
Mercury’s	Rotational	Period	
Determining	the	basic	properties	of	the	planets	(size,	mass,	motion)	is	an	important	first	step	for	the	
observational	astronomer.		This	information	can	be	used	to	build	a	more	complete	understanding	of	the	solar	
system.		Sometimes	direct	observation	suffices,	but	in	other	cases	it	provides	misleading	information.		The	
rotational	period	of	Mars	was	successfully	determined	in	this	manner.		However,	similar	attempts	for	Mercury	
made	by	Bessel,	Schiaparelli,	and	others	produced	conflicting	results.		Bessel	deduced	a	period	of	24	hours,	but	
long-term	observations	by	Schiaparelli	(and	apparently	confirmed	by	others)	placed	its	period	at	88	days.		This	
is	the	same	as	Mercury’s	period	of	revolution,	and	was	often	described	as	being	in	“captive	rotation”	with	one	
face	always	towards	the	sun.	

The	first	attempts	were	made	to	use	spectroscopy	about	1900	for	the	purpose	of	determining	rotation	periods	
of	planets.		It	was	first	applied	by	Keeler	to	the	rings	of	Saturn,	and	attempts	were	made	by	Slipher	and	others	
to	determine	Mercury’s	rotational	period.		The	slit	of	a	spectrograph	was	laid	parallel	to	the	equator	of	the	
planet.		The	lines	from	the	receding	edge	were	red-shifted	while	those	from	the	approaching	edge	were	blue	
shifted,	obeying	the	classic	Doppler	formula.		The	results	obtained	by	this	method	indicated	that	Mercury	took	
several	days	to	rotate,	but	precise	measurements	could	not	be	made.	

A	much	more	powerful	method	became	possible	during	the	a960s	when	radar	signals	were	successfully	
bounced	from	planetary	surfaces.		Pettengill,	Dyce,	and	Shapiro	produced	an	accurate	rotational	period	for	the	
planet	Mercury	using	this	method.		In	1965	they	used	the	1000-ft	radio	telescope	at	Arecibo,	Puerto	Rico	to	
beam	a	series	of	0.0005-second	and	0.0001-second	radar	pulses	at	430	MHz	toward	the	planet.		Since	the	
round	trip	travel	time	of	the	pulses	was	much	greater	than	the	pulse	length,	they	could	see	how	the	pulses	
were	broadened	by	reflection	from	the	rotating	planet.		Frequency	shifts	also	resulted	from	the	relative	
motions	of	the	planet	and	the	earth’s	rotation,	but	these	were	corrected	by	using	careful	timing	and	computer	
compensation.	

The	figure	below	shows	that	when	a	radar	signal	is	reflected	from	a	rotating	spherical	planet	the	echo	is	spread	
out	in	time	as	well	as	in	frequency.		The	echo	first	returned	is	from	the	sub-radar	point.		After	a	small	time	
delay	the	echo	is	received	from	a	ring-shaped	area	centered	on	this	point.		That	part	of	the	signal	returned	
from	the	approaching	edge	will	be	returned	with	an	increase	in	frequency	(“blue-shifted”)	and	that	part	
returned	from	the	receding	edge	will	be	returned	with	a	decrease	in	frequency	(“red-shifted”).	

	

	 	



The	chart	below	shows	the	spectrum	of	the	radar	echo	for	five	different	time	delays	(Δt).		Note	that	the	longer	
the	time	delay,	the	broader	is	the	return	signal	in	frequency.		This	broadening	is	because	successive	signals	
return	from	farther	and	farther	from	the	sub-radar	point.		The	portion	of	the	planet	rotating	toward	the	earth	
causes	the	signal	to	have	an	increase	in	frequency	(+)	and	the	portion	rotating	away	has	a	decrease	(-).		This	
increase	or	decrease	obeys	the	Doppler	law.	

	

				Spectrum	of	radar	pulses	returning	from	Mercury	made	on	August	17,	1965	
Δt=time	delay.		(Taken	from	Astronomical	Journal,	72,	p.351,	1967.)		



In	principle	it	ought	to	be	easy	to	determine	the	rotational	velocity	of	Mercury’s	limb,	and	(by	knowing	the	
planet’s	circumference)	to	calculate	the	rotational	period.		However,	the	echo	weakens	towards	the	edge	of	
the	planet	and	the	signal	return	from	the	limb	is	unobtainable.		We	will	use	the	echo	from	a	ring	intermediate	
between	the	sub-radar	point	and	the	limb	to	calculate	the	line-of-sight	component	of	Mercury’s	rotational	
velocity	and	from	this	find	its	true	rotational	velocity.	

Examine	the	figure	below.		Note	that	each	signal	in	the	chart	above	is	labeled	with	its	time	delay	in	
microseconds	(μs)	(1	μs	=	10-6	s).		It	is	easy	to	calculate	the	distance	d	that	any	delayed	beam	has	traveled	
beyond	that	sub-radar	point	by	multiplying	half	the	time	delay	by	the	speed	of	the	radar	wave	(the	speed	of	
light).		This	information	is	needed	to	obtain	the	line-of-sight	velocity	(v0)	in	order	to	get	the	true	rotational	
velocity	(v).	

	

Procedure	

1.) Choose	one	of	the	time	delayed	signals	in	the	chart	and	calculate	

𝑑 =
1
2
𝑐∆𝑡	

where	d	is	the	distance	in	meters,	Δt	is	the	time	delay	in	s,	and	c	=	3	X	108	m/s.	
	

2.) In	the	figure	above,	the	lengths	x	and	y	are	given	by	
𝑥 = 𝑅 − 𝑑	

𝑦 = 𝑅, − 𝑥,	
where	R	is	the	radius	of	Mercury	(R	=	2.42	X	106	m).		Calculate	x	and	y.	
	
	



3.) Using	the	previously	selected	signal	from	the	chart	find	v0,	the	observed	line-of-sight	component	of	the	
rotational	velocity	at	some	point	indicated	in	the	figure	above.		The	Doppler	equation	is	generally	
stated	in	terms	of	a	change	in	wavelength	(Δλ)	relative	to	the	“rest”	wavelength	(λ),	but	it	can	also	be	
stated	in	terms	of	frequency	(f)	and	frequency	shift	(Δf)	

∆𝑓
𝑓
=
𝑣/
𝑐
	

where	Δf	is	the	shift	in	frequency,	f	is	the	frequency	of	the	transmitted	signal	(f	=	430	X	106	Hz),	v0	is	
the	observed	velocity,	and	c	is	the	speed	of	the	radar	wave	(c	=	3	X	108m/s).	
Examine	your	selected	radar	signal	from	the	chart	and	mark	the	points	to	the	left	and	right	of	center	
where	the	signal	begins	to	drop	down	toward	the	baseline.		Read	the	frequency	change	at	each	of	
these	points	as	accurately	as	you	can.		Disregarding	algebraic	signs,	average	the	results	from	the	two	
shoulders.		The	actual	Doppler	frequency	shift,	Δf,	is	half	the	value	as	this	is	a	reflected	signal	and	the	
radar	pulse	is	shifted	“going	in”	and	again	“coming	out.”		Calculate	v0	in	meters	per	second.	
	

4.) From	the	line-of-sight	component	v0,	calculate	v,	the	foreshortened	rotational	velocity.		As	seen	in	the	
last	figure	above,	the	triangle	containing	x,	y,	and	R	is	similar	to	the	triangle	containing	v0	and	v.	
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Calculate	v	from	this	equation.		The	result	is	the	true	rotational	velocity	in	meters	per	second.	
	

5.) Calculate	Mercury’s	rotational	period	by	dividing	v	into	the	circumference	of	Mercury	
(C	=	1.52	X	107	m).		Compare	your	result	with	the	accepted	value	of	the	rotation	period	of	
58	d		15	h		30	m		(5.067	X	106	s).	


