (8.3.6)
can be bounded by

O
{
‖L‖max

(
D2

X
ε
, DX+‖y∗‖

δ

)}
and O

{
m(M2 +σ

2)max
(

D2
X

ε2 ,
D2

X+‖y∗‖2
D2

Xδ 2

)}
,

(8.3.72)
respectively. In particular, if ε and δ satisfy (8.3.43), the above complexity bounds,
respectively, reduce to

O
{ ‖L‖D2

X
ε

}
and O

{
m(M2+σ2)D2

X
ε2

}
. (8.3.73)

In particular, we can show that the total number stochastic subgradients that SDCS
requires is comparable to the mirror-descent stochastic approximation in Section 4.1.
This implies that the sample complexity for decentralized stochastic optimization
are still optimal (as the centralized one), even after we skip many communication
rounds.

8.3.3.3 Convergence of SDCS on Strongly Convex Functions

We now provide in Lemma 8.6 an estimate on the gap function defined in (8.3.8)
together with stepsize policies which work for the strongly convex case with µ > 0
(cf. (8.3.16)). The proof of this lemma can be found in Section 8.3.5.

Lemma 8.6. Let the iterates (x̂k,yk), k = 1, . . . ,N be generated by Algorithm 8.8, ẑN

be defined as ẑN :=
(
∑

N
k=1θk

)−1
∑

N
k=1θk(x̂k,yk), and Assumptions (8.3.61)-(8.3.62)

hold. If the objective fi, i = 1, . . . ,m are strongly convex functions, i.e., µ,M > 0, let
the parameters {αk}, {θk}, {ηk} and {τk} in Algorithm 8.8 satisfy (8.3.30)-(8.3.33)
and (8.3.48), and the parameters {λt} and {βt} in the CS procedure of Algorithm 8.8
be set as (8.3.49). Then, for all z ∈ X×Rmd ,

Q(ẑN ;z) ≤
(
∑

N
k=1θk

)−1
{

θ1η1V(x0,x)+ θ1τ1
2 ‖y0‖2 + 〈ŝ,y〉 (8.3.74)

+∑
N
k=1∑

Tk
t=1∑

m
i=1

2θk
Tk(Tk+1)

[
t〈δ t−1,k

i ,xi−ut−1
i 〉+

2t(M2+‖δ t−1,k
i ‖2∗)

(t+1)µ+(t−1)ηk

]}
,
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where ŝ := θNL(x̂N−xN−1)+θ1τ1(yN−y0) and Q is defined in (8.3.8). Furthermore,
for any saddle point (x∗,y∗) of (8.3.7), we have

θN
2

(
1− ‖L‖2

ηN τN

)
max{ηN‖x̂N−xN−1‖2,τN‖y∗−yN‖2} (8.3.75)

≤ θ1η1V(x0,x∗)+ θ1τ1
2 ‖y∗−y0‖2

+∑
N
k=1∑

Tk
t=1∑

m
i=1

2θk
Tk(Tk+1)

[
t〈δ t−1,k

i ,x∗i −ut−1
i 〉+

2t(M2+‖δ t−1,k
i ‖2∗)

(t+1)µ+(t−1)ηk

]
.

In the following theorem, we provide a specific selection of {αk}, {θk}, {ηk},
{τk} and {Tk} satisfying (8.3.30)-(8.3.33) and (8.3.29). Also, by using Lemma 8.6
and Proposition 8.6, we establish the complexity of the SDCS method for computing
an (ε,δ )-solution of problem (8.3.6) in expectation when the objective functions
are strongly convex. Similar to the deterministic case, we choose variable stepsizes
rather than constant stepsizes.

Theorem 8.12. Let x∗ be an optimal solution of (8.3.6), the parameters {λt} and
{βt} in the CS procedure of Algorithm 8.8 be set as (8.3.49), and suppose that {αk},
{θk}, {ηk}, {τk} and {Tk} are set to

αk =
k

k+1 , θk = k+1, ηk =
kµ

2 , τk =
4‖L‖2
(k+1)µ , and (8.3.76)

Tk =

⌈√
m(M2+σ2)

D̃
2N
µ

max
{√

m(M2+σ2)
D̃

8
µ
,1
}⌉

, ∀k = 1, . . . ,N,

for some D̃ > 0. Then, under Assumptions (8.3.61) and (8.3.62), we have for any
N ≥ 2

E[F(x̄N)−F(x∗)≤ 2
N(N+3)

[
µV(x0,x∗)+ 2‖L‖2

µ
‖y0‖2 +2µD̃

]
, (8.3.77)

and

E[‖Lx̂N‖]≤ 8‖L‖
N(N+3)

[
3
√

2D̃+V(x0,x∗)+ 7‖L‖
µ
‖y∗−y0‖

]
, (8.3.78)

where x̂N = 2
N(N+3)∑

N
k=1(k+1)x̂k, and y∗ is an arbitrary dual optimal solution.

Proof. It is easy to check that (8.3.76) satisfies conditions (8.3.30)-(8.3.33) and
(8.3.48). Similarly, by (8.3.10), Assumption (8.3.61) and (8.3.62), we can obtain

E[g(ŝN , ẑN)]≤
(
∑

N
k=1θk

)−1
{

θ1η1V(x0,x∗)+ θ1τ1
2 ‖y0‖2

+∑
N
k=1∑

Tk
t=1∑

m
i=1

2θk
Tk(Tk+1)

[
2t(M2+σ2)

(t+1)µ+(t−1)ηk

]}
, (8.3.79)

where sN =
(
∑

N
k=1θk

)−1 ŝ. Particularly, from (8.3.76), we have

∑
N
k=1∑

Tk
t=1

4m(M2+σ2)θk
Tk(Tk+1)

t
(t+1)µ+(t−1)ηk

= ∑
N
k=1

4m(M2+σ2)θk
Tk(Tk+1)µ ∑

Tk
t=1

2t
2(t+1)+(t−1)k
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≤ ∑
N
k=1

4m(M2+σ2)θk
Tk(Tk+1)µ

(
1
2 +∑

Tk
t=2

2t
(t−1)(k+1)

)

≤ ∑
N
k=1

2m(M2+σ2)(k+1)
Tk(Tk+1)µ +∑

N
k=1

16m(M2+σ2)(Tk−1)
Tk(Tk+1)µ ≤ 2µD̃.

Therefore, by plugging in these values into (8.3.79), we have

E[g(ŝN , ẑN)]≤ 2
N(N+3)

[
µV(x0,x∗)+ 2‖L‖2

µ
‖y0‖2 +2µD̃

]
, (8.3.80)

with

E[‖ŝN‖] = 2
N(N+3)E[‖ŝ‖]

≤ 2‖L‖
N(N+3)E

[
(N +1)‖x̂N−xN−1‖+ 4‖L‖

µ
(‖yN−y∗‖+‖y∗−y0‖)

]
.

Note that from (8.3.75), we have, for any N ≥ 2,

E[‖x̂N−xN−1‖2]≤ 8
(N+1)(N−1)

[
V(x0,x∗)+ 2‖L‖2

µ2 ‖y0−y∗‖2 +2D̃
]
,

E[‖y∗−yN‖2]≤ Nµ

(N−1)‖L‖2
[
µV(x0,x∗)+ 2‖L‖2

µ
‖y0−y∗‖2 +2µD̃

]
.

Hence, in view of the above three relations and Jensen’s inequality, we obtain

E[‖ŝN‖]≤ 8‖L‖
N(N+3)

[
3

√
2D̃+V(x0,x∗)+ 2‖L‖2

µ2 ‖y0−y∗‖2 + ‖L‖
µ
‖y∗−y0‖

]

≤ 8‖L‖
N(N+3)

[
3
√

2D̃+V(x0,x∗)+ 7‖L‖
µ
‖y∗−y0‖

]
.

Applying Proposition 8.6 to the above inequality and (8.3.80), the results in (8.3.77)
and (8.3.78) follow immediately.

We now make some observations about the results obtained in Theorem 8.12.
Firstly, similar to the general convex case, the best choice for D̃ (cf. (8.3.76)) would
be V(x0,x∗) so that the first and the third terms in (8.3.80) are about the same order.
If there exists an estimate DX > 0 satisfying (8.3.41), we can set D̃ = D2

X.
Secondly, the complexity of SDCS method for solving strongly convex problems

follows from (8.3.77) and (8.3.78). Under the above assumption, with D̃ = D2
X

and y0 = 0, the total number of inter-node communication rounds and intra-node
subgradient evaluations performed by each agent for finding a stochastic (ε,δ )-
solution of (8.3.6) can be bounded by

O

{
max

(√
µD2

X
ε

,

√
‖L‖

δ

(
DX + ‖L‖‖y

∗‖
µ

))}
and

O
{

m(M2+σ2)
µ

max
(

1
ε
, ‖L‖

µδ

(
1

DX
+ ‖L‖‖y

∗‖
D2

Xµ

))}
,

(8.3.81)

respectively. In particular, if ε and δ satisfy (8.3.58), the above complexity bounds,
respectively, reduce to
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O

{√
µD2

X
ε

}
and O

{
m(M2+σ2)

µε

}
. (8.3.82)

We can see that the total number of stochastic subgradient computations is compara-
ble to the optimal complexity bound obtained in Section 4.2 for stochastic strongly
convex case in the centralized case.

8.3.4 High probability results

All of the results stated in Section 8.3.3.2-8.3.3.3 are established in terms of expecta-
tion. In order to provide high probability results for SDCS method, we additionally
need the following “light-tail” assumption:

E[exp{‖Gi(ut ,ξ t
i )− f ′i (u

t)‖2
∗/σ

2}]≤ exp{1}. (8.3.83)

Note that (8.3.83) is stronger than (8.3.62), since it implies (8.3.62) by Jensen’s
inequality. Moreover, we also assume that there exists V̄(x∗) s.t.

V̄(x∗) := ∑
m
i=1V̄i(x∗i ) := ∑

m
i=1 max

xi∈Xi
Vi(x∗i ,xi). (8.3.84)

The following theorem provides a large deviation result for the gap function
g(ŝN , ẑN) when our objective functions fi, i = 1, . . . ,m are general nonsmooth convex
functions.

Theorem 8.13. Let x∗ be an optimal solution of (8.3.6), Assumptions (8.3.61),
(8.3.62) and (8.3.83) hold, the parameters {αk}, {θk}, {ηk}, {τk} and {Tk} in
Algorithm 8.8 satisfy (8.3.29)-(8.3.33), and the parameters {λt} and {βt} in the CS
procedure of Algorithm 8.8 be set as (8.3.34). In addition, if Xi’s are compact, then
for any ζ > 0 and N ≥ 1, we have

Prob
{

g(ŝN , ẑN)≥Bd(N)+ζBp(N)
}
≤ exp{−ζ

2/3}+ exp{−ζ}, (8.3.85)

where

Bd(N) :=
(
∑

N
k=1θk

)−1
[
(T1+1)(T1+2)θ1η1

T1(T1+3) V(x0,x∗)+ θ1τ1
2 ‖y0‖2 +∑

N
k=1

8m(M2+σ2)θk
ηk(Tk+3)

]
,

(8.3.86)

and

Bp(N) :=
(
∑

N
k=1θk

)−1



σ

[
2V̄(x∗)∑N

k=1∑
Tk
t=1

(
θkλt

∑
Tk
t=1λt

)2
]1/2
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+∑
N
k=1∑

Tk
t=1∑

m
i=1

σ2θkλt(
∑

Tk
t=1λt

)
ηkβt

}
. (8.3.87)

In the next corollary, we establish the rate of convergence of SDCS in terms of
both primal and feasibility (or consistency) residuals are of order O(1/N) with high
probability when the objective functions are nonsmooth and convex.

Corollary 8.7. Let x∗ be an optimal solution of (8.3.6), y∗ be an arbitrary dual
optimal solution, the parameters {λt} and {βt} in the CS procedure of Algorithm 8.8
be set as (8.3.34), and suppose that {αk}, {θk}, {ηk}, {τk} and {Tk} are set to
(8.3.67) with D̃ = V̄(x∗). Under Assumptions (8.3.61), (8.3.62) and (8.3.83), we
have for any N ≥ 1 and ζ > 0

Prob
{

F(x̂N)−F(x∗)≥ ‖L‖N

[
(7+8ζ )V̄(x∗)+ 1

2‖y0‖2]}≤ exp{−ζ
2/3}+ exp{−ζ},

(8.3.88)

and

Prob
{
‖Lx̂N‖2 ≥ 18‖L‖2

N2

[
(7+8ζ )V̄(x∗)+ 2

3‖y∗−y0‖2]}≤ exp{−ζ
2/3}+ exp{−ζ}.

(8.3.89)

Proof. Observe that by the definition of λt in (8.3.34),

∑
Tk
t=1

[
θkλt

∑
Tk
t=1λt

]2

=
(

2
Tk(Tk+3)

)2
∑

Tk
t=1(t +1)2

=
(

2
Tk(Tk+3)

)2 (Tk+1)(Tk+2)(2Tk+3)
6 ≤ 8

3Tk
,

which together with (8.3.87) then imply that

Bp(N)≤ 1
N

{
σ

[
2V̄(x∗)∑N

k=1
8

3Tk

]1/2
+∑

N
k=1

8mσ2

‖L‖(Tk+3)

}

≤ 4‖L‖
N

{√
V̄(x∗)D̃

3m + D̃
}
≤ 8‖L‖V̄(x∗)

N .

Hence, (8.3.88) follows from the above relation, (8.3.85) and Proposition 8.6. Note
that from (8.3.66) and plugging in (8.3.67) with D̃ = V̄(x∗), we obtain

‖ŝN‖2 =
(
∑

N
k=1θk

)−2 ‖ŝ‖2

≤
(
∑

N
k=1θk

)−2{
3θ

2
N‖L‖2‖x̂N−xN−1‖2 +3θ

2
1 τ

2
1
(
‖yN−y∗‖2 +‖y∗−y0‖2)}

≤ 3‖L‖2
N2

{
18V(x0,x∗)+4‖y∗−y0‖2
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+∑
N
k=1∑

Tk
t=1∑

m
i=1

12θk
Tk(Tk+3)‖L‖

[
(t +1)〈δ t−1,k

i ,x∗i −ut−1
i 〉+

4(M2+‖δ t−1,k
i ‖2∗)

ηk

]}
.

Hence, similarly, we have

Prob
{
‖ŝN‖2 ≥ 18‖L‖2

N2

[
(7+8ζ )V̄(x∗)+ 2

3‖y∗−y0‖2]}≤ exp{−ζ
2/3}+ exp{−ζ},

which in view of Proposition 8.6 immediately implies (8.3.89).

8.3.5 Convergence analysis

This section is devoted to the proof of the main lemmas in Section 8.3.2 and 8.3.3,
which establish the convergence results of the deterministic and stochastic decentral-
ized communication sliding methods, respectively. After introducing some general
results about these algorithms, we provide the proofs for Lemma 8.3-8.6 and Theorem
8.13.

Before we provide proofs for Lemma 8.3-8.6, we first need to present a result
which summarizes an important convergence property of the CS procedure. It needs
to be mentioned that the following proposition states a general result holds for
CS procedure performed by individual agent i ∈N . For notation convenience, we
use the notations defined in CS procedure (cf. Algorithm 8.7).

Proposition 8.7. If {βt} and {λt} in the CS procedure satisfy

λt+1(ηβt+1−µ)≤ λt(1+βt)η , ∀t ≥ 1. (8.3.1)

then, for t ≥ 1 and u ∈U,

(∑T
t=1λt)

−1 [
η(1+βT )λTV (uT ,u)+∑

T
t=1λt〈δ t−1,u−ut−1〉

]
+Φ(ûT )−Φ(u)

(8.3.2)

≤ (∑T
t=1λt)

−1
[
(ηβ1−µ)λ1V (u0,u)+∑

T
t=1

(M+‖δ t−1‖∗)2λt
2ηβt

]
,

where Φ is defined as

Φ(u) := 〈w,u〉+φ(u)+ηV (x,u) (8.3.3)

and δ t := φ ′(ut)−ht .

Proof. Noticing that φ := fi in the CS procedure, we have by (8.3.16)

φ(ut)≤ φ(ut−1)+ 〈φ ′(ut−1),ut −ut−1〉+M‖ut −ut−1‖
= φ(ut−1)+ 〈φ ′(ut−1),u−ut−1〉+ 〈φ ′(ut−1),ut −u〉+M‖ut −ut−1‖
≤ φ(u)−µV (ut−1,u)+ 〈φ ′(ut−1),ut −u〉+M‖ut −ut−1‖,
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where φ ′(ut−1) ∈ ∂φ(ut−1) and ∂φ(ut−1) denotes the subdifferential of φ at ut−1.
By applying Lemma 3.5 to (8.3.26), we obtain

〈w+ht−1,ut −u〉+ηV (x,ut)−ηV (x,u)

≤ ηβtV (ut−1,u)−η(1+βt)V (ut ,u)−ηβtV (ut−1,ut), ∀u ∈U.

Combining the above two relations, we conclude that

〈w,ut −u〉+φ(ut)−φ(u)+ 〈δ t−1,u−ut−1〉+ηV (x,ut)−ηV (x,u) (8.3.4)

≤ (ηβt −µ)V (ut−1,u)−η(1+βt)V (ut ,u)+ 〈δ t−1,ut −ut−1〉
+M‖ut −ut−1‖−ηβtV (ut−1,ut), ∀u ∈U. (8.3.5)

Moreover, by Cauchy-Schwarz inequality, (8.3.12), and the simple fact that−at2/2+
bt ≤ b2/(2a) for any a > 0, we have

〈δ t−1,ut −ut−1〉+M‖ut −ut−1‖−ηβtV (ut−1,ut)

≤ (‖δ t−1‖∗+M)‖ut −ut−1‖− ηβt
2 ‖ut − tt−1‖2 ≤ (M+‖δ t−1‖∗)2

2ηβt
.

From the above relation and the definition of Φ(u) in (8.3.3), we can rewrite (8.3.4)
as,

Φ(ut)−Φ(u)+ 〈δ t−1,u−ut−1〉
≤ (ηβt −µ)V (ut−1,u)−η(1+βt)V (ut ,u)

+ (M+‖δ t−1‖∗)2

2ηβt
, ∀u ∈U.

Multiplying both sides by λt and summing up the resulting inequalities from t = 1 to
T , we obtain

∑
T
t=1λt

[
Φ(ut)−Φ(u)+ 〈δ t−1,u−ut−1〉

]

≤ ∑
T
t=1
[
(ηβt −µ)λtV (ut−1,u)−η(1+βt)λtV (ut ,u)

]

+∑
T
t=1

(M+‖δ t−1‖∗)2λt
2ηβt

.

Hence, in view of (8.3.1), the convexity of Φ and the definition of ûT in (8.3.27), we
have

Φ(ûT )−Φ(u)+(∑T
t=1λt)

−1
∑

T
t=1λt〈δ t−1,u−ut−1〉

≤ (∑T
t=1λt)

−1 [(ηβ1−µ)λ1V (u0,u)−η(1+βT )λTV (uT ,u)

+∑
T
t=1

(M+‖δ t−1‖∗)2λt
2ηβt

]
,
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which implies (8.3.2) immediately.

As a matter of fact, the SDCS method covers the DCS method as a special case
when δ t = 0, ∀t ≥ 0. Therefore, we investigate the proofs for Lemma 8.5 and 8.6
first and then simplify them for the proofs for Lemma 8.3 and 8.4. We now provide a
proof for Lemma 8.5, which establishes the convergence property of SDCS method
for solving general convex problems.

Proof of Lemma 8.5
When fi, i = 1, . . . ,m, are general convex functions, we have µ = 0 and M > 0 (cf.
(8.3.16)). Therefore, in view of φ := fi, and λt and βt defined in (8.3.34) satisfy-
ing condition (8.3.1) in the CS procedure, equation (8.3.2) can be rewritten as the
following,2

(∑T
t=1λt)

−1 [
η(1+βT )λTVi(uT

i ,ui)+∑
T
t=1λt〈δ t−1

i ,ui−ut−1
i 〉

]
+Φi(ûT

i )−Φi(ui)

≤ (∑T
t=1λt)

−1
[

ηβ1λ1Vi(u0
i ,ui)+∑

T
t=1

(M+‖δ t−1
i ‖∗)2λt

2ηβt

]
, ∀ui ∈ Xi.

In view of the above relation, the definition of Φk in (8.3.19), and the input and
output settings in the CS procedure, it is not difficult to see that, for any k ≥ 1,3

Φ
k(x̂k)−Φ

k(x)

+(∑
Tk
t=1λt)

−1
[
ηk(1+βTk)λTk V(xk,x)+∑

Tk
t=1∑

m
i=1λt〈δ t−1,k

i ,xi−ut−1
i 〉

]

≤ (∑
Tk
t=1λt)

−1
[

ηkβ1λ1V(xk−1,x)+∑
Tk
t=1∑

m
i=1

(M+‖δ t−1,k
i ‖∗)2λt

2ηkβt

]
, ∀x ∈ X.

By plugging into the above relation the values of λt and βt in (8.3.34), together with
the definition of Φk in (8.3.19) and rearranging the terms, we have,

〈L(x̂k−x),yk〉+F(x̂k)−F(x)

≤ (Tk+1)(Tk+2)ηk
Tk(Tk+3)

[
V(xk−1,x)−V(xk,x)

]
−ηkV(xk−1, x̂k)

+ 2
Tk(Tk+3)∑

Tk
t=1∑

m
i=1

[
(t +1)〈δ t−1,k

i ,xi−ut−1
i 〉+

2(M+‖δ t−1,k
i ‖∗)2

ηk

]
, ∀x ∈ X.

Moreover, applying Lemma 3.5 to (8.3.22), we have, for k ≥ 1,

〈vk
i ,yi− yk

i 〉 ≤ τk
2

[
‖yi− yk−1

i ‖2−‖yi− yk
i ‖2−‖yk−1

i − yk
i ‖2
]
, ∀yi ∈ Rd , (8.3.6)

which in view of the definition of Q in (8.3.8) and the above two relations, then
implies that, for k ≥ 1, z ∈ X×Rmd ,

2 We added the subscript i to emphasize that this inequality holds for any agent i ∈N with φ = fi.
More specifically, Φi(ui) := 〈wi,ui〉+ fi(ui)+ηVi(xi,ui).
3 We added the superscript k in δ

t−1,k
i to emphasize that this error is generated at the k-th outer loop.
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Q(x̂k,yk;z) = F(x̂k)−F(x)+ 〈Lx̂k,y〉−〈Lx,yk〉
≤ 〈L(x̂k− x̃k),y−yk〉+ (Tk+1)(Tk+2)ηk

Tk(Tk+3)

[
V(xk−1,x)−V(xk,x)

]

−ηkV(xk−1, x̂k)+ τk
2

[
‖y−yk−1‖2−‖y−yk‖2−‖yk−1−yk‖2

]

+ 2
Tk(Tk+3)∑

Tk
t=1∑

m
i=1

[
(t +1)〈δ t−1,k

i ,xi−ut−1
i 〉+

2(M+‖δ t−1,k
i ‖∗)2

ηk

]
.

Multiplying both sides of the above inequality by θk, and summing up the resulting
inequalities from k = 1 to N, we obtain, for all z ∈ X×Rmd ,

∑
N
k=1θkQ(x̂k,yk;z)≤ ∑

N
k=1θk∆k

+∑
N
k=1∑

Tk
t=1∑

m
i=1

2θk
Tk(Tk+3)

[
(t +1)〈δ t−1,k

i ,xi−ut−1
i 〉+

2(M+‖δ t−1,k
i ‖∗)2

ηk

]
, (8.3.7)

where

∆k :=〈L(x̂k− x̃k),y−yk〉+ (Tk+1)(Tk+2)ηk
Tk(Tk+3)

[
V(xk−1,x)−V(xk,x)

]
(8.3.8)

−ηkV(xk−1, x̂k)+ τk
2

[
‖y−yk−1‖2−‖y−yk‖2−‖yk−1−yk‖2

]
.

We now provide a bound on ∑
N
k=1θk∆k. Observe that from the definition of x̃k in

(8.3.17), (8.3.29) and (8.3.31) we have
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∑
N
k=1θk∆k
≤ ∑

N
k=1
[
θk〈L(xk−xk−1),y−yk〉−αkθk〈L(xk−1−xk−2),y−yk−1〉

]

−∑
N
k=1θk

[
αk〈L(xk−1−xk−2),yk−1−yk〉+ηkV(xk−1,xk)+ τk

2 ‖yk−1−yk‖2
]

+ (T1+1)(T1+2)θ1η1
T1(T1+3) V(x0,x)− (TN+1)(TN+2)θN ηN

TN(TN+3) V(xN ,x)
+ θ1τ1

2 ‖y−y0‖2− θN τN
2 ‖y−yN‖2

(a)
≤ θN〈L(xN−xN−1),y−yN〉−θNηNV(xN−1,xN)
−∑

N
k=2
[
θkαk〈L(xk−1−xk−2),yk−1−yk〉

+θk−1ηk−1V(xk−2,xk−1)+ θkτk
2 ‖yk−1−yk‖2

]

+ (T1+1)(T1+2)θ1η1
T1(T1+3) V(x0,x)− (TN+1)(TN+2)θN ηN

TN(TN+3) V(xN ,x)
+ θ1τ1

2 ‖y−y0‖2− θN τN
2 ‖y−yN‖2

(b)
≤ θN〈L(xN−xN−1),y−yN〉−θNηNV(xN−1,xN)

+ θ1τ1
2 ‖y−y0‖2− θN τN

2 ‖y−yN‖2

+∑
N
k=2

(
θk−1αk‖L‖2

2τk
− θk−1ηk−1

2

)
‖xk−2−xk−1‖2

+ (T1+1)(T1+2)θ1η1
T1(T1+3) V(x0,x)− (TN+1)(TN+2)θN ηN

TN(TN+3) V(xN ,x)
(c)
≤ θN〈L(xN−xN−1),y−yN〉−θNηNV(xN−1,xN)

+ θ1τ1
2 ‖y−y0‖2− θN τN

2 ‖y−yN‖2

+ (T1+1)(T1+2)θ1η1
T1(T1+3) V(x0,x)− (TN+1)(TN+2)θN ηN

TN(TN+3) V(xN ,x)
(d)
≤ θN〈yN ,L(xN−1−xN)〉−θNηNV(xN−1,xN)− θ1τ1

2 ‖yN‖2

+ (T1+1)(T1+2)θ1η1
T1(T1+3) V(x0,x)+ θ1τ1

2 ‖y0‖2 + 〈y,θNL(xN−xN−1)+θ1τ1(yN−y0)〉,
(e)
≤
(

θN‖L‖2
2ηN

− θ1τ1
2

)
‖yN‖2 + (T1+1)(T1+2)θ1η1

T1(T1+3) V(x0,x)+ θ1τ1
2 ‖y0‖2

+〈y,θNL(xN−xN−1)+θ1τ1(yN−y0)〉,

where (a) follows from (8.3.30) and the fact that x−1 = x0, (b) follows from the
simple relation that b〈u,v〉−a‖v‖2/2≤ b2‖u‖2/(2a),∀a > 0, (8.3.30) and (8.3.15),
(c) follows from (8.3.32), (d) follows from (8.3.31), ‖y−y0‖2−‖y−yN‖2 = ‖y0‖2−
‖yN‖2−2〈y,y0−yN〉 and arranging the terms accordingly, (e) follows from (8.3.15)
and the relation b〈u,v〉−a‖v‖2/2≤ b2‖u‖2/(2a),∀a > 0. Using the above bound in
(8.3.7) we obtain

∑
N
k=1θkQ(x̂k,yk;z)≤ (T1+1)(T1+2)θ1η1

T1(T1+3) V(x0,x)+ θ1τ1
2 ‖y0‖2 + 〈ŝ,y〉 (8.3.9)

+∑
N
k=1∑

Tk
t=1∑

m
i=1

2θk
Tk(Tk+3)

[
(t +1)〈δ t−1,k

i ,xi−ut−1
i 〉+

4(M2+‖δ t−1,k
i ‖2∗)

ηk

]
,

for all z ∈ X×Rmd , where

ŝ := θNL(x̂N−xN−1)+θ1τ1(yN−y0). (8.3.10)
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Our result in (8.3.65) immediately follows from the convexity of Q. Furthermore, in
view of (8.3.9)(c) and (8.3.7), we can obtain the following result,

∑
N
k=1θkQ(x̂k,yk;z)≤ θN〈L(x̂N−xN−1),y−yN〉−θNηNV(xN−1, x̂N)

+ θ1τ1
2 ‖y−y0‖2− θN τN

2 ‖y−yN‖2

+ (T1+1)(T1+2)θ1η1
T1(T1+3) V(x0,x)− (TN+1)(TN+2)θN ηN

TN(TN+3) V(xN ,x)

+∑
N
k=1∑

Tk
t=1∑

m
i=1

θk
Tk(Tk+3)

[
(t +1)〈δ t−1,k

i ,xi−ut−1
i 〉+

4(M2+‖δ t−1,k
i ‖2∗)

ηk

]
.

Therefore, in view of the fact that ∑
N
k=1θkQ(x̂k,yk;z∗) ≥ 0 for any saddle point

z∗ = (x∗,y∗) of (8.3.7), and (8.3.15), by fixing z = z∗ and rearranging terms, we
obtain

θN ηN
2 ‖x̂N−xN−1‖2 ≤ θN〈L(x̂N−xN−1),y∗−yN〉− θN τN

2 ‖y∗−yN‖2 (8.3.11)

+ (T1+1)(T1+2)θ1η1
T1(T1+3) V(x0,x∗)+ θ1τ1

2 ‖y∗−y0‖2

+∑
N
k=1∑

Tk
t=1∑

m
i=1

2θk
Tk(Tk+3)

[
(t +1)〈δ t−1,k

i ,x∗i −ut−1
i 〉+

4(M2+‖δ t−1,k
i ‖2∗)

ηk

]

≤ θN‖L‖2
2τN
‖x̂N−xN−1‖2 + (T1+1)(T1+2)θ1η1

T1(T1+3) V(x0,x∗)+ θ1τ1
2 ‖y∗−y0‖2

+∑
N
k=1∑

Tk
t=1∑

m
i=1

2θk
Tk(Tk+3)

[
(t +1)〈δ t−1,k

i ,x∗i −ut−1
i 〉+

4(M2+‖δ t−1,k
i ‖2∗)

ηk

]
,

where the second inequality follows from the relation b〈u,v〉 − a‖v‖2/2 ≤
b2‖u‖2/(2a),∀a > 0.

Similarly, we obtain

θN τN
2 ‖y∗−yN‖2 ≤ θN‖L‖2

2ηN
‖y∗−yN‖2

+ (T1+1)(T1+2)θ1η1
T1(T1+3) V(x0,x∗)+ θ1τ1

2 ‖y∗−y0‖2 (8.3.12)

+∑
N
k=1∑

Tk
t=1∑

m
i=1

2θk
Tk(Tk+3)

[
(t +1)〈δ t−1,k

i ,x∗i −ut−1
i 〉+

4(M2+‖δ t−1,k
i ‖2∗)

ηk

]
,

from which the desired result in (8.3.66) follows.

The following proof of Lemma 8.6 establishes the convergence of SDCS method
for solving strongly convex problems.

Proof of Lemma 8.6
When fi, i = 1, . . . ,m, are strongly convex functions, we have µ, M > 0 (cf. (8.3.16)).
Therefore, in view of Proposition 8.7 with λt and βt defined in (8.3.49) satisfying
condition (8.3.1), the definition of Φk in (8.3.19), and the input and output settings
in the CS procedure, we have for all k ≥ 1 and for all x ∈ X

Φ
k(x̂k)−Φ

k(x)
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+(∑
Tk
t=1λt)

−1
[
ηk(1+β

(k)
Tk

)λTk V(xk,x)+∑
Tk
t=1∑

m
i=1λt〈δ t−1,k

i ,xi−ut−1
i 〉

]

≤ (∑
Tk
t=1λt)

−1
[
(ηkβ

(k)
1 −µ)λ1V(xk−1,x)+∑

Tk
t=1∑

m
i=1

(M+‖δ t−1,k
i ‖∗)2λt

2ηkβt

]
.

By plugging into the above relation the values of λt and β
(k)
t in (8.3.49), together

with the definition of Φk in (8.3.19) and rearranging the terms, we have

〈L(x̂k−x),yk〉+F(x̂k)−F(x)

≤ ηkV(xk−1,x)− (µ +ηk)V(xk,x)−ηkV(xk−1, x̂k)

+ 2
Tk(Tk+1)∑

Tk
t=1∑

m
i=1

[
t〈δ t−1,k

i ,xi−ut−1
i 〉+

(M+‖δ t−1,k
i ‖∗)2t

(t+1)µ+(t−1)ηk

]
, ∀x ∈ X, k ≥ 1.

In view of (8.3.6), the above relation and the definition of Q in (8.3.8), and following
the same trick that we used to obtain (8.3.7), we have, for all z ∈ X×Rmd ,

∑
N
k=1θkQ(x̂k,yk;z)≤ ∑

N
k=1θk∆̄k

+∑
N
k=1∑

Tk
t=1∑

m
i=1

2θk
Tk(Tk+1)

[
t〈δ t−1,k

i ,xi−ut−1
i 〉+

(M+‖δ t−1,k
i ‖∗)2t

(t+1)µ+(t−1)ηk

]
, (8.3.13)

where

∆̄k := L(x̂k− x̃k),y−yk〉
+ηkV(xk−1,x)− (µ +ηk)V(xk,x)−ηkV(xk−1, x̂k) (8.3.14)

+ τk
2

[
‖y−yk−1‖2−‖y−yk‖2−‖yk−1−yk‖2

]
.

Since ∆̄k in (8.3.14) shares a similar structure with ∆k in (8.3.8), we can follow similar
procedure as in (8.3.9) to simplify the RHS of (8.3.13). Note that the only difference
of (8.3.14) and (8.3.8) is in the coefficient of the terms V(xk−1,x), and V(xk,x).
Hence, by using condition (8.3.48) in place of (8.3.29), we obtain ∀z ∈ X×Rmd

∑
N
k=1θkQ(x̂k,yk;z)≤ θ1η1V(x0,x)+ θ1τ1

2 ‖y0‖2 + 〈ŝ,y〉 (8.3.15)

+∑
N
k=1∑

Tk
t=1∑

m
i=1

2θk
Tk(Tk+1)

[
t〈δ t−1,k

i ,xi−ut−1
i 〉+

2t(M2+‖δ t−1,k
i ‖2∗)

(t+1)µ+(t−1)ηk

]
,

where ŝ is defined in (8.3.10). Our result in (8.3.74) immediately follows from the
convexity of Q.

Following the same procedure as we obtain (8.3.11), for any saddle point z∗ =
(x∗,y∗) of (8.3.7), we have

θN ηN
2 ‖x̂N−xN−1‖2

≤ θN‖L‖2
2τN
‖xN−xN−1‖2 +θ1η1V(x0,x∗)+ θ1τ1

2 ‖y∗−y0‖2 (8.3.16)
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+∑
N
k=1∑

Tk
t=1∑

m
i=1

2θk
Tk(Tk+1)

[
t〈δ t−1,k

i ,x∗i −ut−1
i 〉+

2t(M2+‖δ t−1,k
i ‖2∗)

(t+1)µ+(t−1)ηk

]
,

θN τN
2 ‖y∗−yN‖2 ≤ θN‖L‖2

2ηN
‖y∗−yN‖2 +θ1η1V(x0,x∗)+ θ1τ1

2 ‖y∗−y0‖2

+∑
N
k=1∑

Tk
t=1∑

m
i=1

2θk
Tk(Tk+1)

[
t〈δ t−1,k

i ,x∗i −ut−1
i 〉+

2t(M2+‖δ t−1,k
i ‖2∗)

(t+1)µ+(t−1)ηk

]
,

from which the desired result in (8.3.75) follows.

We are ready to provide proofs for Lemma 8.3 and 8.4, which demonstrates the
convergence properties of the deterministic communication sliding method.

Proof of Lemma 8.3
When fi, i = 1, . . . ,m are general nonsmooth convex functions, we have δ t

i = 0,
µ = 0 and M > 0. Therefore, in view of (8.3.9), we have, ∀z ∈ X×Rmd ,

∑
N
k=1θkQ(x̂k,yk;z)≤ (T1+1)(T1+2)θ1η1

T1(T1+3) V(x0,x)+ θ1τ1
2 ‖y0‖2 + 〈ŝ,y〉+∑

N
k=1

4mM2θk
(Tk+3)ηk

,

where ŝ is defined in (8.3.10). Our result in (8.3.35) immediately follows from the
convexity of Q. Moreover, our result in (8.3.36) follows from setting δ

t−1,k
i = 0 in

(8.3.11) and (8.3.12).

Proof of Lemma 8.4
When fi, i = 1, . . . ,m are strongly convex functions, we have δ t

i = 0 and µ, M > 0.
Therefore, in view of (8.3.15), we obtain, ∀z ∈ X×Rmd ,

∑
N
k=1θkQ(x̂k,yk;z)≤ θ1η1V(x0,x)+ θ1τ1

2 ‖y0‖2 + 〈ŝ,y〉
+∑

N
k=1∑

Tk
t=1

2mM2θk
Tk(Tk+1)

t
(t+1)µ+(t−1)ηk

,

where ŝ is defined in (8.3.10). Our result in (8.3.50) immediately follows from the
convexity of Q. Also, the result in (8.3.51) follows by setting δ

t−1,k
i = 0 in (8.3.16).

We now provide a proof for Theorem 8.13 that establishes a large deviation result
for the gap function.

Proof of Theorem 8.13:
Observe that by Assumption (8.3.61), (8.3.62) and (8.3.83) on the SO and the def-
inition of ut,k

i , the sequence {〈δ t−1,k
i ,x∗i − ut−1,k

i 〉}1≤i≤m,1≤t≤Tk,k≥1 is a martingale-
difference sequence. Denoting

γk,t := θkλt

∑
Tk
t=1λt

,

and using the large-deviation theorem for martingale-difference sequence and the
fact that

E[exp{γ2
k,t〈δ t−1,k

i ,x∗i −ut−1,k
i 〉2/(2γ

2
k,tV̄i(x∗i )σ

2)}]
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≤ E[exp{‖δ t−1,k
i ‖2

∗,‖x∗i −ut−1,k
i ‖2/(2V̄i(x∗i )σ

2)}]
≤ E[exp{‖δ t−1,k

i ‖2
∗/σ

2}]≤ exp{1},

we conclude that, ∀ζ > 0,

Prob
{

∑
N
k=1∑

Tk
t=1∑

m
i=1γk,t〈δ t−1,k

i ,ut−1,k
i − x∗i 〉> ζ σ

√
2V̄(x∗)∑N

k=1∑
Tk
t=1γ2

k,t

}

≤ exp{−ζ
2/3}. (8.3.17)

Now let
Sk,t := θkλt(

∑
Tk
t=1λt

)
ηkβt

,

and S := ∑
N
k=1∑

Tk
t=1∑

m
i=1Sk,t . By the convexity of exponential function, we have

E[exp{ 1
S ∑

N
k=1∑

Tk
t=1∑

m
i=1Sk,t‖δ t−1,k

i ‖2
∗/σ

2}]
≤ E[ 1

S ∑
N
k=1∑

Tk
t=1∑

m
i=1Sk,texp{‖δ t−1,k

i ‖2
∗/σ

2}]≤ exp{1},

where the last inequality follows from Assumption (8.3.83). Therefore, by Markov’s
inequality, for all ζ > 0,

Prob
{

∑
N
k=1∑

Tk
t=1∑

m
i=1Sk,t‖δ t−1,k

i ‖2
∗ > (1+ζ )σ2

∑
N
k=1∑

Tk
t=1∑

m
i=1Sk,t

}
(8.3.18)

= Prob
{

exp
{

1
S ∑

N
k=1∑

Tk
t=1∑

m
i=1Sk,t‖δ t−1,k

i ‖2
∗/σ

2
}
≥ exp{1+ζ}

}
≤ exp{−ζ}.

Combing (8.3.17), (8.3.18), (8.3.65) and (8.3.10), our result in (8.3.85) immediately
follows.

8.4 Exercises and notes

1. Suppose that in the gradient sliding method, the computational costs associated
with gradient evaluation of ∇ f and subgradient evaluation of h′ are given by G
and S, respectively. Use such information to refine the selection of algorithmic
parameters in this method.

2. Suppose that in the communication sliding method, the computational costs
associated with one communication round and subgradient evaluation of φ ′i is
given by C and S, respectively. Use such information to refine the selection of
algorithmic parameters in this method.

Notes. Lan first developed the gradient sliding method in [55]. The accelerated
gradient sliding method was introduced by Lan and Ouyang in [58]. Lan, Lee and
Zhou first presented in [30] the communication sliding algorithms for decentralized
optimization over networks. Earlier developments for decentralized algorithms can
be found, e.g., in [107, 106, 74, 92, 11, 40, 104, 71, 16, 72, 64].
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