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 NOTES
 Edited by William Adkins

 The Fundamental Theorem of Algebra
 and Linear Algebra

 Harm Derksen

 1. INTRODUCTION. The first widely accepted proof of the fundamental theorem
 of algebra was published by Gauss in 1799 in his Ph.D. thesis, although by today's
 standards this proof has gaps. In 1814 Argand gave a proof (with only small gaps)
 that was based on a flawed 1746 proof of d'Alembert. Many other proofs followed,
 including three more by Gauss. For more about the history of the fundamental theorem
 of algebra, see [5] or [6].

 Proofs of the fundamental theorem of algebra can be divided roughly into three cat-
 egories (see [3] for a collection of proofs). First there are the topological proofs (see [1]
 or [8]). These proofs are based on topological considerations such as the winding num-
 ber of a curve in R2 around 0. Gauss's original proof might fit under this heading as
 well. Then there are analytical proofs (see [9]), which are related to Liouville's theo-
 rem: a nonconstant entire function on C is unbounded. Finally, there are the algebraic
 proofs (see [4] or [10]). These proofs use only the fact that every polynomial of odd de-
 gree with real coefficients has a real root and that every complex number has a square
 root. The deeper reasons why these arguments work can be understood in terms of
 Galois theory.

 Since the fundamental theorem of algebra is needed in linear algebra courses, it
 would be desirable to have a proof of it in terms of linear algebra. In this paper we
 prove that every square matrix with complex coefficients has an eigenvector. This state-
 ment is equivalent to the fundamental theorem of algebra. In fact, we will prove the
 slightly stronger result that any number of commuting square matrices with complex
 entries have a common eigenvector. The proof lies entirely within the framework of
 linear algebra, and unlike most other algebraic proofs of the fundamental theorem of
 algebra, it does not require Galois theory or splitting fields. Another (but longer) proof
 using linear algebra can be found in [7].

 2. PRELIMINARIES. For the proof we use only the following elementary proper-
 ties of real and complex numbers.

 Lemma 1. Every polynomial of odd degree with real coefficients has a zero.

 Proof. It is enough to prove that a monic polynomial

 P(x) = xn + alxn-1 +- - - + a,

 with al, ..., an in R and n odd has a zero. If a = lall + - a + |an | + 1, then it is easy
 to see that P (a) > 0 and P (-a) < 0. By the intermediate value theorem there exists
 X in the interval [-a, a] such that P (X) = 0. 0
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 Lemma 2. Every complex number has a square root.

 Proof Consider a + ?i with a and f real. If y = 2 ? +32, then

 Y+ + Y -aia fli + +

 3. THE PROOF. For a field K and for positive integers d and r, consider the follow-
 ing statement:

 P(K, d, r): Any r commuting endomorphisms A1, A2, . . , Ar of a K-vector space V
 of dimension n such that d does not divide n have a common eigenvector.

 Lemma 3. If P(K, d, 1) holds, then P(K, d, r) holds for all r > 1.

 Proof We prove the lemma by induction on r.
 Assume that P(K, d, r - 1) holds. Suppose that A1, A2, ..., Ar are commuting
 endomorphisms of a K-vector space V of dimension n such that d does not divide n.
 By induction on n we prove that A1, A2, ..., Ar have a common eigenvector. The case
 n = 1 is trivial.

 Because P(K, d, 1) holds, Ar has an eigenvalue X in K. Let W be the kernel and Z

 the image of Ar - XI. Note that W and Z are stable under A1, A2, ... , Ar-1.
 Suppose that W :A V. Because dim W + dim Z = dim V, either d does not divide

 dim W or d does not divide dim Z. Since dim W < n and dim Z < n, we may assume
 by induction on n that A1, ..., Ar already have a common eigenvector in W or in Z.

 In the remaining case, W = V. Because P(K, d, r - 1) holds, we may assume that
 A1, ..., Ar-1 have a common eigenvector in V, say v. Since ArV = Xv, v is a common
 eigenvector of A1, ..., Ar. 1

 Lemma 4. P(R, 2, r) holds for all r, i.e., if A1, . . . , Ar are commuting endomor-
 phisms on an odd dimensional R-vector space, then they have a common eigenvector.

 Proof By Lemma 3 it is enough to show that P(R, 2, 1) is true. If A is an endomor-
 phism of an odd dimensional R-vector space, then det(x I - A) is a polynomial of odd

 degree, which has a zero X by Lemma 1. Then X is a real eigenvalue of A. 1

 Lemma 5. P(C, 2, 1) holds, i.e., every endomorphism of a C-vector space of odd
 dimension has an eigenvector

 Proof Suppose that A : Cn -- Cn is a C-linear map with n odd. Let V be the R-
 vector space Hermn (C), the set of n x n Hermitian matrices. We can define commuting
 endomorphisms L1 and L2 of V by

 AB + BA*
 L1(B) =

 2

 and

 AB - BA*
 L2(B) =

 2i

 --t

 Here A* = A is the transpose of the complex conjugate of the matrix A.
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 Observe that dimR V = n2 is odd. Now TP(R, 2, 2) (see Lemma 4) implies that L1
 and L2 have a common eigenvector B, say LI(B) = kB and L2(B) = -IB with X and
 It real. But then

 (L1 + iL2)(B) = AB = (X + Li)B,

 and any nonzero column vector of B gives an eigenvector for the matrix A. U

 Lemma 6. P(C, 2k, r) holds for all k and r.

 Proof We prove the lemma by induction on k. The case k = 1 follows from Lemmas 5
 and 3. Assume that P(C, 2', r) holds for 1 < k. We will establish P(C, 2k, r). In view

 of Lemma 3, it suffices to prove P(C, 2k, 1). Suppose that A : Cn -- Cn is linear, where n is divisible by 2k-1 but not by 2k. Let V be the C-vector space Skewn (C), the
 set of n x n skew-symmetric matrices with complex entries. Define two commuting
 endomorphisms L1 and L2 of V by

 L1 (B) = AB - BAt

 and

 L2(B) = ABAt.

 Note that dim V = n(n - 1)/2, which ensures that 2k-1 does not divide dim V.
 By P(C, 2k-1, 2), L1 and L2 have a common eigenvector B, say L1(B) = XB and

 L2(B) = -tB, where X and /t are now complex numbers. It follows that

 gB = ABAt = A(AB - XB),

 so

 (A2 - XA - gtI)B = 0.

 Let v be a nonzero column of B. Then

 (A2 - A - AlI)v = 0.

 By Lemma 3 there is a 3 in C such that 82 = k2 + 4/-. We can write (x2 - Xx - _ i) =
 (x - a)(x - - ), where a = (X + 3)/2 and 8 = (X - 8)/2. We then have

 (A - aI)w = 0,

 where w = (A - ?3I)v. If w = 0, then v is an eigenvector of A with eigenvalue P; if
 w : 0, then w is an eigenvector of A with eigenvalue a. U

 Theorem 7. If A1, A2, ... , Ar are commuting endomorphisms of a finite dimensional
 nonzero C-vector space V, then they have a common eigenvector

 Proof Let n be the dimension of V. There exists a positive integer k such that 2k does
 not divide n. Since P(C, 2k, r) holds by Lemma 6, the theorem follows. U

 Corollary 8 (Fundamental Theorem of Algebra). If P (x) is a nonconstant polyno-
 mial with complex coefficients, then there exists a X in C such that P (A) = 0.
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 Proof It suffices to prove this for monic polynomials. Suppose that

 P(x) = xn + a1xn +a2n-2 ?- " ' an.

 Then P(x) = det(xI - A), where A is the companion matrix of P:

 0 0 ... 0 -an
 1 0 0 -an-1

 A = 0 1 0 -an-2

 0 0 ... 1 -al

 Theorem 7 implies that A has a complex eigenvalue X. in C, from which it follows that
 P(X) = 0. N

 Remark. As for all algebraic proofs of the fundamental theorem of algebra, the state-
 ment can be generalized to more general fields. An ordered field R is a field with the
 following properties: (i) for every a in R \ 101, either a or -a is a square and (ii) the
 sum of any two squares in R is also a square. On such an ordered field there is a total

 ordering defined by a < / if and only if 8 - a is a square. If a in R is a square in R,

 then we define / to be the unique / in R such that 82 = a and 8 is itself a square
 in R. The element -1 is not a square in an ordered field. We can construct a field
 C by adjoining an element i with i2 = -1 to R in a fashion similar to the way C is
 constructed from IR. It can be shown (just as for C) that any element of C has a square
 root. If we assume R is an ordered field such that every polynomial of odd degree has
 a zero, then the foregoing proof goes through with IR replaced by R and C replaced
 by C. In particular, C is algebraically closed.
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