Neural sensitivity to local and global distributional information in speech changes as a function of development

Yi-Lun Weng¹, Julie M. Schneider¹,², Zhenghan Qi¹

¹ University of Delaware
² Louisiana State University
Background

• Detecting distributional regularities in speech is foundational for language learning (Werker et al., 2007; Maye et al., 2002)

• Both adults and children are sensitive to distributional statistics in the environment, such as frequency and variability (Aslin & Newport, 2014; Thiessen, Girard, & Erickson, 2016; Saffran et al., 1997; Raviv & Arnon, 2017)

• Yet, sensitive period has been identified for speech sound discrimination and syntactic acquisition (Werker & Tees, 2005; Weikum et al., 2013; Newport, 1990)

• The developmental trajectories of listeners’ sensitivity to distributional cues in speech are poorly understood
Research Questions

1. Are children more sensitive to distributional information, compared to adults?

2. How automatic do children and adults process the distributional information in speech?
Methods

Experiment 1: 45 adults (Mean = 22.76 years, SD = 3.02 years)

Experiment 2: 22 children (Mean = 10.2 years, SD = 1.99 years)
Hypotheses

1. Children might display larger ERP differences elicited by deviants with high vs. low probability, compared to adults
 - Group x Frequency interaction
 - Group x Frequency x Global/Local interaction

2. Children’s processing might rely on an automatic mechanism, while adults might engage a more attentive process (Finn et al., 2015)

<table>
<thead>
<tr>
<th>Early time window</th>
<th>Automatic</th>
<th>Attentive</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMR</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LDN</td>
<td>P3</td>
<td></td>
</tr>
</tbody>
</table>

Näätänen et al., 2005; Bishop, 2007; Wetzel & Schröger 2014; Wacongne et al., 2012
Identify ROIs (All standards versus all deviants)

- Mass-Univariate Analysis: two significant clusters are identified in adults (MMR window: 60-214ms and LDN window: 350-560ms)
- Within the same time windows, children showed little evidence of MMR, but presented a robust LDN. However, two groups are not significantly different
Early time window (MMR)

Adults

Children

Group X Global

Global effect (P-MMR)
Local effect (P-MMR)
Late time window (LDN/P3)

Group X Global X Local

Global effect in Local-High (LDN)

Global effect (LDN)
Discussion

1. Are children more sensitive to distributional information, compared to adults?

• Yes for the global probability!

• Children are sensitive to both global and local information, while adults’ responses to global distributional information is modulated by local statistics

<table>
<thead>
<tr>
<th></th>
<th>Adults</th>
<th>Children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local probability</td>
<td>P-MMR</td>
<td>P-MMR, LDN</td>
</tr>
<tr>
<td>Global probability</td>
<td>interaction</td>
<td></td>
</tr>
</tbody>
</table>

"P-MMR, LDN" represents an interaction term in the analysis.
Discussion

2. How automatic do children and adults process the distributional information in speech?

<table>
<thead>
<tr>
<th></th>
<th>Automatic</th>
<th>Attentive?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early time window</td>
<td>P-MMR (local and global)</td>
<td>-</td>
</tr>
<tr>
<td>Late time window</td>
<td>LDN (global)</td>
<td>P3?</td>
</tr>
</tbody>
</table>
Acknowledgement

Many thanks to the members of the QLAB for their continued support in data analysis for this project!