The High-Tech Workplace: Implications for Technical Communication Instruction

ELIZABETH TEBEAUX

Since 1981, business, trade, and professional publications have focused sharply on trends resulting from the impact of computer technology on the workplace. For example, consider the following: Between 1860 and 1980, the proportion of American workers involved in agriculture and manufacturing declined from 83% to 30%. As advanced technology is applied to agriculture and heavy industry during the last decade of this century, the proportion of the work force employed in manufacturing is expected to decline gradually to about 3% (Best 63; Cook, “You Mean” 143). In contrast, since 1950, the number of jobs in service industries has risen by nearly 146% (Ehrenhalt 16). Today, 55% of the workers in the United States are employed in information industries. More people are involved in information-communication services than in mining, agriculture, manufacturing, and personal services combined. By 2000, 80% of the work force will be employed in jobs that involve either generating or transmitting information (Feingold 10; Cetron, Rocha, and Luckins 30). In 1980, there was one electronic work station for every twenty-three white-collar employees; by 1989, one for every two.

This growth in information technology portends enormous changes in the way managers obtain information, make decisions, and perform their work (Gray 69). With data processing, telecommunications, and administrative services now merged, the $200 billion electronics industry plays the central role in the United States and the world economies that automobiles played in the past. Communication equipment and services are expected to contribute about 40% of world industrial value—or about $1.5 trillion per year—by the turn of the century (International Data, “Revolution”; A. Smith). The Information Age, not the Industrial Age, now defines the world of work (Drucker). The replacement of taught industries with brain industries has changed both the jobs available to college students and the competencies necessary to perform these jobs. Because the goal of technical communication courses is to prepare students to communicate successfully at work, technical communication teachers need to understand how the emergence of the Information Age is affecting the work environment and how changes in work will alter that we should teach.

Information Technology and the Redefinition of Work

Steady advances in computer technology and information systems are making many jobs obsolete and drastically reshaping others. One result is large-scale dislocation of employees, many of whom are undereducated for high-technology jobs and have no place to go (Ehrenhalt; Banks; Horvath). Despite the addition of over 10,000 new job titles to the Department of Labor job list, many jobs our students will hold a decade from now do not yet exist. Students must be prepared for the possibility of working in areas totally unrelated to their academic fields, and they should know that formal academic training for these coming jobs will not always exist (B. Jones 181; Cook, “The Knock”; Mattill; Salino; Schlefer).

To remain employed in an unpredictable job market, students can no longer depend on the future relevance of today’s technical knowledge, which is becoming outmoded by the growth in knowledge stemming from information technology. According to one study,

The half-life of an engineer’s knowledge today is five years. In 10 years, 90 percent of what an engineer knows will be computer-related. Eighty-five percent of the information on National Institutes of Health computers is upgraded every five years. The rapidly changing job market, along with the changing requirements of new technologies, will necessitate increased training across the board. Up to 4 percent of the labor force will be in job-retraining programs by the 1990s. Because of fundamental changes in the economy, there will be fewer and fewer well-paying jobs not requiring advanced training. . . . Schools will be used to train both children and adults. The academic day will be lengthened to seven hours for children; adults will work a 32-hour workweek and prepare for their next job in the remaining hours. (Cetron, Rocha, and Luckins 33–34)

Formal education will remain crucial (“The Growing Need”). Education that prepares students for the uncertain decades ahead will emphasize analytical skills, learning strategies, and concepts rather than technical detail. As Samuel Ehrenhalt of the Department of Labor has predicted, “If anything, the character of work is continuing to become less routine, more problem-solving, and above all, more changeable. That requires a mobile, flexible, adaptable labor force. The ability to learn will, in my view, emerge as the premium skill of the future. It is not what you know that will be the key to success in the emerging economy, but what you can learn—and how fast” (15–16). Managers, technicians, and engineer-scientists must be able to live and produce in an environment where holistic and relational thinking is routine (Rehder and Porter 53; M. Thomas; Kotter). Because work will become increasingly computer-
mediated, tasks will be accomplished through information systems rather than through direct physical contact with the object of the task. Imagination, analysis, and the ability to create theoretical insight, rather than hands-on experience, will become essential competencies for developing concepts to handle the growing masses of available information (Zuboff; United States Congress). Because what one learns today will quickly become obsolete, staying employed will require commitment to a lifetime of learning.

In short, technology has changed not only work and the knowledge required to perform work but also national and international economics, demographics, and the structures of society. As studies in the entire issue of the Fall 1987 Occupational Outlook Quarterly indicate, employees can anticipate several career changes during their lifetimes. As jobs and careers become obsolete, they will be replaced by new kinds of work requiring new kinds of training and relocation to a constantly changing array of work sites, many beyond United States boundaries (Kutscher; White).

Information Technology and the Redefinition of Communication Skills

From a communication perspective, the massive generation and dissemination of data and information from knowledge industries mean that communication skills will continue to be essential for a successful career and that the demand will grow to help others plan, manage, evaluate, and disseminate information to a wide range of users, many of whom will have inadequate literacy skills. Communication skills will be redefined as the ability to handle vast amounts of information and to adapt it for a wide range of users: the foremost problem that will confront employees in the information society emanates from the quantity of information being continuously generated. Because the amount of information generated doubles every two years or less, the central question becomes how to handle it—access it, manage it, use it, and help others use it.

From an organizational and a communication standpoint, a major concern is that information is not being managed. “It is available in overabundance or not at all. Seldom timely or complete, it is provided at a cost that cannot be determined and is given almost totally subjective value” (Connell 29). Information accumulates in additive, digital lists, while meaning, being subjective and referring to synthetic or holistic properties that cannot be reduced to the sum of parts, does not come easily or inevitably from a growing heap of mere information (Klapp). The problem during the next century lies not in the amount of scientific information available but in how to recognize and gain access to the value and significance of a large body of data. Such a plethora of technical options has been made available that society is threatening to fall behind in the orderly processing of information (Horowitz 630).

Managing information overload will require employees who can effectively deal with people, organizational problems, oral and written communication, economic and financial analysis, and computer-information systems—in short, employees with a broad education rather than with a specialized training in a narrow field (Gray; Kiplinger 42; Jackson; Hull and Pedrotti). Communication skills will focus on successful extraction and adaptation—on knowing how to sift, select, shape, and present information to users as well as how and when to use graphics and oral media as replacements for written communication. Clarity and conciseness will also continue to be important qualities, as employees will be inundated with information that they need to understand and apply quickly and effectively; minimizing paperwork will also be a growing trend (Lampe; Denise; Pittel). Because communication skills will be essential in making information useful, analysis of audience (users) will become even more crucial to meet new, more demanding communication situations than those now confronting us.

Information Technology and Organizational Communication

Communication technology is also reshaping organizational hierarchies and the way decisions are made and communicated in organizations. Because rapid changes in technology require rapid decisions, rigid, multilevel hierarchies in organizations are being replaced with less complex decision-making structures requiring fewer levels. Z theory has made participatory management more widespread, and networks—composed of individuals from several areas of the organization—are being used to solve problems. These decision-making teams merge representatives from traditionally separate business functions (design, engineering, production, purchasing, distribution, marketing, sales, etc.) into a problem-solving body. An employee’s effectiveness in this kind of decision-making group will depend on communicating clearly, understanding the perceptions of others, and knowing how to work comfortably with individuals with diverse technical and organizational backgrounds. No hierarchy controls this kind of problem solving; solutions may come from anyone. The collective capacity of the group becomes something more than the simple sum of its members’ skills; paperwork is kept to a minimum; and the network itself dissolves after the problem is solved. Employees may find themselves working in several networks at once, each brought into existence to solve an immediate organizational problem. Rigid, extensive communication hierarchies in organizations, such as those described by Mathes and Stevenson in 1976, are diminishing (Reich; Fraker; Brightman and Verhoeven; McInnis; Hine; Grayson, “Networking”).

As teleconferencing, computer conferencing, and electronic mail expand, writers often “communicate” only by computer with individuals or groups of individuals unknown to the writer. When communication becomes only com-
Information Technology and the Growth of International Communication

The high-tech information society has also merged telecommunications, data processing, and information management to produce worldwide communication systems (Walt). This reality means that an increasing number of United States industries will proliferate into multinational companies. The globe is rapidly becoming a single marketplace where goods are being made wherever they can be made the cheapest, regardless of national boundaries (Kiplinger 32–34; Bolt). The term “foreign affairs” is thus rapidly becoming an anachronism, and United States employees will need to know how to communicate with employees of different cultures and understand the culturally accepted prerequisites of communicating and working effectively with employees in other cultures (Moore; Ravitch; “Two-Hatted M.B.A.”).

Planning Technical Communication Research for the Information Age

Teaching technical communication effectively in the constantly changing Information Age is not going to be easy. Textbooks are not adequate and probably never will be because of the lag between writing and publication. But new approaches in texts need to be attempted that reflect the broad competencies required for communicating in the high-tech workplace. Teaching generic reports and letters does not prepare students for the nongeneric kinds of writing done routinely in high-tech organizations. Communication models do not reflect problems of information overload faced by employees who have too much material to read and process. Cognitive researchers are only beginning to deal with decoding problems confronting receivers faced with heaps of raw data from which “meaning” must be extracted and then transmitted. Research results about effective use of voice, syntax, and graphics are far from consensus. Research in intercultural communication, human-computer interface, and the relations among data, information, and communication is still germinial. As Jim Corder stated so convincingly, we need a new rhetoric, and “If We Do Get There, There Won’t Be There Anymore” (161). The new rhetoric must be one that deals with all kinds of discourse, visual messages, electronic communications, mass media, and the nature of knowledge (how we know what we know). Research in all these areas becomes imperative if we are to know and understand what we should teach.

In the meantime, we need to reexamine current communication models, survey trends in design of reports for electronic transmittal, learn protocols of communicating in other cultures, stay abreast of efforts to access data bases and information systems more efficiently, and continue research to determine how computer composing modifies the composing process. Never in the history of technical communication has practical, empirical research been so crucial to effective instruction.

Planning Instructional Changes for the Information Age

The inextricable role of communication in both the work environment and the definition of work itself suggests that professional communication courses will remain crucial. Changes in the work environment, moreover, have important implications for how we approach and teach technical communication, particularly on the advanced level, to ensure its relevance to students in the years ahead.

First, approaches to technical communication must reflect more than texts currently do, the new constraints imposed by technology on the workplace. Specifically, the approach to technical communication must stress how communication in the high-tech workplace differs from communication in academic contexts. Advanced courses in technical communication can no longer be advanced skills courses. Instead, the focus should be on understanding the Information Age and on giving students practice in developing the competencies necessary for becoming effective communicators.

Second, for a number of reasons, we need to stop segregating our technical communication students according to their academic majors. On the job, students will collaborate with employees from diverse academic backgrounds. Many students will work in jobs unrelated to their academic fields of study. Studies of employee communication needs do not justify separating communication courses for students with different academic majors (Anderson, “What
Survey Research”). The increasing use of networks and other forms of small-
group decision making suggests that students will benefit from learning to
communicate with other students from diverse academic backgrounds. This
kind of interdisciplinary communication environment, for which we should be
preparing students, is clearly described by Thomas Peters and Robert Waterman
throughout In Search of Excellence and by Peters and Nancy Austin in A Passion for Excellence. Business studies continue to emphasize that one solution to pro-
ductivity and quality problems resides in breaking down barriers between
technical culture and business culture and using continuing, interactive, dy-
namic planning and problem solving among areas within organizations (Cannon;
Westwood).

Realigning courses to include students from a range of disciplines provides
a laboratory setting where students can practice network problem solving that
requires more than writing technical solutions to discipline-specific problems. In
refocusing our courses to include networking, we can have teams of students
from a variety of disciplines analyze and then recommend, individually and as
a group, solutions to cases reflecting the kinds of organizational problems they
can expect to face on the job. Group problem solving can also show students
how oral and written communication relate and how written solutions often
emanate from oral analysis.

Third, in response to both networking and the growing quantity of in-
formation, technical communication courses must intensify the study of audi-
ences (as users of information), of the purposes for which information may
be used, and of the contexts in which information may be processed and then
alyzed. Writing assignments must help students understand how to generate
reports from data, that is, how to extract information from quantities of raw
data, analyze it, and sift, shape, and summarize it to enable readers to make
efficient, accurate decisions. Students need to learn the difference between
operational data and management data and understand how to highlight the
significance of each type for the needs of a particular level of user.

Fourth, the massive training and retraining that provide displaced em-
ployees with new skills indicate that managers will need to know how to develop
work procedures and instructions. Instructions and procedures should be em-
phazised in advanced professional-writing courses, but courses in designing and
preparing training, operations, and procedure manuals should be added. Because
computers are becoming the main means of providing continuing education,
these courses should also cover how instructional materials can be adapted to
computer presentation (Kendel and Benoir). Because many organizations are
now developing their own business software or modifying existing software,
courses in the development of effective user documentation should be made
available on the graduate and undergraduate levels.

Fifth, computers have antiquated our traditional approach to teaching
graphics. Instead of continuing to emphasize conventions for developing graph-
ics and choosing the best graphic for a given kind of information, we need to
develop case problems that require students to use computer graphics and data-
analysis packages to analyze and present information. Cases should be based on
raw data that must be made meaningful to the intended users. The design of
these cases needs to make two points: (1) in some cases, visual display is
more effective than verbal presentation, and (2) writers will often have to decide
when to use visual display and when to use verbal presentation.

Sixth, the growing quantity of information now available in every field
has affected how we should teach research. While students need to learn how
to use abstracts, indexes, and specialized reference materials in their fields, this
approach by itself does not enable students to perceive the access problem caused
by burgeoning data. We must also emphasize how current search systems are
devised and organized, the kinds of systems available, theories of indexing, the
changes that standard research systems (like card catalogs and major indexes)
are undergoing, and procedures for developing search strategies to access online
material. The stark fact is that no common computer protocol or language
exists to synthesize the two or three hundred data bases currently available
(Horowitz).

Seventh, because of emerging worldwide communication networks, stu-
dents need to understand that communications they have available on the
job may be accessed and used by employers in other cultures who have access
to global electronic mail and computer conferencing. Advanced courses and
programs need to include instruction in intercultural communication: how to
deal with cultural barriers and differences in planning and writing for multi-
national audiences. We also need to stress to students the value of a broad
liberal arts education—for example, mastering another language and understand-
ning other cultures and the political and religious systems that underlie
intercultural communication barriers and existing protocols (Kiplinger 42;
Wolff, "When Lab"; Steble, Maisonrouge).

But perhaps the most important change involves helping students under-
stand the proper relation between computer literacy and human analysis and
perception. Our instruction needs to make clear that the burgeoning growth
of information has transformed the communication process but that giving
readers information does not mean that communication has occurred and that
computer literacy and word processing are not substitutes for knowing how to
communicate or for understanding the process for developing communication.
Students need to understand that quantities of information and advances in
information systems do not inevitably make us better informed or inevitably
make us more able to comprehend the information (Wessel; Dreyfus and Dreyfus). As
An Wang has stated, our entire thought and meaning process is impervious
to automation (International Data, "Office Systems"). Computer and word
processing skills are no substitute for the ability to analyze, to create the shared-
language experience necessary for writer and reader to communicate. Word
processing often disguises noncommunicating information clothed in gram-
matical correctness (Parret).

Ultimately, the increasing speed by which information is generated and
documents are processed makes even more important the need to stress the
main principle that underpins every professional writing course: "Communication occurs when people are led to experience shared perceptions and assumptions about what is real, what is relevant, and what is important in a particular situation" (Sanderlin 42). Our students must understand that sifting through and analyzing the growing pool of information on every subject is only the first rite of passage to the more demanding exercise—the painful intellectual deliberations enabling us to help readers gain understanding. Information itself does not dispel ignorance. Knowledge does (Landvater; Menofsky; M. Nelson).

Notes on the Contributors

Jo Allen is assistant professor of English and director of the Writing Center at East Carolina University. She teaches undergraduate and graduate courses in literature and technical communication and sponsors the Society for Technical Communication Student Chapter, which she helped found. Coauthor of Teaching Technical Writing in the Secondary School, she has written articles that have appeared in Technical Communication, Teaching English in the Two-Year College, and numerous proceedings. She is currently conducting research on rhetorical schemes in classical technical and scientific literature.

Mary Beth Debs is assistant professor of English at the University of Cincinnati and director of the Writing Program, which offers undergraduate and graduate courses in technical writing, journalism, and creative writing. In 1984 the Department of English Writing Program received an Academic Challenge Award from the Ohio Board of Regents. Her research interests include institutional rhetoric, collaborative writing, and technical communication. Her work has been published in the Journal of Business and Technical Communication, the Technical Writing Teacher, and the Journal of Business Communication.

Bertie E. Fearing is professor of English, codirector of Technical Communication Programs, and assistant chair of the department of English at East Carolina University, where she also directs the Chancellor’s Forum. She is editor emeritus of Teaching English in the Two-Year College, past associate editor of Technical Communication, and an editorial board member of the Journal of Advanced Composition. Her publications appear in Research in Technical Communication: A Bibliographic Sourcebook, Writing Centers: Theory and Administration, Technical and Business Communication in Two-Year Programs, and several journals. She has served on the executive committees of the Conference on College Composition and Communication and the National Council of Teachers of English.

Roger A. Grice is adjunct professor of technical communication at Rensselaer Polytechnic Institute and an advisory information developer at the IBM laboratory in Kingston, New York. He has been a member of IBM’s information-development organization for twenty-four years and is currently involved in large-systems documentation, information usability, and online information. He is a senior member of the Society for Technical Communication and manager of its scholarships and membership committees. He is also a senior member of the Institute of Electrical and Electronics Engineers (IEEE). His work is included in Text, Context, and Hypertext and in numerous journals and proceedings.

Michael P. Jordan is associate professor of linguistics and technical communication at Queen’s University, Kingston, Canada; he holds an honorary