
Big Graph Analytics
Platforms

Big Graph Analytics
Platforms

Da Yan
The University of Alabama at Birmingham

yanda@uab.edu

Yingyi Bu
Couchbase, Inc.

yingyi@couchbase.com

Yuanyuan Tian
IBM Almaden Research Center, USA

ytian@us.ibm.com

Amol Deshpande
University of Maryland

amol@cs.umd.edu

Boston — Delft

Foundations and Trends R© in Databases

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

D. Yan, Y. Bu, Y. Tian, and A. Deshpande. Big Graph Analytics Platforms.
Foundations and TrendsR© in Databases, vol. 7, no. 1-2, pp. 1–195, 2014.

This Foundations and TrendsR© issue was typeset in LATEX using a class file designed
by Neal Parikh. Printed on acid-free paper.

ISBN: 978-1-68083-242-6
c© 2016 D. Yan, Y. Bu, Y. Tian, and A. Deshpande

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to
now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com;
e-mail: sales@nowpublishers.com

Foundations and Trends R© in Databases
Volume 7, Issue 1-2, 2014

Editorial Board

Editor-in-Chief

Joseph M. Hellerstein
University of California, Berkeley
United States

Editors

Anastasia Ailamaki
EPFL
Peter Bailis
University of California, Berkeley
Mike Cafarella
University of Michigan
Michael Carey
University of California, Irvine
Surajit Chaudhuri
Microsoft Research
Minos Garofalakis
Yahoo! Research

Ihab Ilyas
University of Waterloo
Christopher Olston
Yahoo! Research
Jignesh Patel
University of Michigan
Chris Re
Stanford University
Gerhard Weikum
Max Planck Institute Saarbrücken

Editorial Scope

Topics

Foundations and Trends R© in Databases covers a breadth of topics re-
lating to the management of large volumes of data. The journal targets
the full scope of issues in data management, from theoretical founda-
tions, to languages and modeling, to algorithms, system architecture,
and applications. The list of topics below illustrates some of the in-
tended coverage, though it is by no means exhaustive:

• Data models and query languages
• Query processing and

optimization
• Storage, access methods, and

indexing
• Transaction management,

concurrency control, and
recovery

• Deductive databases
• Parallel and distributed database

systems
• Database design and tuning
• Metadata management
• Object management
• Trigger processing and active

databases
• Data mining and OLAP
• Approximate and interactive

query processing

• Data warehousing

• Adaptive query processing

• Data stream management

• Search and query integration

• XML and semi-structured data

• Web services and middleware

• Data integration and exchange

• Private and secure data
management

• Peer-to-peer, sensornet, and
mobile data management

• Scientific and spatial data
management

• Data brokering and
publish/subscribe

• Data cleaning and information
extraction

• Probabilistic data management

Information for Librarians

Foundations and Trends R© in Databases, 2014, Volume 7, 4 issues. ISSN pa-
per version 1931-7883. ISSN online version 1931-7891. Also available as a
combined paper and online subscription.

Foundations and TrendsR© in Databases
Vol. 7, No. 1-2 (2014) 1–195
c© 2016 D. Yan, Y. Bu, Y. Tian, and A. Deshpande
DOI: 10.1561/1900000056

Big Graph Analytics Platforms

Da Yan
The University of Alabama at Birmingham

yanda@uab.edu

Yingyi Bu
Couchbase, Inc.

yingyi@couchbase.com

Yuanyuan Tian
IBM Almaden Research Center, USA

ytian@us.ibm.com

Amol Deshpande
University of Maryland

amol@cs.umd.edu

Contents

1 Introduction 3
1.1 History of Big Graph Systems Research 4
1.2 Features of Big Graph Systems 7
1.3 Organization of the Survey 14

2 Preliminaries 19
2.1 Data Models and Analytics Tasks 19
2.2 Distributed Architecture 21
2.3 Single-Machine Architecture 25

I Vertex-Centric Programming Model 27

3 Vertex-Centric Message Passing (Pregel-like) Systems 29
3.1 The Framework of Pregel 29
3.2 Algorithm Design in Pregel 32
3.3 Optimizations in Communication Mechanism 37
3.4 Load Balancing . 40
3.5 Out-Of-Core Execution 43
3.6 Fault Tolerance . 47
3.7 Summary . 53

ix

x

4 Vertex-Centric Message-Passing Systems Beyond Pregel 55
4.1 Block-Centric Computation 55
4.2 Asynchronous Execution 67
4.3 Vertex-Centric Query Processing 73
4.4 Summary . 76

5 Vertex-Centric Systems with Shared Memory Abstraction 77
5.1 Distributed Systems with Shared Memory Abstraction . . . 78
5.2 Out-of-Core Systems for a Single PC 84
5.3 Summary . 94

II Beyond Vertex-Centric Programming Model 97

6 Matrix Algebra-Based Systems 99
6.1 PEGASUS . 99
6.2 GBASE . 101
6.3 SystemML . 103
6.4 Summary . 105

7 Subgraph-Centric Programming Models 109
7.1 Complex Analysis Tasks 110
7.2 NScale . 115
7.3 Arabesque . 116
7.4 Summary . 118

8 DBMS-Inspired Systems 119
8.1 The Recursive Query Abstraction 121
8.2 Dataflow-Based Graph Analytical Systems 127
8.3 Incremental Graph Processing 135
8.4 Integrated Analytical Pipelines 137
8.5 Summary . 140

III Miscellaneous Issues 141

9 More on Single-Machine Systems 143

xi

9.1 Vertex-Centric Systems with Matrix Backends 143
9.2 In-Memory Systems for Multi-Core Execution 149
9.3 Summary . 155

10 Hardware-Accelerated Systems 157
10.1 Out-of-Core SSD-Based Systems 157
10.2 Systems for Execution with GPU(s) 161
10.3 Summary . 166

11 Temporal and Streaming Graph Analytics 169
11.1 Overview . 170
11.2 Historical Graph Systems 172
11.3 Streaming Graph Systems 178
11.4 Brief Summary of Other Work 182
11.5 Summary . 184

12 Conclusions and Future Directions 187

References 191

Abstract

Due to the growing need to process large graph and network datasets
created by modern applications, recent years have witnessed a surg-
ing interest in developing big graph platforms. Tens of such big graph
systems have already been developed, but there lacks a systematic cat-
egorization and comparison of these systems. This article provides a
timely and comprehensive survey of existing big graph systems, and
summarizes their key ideas and technical contributions from various
aspects. In addition to the popular vertex-centric systems which es-
pouse a think-like-a-vertex paradigm for developing parallel graph ap-
plications, this survey also covers other programming and computation
models, contrasts those against each other, and provides a vision for
the future research on big graph analytics platforms. This survey aims
to help readers get a systematic picture of the landscape of recent big
graph systems, focusing not just on the systems themselves, but also
on the key innovations and design philosophies underlying them.

D. Yan, Y. Bu, Y. Tian, and A. Deshpande. Big Graph Analytics Platforms.
Foundations and TrendsR© in Databases, vol. 7, no. 1-2, pp. 1–195, 2014.
DOI: 10.1561/1900000056.

1
Introduction

The growing need to deal with massive graphs in real-life applications
has led to a surge in the development of big graph analytics platforms.
Tens of big graph systems have already been developed, and more are
expected to emerge in the near future. Researchers new to this young
field can easily get overwhelmed and lost by the large amount of liter-
ature. Although several experimental studies have been conducted in
recent years that compare the performance of several big graph sys-
tems [Lu et al., 2014, Han et al., 2014a, Satish et al., 2014, Guo et al.,
2014], there lacks a comprehensive survey that clearly summarizes the
key features and techniques developed in existing big graph systems.
A recent survey [McCune et al., 2015] attempts to cover the landscape
as well, but primarily focuses on vertex-centric systems; it omits most
of the work on other programming models and also several crucial op-
timization and programmability issues with vertex-centric systems. In
addition to describing the various systems, this survey puts more em-
phasis on the innovations and technical contributions of existing sys-
tems, in order to help readers quickly obtain a systemic view of the key
ideas and concepts. We hope this will help big graph system researchers

3

4 Introduction

avoid reinventing the wheel, apply useful existing techniques to their
own systems, and come up with new innovations.

In the rest of this chapter, we first review the history of research
on Big Graph systems, and then overview some important features of
existing Big Graph systems. Finally, we present the organization of
this survey. Many contents of this survey are covered by our tutorial
in SIGMOD 2016 [Yan et al., 2016a], the slides of which are available
online1 and contain animations to illustrate the various techniques used
by existing systems.

1.1 History of Big Graph Systems Research

Although graph analytics has always been an important research topic
throughout the history of computation, the research on big graph pro-
cessing only flourished in recent years as part of the big data movement,
which has seen increased use of advanced analytics on large volumes
of unstructured or semi-structured data. A hallmark of this movement
has been the MapReduce distributed data processing framework, in-
troduced by Google [Dean and Ghemawat, 2004], and the companion
Google File System (GFS) [Ghemawat et al., 2003]. Subsequently, the
Apache Hadoop project2 implemented the open-source counterparts,
the Hadoop Distributed File System (HDFS) and the Hadoop MapRe-
duce framework in 2006. Since then, a huge body of research has focused
on designing novel MapReduce algorithms as well as on improving the
framework for particular workloads. A large body of work in that space
focused on big graph analytics, and many tailor-made MapReduce al-
gorithms were proposed for solving specific graph problems [Lin and
Schatz, 2010]. As an early MapReduce-based framework designed for
general-purpose graph processing, PEGASUS [Kang et al., 2009] mod-
els graph computation by a generalization of matrix-vector multipli-
cation. However, the reliance on the disk-based Hadoop MapReduce
runtime, which requires repeated reads and writes of large files from
HDFS, fundamentally limits its performance.

1http://www.cse.cuhk.edu.hk/systems/gsys_tutorial/
2https://hadoop.apache.org/

http://www.cse.cuhk.edu.hk/systems/gsys_tutorial/
https://hadoop.apache.org/

1.1. History of Big Graph Systems Research 5

Later, Malewicz et al. [2010] proposed the Pregel framework spe-
cially designed for large-scale big graph processing. Since many graph
algorithms are iterative, Pregel keeps the graph data in the main mem-
ory and adopts an iterative, message-passing computation model (in-
spired by the well-known Bulk Synchronous Parallel model for parallel
computation), and is thus much more efficient than MapReduce. Pregel
also adopts a “think-like-a-vertex” programming model which is more
intuitive and user-friendly for average programmers and a natural fit
for a range of graph analysis tasks. The vertex-centric programming
model of Pregel is also very expressive since a vertex can communicate
with any other vertex by passing messages. Since the introduction of
Pregel, it has sparked a large number of research works on extending
the basic Pregel framework in different aspects to improve the graph
processing performance [Tian et al., 2013, Yan et al., 2014a, Zhang
et al., 2014, Han and Daudjee, 2015, Yan et al., 2016b].

Independent of Pregel, Low et al. [2010] developed a multi-core,
shared-memory graph-based computation model, called GraphLab.
Then, Low et al. [2012] extended it to work in a distributed environ-
ment, while keeping the shared memory programming abstraction, in
which a vertex can directly access the states of its adjacent vertices and
edges. Later, GraphLab switched to the GAS (Gatter-Apply-Scatter)
computation model to further improve the system performance [Gon-
zalez et al., 2012]. Although the GAS model covers a large number of
graph algorithms, it is less expressive than the Pregel model, since a ver-
tex can only access the data of its adjacent vertices and edges; we call
this a neighborhood-based shared memory abstraction. This program-
ming abstraction is especially popular among recent big graph systems
designed to run on a single machine, such as GraphChi [Kyrola et al.,
2012].

While Pregel and GraphLab are designed specially for graph pro-
cessing, a number of systems, such as GraphX [Gonzalez et al., 2014]
and Pregelix [Bu et al., 2014], rely on a general-purpose data process-
ing engine for execution, at the same time providing graph-specific
programming interfaces similar to those in Pregel and GraphLab.

6 Introduction

Vertex-centric systems are ideally suited for graph analysis tasks
like PageRank computation where the overall computation can be bro-
ken down into individual tasks, each involving a specific vertex (i.e., its
local state, and the states of its adjacent edges). Many machine learning
tasks (e.g., belief propagation, matrix factorization, stochastic gradi-
ent descent) are also a natural fit for those systems. However, many
complex graph analysis tasks cannot be easily decomposed in such
fashion. For example, a class of graph problems termed “ego-centric
analysis” [Quamar et al., 2016] require analyzing the neighborhoods
of the vertices in their entirety. Also, graph problems such as graph
matching or graph mining may have intermediate or output results with
size superlinear or even exponential in the input graph size. Complex
graph algorithms, e.g., the Hungarian algorithm for maximum bipartite
matching, even require random access to the entire graph. Solving these
problems using vertex-centric processing leads to substantial commu-
nication and memory overheads, since each vertex needs to collect the
relevant neighborhood subgraph (if not the entire graph) to its local
state before processing the subgraph.

This has led to the development of many alternative programming
frameworks, examples of which include Socialite [Seo et al., 2013b],
Arabesque [Teixeira et al., 2015], NScale [Quamar et al., 2016], among
others. In addition, several systems including Ligra [Shun and Blelloch,
2013], Galois [Nguyen et al., 2013], Green-Marl DSL [Hong et al., 2012],
etc., provide low-level graph programming frameworks that can handle
nearly arbitrary graph computations. These frameworks often focus
on specific classes of graph problems, and make a range of different
assumptions about the computing environment, making them incom-
parable in many cases. Arabesque tackles problems like graph matching
and graph mining where the intermediate result can be very large, while
assuming that the entire graph can be held in a single machine mem-
ory. NScale is a strict generalization of the vertex-centric framework,
and can handle tasks that require access to multi-hop neighborhoods of
vertices; but it does not support the other classes of problems discussed
above. Socialite uses a Datalog-inspired programming model which is
most suitable for graph problems that can be expressed as recursive

1.2. Features of Big Graph Systems 7

Datalog queries. Ligra, Galois, and other similar systems require ran-
dom access to the graph and focus on large-memory multi-core environ-
ments. Thus, developing a sufficiently expressive, yet easy-to-use and
easy-to-parallelize graph programming model, remains a critical and
open challenge in this field.

The majority of existing big graph systems are designed for pro-
cessing static graphs (or with small topology mutations). However,
real-world graphs often evolve over time, with vertices and edges con-
tinually being added or deleted, and their attributes being frequently
updated. A new class of big graph systems, such as KineoGraph [Cheng
et al., 2012], TIDE [Xie et al., 2015b], DeltaGraph [Khurana and Desh-
pande, 2013], and Chronos [Han et al., 2014b], have emerged to process
and analyze temporal and streaming graph data. This area is however
still in its infancy and there are many open problems that need to be
addressed to effectively handle continuous and/or temporal analytics
on big graphs.

There is also a large body of work on executing queries related to
a specific vertex (or a small subset of vertices) against large volumes
of graph data, which has developed a range of specialized indexes and
search algorithms. This survey does not cover that body of work.

1.2 Features of Big Graph Systems

We can categorize the big graph platforms along various dimensions.
Since an important feature of the modern big graph systems is user-
friendliness in programming parallel graph algorithms, we first summa-
rize the programming abstractions (languages and models) of existing
systems. While most systems adopt existing programming languages
that are familiar to users (e.g., C/C++ and Java), some systems require
users to learn a new domain-specific language dedicated to program-
ming parallel graph algorithms (e.g., Green-Marl [Hong et al., 2012]
and Trinity Specification Language [Shao et al., 2013]).

8 Introduction

1.2.1 Programming Model

Most big graph systems adopt the vertex-centric model where a pro-
grammer only needs to specify the behavior of one vertex. The vertex-
centric model can be further divided into two types: (1) message passing
(e.g., in Pregel), where vertices communicate with each other by send-
ing messages; and (2) shared-memory abstraction (e.g., in GraphLab),
where vertices directly access the states of other vertices and edges.

Message passing is a natural model in a distributed environment,
since users can explicitly dictate message passing behavior in their pro-
grams. In contrast, the shared-memory abstraction allows programmers
to directly access data as if operating on a single machine, and most
single-machine vertex-centric systems adopt this model. However, dis-
tributed GraphLab adopts the shared-memory abstraction and there
are also single-machine systems that adopt message passing (e.g., Flash-
Graph [Zheng et al., 2015]).

The vertex-centric framework can be further extended with a block-
centric model (e.g., Giraph++ [Tian et al., 2013] and Blogel [Yan et al.,
2014a]), which partitions the vertices into multiple disjoint subgraphs,
so that value propagation within each subgraph could bypass network
communication. The block-centric model often improves the perfor-
mance of graph computation by orders of magnitude.

Besides the vertex-centric systems, some big graph systems adopt
a matrix-based programming model; these include PEGASUS [Kang
et al., 2009], GBASE [Kang et al., 2011], and SystemML [Ghoting
et al., 2011]. These systems represent a graph algorithm by a sequence
of generalized matrix-vector multiplications, which can be efficiently
processed since sparse matrix algebra has been studied for decades in
the High Performance Computing (HPC) field. However, users who are
not familiar with matrix algebra might prefer vertex-centric program-
ming to matrix-based programming. Recently, Sundaram et al. [2015]
helped bridge the gap for these users: their GraphMat system translates
a vertex-centric program to high performance sparse matrix operations
to be run on the backend.

Another important class of programming models is subgraph-
centric models, where users write programs to process a subgraph in-

1.2. Features of Big Graph Systems 9

stead of a single vertex. These models target graph problems whose
output size can be exponential to the graph size (e.g., graph matching
and finding motifs), or problems that require analyzing entire neigh-
borhoods in a holistic manner. Since vertices in a subgraph can be
randomly accessed by a user program, a critical issue for a subgraph-
centric model is how to efficiently construct the relevant subgraphs.
Arabesque [Teixeira et al., 2015] and NScale [Quamar et al., 2016] are
two systems that use a subgraph-centric model, although there are sig-
nificant differences in the models they adopt.

There are also systems that require users to write graph algorithms
using a domain specific language (DSL), e.g., Green-Marl [Hong et al.,
2012, 2014], Galois [Nguyen et al., 2013], and Ligra [Shun and Blelloch,
2013]. The language constructs of those DSLs expose opportunities for
parallelism, which can be utilized by the system for efficient parallel ex-
ecution. Of course, users have to learn a new language or programming
paradigm in order to use such a system.

Finally, several recent systems have been built to bring in declara-
tive query languages for big graph analytics. First, since many graph
algorithms can be expressed as recursive Datalog [Bancilhon and Ra-
makrishnan, 1986] queries, a number of research projects are inventing
new-generation Datalog systems for scalable big graph analytics. Sec-
ond, often times, a graph analytics job is only one part of a gigantic,
end-to-end SQL3-dominated data analysis pipeline which includes con-
structing graphs dynamically from tabular data sources and converting
graph computation results back into tabular reports; therefore, sev-
eral systems have integrated vertex-centric programming models into
declarative query languages to make those end-to-end data analysis
tasks easier [Simmen et al., 2014, Gonzalez et al., 2014].

1.2.2 Expressiveness

Most big graph systems aim at solving a broad class of graph problems
using a unified programming framework. Therefore, it is meaningless
to study big graph systems without studying the algorithms and ap-
plications that can be implemented in these systems. However, many

3SQL. https://en.wikipedia.org/wiki/SQL

https://en.wikipedia.org/wiki/SQL

10 Introduction

papers just introduce API simplicity and performance advantages of
their systems in order to promote their work, but these benefits may
come at a cost of additional assumptions and narrower expressiveness
that were understated, which should be made clear to avoid blind or
even wrong system choice. We now discuss the expressiveness of the
various programming models described before, and provide some ad-
vice on how to choose an appropriate framework for an application at
hand.

Many graph algorithms only require each vertex to communicate
with its neighbors, such as PageRank and other more complicated ran-
dom walk algorithms (e.g., [Zhang et al., 2016]). In these algorithms,
intermediate data are only exchanged along edges, and so the volume
of intermediate data is comparable to the data size. We say that these
algorithms require edge-based communication. In some of these algo-
rithms, a vertex only needs the aggregated value of the received values,
which provides opportunities for further optimization. For example,
MOCgraph [Zhou et al., 2014], GraphD [Yan et al., 2016d], and the
superstep-splitting technique of Giraph [Ching et al., 2015] all propose
aggregating messages earlier instead of buffering them for later pro-
cessing, in order to save memory space; while PowerGraph [Gonzalez
et al., 2012], GraphChi [Kyrola et al., 2012] and X-Stream [Roy et al.,
2013] assume that data values are aggregated at each vertex from its
incoming edges, in their model design. We, however, would like to indi-
cate that not all algorithms with edge-based communication allow its
vertices to aggregate received values, such as the attribute broadcast
algorithm of Yan et al. [2015].

Edge-based communication implies that any information can be
propagated for just one hop at a time, which leads to poor perfor-
mance if a vertex u needs to transmit a value to another vertex v far
away from u in a large-diameter graph. Pointer jumping (aka path dou-
bling), a technique from PRAM algorithm design, solves this problem
by doubling the propagation length from u to v, until v is reached. This
requires a vertex to be able to send data to any other vertex, not just
its neighbors. We say that these algorithms require ID-based communi-
cation, where a vertex u can send messages to another vertex w as long

1.2. Features of Big Graph Systems 11

as w’s ID is known. Pregel [Malewicz et al., 2010] adopts ID-based com-
munication and thus can implement pointer-jumping algorithms such
as those to be described in Chapter 3.2, while GraphLab [Gonzalez
et al., 2012] only allows each vertex to access its neighbors’ data, and
thus cannot support these algorithms. In fact, Pregel has probably the
most expressive programming model in theory, and it is known how
to write a large number of graph algorithms efficiently in that model.
The Bulk Synchronous Parallel (BSP) model, on which Pregel is based,
has been very well-studied, but as a synchronous model, the number
of iterations must be kept low in a distributed setting, which can be
achieved with the help of pointer jumping.

Another solution to avoid slow value propagation is to use a block-
centric model, where nearby vertices are grouped into a block for pro-
cessing together each time. In a distributed environment, since a block
is assigned to a unique machine, only blocks need to communicate with
each other, and computation over vertices inside a block does not gener-
ate communication. In a single-machine environment, each block usu-
ally fits in a CPU cache, and thus block-based processing improves
cache locality in its execution. In addition to faster value propagation
(i.e., block-wise), the block-centric model also significantly reduces the
communication workload. Representative block-centric system include
Giraph++ [Tian et al., 2013] and Blogel [Yan et al., 2014a].

Some graph algorithms (e.g., k-core finding [Salihoglu and Widom,
2014]) need to mutate the graph topology during computation, and
thus, support for deletion and addition of edges and vertices is
also an important aspect of system expressiveness. For example,
VENUS [Cheng et al., 2015] streams immutable graph structure and
thus does not support algorithms that require graph mutations.

The models discussed so far are mostly vertex-centric. However,
many graph mining problems define constraints on subgraphs, e.g.,
graph matching and motif mining. Subgraph-based models are pro-
posed to solve these problems by writing user-friendly programs, where
computation is directly performed on subgraphs. Such systems include
NScale [Quamar et al., 2016] and Arabesque [Teixeira et al., 2015],
which we discuss in more detail in Chapter 7.

12 Introduction

We remark that there are other models that could be more appro-
priate for a specific application at hand. For example, if one is viewing
a graph as a matrix, and solving a machine learning problem that uses
matrix operations, then matrix-based systems like SystemML [Ghoting
et al., 2011] could be a better choice. Also, if graph processing is just
part of a dataflow program, then dataflow-based systems could provide
more flexibility, e.g., GraphX [Gonzalez et al., 2014] can interoperate
with other dataflow operators in Spark [Zaharia et al., 2012] to avoid
data import/export.

1.2.3 Execution Mode

Most big graph systems target iterative graph computation, where ver-
tex values are repeatedly updated until the computation converges.
There are two typical execution modes: synchronous and asynchronous.
The synchronous mode is also called bulk synchronous parallel (BSP),
exemplified by Pregel, while the asynchronous mode is adopted by
GraphLab and several other systems (especially those targeting ma-
chine learning workloads). The difference between these two modes is
that, in the synchronous mode, there is a global barrier from one iter-
ation to another, and out-going messages or updates of one iteration
are only accessible in the next iteration; in the asynchronous mode, a
vertex has immediate access to its in-bound messages or updates.

Asynchronous parallel computation incurs race conditions and thus
requires additional effort to enforce data consistency (e.g., by using
locks). Moreover, in a distributed environment, asynchronous execu-
tion tends to transmit a lot of small messages, since the update to
a vertex value should be reflected in time. In contrast, BSP only re-
quires updates to be synchronized at the end of each iteration, and
messages can be sent in large batches. In fact, GraphLab has a syn-
chronous mode that simulates the BSP mode of Pregel, and both Lu
et al. [2014] and Han et al. [2014a] found that the synchronous mode is
generally faster than the asynchronous mode. Further, for many algo-
rithms, asynchronous execution is not an option because the indeter-
ministic execution may lead to incorrect answers.

1.2. Features of Big Graph Systems 13

However, for some problems like PageRank computation, vertex
values converge asymmetrically: most vertices converge quickly after a
few iterations, but some vertices take a large number of iterations to
converge. In that case, asynchronous execution can schedule those ver-
tices that converge more slowly to compute for more iterations, while
synchronous execution processes every vertex once in each iteration
even if most vertices are converged. Therefore, asynchronous mode is
much faster for such algorithms and is thus preferred. Moreover, asyn-
chronous computation is always preferred in a single-machine system
since data access no longer incurs network communication, and access-
ing the latest vertex value leads to faster convergence.

It is, however, worth noting that some asynchronous frameworks
may not converge to the exact results (e.g., PageRank values), but
the approximate results are often good enough while the significant
improvement in performance (compared with synchronous execution)
is highly attractive. More discussion can be found in Section 4.2.

Recently, PowerSwitch [Xie et al., 2015a] showed how to support
mode switch between asynchronous execution and synchronous execu-
tion in GraphLab. They found that when the workload is low, asyn-
chronous execution is faster due to the faster convergence rate provided
by accessing the latest values. Race conditions (e.g., updates to the
same vertex) are unlikely to occur since only a small portion of vertices
participate in computation, and the number of messages is too small to
benefit from sending in large batches. In contrast, when the workload
is high, synchronous execution is faster since there is no need to han-
dle race conditions (i.e., it avoids the expensive locking/unlocking cost
required by asynchronous execution), and messages are sent in large
batches. Thus, PowerSwitch constantly collects execution statistics on-
the-fly, which are used to predict future performance and determine
the timing of a profitable mode switch.

1.2.4 Other Features

There are also many other dimensions to categorize big graph systems.
As for the execution environment, there are systems developed to
process graphs in a single machine, or using a cluster of machines.

14 Introduction

The single-machine environment can be further divided into two types,
commodity PCs and high-end servers. The former targets processing
big graphs efficiently using readily available resources; since the avail-
able memory on a commodity PC is limited, the graph is usually disk-
resident, and loaded into memory for processing part-by-part or in
a streaming fashion. The latter aims at beating distributed systems
by eliminating the cost of network communication, and the graph is
usually memory-resident. As for the graph placement, distributed
systems usually keep the graph in main memory, since there are many
machines and the total RAM size is sufficient, while single-PC systems
tend to process disk-resident or SSD-resident graphs. There are also
distributed systems that process disk-resident graphs in order to scale
to giant graphs whose size is much larger than the total RAM size in a
cluster, such as Pregelix [Bu et al., 2014], GraphD [Yan et al., 2016d]
and Chaos [Roy et al., 2015].

There are also many design techniques that may significantly influ-
ence the system performance for specific algorithms. For example, disk-
based single-machine systems like GraphChi [Kyrola et al., 2012] are
designed for iterative batch processing, while TurboGraph [Han et al.,
2013] maintains an in-memory page ID table for directly locating the
disk page of any vertex. Given these differences in system design, a
reader will not be surprised to see a claim like TurboGraph “signifi-
cantly outperforms GraphChi by up to four orders of magnitude”, for
a query that is to find the neighbors of a particular vertex.

1.3 Organization of the Survey

The diverse features supported by different big graph systems, and the
cross-cutting nature of many of the key designs, make it challenging
to organize such a survey. As an example, the popular vertex-centric
programming model is easy to support on top of a wide range of differ-
ent underlying implementations, including distributed frameworks like
Hadoop MapReduce, matrix-based systems, and relational databases.
However, each of those implementations raises unique and different
challenges despite their use of the vertex-centric model on top.

1.3. Organization of the Survey 15

In this survey, we focus on presenting the key designs and features
of the various graph processing systems, while endeavoring to place
related systems together to summarize the common ideas underlying
their designs. For quick reference, Table 1.1 presents a list of all the
systems that we discuss in each chapter.

We broadly divide the survey into three parts. In Part I, we discuss
the big graph systems that primarily use the vertex-centric program-
ming model, which has been widely studied recently due to its sim-
plicity in programming parallel graph algorithms. Specifically, Chap-
ter 3 reviews the framework of Pregel, and introduces how to develop
algorithms with performance guarantees in Pregel; it then discusses
existing open-source Pregel-like systems with improvements in com-
munication mechanism, load balancing, out-of-core support and fault
tolerance. Chapter 4 walks through the various extensions to the basic
framework of Pregel that could significantly improve the performance
of graph computations. Chapter 5 covers a few important big graph sys-
tems that adopt shared memory abstraction, including the pioneering
GraphLab system.

In Part II, we review other systems that attempt to provide sup-
port for more general graph programming models; most of these are
motivated by the observation that complex graph algorithms or analy-
sis tasks are often difficult to program using the simple vertex-centric
programming framework. Chapter 6 describes several matrix-based big
graph systems, including the pioneering MapReduce-based systems PE-
GASUS and GBASE, and the more powerful SystemML system. Chap-
ter 7 explains why the vertex-centric and matrix-based frameworks are
not sufficient for graph problems like graph matching and motif mining,
and introduces two subgraph-centric systems, NScale and Arabesque,
to process such graph problems efficiently. Chapter 8 reviews several
systems that either offer database-style declarative query languages or
leverage database-style query processing techniques.

Finally, in Part III, we discuss some miscelleneous issues. While
some vertex-centric single-machine big graph systems are also intro-
duced in Chapter 5, Chapter 9 surveys more single-machine systems
that adopt a computation model beyond a pure vertex-centric one.

16 Introduction

Table 1.1

Section System
3.1 Pregel
3.3 Giraph, Pregel+, GPS, MOCgraph
3.4 WindCatch, PAGE
3.5 GraphD
4.1 Giraph++, Blogel
4.2 Maiter, GiraphUC
4.3 Quegel
5.1 GraphLab/PowerGraph
5.2 GraphChi, X-Stream, Chaos, VENUS, GridGraph
6.1 PEGASUS
6.2 GBASE
6.2 SystemML
7.1.1 Trinity
7.2 NScale
7.3 Arabesque
8.1 SociaLite, DeALS, Myria, Yedalog
8.2 GraphX, Pregelix, Vertexica
8.3 REX, Maiter
8.4 Aster Data
9.1 GraphMat, GraphTwist
9.2 Green-Marl, Ligra, GRACE, Galois
10.1 TurboGraph, FlashGraph
10.2 Medusa, MapGraph, CuSha
11.2 Chronos, DeltaGraph, LLAMA
11.3 Kineograph, TIDE

1.3. Organization of the Survey 17

Chapter 10 discusses a few systems that utilize new hardware tech-
nologies to significantly boost the performance of big graph analytics.
Then, in Chapter 11, we discuss the issues of managing time-evolving
graphs and supporting real-time analytics over streaming graph data,
and discuss several recent systems that focus on providing those capa-
bilities. Finally, we conclude the survey in Chapter 12 and provide a
discussion on future research in big graph analytics platforms.

2
Preliminaries

In this chapter, we present the architectures of typical single-machine
and distributed graph analytics systems, and briefly discuss some of
the key considerations; we also discuss some of the techniques used to
improve the performance and robustness of such systems.

2.1 Data Models and Analytics Tasks

We begin with introducing some of the notation used throughout this
survey. In this survey, we consider an input graph G = (V,E) where
each vertex v ∈ V has a unique ID id(v). For simplicity, we use v and
id(v) interchangeably. The number of vertices and edges are denoted
by |V | and |E|, respectively. If G is undirected, we denote the set of
neighbors of v by Γ(v), and denote the degree of v by d(v). If G is
directed, we denote the set of in-neighbors (and out-neighbors) of v
by Γin(v) and Γout(v), and denote the in-degree (and out-degree) of
v by dinv (and dout(v)). The graph diameter is denoted by δ. Both
vertices and edges may have attributes associated with them, such as
edge weights or text labels.

19

20 Preliminaries

A graph can be equivalently seen as a |V | × |V | adjacency ma-
trix, where each non-zero matrix entry implies the existence of an edge
between the corresponding nodes in the graph. This equivalence al-
lows using matrix operations and libraries to execute graph analytics
tasks [Kepner and Gilbert, 2011].

This survey reviews general-purpose systems for running a graph
analytics task that takes a graph as input, and produces an out-
put which can be: (a) one or a small number of scalar values (e.g.,
global clustering coefficient of the graph), (b) a set of values, one per
node/edge (e.g., PageRank of each node in the graph), (c) a set of val-
ues, one for each instance of a subgraph in the graph, with subgraphs
of interest specified in some fashion (e.g., finding maximal cliques), or
(d) other forms such as in graph summarization and deduplication.
Graph analysis tasks of Category (b) are perhaps the most prevalent,
and certainly the most well-studied from systems perspective. Note
that, different analysis tasks from this class may exhibit very different
computational complexity; e.g., PageRank and betweenness centrality
are both centrality measures whose computation falls in this class, but
while PageRank computation is relatively easy to parallelize and exe-
cute, betweenness centrality is much harder to compute.

We can make a further distinction between one-shot analytics and
continuous analytics. In the latter case, the input graph itself is dy-
namically changing over time, and the goal is to execute the analytics
task continuously or periodically. Most of the work in big graph ana-
lytics systems has focused on one-shot analytics; we discuss the work
on continuous analytics towards the end of the survey.

Finally, an important consideration is how the graph is physically
represented, and where it is stored. Most of the systems that we cover
assume that the graph is stored on secondary storages (either a dis-
tributed file system like HDFS, or a local file system), in either human-
readable text format or serialized binary format. Some systems expect
the graph to be provided as a list of edges, whereas others may re-
quire an adjacency list representation, with all the edges of a vertex
listed along with the vertex information. Many of the systems can also
ingest data from other data stores like key-value stores, or relational

2.2. Distributed Architecture 21

master slave slave slave

Distributed Storage

local disk local disk local disk local disk

master worker worker worker

Distributed Computing

①

②

③

④

Figure 2.1: Components of a Distributed System

databases. In many cases, the graph may itself have to be generated by
processing other non-graph datasets [Xirogiannopoulos et al., 2015];
although this is an important practical consideration, there is little
systematic work on it so far and we do not discuss it further in this
survey.

2.2 Distributed Architecture

Next we discuss the components of a typical distributed graph analytics
system, and some of the key decisions that significantly impact the
performance of such a system.

Components. The typical architecture of a distributed graph analyt-
ics system is shown in Figure 2.1, which consists of four components.

Component 1© is an underlying distributed file storage for keep-
ing graph datasets and analytics results, which is usually resilient to
machine failures. Most graph analytics systems such as Giraph [Ching
et al., 2015] and GraphLab [Gonzalez et al., 2012] support loading data
from HDFS, which by default replicates each data block on three ma-
chines so that the failure of any two machines will not cause data loss.
Besides HDFS, the storage component can also be other distributed

22 Preliminaries

key-value stores or databases, such as HBase1 and Cassandra2. There
also exist distributed systems designed with their own storage sub-
systems, e.g., Chaos [Roy et al., 2015], but this loses the interoper-
ability among various Big Data frameworks, and also incurs expensive
preprocessing cost of data conversion.

Component 2© is the computation module that loads a graph
dataset from the underlying distributed storage, and performs the ac-
tual computation. The key design issue of this component is how to
expose a user-friendly programming interface to users, hiding low-level
details of parallel computation. Various computation models have been
designed as we survey in depth later.

Component 3© is the communication layer that is used by the com-
putation module for communication between machines. The goal of
this component is to expose a simple and clean communication in-
terface to the computation module, in order to simplify the design
of the computation module. This component does not directly inter-
act with application developers (users), since a user-friendly program-
ming interface should hide details like network communication from
the users. Different systems use different communication mechanisms.
For example, Giraph [Ching et al., 2015], Pregel+ [Yan et al., 2015],
and GraphLab [Gonzalez et al., 2012] use Netty3, MPI and Remote
Procedure Call (RPC), respectively.

Component 4© is local disk storage, which is managed by the re-
spective machines individually, to offload some data from memory to
local disk(s) during the computation. This is usually used by out-of-core
systems (or modes) such as GraphD [Yan et al., 2016d], Pregelix [Bu
et al., 2014], and out-of-core Giraph. Some systems even offload data
to HDFS and only exchange control information among the machines,
an example being epiC [Jiang et al., 2014], but this may not be a good
solution since data offloading incurs network communication which is
often more expensive than local disk IO (e.g., HDFS always replicates
data to other machines for fault tolerance).

1http://hbase.apache.org/
2http://cassandra.apache.org/
3http://netty.io/

2.2. Distributed Architecture 23

Graph Partitioning. To execute the graph analysis task in a parallel
fashion, the graph must be partitioned (sharded) across the machines in
the cluster. The graph analytics system typically creates a set of par-
titions using some policy, which are then transparently mapped to the
actual machines by the underlying framework (e.g., Yarn or Mesos);
some systems explicitly “over-partition” to simplify load-balancing, in
which case multiple logical partitions are mapped to the same physi-
cal machine. However, we often talk about mapping of a vertex to a
machine to simplify discussion.

Most systems partition the graph by vertices, i.e., each partition
consists of a set of vertices, all the properties of those vertices, and the
outgoing edges for those vertices. A straightforward method is to par-
tition the vertices by their IDs. For example, hash-based partitioning
computes the partition for a vertex using a hash function that takes the
vertex ID as input, while range-based partitioning divides vertices into
different partitions by ID ranges. The benefit of this method is that
we can compute the partition of a vertex (for sending messages to that
partition) in O(1) time. Optionally, one may create partitions with the
goal of reducing the number of edges that are cut (and thus the total
communication during analysis); however, this comes with the addi-
tional cost of having to run an expensive graph partitioning algorithm.
This approach also makes it more costly to find the location of a vertex,
and typically a distributed hash table needs to be used for this purpose
incurring additional communication (and thus round-trip delay) [Shang
and Yu, 2013, Khayyat et al., 2013]; one may also recode IDs in a pre-
processing step like in Giraph++ [Tian et al., 2013]. Shao et al. [2015]
even observed that Giraph exhibits worse performance when a better
partitioning is provided, as there are insufficient processors to process
local messages. Maintaining such partitions in presence of dynamic up-
dates to the graph is quite tricky, and typically this option is not used
in such cases.

Instead of partitioning by vertices, several systems advocate parti-
tioning by edges instead [Gonzalez et al., 2012]. In such cases, the edges
of a specific vertex v may be distributed to multiple machines, each also
keeping a replica of v’s data. This approach often leads to a more bal-

24 Preliminaries

anced workload across the machines, especially given that many graphs
(e.g., social networks) obey power-law degree distribution, resulting in
a few very high-degree vertices.

Synchronous vs Asynchronous Execution. Another issue is
whether the execution is synchronous or asynchronous. Consider
PageRank computation, where each vertex keeps collecting values from
in-neighbors and distributing values to out-neighbors until its PageR-
ank converges. Since different vertices have different convergence rates,
asynchronous execution allows those vertices that converge slowly
(resp., quickly) to run for more (resp., fewer) rounds, and is thus
more efficient. On the other hand, synchronous execution has more
deterministic behavior, and it is easier to batch messages there to re-
duce the overall communication cost. Usually asynchronous execution
is managed by a (distributed) prioritized scheduler that allows priori-
tized execution, while guaranteeing sufficient parallelism. One method
to determine priority is delta propagation, where vertices propagate
values (or deltas) to neighbors according to the incremental values (or
deltas) it receives, and a vertex with a large delta has a higher priority
of execution [Zhang et al., 2014]. In contrast, to perform breadth-first
search (BFS), synchronous execution where the i-th round activates
the vertices i hops away from the source vertex guarantees minimum
workload. Synchronous execution is also easy to analyze and debug due
to its deterministic behavior, and avoids race conditions and thus the
locking/unlocking cost. To sum up, synchronous execution is a desirable
choice unless the algorithm has an asymmetric convergence behavior.

Fault Tolerance. The last issue we would like to mention is fault toler-
ance. Although the underlying distributed storage (e.g., HDFS) already
provides resilience to data loss, if a long-running job fails, reloading
data and computing from scratch wastes all the previous computation.
Checkpointing provides a trade-off between (1) the failure-free cost paid
for being fault-tolerant, and (2) fast recovery. During synchronous ex-
ecution, all machines can periodically suspend their computation at
synchronization barriers, to write the current state of computation
to the resilient distributed storage. If machine failure happens later,
the latest stored computation state can be loaded to continue execu-

2.3. Single-Machine Architecture 25

tion (rather than starting from scratch). This method is called coor-
dinated checkpointing. There also exist uncoordinated checkpointing
methods [Chandy and Lamport, 1985] that do not need to suspend ex-
ecution, which is ideal for asynchronous execution. For algorithms that
always converge to a fixed point, checkpointing can be avoided and re-
covery can be done by re-initializing the states of the lost data [Schelter
et al., 2013].

2.3 Single-Machine Architecture

A single-machine graph analytics system is designed for running with
a single machine, thus avoiding the expensive network communication
overhead; however, such a system cannot scale out and thus has fixed
hardware resources. As a result, the running time is usually propor-
tional to the graph size. There are two types of single-machine systems:
(1) for commodity PCs with limited resources (especially memory), and
(2) for servers with many cores and a large memory.

For simplicity, let us assume that the computation is performed at
the granularity of vertices. A typical single-machine system will par-
tition vertices into multiple vertex shards V1, V2, . . ., Vn, and each
vertex shard Vi is associated with an edge shard Ei, which keeps the
edges (e.g., adjacency lists) of vertices in Vi. For Type (1) systems,
partitioning is performed so that each shard can be loaded into mem-
ory for computation at a time. Some systems like GraphChi [Kyrola
et al., 2012] load both Vi and Ei into memory for processing, while
others such as X-Stream [Roy et al., 2013] and VENUS [Cheng et al.,
2015] load only Vi into memory and stream Ei from disk. For Type (2)
systems, partitioning provides sufficient parallelism so that each shard
is processed by one core. Some of the latter systems may not even cre-
ate explicit shards, but rather load the entire graph into the shared
memory, and parallelize in an adaptive manner based on the specific
computation being performed.

Compared with a distributed architecture, a single-machine sys-
tem may need to preprocess the graph by sharding, which may not
pay off if only one light-workload job needs to be run subsequently.

26 Preliminaries

In fact, most such systems simply use a straightforward range-based
vertex partitioning [Kyrola et al., 2012, Roy et al., 2013, Cheng et al.,
2015], rather than more sophisticated ones for sharding efficiency. A
Type (2) single-machine system also requires one machine to load the
entire graph, which can be much more costly than the parallel loading
in a distributed system.

In general, we observe that a single-machine system can be more
efficient for small graphs and computationally-light jobs, since there
is no communication overhead. After all, distributed execution incurs
round-trip delay, the cost of which could be already more than the ac-
tual computation. In contrast, a distributed system is more appropriate
for big graphs and computationally-heavy jobs, since the scale-out so-
lution requires each machine to process only a portion of the entire
graph.

To better reason about efficiency of single-machine or distributed
systems, McSherry et al. [2015] proposed a metric called COST (Con-
figuration that Outperforms a Single Thread). For a given system and
for a given problem, the COST is the hardware configuration (mea-
sured in the number of cores) required before the system out-performs
a competent single-threaded implementation (which may be able to use
a better, but non-parallelizable algorithm). Thus, the metric weighs the
scalability of a system against the overheads introduced by the system
to achieve that scalability. Their studies of popular systems like Gi-
raph, GraphX and GraphLab show that those systems have very high
COSTs, and often seem to perform worse that a single-threaded imple-
mentation despite using many more cores.

We caution that COST should only be used as one of the criteria to
compare the pros and cons of different systems, and as a sanity check
on the overheads. A single-threaded implementation is fundamentally
limited in its ability to exploit parallelism. Further, for many graph
analysis tasks, an easy-to-use programming framework that interacts
with other widely used frameworks (like key-value stores, HDFS, etc.),
is perhaps a more important criteria than pure performance.

Part I

Vertex-Centric
Programming Model

3
Vertex-Centric Message Passing (Pregel-like)

Systems

In this chapter, we first review the framework of Pregel in Section 3.1,
and introduce how to develop Pregel algorithms with performance guar-
antees in Section 3.2. We then introduce the existing Pregel-like sys-
tems with improvements in communication mechanism (Section 3.3),
load balancing (Section 3.4), out-of-core support (Section 3.5) and fault
tolerance (Section 3.6).

3.1 The Framework of Pregel

Computation and Programming Model. A Pregel job starts by
loading the input graph G from GFS (Google File System) into the
main memories of the worker machines (or workers) in a cluster, where
vertices are partitioned among the workers. Typically, vertices are par-
titioned by a hash function hash(.) known by all workers: each vertex
v is assigned to a worker W = hash(v). Each vertex v maintains its
adjacency list (which usually stores Γ(v) or Γout(v)), a vertex value
a(v), and also a flag active(v) indicating whether v is active or halted.

A Pregel job proceeds in iterations, where an iteration is also called
a superstep. In Pregel, a user needs to specify a user-defined func-

29

30 Vertex-Centric Message Passing (Pregel-like) Systems

tion (UDF) compute(msgs) to be called by a vertex v, where msgs
is the set of incoming messages sent to v in the previous superstep.
In v.compute(.), v may update a(v), send messages to other vertices,
and vote to halt (i.e., deactivate itself). Only active vertices will call
compute(.) in a superstep, but a halted vertex will be reactivated if
it receives a message. The program terminates when all vertices are
halted and there is no pending message for the next superstep. Finally,
the results are dumped to GFS.

We now illustrate how to write compute(.), using two graph algo-
rithms. In these algorithms, a vertex only sends messages to its neigh-
bors (or out-neighbors), whose IDs are directly available in its adja-
cency list. In Section 3.2, we will see some Pregel algorithms where a
vertex sends messages to non-neighbors.

Example 1: PageRank. Consider the PageRank algorithm
of [Malewicz et al., 2010] where a(v) stores the PageRank value of
vertex v, and a(v) gets updated until convergence. In Step 1, each
vertex v initializes a(v) = 1/|V | and distributes a(v) to its out-
neighbors by sending each out-neighbor a message a(v)/dout(v). In
Step i (i > 1), each vertex v sums up the received message values,
denoted by sum, and computes a(v) = 0.15/|V | + 0.85 · sum. It then
distributes a(v)/dout(v) to each of its out-neighbors. If we want to per-
form PageRank computation for n supersteps, we can let every vertex
vote to halt and exit compute(.) in Step (n+ 1).

Example 2: Hash-Min. We consider the Hash-Min algorithm
of [Yan et al., 2014b] for computing the connected components (CCs)
of an undirected graph G. Given a CC C, we denote the set of vertices
of C by V (C), and define the ID of a CC C to be cc(v) = min{id(u) :
u ∈ V (C)}. Hash-Min computes cc(v) for each vertex v ∈ V . The idea
is to broadcast the smallest vertex ID seen so far by each vertex v,
which is stored in a(v). In Step 1, each vertex v sets a(v) to be the
smallest ID among id(v) and id(u) of all u ∈ Γ(v), broadcasts a(v) to
all its neighbors, and votes to halt. In Step i (i > 1), each vertex v

receives messages (if any) from its neighbors; let min be the smallest
ID received, if min < a(v), v sets a(v) = min and broadcasts a(v) to

3.1. The Framework of Pregel 31

its neighbors. All vertices vote to halt at the end of a superstep. When
the process converges, a(v) = cc(v) for all v.

We call the case where most vertices participate in the computation
as dense vertex access, and the case where only a small fraction
of vertices participate in the computation as sparse vertex access.
Every superstep of the PageRank algorithm is dense, while for Hash-
Min, earlier supersteps are dense while later supersteps are sparse.

Combiner. To reduce the number of messages transferred though the
network, users may implement a message combiner to specify how to
combine messages targeted at the same vertex vt, so that messages
on a worker W targeted at vt will be combined into a single message
by W locally, and then sent to vt. In the PageRank (resp. Hash-Min)
algorithm, the combiner can be implemented as the summation (resp.
minimum) operation, since only the summation (resp. minimum) of
incoming messages is of interest in compute(.).

Aggregator. Pregel also allows users to implement an aggregator for
global communication. Each vertex can provide a value to an aggrega-
tor in compute(.) in a superstep. The system aggregates those values
and makes the aggregated result available to all vertices in the next su-
perstep. In the actual implementation, the values are first aggregated
locally on each worker; then, the aggregated values are then aggregated
globally at the master; the globally aggregated value is then broadcast
back to all workers.

Fault Tolerance. To be fault tolerant, a Pregel job may be specified
to periodically back up the state of computation to GFS at superstep
boundaries as a checkpoint (e.g., every 10 supersteps). Since data on
GFS is replicated on multiple machines, a checkpoint is resilient to ma-
chine failures. If a failure happens, all workers simply reload the state of
computation from the latest checkpoint and then continue computation
from the last checkpointed superstep.

Graph Mutations. Pregel also supports graph mutations, which are
categorized into two types: (1) local mutations, where a vertex adds or
removes its own edges or removes itself; and (2) global mutations, where

32 Vertex-Centric Message Passing (Pregel-like) Systems

a vertex adds or removes (i) the edges of other vertices or (ii) other
vertices. Global mutations may incur conflicts and users may specify
conflict resolution policies to avoid nondeterministic behavior. In a su-
perstep, edge removals are performed first, and then vertex removals,
followed by vertex addition, and finally edge addition.

Graph Mutations are useful in some graph algorithms, such as the
algorithm for k-core finding [Quick et al., 2012] which finds the maximal
subgraphs of an undirected graph G in which every vertex has a degree
of at least k. In each superstep, the algorithm lets each vertex whose
degree is less than k delete itself and its adjacent edges, until all the
remaining vertices have degree at least k.

3.2 Algorithm Design in Pregel

Although there is an abundance of papers studying system improve-
ments to Pregel, the number of papers studying algorithm design in
Pregel is still very limited. However, as a general-purpose graph pro-
cessing framework, it is important to study how to design scalable
algorithms on top of Pregel.

There are a few papers studying Pregel algorithms: [Quick et al.,
2012] demonstrated that many social network analytic tasks can be
formulated as Pregel algorithms, while [Salihoglu and Widom, 2014]
proposed four algorithm-specific techniques to improve the performance
of some Pregel algorithms. However, these algorithms are still ad-hoc
and there lacks any cost analysis.

We remark that it is important for users to be aware of the scalabil-
ity of a Pregel algorithm. For example, in the triangle finding algorithm
of [Salihoglu and Widom, 2014], assuming that v2, v3 ∈ Γ(v1); then, to
determine whether a triangle 4v1v2v3 exists, vertex v1 sends a message
to v2 inquiring whether v3 ∈ Γ(v2). Since there are O(|E|

3
2) triangles

in a graph G, the number of messages generated in a superstep can
be much larger than the graph size, leading to long-running supersteps
or even memory overflow (note that Pregel buffers messages in main
memories to be processed by compute(.)). If a user is aware of this scal-
ability issue, he/she may simply design the algorithm to send inquiries

3.2. Algorithm Design in Pregel 33

for only a small subset of vertices in each superstep, so as to avoid
memory overflow.

Practical Pregel Algorithm (PPA). [Yan et al., 2014b] identified
a class of Pregel algorithms that have good scalability, called practical
Pregel algorithms (PPAs). Specifically, a Pregel algorithm is called a
balanced practical Pregel algorithm (BPPA) if it satisfies the
following constraints:

1. Linear space usage: each vertex v uses O(d(v)), or O(din(v) +
dout(v)), memory space.

2. Linear computation cost: the time complexity of v.compute(.) is
O(d(v)), or O(din(v) + dout(v)).

3. Linear communication cost: at each superstep, the volume of the
messages sent/received by each vertex v is O(d(v)), or O(din(v)+
dout(v)).

4. At most logarithmic number of rounds: the algorithm terminates
after O(log |V |) supersteps.

Constraints 1-3 offers good load balancing and linear cost at each su-
perstep, while Constraint 4 controls the total running time (note that
each superstep requires a global barrier at the end, which incurs some
cost). For some graph problems, the vertex-grained requirements of
BPPA can be too strict, and we can only achieve overall linear space
usage, computation cost, and communication cost (still in O(log |V |)
rounds). For example, in the S-V algorithm to be discussed at the end
of this section, some vertices may send many more messages than their
degrees, but the total number of messages is still linear to the graph
size. We call a Pregel algorithm that satisfies these constraints simply
as a practical Pregel algorithm (PPA).

The Hash-Min algorithm presented in Section 3.1 is not a PPA,
since it takes O(δ) supersteps. For example, in a path graph where
the smallest vertex is on one end of the path, Hash-Min runs for |E|
supersteps, the cost of which is prohibitive since each superstep re-
quires message synchronization. To achieve the O(log |V |)-superstep

34 Vertex-Centric Message Passing (Pregel-like) Systems

bound, it is usually necessary to use the pointer jumping (a.k.a. path
doubling) technique where a vertex needs to send messages to non-
neighbors. Pointer jumping is used in many Pregel algorithms, such as
the S-V algorithm for computing connected components (CCs) [Yan
et al., 2014b], the Pregel algorithm for computing biconnected com-
ponents [Yan et al., 2014b], and the Pregel algorithm for computing
minimum spanning forest [Salihoglu and Widom, 2014]. We illustrate
the idea of pointer jumping using two PPAs, one for list ranking and
the other for computing CCs.

Example 3: List Ranking. The list ranking problem is as follows,
where we assume elements in a list are linked backwards from the tail to
the head (the algorithm for the forward linking order can be similarly
derived). Consider a linked list L with n vertices, where each vertex v
is associated with a value val(v) and a link to its predecessor pred(v)
(i.e., a(v) consists of val(v) and pred(v)). The vertex v at the head of
L has pred(v) = null. For each v ∈ L, let us define sum(v) to be the
sum of the values of all the vertices from v following the predecessor
link to the head. The goal is to compute sum(v) for every v ∈ L. If
val(v) = 1 for any v ∈ L, then sum(v) is simply the rank of v in the
list, i.e., the number of vertices preceding v plus 1. Note that in the
input data, vertices are in arbitrary order. Albeit simple, list ranking is
important in parallel graph computation; for example, it is a building
block of the PPA for computing biconnected components [Yan et al.,
2014b].

We now describe a BPPA for list ranking. Initially, each vertex v
assigns sum(v) ← val(v). Then in each round, each vertex v does the
following: If pred(v) 6= null, v sets sum(v) ← sum(v) + sum(pred(v))
and pred(v)← pred(pred(v)); otherwise, v votes to halt. The if-branch
is accomplished in three supersteps: (1) v sends a message (whose value
is its own ID) to u = pred(v) requesting for the values of sum(u) and
pred(u); (2) u sends back the requested values to each requesting vertex
v; and (3) v updates sum(v) and pred(v) using the received values. This
process repeats until pred(v) = null for every vertex v, at which point
all vertices vote to halt and we have sum(v) as desired.

3.2. Algorithm Design in Pregel 35

11111NULL

22221NULL

44321NULL

54321NULL

v1 v2 v3 v4 v5

Figure 3.1: Illustration of the BPPA for List Ranking

Figure 3.1 illustrates how the algorithm works. Initially, objects v1–
v5 form a linked list with sum(vi) = val(vi) = 1 and pred(vi) = vi−1.
Let us now focus on v5. In Round 1, we have pred(v5) = v4 and so
we set sum(v5) ← sum(v5) + sum(v4) = 1 + 1 = 2 and pred(v5) ←
pred(v4) = v3. One can verify the states of the other vertices similarly.
In Round 2, we have pred(v5) = v3 and so we set sum(v5)← sum(v5)+
sum(v3) = 2 + 2 = 4 and pred(v5) ← pred(v3) = v1. In Round 3, we
have pred(v5) = v1 and so we set sum(v5)← sum(v5)+sum(v1) = 4+
1 = 5 and pred(v5)← pred(v1) = null. Obviously, the algorithm takes
O(logn) rounds and is a BPPA. Moreover, a vertex v communicates
with pred(v) which may not be its direct neighbor.

Example 4: S-V Algorithm. [Yan et al., 2014b] adapts Shiloach-
Vishkin’s PRAM algorithm for computing CCs [Shiloach and Vishkin,
1982] to work on Pregel, which is called the S-V algorithm. We present
a simplified version of the S-V algorithm here which is more efficient.
Throughout the algorithm, vertices are organized by a forest such that
all vertices in a tree belong to the same CC. Each vertex v maintains a
pointer D[v] indicating its parent in the forest (i.e., a(v) = D[v]). We
relax the tree definition a bit here to allow the tree root w to have a
self-loop (i.e., D[w] = w).

At the beginning, each vertex v initializes D[v]← v, forming a self
loop as shown Figure 3.2(a). Then, the algorithm proceeds in rounds,
and in each round, the pointers are updated in two steps: (1) tree
hooking (see Figure 3.2(b)): for each edge (u, v), if u’s parent w = D[u]

36 Vertex-Centric Message Passing (Pregel-like) Systems

v

(a) Init

w

u
x

v

w

u

x

v

(b) Tree Hooking

(c) Shortcutting

y

yx
w

u

x w
u

Figure 3.2: Illustration of the S-V Algorithm

is a tree root and D[v] < D[u], we hook w as a child of v’s parent D[v]
(i.e., we merge the tree rooted at w into v’s tree); (2) shortcutting (see
Figure 3.2(c)): for each vertex v, we move it closer to the tree root by
pointing v to the parent of v’s parent, i.e., D[D[v]]. Note that Step 2
has no impact on D[v] if v is a root or a child of a root.

The algorithm repeats these two steps until no vertex v has D[v]
updated in a round (checked by using aggregator), by which time every
vertex is in a star (i.e., tree of height 1), and each star corresponds
to a connected component. Since D[v] monotonically decreases during
the computation, at the end D[v] equals the smallest vertex in v’s
CC (which is also the root of v’s star). Similar to the request-respond
operation in list ranking, each step of S-V can be formulated in Pregel
as a constant number of supersteps, and since shortcutting guarantees
the O(log |V |)-round bound, the algorithm is a PPA. However, it is
not a BPPA since a parent vertex may communicate with many more
vertices than its own neighbors (e.g., a root). Moreover, a vertex v

communicates with D[v], which may not be its direct neighbor.

3.3. Optimizations in Communication Mechanism 37

3.3 Optimizations in Communication Mechanism

Since Google’s Pregel is not public, a lot of open-source Pregel-like
systems have been developed recently. The key feature of a Pregel-
like system is that, it adopts a message passing model for program-
ming and communication. This feature differentiates Pregel-like sys-
tems from those systems that adopt a shared memory abstraction. Ex-
isting Pregel-like systems improve the basic Pregel model from various
aspects. This section introduce a few popular Pregel-like systems with
improvements in the communication mechanism. We introduce more
Pregel-like systems that improve the framework of Pregel from other
aspects in the next three sections.

Giraph [Ching et al., 2015]. Apache Giraph is probably one of the
most popular Pregel-like systems, which is written in Java and built
on top of Hadoop. The good performance and scalability of Giraph
is mainly contributed by Facebook’s improvements to an earlier Gi-
raph version. There are three important improvements which we list
as follows. Firstly, Facebook researchers improved each worker to sup-
port multithreading in order to achieve fine grain parallelism. Secondly,
the old Giraph version maintains vertices, edges and messages as native
Java objects, which consumes excessive memory and garbage collection
time; Facebook researchers solved the problem by serializing the edges
and messages into byte arrays to reduce the number of objects. Thirdly,
a superstep splitting technique is developed to split a message-heavy
superstep into several steps, so that the number of messages transmit-
ted in each step does not exceed the memory size. Superstep splitting is
only effective when a received message can be aggregated to a value by
the receiver vertex, or more formally, compute(.) is distributive (e.g.,
message summation in PageRank computation).

Pregel+ [Yan et al., 2015]. Pregel+ is written in C/C++, and thus
recycles memory in time and keeps the memory footprint small. Since
the system has full control of memory usage, all vertices, edges and
messages are stored as main-memory objects and there is no need of
serialization (except for sending messages). Pregel+ further developed
two techniques to reduce the number of messages as described below.

38 Vertex-Centric Message Passing (Pregel-like) Systems

The first technique is to create mirrors of each high-degree vertex
v on all other workers that contain v’s neighbor(s). The adjacency list
of v is partitioned among its mirrors, where each mirror maintains the
sub-list of v’s neighbors in its local worker. In the PageRank (resp.
Hash-Min) algorithm, v broadcasts the same value a(v)/dout(v) (resp.
a(v)) to all its out-neighbors (resp. neighbors); for such an algorithm, v
simply sends the value to every mirror, which then forwards the value
to all (and possibly many) local neighbors. The message value towards
a neighbor w (on workerWw) may also be post-processed by the mirror
of v on Ww using the edge value of (v, w) (according to an optionally
user-defined function) before forwarding it to w. Since each worker has
at most one mirror for v, the total number of messages incurred by v
is bounded by the number of workers |W|, which can be much smaller
than v’s degree.

However, since a mirrored vertex forwards its value directly to its
mirrors, it loses the chance of message combining. Therefore, there is a
tradeoff between vertex mirroring and message combining in reducing
the number of messages, and we should only mirror high-degree ver-
tices. [Yan et al., 2015] proves that the number of messages is minimized
when we mirror all vertices with degree at least |W| · exp{davg/|W|}
where davg is the average vertex degree.

The second technique is designed for pointer jumping algorithms
where a vertex needs to communicate with a large number of other
vertices that may not be its neighbors. To see this, consider the last
round of the S-V algorithm described in Section 3.2, where a root r
vertex needs to communicate with all other vertices v in r’s component,
since they form a star rooted at r (i.e., D[v] = r). Here, each vertex v
will send requests to r for the value of D[r] in a superstep, and r will
receive these requests and send D[r] to every requesting vertex in the
next superstep. Pregel+ prevents r from receiving and sending a lot
of messages, by combining all requests on each worker as one request
towards r, and r only responds to every requesting worker rather than
every requesting vertex. To support this optimization, Pregel+ allows
a vertex v to request for the value of another vertex (e.g., r), and the
value (e.g., D[r]) can then be directly accessed in the next superstep.

3.3. Optimizations in Communication Mechanism 39

GPS [Salihoglu and Widom, 2013]. GPS is written in Java, and
can be more efficient than Giraph when a parameter called polling time
is set as small value such as 10 ms (the default setting is 1 s, which
forces any superstep to take at least 1 s) [Lu et al., 2014]. There are
two main optimizations over the basic model of Pregel. Firstly, it sup-
ports a technique called LALP which is similar to vertex mirroring in
Pregel+. However, to deal with the conflict between vertex mirroring
and message combining, it simply does not perform sender-side mes-
sage combining at all, and is thus less effective than Pregel+ in terms
of message reduction. Secondly, since the workload may change during
computation, GPS considers vertex migration for dynamic load balanc-
ing. However, vertex migration is too costly to be effective, as we shall
discuss in Section 3.4.

MOCgraph [Zhou et al., 2014]. MOCgraph is developed on top
of Giraph, and adopts the message online computing (MOC) model to
eliminate the memory space consumed by messages. The idea is to let
in-memory vertices absorb incoming messages directly without buffer-
ing them. While MOCgraph adopts asynchronous execution to allow
faster convergence, it retains the concept of “superstep” which differ-
entiates it from GraphLab. In each superstep of the MOC model, every
vertex v calls a UDF sendMessages(.) exactly once to send messages,
whose values are computed from v’s latest value; meanwhile, each mes-
sage received by a vertex u reads and updates u’s latest vertex value by
calling another UDF onlineCompute(.). Note that this essentially re-
quires that onlineCompute(.) is distributive (like message combiner of
Pregel). Therefore, the MOC model generates and consumes messages
in the same superstep, carrying no messages across supersteps.

To support synchronous execution like in Pregel, the UDF
v.sendMessages(.) sends messages according to v’s old value updated
by the last superstep, rather than using the latest value. In other words,
each vertex v maintains two values, the old value for computing outgo-
ing messages, and the latest value to be updated by incoming messages.

If the memories cannot hold all vertices, MOCgraph partitions
vertices into partitions on disks, and incoming messages have to be
buffered to disks. Consider a message m targeted at vertex v in a par-

40 Vertex-Centric Message Passing (Pregel-like) Systems

tition P . If P is not in memory, m has to be appended to a message
file that corresponds to P . To process a vertex partition P , messages in
the corresponding message file will first be loaded to update P , before
vertices in P send messages. Note that keeping more vertices in mem-
ory allows more incoming messages to be absorbed without buffering,
and thus MOCgraph separates edges from vertex partitions to allow
more vertex partitions to be kept in memory (while only those edges of
the current partition in processing are kept in memory). A hot-aware
re-partitioning strategy is used to keep those partitions that tend to
receive more messages in memory.

3.4 Load Balancing

In this section, we review some Pregel-like systems that improve load
balancing during computation by two techniques: vertex migration and
dynamic concurrency control.

Vertex Migration. A Pregel job may exhibit different workload dis-
tributions in different supersteps. For example, in Hash-Min, while all
vertices send messages at the first superstep, few vertices are active in
the last few supersteps. The set of active vertices (or more strictly, the
set of vertices that send messages) in a superstep is called a working
window, or simply, wind, by [Shang and Yu, 2013]. The idea of vertex
migration, or dynamic graph partitioning, is to migrate vertices from
workers with heavy workloads to those with light workloads during the
computation, which also endeavors to reduce the communication cost
(e.g., crossing machine edges).

However, there are two challenges in vertex migration: (1) migrat-
ing a vertex also requires migrating its adjacency list, which is more
costly than sending a message; (2) it is difficult to catch the wind: for
example, a migrated vertex may just converge and need no more com-
putation, and a worker currently with a light workload may be heavily
loaded in the next superstep due to the activation of many of its ver-
tices. Even worse, since the vertex-to-worker relationship changes, we
cannot simply derive the worker of a vertex by hashing its ID, and
more costly method should be used. Note that the vertex-to-worker

3.4. Load Balancing 41

mapping is critical to system performance, because when a vertex u

sends a message to another vertex v, it needs to know which machine
the message should be sent to (i.e., the machine that v resides in).
Therefore, existing efforts on vertex migration turn out to be not very
effective, which we review next.

[Shang and Yu, 2013] developed a Pregel-like system on top of
HAMA, which keeps track of the vertex-to-worker mapping by a
Lookup Table [Tatarowicz et al., 2012]. A few policies are designed
based on the immediate previous wind to catch the wind in the next
superstep. The best reported result is a 31.5% reduction of execution
time for PageRank computation, while the ratio is merely 2% and 9%
for shortest path computation and maximal matching.

Mizan [Khayyat et al., 2013] identifies the cause of workload imbal-
ance using distributed measurements of the performance characteristics
of all vertices, and constructs a vertex migration plan without requiring
centralized coordination. The vertex-to-worker mapping is maintained
by a distributed hash table (DHT). [Khayyat et al., 2013] partitioned
vertices using hash-based ID partitioning, range-based ID partition-
ing and METIS [Karypis and Kumar, 1998] in their experiments, and
found that for both hash-based and METIS partitioning, dynamic mi-
gration did not improve the results; while around 40% improvement was
observed for range-based partitioning. Recently, [Han et al., 2014a] re-
ported that Mizan does not function correctly with dynamic migration.

GPS also supports dynamic graph partitioning. Instead of using a
lookup table to keep the vertex-to-worker mapping, GPS relabels the
IDs of the migrated vertices so that the mapping can still be computed
by the hash function. The additional overhead is to update the old ID in
the adjacency lists of other vertices with the relabeled ID. During vertex
migration, GPS keeps the number of vertices in each worker unchanged,
and a vertex is migrated only if the number of messages is significantly
decreased after the migration (controlled by a threshold). However,
even the developers of GPS themselves do not recommend to enable
vertex migration. For example, Semih said the following comments:

42 Vertex-Centric Message Passing (Pregel-like) Systems

“... unless your job is going to run a large number of supersteps,
running dynamic repartitioning will slow down your job ...”1

“In general, I advice not to do dynamic repartitioning and also not
to work on it. I think it’s very difficult to get benefits out of it in a real
system implementation. The overheads are just too high.”2

Dynamic Concurrency Control. While previous explorations on
vertex migration turned out not very effective, there is an existing
work that dynamically balances the workload within each individual
worker, which exhibits reasonable performance improvement. Specifi-
cally, [Shao et al., 2015] observed that a high-quality graph partition-
ing (e.g., from METIS) sometimes even decreases the overall perfor-
mance in existing big graph systems, despite the reduced number of
crossing-machine edges. This is because, while the number of messages
from remote machines is reduced, the number of messages sent by lo-
cal vertices significantly increases. However, existing systems are not
partition-aware, and still allocate the same amount of computing re-
sources (e.g., threads) to process remote messages and local messages,
respectively. Therefore, the increased volume of local messages leads to
a performance bottleneck (since the number of threads processing them
is not increased), and the cost of processing local messages dominates
the overall cost.

[Shao et al., 2015] developed the PAGE system, which adopts a
dynamic concurrency control model, to overcome the above limitation.
Each worker in PAGE monitors measurements such as message genera-
tion speed, local message processing speed and remote message process-
ing speed. Based on these measurements, PAGE dynamically adjusts
the numbers of threads for processing local and remote messages, re-
spectively, so that (1) the speed of message processing matches the
speed of incoming messages, and that (2) the numbers of threads as-
signed to process local and remote messages, are proportional to the
incoming speeds of local and remote messages, respectively.

1https://groups.google.com/forum/#!searchin/stanfordgpsusers/
repartition/stanfordgpsusers/3Wzlnm1eXbw/xf8c9hBUCGMJ

2https://groups.google.com/forum/#!searchin/stanfordgpsusers/
repartition/stanfordgpsusers/HV04gc-2Tcs/T-tlgC2GpdgJ

https://groups.google.com/forum/#!searchin/stanfordgpsusers/repartition/stanfordgpsusers/3Wzlnm1eXbw/xf8c9hBUCGMJ
https://groups.google.com/forum/#!searchin/stanfordgpsusers/repartition/stanfordgpsusers/3Wzlnm1eXbw/xf8c9hBUCGMJ
https://groups.google.com/forum/#!searchin/stanfordgpsusers/repartition/stanfordgpsusers/HV04gc-2Tcs/T-tlgC2GpdgJ
https://groups.google.com/forum/#!searchin/stanfordgpsusers/repartition/stanfordgpsusers/HV04gc-2Tcs/T-tlgC2GpdgJ

3.5. Out-Of-Core Execution 43

3.5 Out-Of-Core Execution

While most distributed big graph systems are in-memory systems, out-
of-core support has recently attracted a lot of attention due to the real
demands from academic institutes and small businesses that could not
afford memory-rich clusters. For example, [Bu et al., 2014] reported
that in the Giraph user mailing list there are 26 cases (among 350
in total) of out-of-memory related issues from March 2013 to March
2014. As another example, [Zhou et al., 2014] reported that to process
a graph dataset that takes only 28GB disk space, Giraph and GraphLab
need 370GB and 800GB memory space, respectively; and when mem-
ory resources become exhausted, the performance of Giraph degrades
seriously while GraphLab simply crashes.

Two solutions are currently available for processing a big graph
when memory space is insufficient. The first solution is to use a single-
PC disk-based (or SSD-based) graph systems like GraphChi [Kyrola
et al., 2012] and X-Stream [Roy et al., 2013]. Since these systems adopt
the shared memory abstraction, we will review them in Chapter 5.
However, the performance of these systems is limited by the disk band-
width of one PC, and thus the processing time scales linearly with the
graph size. To scale to larger graphs, the second solution is to use a
distributed graph system that supports efficient out-of-core execution.
In such a system, the graph is partitioned among all machines in a
cluster, and during computation, each machine only processes its own
part of the graph on the local disk. As a result, the bandwidth of all
disks in a cluster is fully utilized, but the tradeoff is that the overhead
of network communication is incurred.

We now briefly review the existing distributed big graph systems
that support out-of-core execution. Giraph has been extended with
out-of-core capabilities to solve the out-of-memory issues3, where users
can enable “out-of-core graph” (resp. “out-of-core messages”) to store
graph partitions (resp. “messages”) to local disk(s) if the in-memory
buffer overflows. Users may set the maximum number of partitions
and/or messages allowed to be kept in memory, and provide a list of

3http://giraph.apache.org/ooc.html

44 Vertex-Centric Message Passing (Pregel-like) Systems

paths corresponding to different disks on each machine, so that Gi-
raph will access all disks in a round-robin fashion to fully utilize the
disk bandwidth. Pregelix [Bu et al., 2014] models the semantics of
Pregel by relational operations like join and group-by, and leverages a
general-purpose dataflow engine for out-of-core execution. In contrast,
GraphD [Yan et al., 2016d] tailors its out-of-core execution design to
the computation model of Pregel, and is thus able to avoid expen-
sive operations like join and group-by. Recently, Chaos [Roy et al.,
2015] extends X-Stream to work in a distributed environment, but it is
only efficient when network bandwidth far outstrips storage bandwidth
(which is also an assumption in its system design).

In the next subsection, we review the GraphD system. Pregelix will
be reviewed in Section 8.2 when we discuss dataflow-based systems,
and GraphChi, X-Stream and Chaos will be reviewed in Sections 5.2.1
and 5.2.2 when we discuss systems that adopt shared memory abstrac-
tion.

3.5.1 GraphD

GraphD [Yan et al., 2016d] is designed to run on a cluster of commod-
ity PCs connected by Gigabit Ethernet, which are readily available
in academic institutes and small businesses. In this setting, the band-
width of sequential disk scan is usually much higher than the actual
network bandwidth [Yan et al., 2016d, Shen et al., 2014]. This is be-
cause (1) sequential disk scan is significantly accelerated by memory
cache, and (2) the network resource is contended by all the workers in a
cluster, limiting the point-to-point connection throughput. Therefore,
if each worker streams disk-resident data (e.g., edges and messages) in
parallel with message transmission, it is possible to hide the time for
disk streaming inside the time for network communication. GraphD ex-
ploits this characteristic and achieves performance comparable to (and
sometimes even faster than) an in-memory Pregel-like system.

Distributed Semi-Streaming Model. Like Pregel, GraphD parti-
tions vertices among the workers in a cluster using a hash function
hash(.). However, GraphD adopts a novel distributed semi-streaming
(DSS) computation model, where each worker only keeps the states of

3.5. Out-Of-Core Execution 45

its vertices in main memory, and the adjacency lists are stored in a
file on local disk, which we call as the edge stream, denoted by SE .
The state of a vertex v includes its ID, a(v), active(v), and d(v) (or
dout(v) for a directed graph), whose memory space is bounded by a
small constant.

A worker W organizes its in-memory vertex states by an array A,
whose elements are ordered by vertex ID. The adjacency lists in SE are
also ordered by the ID of their corresponding vertices. In a superstep,
the compute(.) function is called on the active vertices in A in serial.
Since a vertex v needs to access Γ(v) in v.compute(.), the next d(v)
items are sequentially read from SE to form Γ(v).

To skip the adjacency lists of a series of inactive vertices efficiently,
W sums the degree of these vertices as sum, and forwards the read
position in SE by sum items. If data at the new position is not con-
tained in the in-memory streaming buffer of SE , the buffer is refilled
with data starting from the new position. This design avoids reading
all items in SE when only a small fraction of vertices are active.

Since only vertex states are kept in memory, the total RAM space
required by GraphD is onlyO(|V |). Moreover, [Yan et al., 2016d] proved
that in a cluster of workers, W, every worker requires only O(|V |/|W|)
RAM space for the state array A, with a high probability of (1 −
O(1/|V |)). The RAM space required by streaming buffers and buffers
for sending and receiving messages are negligible compared with A.

Message Streams. Like edges, messages are also treated as disk
streams in GraphD. For simplicity, we only discuss Pregel algorithms
where message combiner is applicable. Each worker W maintains |W|
outgoing message streams SO

1 , . . . , S
O
|W|, where each stream SO

i stores
messages towards the i-th worker, denoted by Wi. If a vertex on W

sends a message to another vertex on Wi, the message is simply ap-
pended to SO

i .
In order to perform vertex-centric computation (which generates

messages) and sending generated messages in parallel, a message stream
SO

i is split into multiple files as follows: if the size of the current file
written by SO

i reaches a threshold B, a new file is created for appending
more messages. A sending thread probes all the |W| message streams,

46 Vertex-Centric Message Passing (Pregel-like) Systems

and whenever it finds a stream SO
i that has unsent message files, it

performs message combining over these messages and sends them in
one batch to Wi.

In GraphD, a message is first appended to a message stream on local
disk, and then loaded by the sending thread for sending. This design
may appear to be slower than sending a message directly without going
through local disk. However, since message generation is much faster
than message transmission, if we buffer all messages in main memory,
vertex-centric computation has to be stalled when too many messages
are generated, waiting for some buffered messages to be sent to leave
room for generating more messages. In contrast, by buffering messages
to local disks, GraphD avoids stalling vertex-centric computation (and
thus message generation). Moreover, since network bandwidth is lower
than disk bandwidth, the performance bottleneck is message sending
rather than streaming outgoing message streams.

Finally, we show that expensive disk-based operations like external-
memory join and group-by are not needed. Let us denote the set of ver-
tices on a worker W by V (W). The sending thread of a worker main-
tains an in-memory table with maxW∈W |V (W)| message elements. To
combine messages in SO

i before sending, each message is processed in
turn: if the message targets at a vertex u in Wi, it is directly com-
bined to the table entry that saves u’s combined message. Similarly,
the receiving thread of a worker W maintains an in-memory table with
|V (W)| message elements, and each received message is processed in
turn: if the message targets at a vertex u in W , it is directly combined
to the table entry that saves u’s combined message. Each combined
message is used as the input to compute(.) of the corresponding ver-
tex in the next superstep. Recall that maxW∈W |V (W)| is bounded
by O(|V |/|W|) with high probability, and thus, the in-memory tables
maintained by the sending and receiving threads of a worker do not
breach the O(|V |/|W|) RAM space bound of DSS.

3.6. Fault Tolerance 47

3.6 Fault Tolerance

Fault tolerance is important for distributed systems: a long-running
job should survive (or recover quickly from) the crash of any machine,
rather than restart from the very beginning. For this goal, Pregel peri-
odically saves the computation state of the current superstep (including
vertex states, adjacency lists and messages) as a checkpoint to GFS,
so that when failure happens, computation can roll back to the latest
checkpointed superstep. Open-source Pregel-like systems like Giraph
also support checkpointing, by backing up the state of a superstep to
HDFS. Note that the contents of a checkpoint are not lost even if some
machines crash, since a DFS replicates data on multiple machines.

A checkpoint can be written for every few (e.g., 10) supersteps,
but since the running time of different supersteps may be different, a
better solution is to use time-based checkpointing, e.g., to checkpoint
the current superstep if at least 5 minutes have passed since the last
checkpoint is written. Since a checkpoint is written by all workers after
they finish a superstep, this method is called coordinated checkpointing.

Besides coordinated checkpointing, many other rollback-recovery
protocols have been extensively studied for message-passing systems
and are well surveyed by [Elnozahy et al., 2002], such as incremen-
tal checkpointing and uncoordinated checkpointing. Incremental check-
pointing avoids rewriting portions of states that do not change be-
tween consecutive checkpoints. For example, for Pregel algorithms
without topology mutations, adjacency lists only need to be saved in the
first checkpoint. Uncoordinated checkpointing protocols like Chandy-
Lamport snapshot [Chandy and Lamport, 1985] is designed for asyn-
chronous message-passing systems. For example, Maiter uses Chandy-
Lamport snapshot while GraphLab adapts it for systems that use a
shared-memory abstraction.

Recently, many novel and efficient fault recovery mechanisms were
designed for Pregel-like systems and other vertex-centric systems, such
as message logging [Shen et al., 2014], lightweight checkpointing [Yan
et al., 2016c], optimistic recovery [Schelter et al., 2013] and replication-
based fault-tolerance [Wang et al., 2014]. We now introduce the above
fault tolerance mechanisms in the following subsections.

48 Vertex-Centric Message Passing (Pregel-like) Systems

3.6.1 Chandy-Lamport Snapshot

We describe Chandy-Lamport snapshot in the context of vertex-centric
computation. Specifically, a checkpointing request is initiated at fixed
intervals, where each worker checkpoints the current states of its ver-
tices (and their related messages) to HDFS. However, the checkpointed
states may be inconsistent. To see this, consider two vertices u and v,
and assume that the following four events happen in order: (1) u’s
state is checkpointed, (2) u updates a(u) and sends a message to v,
(3) v receives the message and updates a(v), (4) v’s state is check-
pointed. Then, any checkpoint containing the saved states of u and v
is inconsistent, since a(u) refers to the old value before Event (2), but
a(v) is affected by the updated value of a(u) after Event (2).

Chandy-Lamport snapshot assumes that communication channels
are FIFO, and prevents the above inconsistency as follows. Whenever
a vertex u is checkpointed, it broadcasts a checkpointing request to
all vertices that u will send messages to, before sending any messages.
When a vertex v receives a checkpointing request, it ignores the re-
quest if it has already checkpointed its state for the current round
of checkpointing; otherwise, v checkpoints its state and broadcasts a
checkpointing request to all its neighbors.

We now illustrate how this protocol eliminates state inconsistency
in the previous example. Specifically, u will send a checkpointing re-
quest to v right after Event (1), and since communication channels are
FIFO, v receives the checkpointing request before the message from u

is received. Therefore, v checkpoints a(v) before Event (3), and thus
both a(u) and a(v) do not reflect the effect of Event (2) and are thus
consistent.

3.6.2 Recovery by Message-Logging

When a Pregel job fails at a superstep (let it be Step sfail), the latest
checkpoint (at Step scp) is loaded from HDFS and all vertices roll their
states back to Step scp. Then, the computation restarts from Step scp

as in normal execution. However, this approach wastes computation.
Specifically, while a vertex in a failed worker has to be reassigned to

3.6. Fault Tolerance 49

another alive worker and to perform recomputation from Step scp, the
state of a vertex in a surviving worker is already at Step sfail and there
is no need to recompute it.

However, when coordinated checkpointing is used alone, a surviving
vertex has to perform recomputation from Step scp to Step sfail. This
is because its messages towards vertices in failed workers are needed
as input to compute(.) when those vertices recompute their states. To
avoid surviving vertices from rolling their states back, [Shen et al.,
2014] proposed to let each vertex log the messages that it generates (in
compute(.)) to the local disk of its worker, before sending them. Since
network bandwidth is much lower than disk streaming bandwidth in a
Gigabit Ethernet environment, [Shen et al., 2014] observed negligible
cost for logging messages. During recovery, only those messages that
target at the reassigned vertices need to be transmitted. Specifically,
(1) a surviving vertex simply forwards its logged messages towards
those reassigned vertices, while (2) a reassigned vertex performs vertex-
centric computation, logs all its generated messages (for forwarding in
case some other workers fail later), but only sends those messages that
target at the reassigned vertices. This is sufficient to guarantee that a
reassigned vertex receives messages from all vertices between Step scp

and Step sfail, and the recovery is much faster as the communication
workload is much lower than during normal execution.

However, it is not sufficient to classify vertices into only two classes,
surviving ones and reassigned ones. This is because a cascading failure
may happen at a superstep scas < sfail during the recovery, at which
time vertices may be at three different states: (1) vertices surviving
both failures are at Step sfail, (2) vertices that are reassigned due to
the first failure but survive the second failure are at Step scas, and
(3) vertices that does not survive the second failure are reassigned and
are at Step scp.

Let us denote the state (in terms of superstep number) of a vertex v
by s(v), then a recovery algorithm that is robust to cascading failures
should classify vertices by their states, and a vertex v whose state
is at Step s(v) should perform vertex-centric computation only after
Step s(v) is recovered. Moreover, a vertex v that does not perform

50 Vertex-Centric Message Passing (Pregel-like) Systems

vertex-centric computation only needs to forward logged messages to
those vertices u where s(u) < s(v). The detailed recovery algorithms
can be found in [Shen et al., 2014] and in [Yan et al., 2016c].

When a failure happens, [Shen et al., 2014] also reassigns vertices in
failed workers to multiple alive workers using a cost-sensitive reassign-
ment algorithm, to achieve parallelism of recomputation and to reduce
the recovery time. The reassignment is computed by the master and
written to a zookeeper slave; each worker slave then obtains the reas-
signment from the zookeeper and loads those failed vertices that are
assigned to it.

3.6.3 Lightweight Checkpointing

In existing Pregel-like systems, the checkpoint of a superstep contains
(1) vertex states which take O(|V |) space, (2) adjacency lists which
take O(|E|) space, and (3) all messages generated in the superstep. The
messages usually take O(|E|) space (e.g., in PageRank computation),
but can be much larger (e.g., O(|E|3/2) in triangle counting).

While we can use incremental checkpointing to save the O(|E|)
amount of adjacency lists in a checkpoint, it is still expensive to write
a checkpoint to HDFS due to the large message volume. [Yan et al.,
2016c] proposed a lightweight checkpointing method to further remove
messages from a checkpoint, which improves the checkpointing time by
tens of times. To recover from a failure, the vertex states are loaded
from the latest checkpoint, and outgoing messages are then generated
from the vertex states for sending (rather than loaded directly from
the checkpoint).

The idea of lightweight checkpointing is motivated by the observa-
tion that, in many Pregel algorithms, the logic of v.compute(msgs) can
be reformulated as two steps: (1) to update the vertex state of v using
the incoming messages msgs, and (2) to generate outgoing messages
solely based on the updated state of v. In other words, given the up-
dated state of a vertex, outgoing messages do not have to be computed
by looking at the incoming messages.

Lightweight checkpointing is directly applicable to many Pregel al-
gorithms. For example, in PageRank computation, incoming messages

3.6. Fault Tolerance 51

are first summed up to update a(v), and then outgoing message to each
out-neighbor is computed as a(v)/dout(v). For other Pregel algorithms,
it may be necessary to include additional fields to a(v). For example, in
Hash-Min, a(v) should include not only the minimum vertex ID seen by
v, denoted by min(v), but also a boolean flag, denoted by updated(v),
indicating whether min(v) is updated by incoming messages. If the
smallest incoming message min∗ is less min(v), v sets min(v)← min∗

and updated(v)← true; otherwise, updated(v) is set as false. The out-
going messages are generated from a(v) as follows: if updated(v) is false,
no message is generated; otherwise, a message with valuemin(v) is sent
to each neighbor of v.

In fact, lightweight checkpointing is applicable even when the outgo-
ing messages need to be computed by looking at an incoming message,
since the incoming message can be included into a(v). For example, in
the list ranking algorithm in Section 3.2, a vertex v sends its ID to its
predecessor u = pred(v) requesting for a(u). Therefore, we need to add
the message that u receives (i.e., v) into a(u); otherwise, u does not
know to which vertex (i.e., u’s successor) a response message should be
sent to.

However, [Yan et al., 2016c] indicates that there exist some algo-
rithms where a vertex u may receive requests from many other vertices,
and it needs to respond to all of them. In this case, lightweight check-
pointing is not applicable to the responding superstep. For example, in
the S-V algorithm in Section 3.2, a vertex u may have many children
(i.e., each child v has D[v] = u), and thus need to respond to many
vertices. Instead of checkpointing a responding superstep by also saving
the many requesting messages, [Yan et al., 2016c] proposed to postpone
the checkpointing to the first superstep after it such that lightweight
checkpointing is applicable.

[Yan et al., 2016c] also applied this idea to the message-logging
based recovery algorithm of [Shen et al., 2014], which avoids the
slow down of failure-free performance due to garbage collecting locally
logged messages. Specifically, to avoid logged messages from using up
disk space, after a checkpoint is written, it is necessary to delete all out-
dated messages logged before the commit of the checkpoint. However,

52 Vertex-Centric Message Passing (Pregel-like) Systems

the deletion is time-consuming since all messages generated between
two checkpoints need to be deleted. In [Yan et al., 2016c], only ver-
tex states are logged to local disks, and messages to be forwarded to
the reassigned vertices during recovery are generated from the logged
vertex states. Since the log volume becomes very small, garbage collec-
tion takes negligible time. However, for a superstep to which lightweight
checkpointing is not applicable, message logging should be used instead
of vertex-state logging.

3.6.4 Other Methods

For a narrower class of self-correcting fix-point algorithms, optimistic
recovery [Schelter et al., 2013] eliminates the need of checkpointing at
all. Specifically, since such an algorithm converges to the same result
regardless of the initial vertex states, when failure happens, [Schelter
et al., 2013] simply re-initiates the states of those vertices in failed
workers and continues execution. For example, in PageRank computa-
tion, as long as the sum of all vertex values (denoted by sumall) are
fixed, no matter how the vertex values are initialized, the converged
values are the same. Therefore, when failure happens, a user-defined
compensate function obtains (1) the sum of values of all surviving ver-
tices, denoted by sumalive, and (2) the number of surviving vertices,
denoted by nalive; the function then re-initializes the value of each ver-
tex in a failed worker by (sumall− sumalive)/(|V | −nalive), so that the
new sum of all vertex values still equals sumall. The computation then
continues until converged.

Imitator [Wang et al., 2014] avoids checkpointing by constructing
k replicas of each vertex on k different workers. As long as less than k
workers crash, each vertex still contains at least one replica and compu-
tation is not lost. However, replicas consume additional memory space,
and any update to a vertex should be synchronized to all replicas, which
leads to additional communication overhead during normal execution.

Spark [Zaharia et al., 2012] is a distributed system for general com-
putation, which features its lineage-based fault tolerance. Specifically,
a dataset in Spark is represented as a Resilient Distributed Dataset
(RDD) consisting of many partitions of records. Lineages of partitions

3.7. Summary 53

are logged: for each partition in an RDD, those partitions (from other
RDD(s)) that are involved in computing its records are logged. Since
coarse-grained partitions are considered instead of individual records,
the lineage DAG tends to be small. However, this approach is mainly
useful for operations with narrow dependency, where a lost partition
only depends on one or a few other partitions. The message-passing
model of Pregel has a wide dependency, since a vertex may send mes-
sages to neighbors in many other partitions, and thus lineage-based
recovery is ineffective. In fact, Spark also uses coordinated checkpoint-
ing when computing PageRank [Zaharia et al., 2012].

3.7 Summary

Starting from the pioneering vertex-centric system, Google’s Pregel,
we took a journey through various vertex-centric systems that adopt
message passing for communication, and execute synchronously. The
synchronous model of these systems makes it easy to analyze and de-
bug the behavior of an algorithm, and avoids the overhead of solving
race conditions. Also, a user writes an application code by specifying
how each vertex performs computation by sending other vertices mes-
sages. The flexibility of the message passing interface is that, a vertex
can send messages to any other vertex that it can keep track of, not
just its neighbors. This allows many of these systems to implement ef-
ficient parallel algorithms that perform pointer jumping like in their
PRAM algorithm counterparts (See Section 3.2). However, note that
some message passing systems sacrifice expressiveness to reduce mem-
ory consumption. For example, MOCgraph and superstep splitting of
Giraph, are both designed for algorithms where a vertex sends messages
to neighbors, and aggregates its received messages (see Section 3.3). We
also reviewed how research has been actively conducted on improving
the efficiency and robustness of the neat model of Pregel from differ-
ent aspects in Sections 3.3–3.6. In the next chapter, we review those
systems that go beyond the simple vertex-centric computation model
rather than simply improving upon it.

4
Vertex-Centric Message-Passing Systems

Beyond Pregel

The vertex-centric model of Pregel may not provide satisfactory per-
formance to some important graph problems, and this chapter reviews
three variants of Pregel’s model that overcomes its inefficiency from dif-
ferent aspects. (1) For processing graphs with high-degree vertices and
a large diameter, Section 4.1 reviews how several systems use a novel
block-centric computation model to avoid heavy communication and
large number of iterations. (2) For algorithms with asymmetric con-
vergence rate, Section 4.2 reviews several systems that adapts Pregel’s
model for asynchronous execution, which schedule the computation fre-
quency of each vertex according to its convergence rate. (3) Pregel’s
model is designed for offline analytics, and Section 4.3 reviews a sys-
tem that inherits the vertex-centric interface of Pregel, but designs its
runtime engine to be efficient for online graph querying.

4.1 Block-Centric Computation

We first review an important extension to the vertex-centric model of
Pregel, i.e., the block-centric computation model. The vertex-centric
model is mainly designed to process small diameter graphs like social

55

56 Vertex-Centric Message-Passing Systems Beyond Pregel

networks. This is because it requires one superstep to propagate data
for merely one hop, and thus, let the graph diameter be δ, the num-
ber of supersteps is often O(δ) (e.g., consider Hash-Min) unless pointer
jumping is used. However, many real big graphs have a large diameter,
such as continental road networks and terrain meshes. Even non-spatial
graphs may have a large diameter, such as web graphs which exhibit
spatial locality: a local webpage is more likely to link to another local
webpage than to link to a webpage elsewhere (e.g., abroad). For exam-
ple, [Salihoglu and Widom, 2014] reported that it takes 4546 and 6509
supersteps to compute the strongly connected components of two web
graphs uk-2005 and sk-2005. To solve this problem, they designed an al-
gorithmic optimization called FCS (Finishing Computations Serially),
which monitors the number of active vertices, and once the number is
small enough, these active vertices (and their adjacency lists) are sent
to the master and serial computation is performed on the constructed
subgraph. After applying FCS, the number of supersteps is reduced to
3278 and 2857, respectively, which is still very large.

A satisfactory solution to this problem is to extend the vertex-
centric computation model with a novel block-centric computation
model, the idea of which is briefly introduced next. Specifically, the
vertices of a graph are partitioned into multiple blocks, such that each
block has a strong cohesion: a vertex in a block B is more likely to
connect to another vertex in B than to a vertex in another block. All
vertices in a block is assigned to one worker. When vertices in a block
B receive incoming messages, they do not just update their own states
using these messages, but also propagate the state updates through
all vertices in B until convergence. Since in-block state propagation
is performed in serial without communication, the additional compu-
tation overhead incurred is negligible compared with the significant
reduction in message number and in superstep number.

Block-centric computation well solves the problem of large graph
diameter: for example, [Yan et al., 2014a] reported that single-source
shortest path computation on the USA road network takes 10789 su-
persteps (and 2832 seconds) in the vertex-centric model, and finishes
in only 59 supersteps (and 11 seconds) with block-centric computation.

4.1. Block-Centric Computation 57

Challenges and Existing Solutions. However, there are two ma-
jor challenges of applying a block-centric computation model. Firstly,
an input graph should be pre-partitioned into blocks, but graph parti-
tioning is expensive, especially for big graphs. Secondly, in Pregel, the
worker that a vertex resides in can be computed directly from its vertex
ID, but when block-centric computation is used, it is non-trivial to find
a function that maps the IDs of all vertices in a block B to the ID of
the worker that contains B. There also exist other challenges, such as
how to define the stop (or convergence) condition of the computation.

Giraph++ [Tian et al., 2013] pioneered the idea of block-centric
computation, which is termed “graph-centric” or “think like a graph”.
The term “graph” here is equivalent to the concept of “block” described
above: each block holds one partition of the input graph that is pro-
cessed by a computing thread. The input graph is partitioned into
blocks by a METIS-like algorithm [Karypis and Kumar, 1998], and
vertex IDs are recoded by an independent MapReduce job, so that
the worker that a vertex resides in can be directly computed from the
new vertex ID. GoFFish [Simmhan et al., 2014] further decomposes the
block of a worker into many subgraphs, where each subgraph is a maxi-
mal (weakly) connected component of the block. Instead of performing
computation on each block, GoFFish performs computation on each
connected subgraph, and terms the model as “subgraph-centric” com-
putation. [Simmhan et al., 2014] claims that their new model has two
benefits over Giraph++: (1) decomposing a partition into connected
subgraphs increases the opportunity of parallelism, and (2) since each
subgraph is connected, a prioritized serial subgraph traversal (e.g., Di-
jkstra’s algorithm) is often sufficient, eliminating the need to process
every vertex in the subgraph iteratively until convergence.

Blogel [Yan et al., 2014a] further allows each block to contain data
structures like an adjacency list and a value, so that computation can
be directly performed in the unit of blocks without the involvement of
individual vertices. Since there are much less blocks than vertices, the
workload is significantly reduced. In Blogel, each block is a connected
subgraph, and a worker contains multiple blocks. This overpartitioning
approach allows vertices and blocks to be distributed among workers

58 Vertex-Centric Message-Passing Systems Beyond Pregel

in a more balanced manner. The ID of each vertex v is expanded to
also store the IDs of the block and the worker that contain v, so that
it is trivial to determine whether two vertices are in the same block,
and which worker a vertex resides in. Blogel also proposed partitioning
algorithms that are way more efficient than METIS-like methods.

The block-centric model has also been applied in single-machine
in-memory graph processing. For example, GRACE [Xie et al., 2013]
partitions vertices into blocks by METIS, so that each block fits in
the CPU cache. All vertices in a block are processed together (possibly
until convergence) without cache miss, before processing another block.
This block-centric solution improves cache locality and mitigates the
problem of limited memory bandwidth. Unlike Giraph++ and Blogel,
GRACE only requires a user to specify the vertex-centric computing
logic, and the block-centric computation is handled by GRACE as a
proper scheduling of vertex-centric computation inside each block.

In the next two subsections, we introduce the two most impor-
tant distributed block-centric systems: Giraph++ and Blogel. Since
GRACE is a single-machine system that follows the shared-memory ab-
straction, we review it in more detail in Section 9.2.3. In Section 4.2.1,
we will see a delta-based accumulative computation model that can be
easily implemented in block-centric systems with a guarantee of result
exactness.

4.1.1 Giraph++

The block-centric computation model was first introduced by Gi-
raph++ [Tian et al., 2013], where it is also called a graph-centric model.
In a nutshell, instead of exposing the view of a single vertex to the pro-
grammers, this graph-centric model opens up the entire subgraph of
each partition to be programmed against.

Just like the vertex-centric model, the graph-centric model also
divides the set of vertices in the original graph into partitions. Let
G = (V,E) denote the original graph with its vertices and edges, and
let P1∪P2∪. . .∪Pk = V be the k partitions of V , i.e. Pi∩Pj = ∅, ∀i 6= j.
For each partition Pi, the vertices in Pi, along with vertices they link
to, define a subgraph Gi of the original graph. To be more precise,

4.1. Block-Centric Computation 59

let Vi denote all the vertices that appear in the subgraph Gi, i.e.
Vi = Pi ∪ {v|(u, v) ∈ E ∧ u ∈ Pi}. Any vertex u ∈ Pi is an inter-
nal vertex of Gi and any vertex v ∈ (Vi\Pi) is a boundary vertex. Note
that a vertex is an internal vertex in exactly one subgraph, which is
called the owner of the vertex, but it can be a boundary vertex in
zero or more subgraphs. In the graph-centric model, subgraphs and
partitions are used interchangeable when there is no ambiguity.

In the Giraph++ graph-centric model, for each internal vertex in
a partition, we have all the information of its vertex value, edge values
and incoming messages. But for a boundary vertex in a partition, we
only associate a vertex value with it. This vertex value is just a tem-
porary local copy. The primary copy of the vertex value resides in its
owner’s corresponding internal vertex. The local copies of vertex val-
ues are essentially caches of local computation in different partitions,
and thus they have to be propagated to the primary copies through
messages.

The distinction between internal vertices and boundary vertices is
crucial, as in Giraph++ messages are only sent from boundary vertices
to their primary copies. This is because the whole subgraph structure
is available in the graph-centric model, and thus information exchange
between internal vertices is cheap and immediate. An algorithm can
arbitrarily change the state of any internal vertex at any point in time,
without a need for a network message or a wait for the next super-
step. Boundary vertex values can also be arbitrarily changed, but these
changes will have to be propagated to the owners through messages, at
the end of the superstep.

A program in Giraph++ is still executed in sequence of super-
steps, separated by global synchronization barriers. However, in each
superstep, the computation is performed on the whole subgraph in a
partition. A new class GraphPartition is introduced to support the
graph-centric programming model. This class allows users to 1) access
all vertices in a graph partition, either internal or boundary, 2) check
whether a particular vertex is internal, boundary or neither, 3) send
messages to internal vertices of other partitions, and 4) collectively
deactivate all internal vertices in this partition. The user defined com-

60 Vertex-Centric Message-Passing Systems Beyond Pregel

Algorithm 1: Connected Component Algorithm in Giraph
1 compute()
2 if getSuperstep()==0 then
3 setVertexValue(getVertexID());

4 minValue=min(getMessages(), getVertexValue());
5 if getSuperstep()==0 or minValue<getVertexValue() then
6 setVertexValue(minValue);
7 sendMsgToAllEdges(minValue);

8 voteToHalt();

// combiner function
9 combine(msgs)

10 return min(msgs);

pute() function in the GraphPartition class is on the whole subgraph
instead of on individual vertex.

Example: Weakly Connected Component Algorithm

We use weakly connected component (WCC) algorithm for undirected
graphs to demonstrate the difference between the vertex-centric model
and the graph-centric model. Algorithm 1 and Algorithm 2 show the
implementation of this algorithm in Giraph and Giraph++, respec-
tively.

The WCC algorithm in the vertex-centric model (Algorithm 1) is
based on label propagation. Initially in superstep 0, each vertex uses
its own ID as its component label (each vertex is itself a connected
component), then propagates the component label to all its neighbors.
In subsequent supersteps, each vertex first finds the smallest label from
the received messages. If this label is smaller than the vertex’s current
component label, the vertex modifies its label and propagates the new
label to all its neighbors. For the example graph in Figure 4.1(a), Fig-
ure 4.1(b) depicts the vertex labels and the message passing in every
superstep for this connected component algorithm.

Algorithm 2 demonstrates how the connected component algorithm
is implemented in the graph-centric model. For the example graph in
Figure 4.1(a), Figure 4.1(c) and 4.1(d) depict the subgraphs of its two
partitions and the execution of the graph-centric algorithm, respec-
tively. Since the graph-centric programming model exposes the whole

4.1. Block-Centric Computation 61

Algorithm 2: Connected Component Algorithm in Giraph++
1 compute()
2 if getSuperstep()==0 then
3 sequentialCC(); // run a sequential CC algorithm
4 foreach bv in boundaryVertices() do
5 sendMsg(bv.getVertexId(), bv.getVertexValue());

6 else
7 equiCC=∅;// store equivalent CCs
8 foreach iv in activeInternalVertices() do
9 minValue=min(iv.getMessages());

10 if minValue<iv.getVertexValue() then
11 equiCC.add(iv.getVertexValue(), minValue);

12 equiCC.consolidate();// get min for equivalent CCs
13 foreach iv in internalVertices() do
14 changedTo=equiCC.uniqueLabel(iv.getVertexValue());
15 iv.setVertexValue(changedTo);

16 foreach bv in boundaryVertices() do
17 changedTo=equiCC.uniqueLabel(bv.getVertexValue());
18 if changedTo!=bv.getVertexValue() then
19 bv.setVertexValue(changedTo);
20 sendMsg(bv.getVertexId(), bv.getVertexValue());

21 allVoteToHalt();

subgraph in a partition, an existing sequential algorithm can be uti-
lized to detect the connected components in each graph partition. If a
set of vertices belong to the same connected component in a partition,
then they also belong to the same connected component in the original
graph. After information is exchanged across different partitions, some
small connected components will start to merge into a larger connected
component.

Exploiting the above property, superstep 0 first runs a sequential
connected component algorithm on the subgraph of each graph par-
tition and then sends the locally computed component label for each
boundary vertex to its corresponding owner’s internal vertex. For the
example in Figure 4.1(a), superstep 0 finds one connected component
in the subgraph G1 and assigns the smallest label A to all its vertices
including the boundary vertex D. Similarly, one connected component
with label C is detected in G2. Messages with the component labels are
then sent to the owners of the boundary vertices. In each of the sub-
sequent supersteps, the algorithm processes all the incoming messages
and uses them to find out which component labels actually represent

62 Vertex-Centric Message-Passing Systems Beyond Pregel

A B C FD E

A B B C C D D E E F

A B B C

A B

A B

A B

B C

C D D E

C D

B C

A

A

A

A

A

A A A C C C

A A A A A A

A A A A A A

A C

A

V
e
rt
e
x
-c
e
n
tr
ic

G
ra
p
h
-c
e
n
tr
ic

Superstep

0:

1:

2:

3:

4:

5:

6:

Superstep

0:

1:

2:

(a)

(b)

(d)

A B C D E F

A A C D E

A A A B C D

A A A A B C

A A A A A B

A A A A A A

A A A A A A

Partition P1 Partition P2

B

Subgraph G1 Subgraph G2

A B C D C D E F

A

A

A

(c)

C

A

A

Figure 4.1: Example execution of connected component algorithms in vertex-
centric and graph-centric models

equivalent components (i.e. they will be merged into a larger compo-
nent) and stores them in a data structure called equiCC. In the above
example, vertex D in superstep 1 receives the message A from G1,
while its previous component label is C. Thus, pair (A, C) is put into
equiCC to indicate that the connected components labeled A and C
need to be merged. In equiCC.consolidate() function, we use the small-
est label as the unique label for the set of all equivalent components.
In our example, the new label for the merged components should be A.
Then the unique labels are used to update the component labels of all
the vertices in the partition. If a boundary vertex’s component label is
changed, then a message is sent to its owner’s corresponding internal
vertex. Comparing the two algorithms illustrated in Figure 4.1(b) and
4.1(d), the graph-centric algorithm needs substantially fewer messages

4.1. Block-Centric Computation 63

and supersteps. In superstep 0, all the vertices in P1 already converge
to their final labels. It only takes another 2 supersteps for the whole
graph to converge.

The graph-centric programming model in Giraph++ is more gen-
eral and flexible than the vertex-centric model. The graph-centric
model can mimic the vertex-centric model by simply iterating through
all the active internal vertices and performing vertex-oriented com-
putation. In other words, any algorithm that can be implemented in
the vertex-centric model can also be implemented in the graph-centric
model. However, the performance of some algorithms can substantially
benefit from the graph-centric model.

The graph-centric programming model is not intended to replace
the existing vertex-centric model. Both models can be implemented
in the same system as demonstrated in Giraph++. The vertex-centric
model has its simplicity. However, the graph-centric model allows lower
level access, often needed to implement important algorithm-specific
optimizations. At the same time, the graph-centric model still provides
sufficiently high level of abstraction and is much easier to use than, for
example, MPI.

4.1.2 Blogel

Programming Interface. In addition to the Vertex base class, Blo-
gel has another base class, Block, which takes the user-defined vertex
subclass as a template argument indicating the data type of vertices in
a block. Like a vertex object, a block object b has a flag active(b) and
can vote to halt; b can also maintain its own attributes, such as a value
a(b) and a block-level adjacency list Γ(b) that links to other blocks. In
addition, b can access an array of its own vertices, which is actually a
subarray of the vertex array maintained by the worker that b resides
in.

Both a vertex object and a block object can send two types of mes-
sages: those towards another vertex, and those towards another block.
Accordingly, two message combiners can be specified, each for combin-
ing one type of messages. The Block class also has a UDF compute(.),

64 Vertex-Centric Message-Passing Systems Beyond Pregel

to be called by each block during the computation, whose input are
those messages towards the current block.

After a worker loads its vertices from HDFS, it groups them by their
block ID to construct an array of block objects automatically. Before
computation begins, each block b calls another UDF block_init(), which
specifies how to initialize the attribute of b, e.g., from its vertices.

Execution Modes. Three execution modes are supported in Blo-
gel: (1) V-mode, which is exactly like the vertex-centric model, but
is usually more efficient since vertices are grouped into blocks with
strong cohesion, and messages transmitted between two vertices in the
same block do not incur network communication; (2) B-mode, where
only blocks call compute(.) functions and message passing only hap-
pens among blocks, and computation terminates when all blocks are
inactive and there are no pending messages; (3) VB-mode, where in a
superstep, all active vertices call Vertex::compute(.) first, and then all
active blocks call Block::compute(.), and computation terminates when
all vertices and blocks are inactive and there are no pending messages.

We illustrate how to write a B-mode algorithm by considering Hash-
Min. Instead of letting vertices broadcast the smallest vertex ID they
have seen, we let blocks broadcast the smallest block ID they have seen.
In b.block_init(), we construct Γ(b) from Γ(v) of every vertex in b as
follows: if u ∈ Γ(v), then we add the block of u (available in u’s ID) to
Γ(b). When reporting results, each vertex assigns its value a(v) with the
value of its block b, i.e., a(b). Since vertices in a block are all connected,
all vertices with the same value constitute a connected component. This
B-mode algorithm is more efficient than the vertex-centric Hash-Min
algorithm since there are much less blocks than vertices.

While B-mode algorithms are not supported by Giraph++, VB-
mode algorithms have a similar flavor to GraphPartition.compute(.) in
Giraph++, except that a VB-mode algorithm can separate the com-
puting logic related to blocks and vertices to Block::compute(.) and
Vertex::compute(.), respectively.

As an illustration of VB-mode, consider the computation of single-
source shortest paths from a source vertex s, where we denote the
weight of each edge (u, v) by w(u, v). In this algorithm, the vertex value

4.1. Block-Centric Computation 65

(a) 2D Partitioner

v

(b) Graph Voronoi Diagram

red

red red

red

red

red

red

red

blue

blue

blue

blue
blue

blue

blue

green

green

green
green green

green

green

Figure 4.2: Blogel Partitioners

a(v) keeps an estimated distance from s to v, and messages are only
sent to vertices. In a superstep, (1) Vertex::compute(.) is first called by
vertices that receive messages, where each vertex v receives the distance
estimations from its neighbors in other blocks. If the smallest message
is less than a(v), v updates a(v) as the new value and remains active.
Otherwise, v votes to halt. Then, (2) Block::compute(.) is called by
blocks that contain active vertices. This does not need user intervention
since Blogel also activates the block of a vertex v when v is activated. In
b.compute(.), b first collects all its active vertices into a priority queue
Q (since their values are updated), and votes them to halt (thus all
vertices are halted at the end of a superstep). Then, b runs Dijkstra’s
algorithm, where a vertex v with the smallest value a(v) is popped
from Q each time, and for each neighbor u ∈ Γout(v), (i) if u is in
b, a(u) is updated with (a(v) + w(v, u)) and u is added to Q (or u’s
position in Q is properly adjusted), while (ii) if u is not in b, a message
(a(v) + w(v, u)) is sent to u.

Graph Partitioning. Blogel supports three kinds of partitioners for
processing a graph data, whose output can be used as the input data
of a block-centric program. The first one is URL partitioner, which is
only applicable to web graphs where each vertex contains a URL. The
URL partitioner groups vertices under the same host name or domain
name into one block. The second one is 2D partitioner, which is only
applicable to spatial graphs where vertices have 2D coordinates. The 2D

66 Vertex-Centric Message-Passing Systems Beyond Pregel

partitioner first samples a small fraction of vertices, which are sent to
the master to construct a balanced spatial partitioning as Figure 4.2(a)
illustrates. The spatial partitioning is broadcast back to every worker,
which then assigns each of its vertex to a proper partition. The workers
then exchange vertices with each other, so that each workerW contains
all vertices in those partitions that are assigned to W . Since we require
a block to be connected, each worker then runs BFS in each of its
partitions, to get connected subgraph blocks.

For a general graph, Blogel provides a graph Voronoi diagram
(GVD) partitioner for computing blocks. Since the partitioning algo-
rithm only works for undirected graphs, a directed graph will be con-
verted into an undirected one before partitioning. This conversion is
simple in vertex-centric model: in Step 1, every vertex v sends its own
ID to every out-neighbor u ∈ Γout(v); in Step 2, every vertex u collects
all messages to form Γin(u). Finally, the neighbors of v in the converted
graph is obtained as Γ(v) = Γout(v) ∩ Γin(v).

The idea of GVD partitioning is illustrated in Figure 4.2(b). Firstly,
a small fraction of vertices are sampled as sources (solid circles in
Figure 4.2(b)). Then, multi-source breadth-first traversal is performed
from the sampled sources in vertex-centric model: the vertex value a(v)
indicates the source that v is assigned to, and in v.compute(.) (of the
GVD partitioner), if (1) a(v) is already assigned, v votes to halt di-
rectly; (2) otherwise, v assigns a(v) with the first received source ID,
and broadcast it before voting to halt. The multi-source traversal is
fast since each vertex broadcasts messages for at most once, and a(v)
equals the source closest to v. For example, the vertices in Figure 4.2(b)
are grouped into three blocks, represented by three different colors.

However, since sources are randomly sampled, some blocks may
contain too many vertices. The GVD partitioner then marks the states
of those vertices back as “unassigned”, and samples sources from the
remaining unassigned vertices with an increased sampling probability.
Then, multi-source BFS is performed among the unassigned vertices
again to obtain new blocks. This process is repeated until some quality
requirement is met. Finally, Hash-Min is run on all unassigned vertices,
and each connected component is treated as a block. The last step is

4.2. Asynchronous Execution 67

necessary, since a graph may contain many small connected compo-
nents, and it is likely that none of the vertices in a component is ever
sampled due to low sampling probabilities.

Experiments in [Yan et al., 2014a] demonstrate that the GVD par-
titioner scales almost linearly with the graph size, and the partitioning
time is comparable to the time for loading the input graph from HDFS
and dumping the partitioned graph to HDFS.

4.2 Asynchronous Execution

The BSP model of Pregel has two limitations in performance:

(1) for algorithms where vertex values converge asymmetrically, ex-
ecution priority cannot be given to those vertices that converge
more slowly;

(2) local messages and remote messages are processed with equal
priority (or frequency), i.e., once per superstep, although their
transmission speeds are vastly different; to make things worse, the
frequency (i.e. the time of a superstep) depends on the slowest
worker.

Two asynchronous message-passing systems were developed to solve
the above limitations. Maiter [Zhang et al., 2014] adopts a novel asyn-
chronous programming model, which has more limited expressive power
than Pregel but has a strict guarantee on correctness, and supports pri-
oritized vertex-centric computation, which solves Limitation (1). Gi-
raphUC [Han and Daudjee, 2015] does not change the programming
model of Pregel, but allows local messages to be immediately pro-
cessed within each superstep, which solves Limitation (2). However,
GiraphUC might not generate exactly the same results as Pregel does
for some algorithms like PageRank computation, which, on the other
hand, is guaranteed by Maiter. We introduce Maiter and GiraphUC in
the next two subsections.

68 Vertex-Centric Message-Passing Systems Beyond Pregel

4.2.1 Maiter

Maiter [Zhang et al., 2014] proposed a new computation and pro-
gramming model called delta-based accumulative iterative computation
(DAIC), which iteratively updates the vertex values by accumulat-
ing the value changes between iterations. Since updates are computed
from value changes rather than vertex values themselves, DAIC enables
asymmetric vertex-centric execution prioritized by value changes.

The DAIC Model. We now present DAIC, and illustrate its idea
using PageRank computation as a running example. DAIC requires
a vertex-centric algorithm to be formulated into the following 2-step
update function:

a(v)(i) = a(v)(i−1) ⊕∆a(v)(i)

∆a(v)(i+1) =
⊕

u∈Γin(v)
g(u,v)(∆a(u)(i)) , (4.1)

where a(v)(i) denotes the value of vertex v at the i-th iteration, and ⊕ is
a generalized summation operator that is commutative and associative.
The first equation states that ∆a(v)(i) is the value change from a(v)(i−1)

to a(v)(i), and the second equation states that this change ∆a(v)(i) can
be computed from the value changes of v’s in-neighbors in the (i−1)-th
iteration.

To write a DAIC algorithm, the update function should satisfy two
conditions. The first condition is that, the value update function can
be formulated into the following form:

a(v)(i+1) =

 ⊕
u∈Γin(v)

g(u,v)(a(u)(i))

⊕ c(v), (4.2)

where c(v) is a constant associated with v. Note that Equation (4.2)
operates on vertex values rather than value changes, and it also defines
the formula of g(u,v)(.) as required by Equation (4.1).

For example, the UDF v.compute(.) in PageRank computation has
the following form:

a(v)(i+1) = 0.85 ·

 ∑
u∈Γin(v)

a(u)(i)

dout(u)

+ 0.15,

4.2. Asynchronous Execution 69

and therefore, it can be formulated into the form of Equation (4.2) if
we specify ⊕ as the summation operator, and specify g(u,v)(x) = 0.85 · x

dout(u)

c(v) = 0.15
, (4.3)

The second condition is that, g(u,v)(x) should have the distributive
property over ⊕:

g(u,v)(x⊕ y) = g(u,v)(x)⊕ g(u,v)(y), (4.4)

which is obviously satisfied by g(u,v)(x) of Equation (4.3).
We now show that Equations (4.2) and (4.4) guarantee the correct-

ness of applying Equation (4.1) for computation. By replacing a(u)(i)

in Equation (4.2) with (a(u)(i−1)⊕∆a(u)(i)), and using Equation (4.4),
we obtain

a(v)(i+1) =

 ⊕
u∈Γin(v)

g(u,v)
(
a(u)(i−1) ⊕∆a(u)(i)

)⊕ c(v)

=

 ⊕
u∈Γin(v)

g(u,v)
(
∆a(u)(i)

)⊕
 ⊕

u∈Γin(v)
g(u,v)

(
a(u)(i−1)

)⊕ c(v),

and using Equations (4.2), we obtain

a(v)(i+1) =

 ⊕
u∈Γin(v)

g(u,v)
(
∆a(u)(i)

)⊕ a(v)(i),

or equivalently,

∆a(v)(i+1) =
⊕

u∈Γin(v)
g(u,v)

(
∆a(u)(i)

)
,

which is consistent with Equation (4.1).
Finally, a(v)(0) and ∆a(v)(1) should be initialized so that

a(v)(0) ⊕∆a(v)(1) = a(v)(1) =

 ⊕
u∈Γin(v)

g(u,v)
(
a(u)(0)

)⊕ c(v).

70 Vertex-Centric Message-Passing Systems Beyond Pregel

For example, in PageRank computation, we may set a(v)(0) = 0 and
∆a(v)(1) = 0.15.

The DAIC model is expressive enough to represent many other
Pregel algorithms. For example, Hash-Min can be formulated as DAIC
by specifying ⊕ as taking the minimum, g(u,v)(x) = x, a(v)(0) =∞ and
∆a(v)(1) = v.

Asynchronous Execution. [Zhang et al., 2014] proves that Equa-
tion (4.1) is equivalent to the following asynchronous operations. Specif-
ically, each vertex v maintains two fields a(v) and ∆a(v). Whenever a
delta message m = g(u,v)(∆a(u)) sent from v’s in-neighbor u is received
by v, v sets ∆a(v) ← ∆a(v) ⊕ m. When v performs computation, it
(1) sets a(v) ← a(v) ⊕ ∆a(v), (2) sends g(v,w)(∆a(v)) to each out-
neighbor w ∈ Γout(v) (if it is not 0), and (3) clears ∆a(v) back to 0.
Note that 0 here refers to the identity element of the ⊕ operator (i.e.,
x⊕0 = x). The only race-condition is that the update to ∆a(v) should
be atomic.

As an illustration using our PageRank example, whenever a ver-
tex v receives a delta message m, it will add it to ∆a(v). When v

performs computation, it adjusts the received cumulative delta value
∆a(v), by multiplying it with 0.85/dout(v), which is then broadcast to
every out-neighbor u (to be added to ∆a(u)); then, v clears the pro-
cessed cumulative delta value by setting ∆a(v) to 0, for accumulating
more delta values.

Maiter supports prioritized execution. For example, in PageRank
computation, each worker may choose the top-1% vertices with the
highest ∆a(v) for vertex-centric computation at each time, and repeat
this operation until the terminate condition holds. The master period-
ically broadcasts a progress request signal to all workers asking for the
convergence progress of each worker, and makes a global termination
decision based on the responses. Moreover, to send messages in rela-
tively large batches, a worker buffers the outgoing messages and flushes
them after a timeout.

Since Maiter adopts asynchronous execution, to be fault-tolerant,
it exploits Chandy-Lamport snapshot [Chandy and Lamport, 1985] for
checkpointing, which we introduced in Section 3.6.1. However, we re-

4.2. Asynchronous Execution 71

mark that Maiter is a message-passing system and is thus different
from asynchronous shared-memory abstractions like GraphLab. In fact,
Maiter is the only message-passing system that guarantees the exact-
ness of PageRank results with asynchronous execution, i.e., the final
rank values of all vertices remain unchanged. This, however, may not
be guaranteed by the GiraphUC system to be presented in the next
subsection.

The DAIC model also makes it very suitable for block-centric
computation. For example, consider PageRank computation. In
b.compute(.), when the value of a vertex v in block b is updated, for
every out-neighbor w ∈ Γout(v), (1) if w is not in b, a delta message
g(v,w)(∆a(v)) is sent to w; (2) otherwise, g(v,w)(∆a(v)) is directly added
to ∆a(w), which will be processed later when b.compute(.) processes u.
In fact, this algorithm has been implemented in Giraph++ [Tian et al.,
2013].

4.2.2 GiraphUC

GiraphUC [Han and Daudjee, 2015] proposed a new computation model
called barrierless asynchronous parallel (BAP), which (1) reduces mes-
sage staleness by using the latest received message of an in-neighbor
rather than that from the previous global superstep, which allows faster
convergence; and (2) allows computation of a worker to proceed without
synchronizing with other workers as long as new messages are received,
which prevents fast workers from blocking and waiting for the strag-
glers. However, the programming model of GiraphUC remains exactly
the same as that of Pregel.

The BAP model works as follows. Each worker W calls compute(.)
on all active vertices once, which accomplishes a local superstep and
enters a local barrier. At the local barrier,W performs graph mutations,
and decides whether it should wait on a global synchronization or start
another local superstep.

A worker W waits on a global synchronization only if there are no
more incoming messages to process, and all local vertices are inactive.
This condition can be further simplified to check whether there are no
remote messages (i.e., messages from other workers) since if there is any

72 Vertex-Centric Message-Passing Systems Beyond Pregel

local message, it will reactivate a local vertex. However, if W receives
any remote message during the waiting stage,W unblocks itself to start
another local superstep that processes the new incoming messages. A
global synchronization is performed only when all workers are in the
waiting stage, which accomplishes a global superstep.

In v.compute(.), if v requires the message value of an in-neighbor
u ∈ Γin(v), the latest received message value is used. Note that the
value of a message may still be stale: the latest message from an in-
neighbor u (on another worker) may still be in transmission, in which
case the latest received message used by v.compute(.) is stale. The idea
of computing with stale values to allow faster convergence has also
been used by a machine learning system called parameter server [Ho
et al., 2013], where the computation model is called Stale Synchronous
Parallel (SSP).

The results of BAP are guaranteed to be the same as those of
BSP in algorithms where compute(.) does not require messages from
all in-neighbors, or more precisely, the state of every vertex can only
change monotonically towards the convergence value after processing
each individual message separately. For example, in Hash-Min, as long
as v receives a message smaller than a(v), it updates a(v) with the
message and broadcasts the new a(v) to all neighbors. A stale message
only slows down the convergence rate of Hash-Min, but the results are
not influenced.

While [Han and Daudjee, 2015] claims that BAP also guarantees
the result exactness for algorithms where compute(.) requires messages
from all in-neighbors, this may not always hold. For example, in PageR-
ank computation, v needs to sum up messages from all its in-neighbors.
If an in-neighbor u is on another worker and its latest message has not
been received, then the summation computed with the stale message
of u is different from the exact summation.

To support multi-phase algorithms where compute(.) has different
logic in different phases, messages sent in different phases should not
be mixed. For this purpose, GiraphUC tags each message to indicate
whether the message targets at the current phase, or at the next phase.
Two message stores are maintained, one to receive messages of the

4.3. Vertex-Centric Query Processing 73

current phase (denoted by Mc), and the other to receive messages of
the next phase (denoted by Mn). In the current phase, only messages
inMc are used; when a new phase begins, the oldMn becomes the new
Mc, and the new Mn becomes empty.

4.3 Vertex-Centric Query Processing

In this section, we introduce the Quegel system [Yan et al., 2016b] which
adapts the computation model of Pregel for answering lightweight on-
line queries efficiently. A Quegel user only needs to specify the Pregel-
like algorithm for a generic query, and Quegel processes light-workload
graph queries on demand by effectively utilizing the cluster resources.
Quegel also provides a convenient interface for constructing graph in-
dexes, which are not supported by other big graph systems, and which
significantly reduce the querying workload.

Motivation. Most Pregel-like systems are designed for offline graph
analytics, where a job visits most (if not all) vertices in a big graph for
many iterations. However, there is also a need to answer graph queries
online, where each query usually accesses only a small fraction of ver-
tices during the whole period of evaluation. However, offline analytics
systems cannot support query processing efficiently, nor do they pro-
vide a user-friendly programming interface to do so, which we explain
below.

If we write a vertex-centric algorithm for a generic query, we have
to run an independent job for each incoming query. In this solution,
each superstep transmits only the few messages of one light-weight
query and cannot fully utilize the network bandwidth. Also, there are
a lot of synchronization barriers, one for each superstep of each query.
Moreover, some systems such as Giraph bind graph loading with graph
computation (i.e., processing a query in our context) for each job, and
the loading time can significantly degrade the performance.

An alternative solution is to hard code a vertex-centric algorithm
to process a batch of k queries, where k can be an input argument.
However, in the compute(.) function, one has to differentiate the in-
coming messages and/or aggregators of different queries and update

74 Vertex-Centric Message-Passing Systems Beyond Pregel

k vertex values accordingly. In addition, existing vertex-centric frame-
work checks the stop condition for the whole job, and users need to take
care of additional details such as when a vertex can be deactivated (e.g.,
when it should be halted for all the k queries), which should originally
be handled by the system itself. Last but not least, this approach does
not solve the problem of low utilization of network bandwidth, since
in later stage when most queries finish their processing, only a small
number of queries (or stragglers) are still being processed and hence
the number of messages generated is too small to sufficiently utilize the
network bandwidth.

Execution Model. Quegel solves the above problems by adopting a
superstep-sharing execution model. Specifically, Quegel processes graph
queries in iterations called super-rounds. In a super-round, every query
that is currently being processed proceeds its computation by one su-
perstep; while from the perspective of an individual query, Quegel pro-
cesses it superstep by superstep as in Pregel. Intuitively, a super-round
in Quegel is like many queries sharing the same superstep. For a query q
whose computation takes nq supersteps, Quegel processes it in (nq + 1)
super-rounds, where the last super-round prints the results of q on the
console or dumps them to HDFS.

Quegel allows users to specify a capacity parameter C, so that in
any super-round, there are at most C queries being processed. New
incoming queries are appended to a query queue (in the master), and
at the beginning of a super-round, Quegel fetches as many queries from
the queue as possible to start their processing, as long as the capac-
ity constraint C permits. During the computation of a super-round,
different workers run in parallel, while each worker processes (its part
of) the evaluation of the queries serially. And for each query q, if q
has not been evaluated, a worker serially calls compute(.) on each of
its vertices that are activated by q; while if q has already finished its
evaluation, the worker reports or dumps the query result, and releases
the resources consumed by q.

For the processing of each query, the supersteps are numbered. Two
queries that enter the system in different super-rounds have different
superstep number in any super-round. Messages (and aggregators) of

4.3. Vertex-Centric Query Processing 75

Super–Round # 1

q1

2 3 4

1 2 3 4

q3q2 q4

Time
Queries

5 6
q1

q2
q3

q4

7

1 2 3 4

1 2 3 4

1 2 3 4

Figure 4.3: Illustration of Superstep-Sharing

all queries are synchronized together at the end of a super-round, to
be used by the next super-round. Figure 4.3 illustrates the execution
of four queries q1, q2, q3 and q4 in our superstep-sharing model, where
we assume for simplicity that every query takes 4 supersteps.

System Design. Quegel manages three kinds of data: (1) V-data,
whose value only depends on a vertex v, such as v’s adjacency list;
(2) VQ-data, whose value depends on both a vertex v and a query q,
including a(v), active(v), and v’s incoming message queue; (3) Q-data,
whose value only depends on a query q, such as query content, superstep
number, aggregator, and control information. Q-data are maintained
by every worker, and kept consistent at the beginning of each super-
step (e.g., by creating Q-data for new incoming queries). Each vertex
maintains its V-data, and a table of VQ-data for queries in processing.

A Quegel user writes vertex-centric programs exactly like in Pregel,
and the processing of concrete queries is transparent to users. For exam-
ple, a user may access a(v) (resp. superstep number) in v.compute(.),
and if a worker is processing v for query q, the VQ-data of v and q

(resp. the Q-data of q) is actually accessed.
To be space efficient, a vertex v allocates a state (i.e., VQ-data) for

a query q only if q accesses v during its processing. Specifically, when
vertex v is activated for the first time during the processing of q, the
VQ-data of q is initialized and inserted into the VQ-data table of v.
After a query q reports or dumps its results at superstep (nq + 1), the

76 Vertex-Centric Message-Passing Systems Beyond Pregel

VQ-data of q is removed from the VQ-data table of every vertex that
has been accessed by q.

Graph queries usually start from a few querying vertices. For ex-
ample, a point-to-point shortest path query (vs, vt) finds the shortest
path from vertex vs to vertex vt, and can be evaluated by performing
bidirectional breadth-first search from s and t. Quegel allows a user to
activate a few vertices efficiently without scanning all vertices, which is
performed when a query is fetched from the query queue for processing.

Quegel also provides a convenient API for users to build distributed
graph indices. After a worker loads those vertices that are assigned to
it from HDFS, the worker may build a local index from its vertices
using the user-defined logic before Quegel starts to process queries. For
example, for graph matching and graph keyword search, the algorithms
usually start from those vertices whose text attribute values contain
the required labels or keywords. By building a local inverted index
that maps each label (or keyword) to those vertices in the worker that
contains the label (or keyword), the initial vertices can be activated by
looking up the index, eliminating the need to check the text attribute
of every vertex for an incoming query.

4.4 Summary

This chapter reviewed three variants of the basic vertex-centric model,
to account for the features of real graphs (e.g., large-diameter and rel-
atively high density) and algorithms (e.g., asymmetric value conver-
gence), and to meet the need of various applications (e.g., on-demand
querying). These systems demonstrate the need to have a rich toolkit of
different graph analytics frameworks, each is optimized at solving a par-
ticular class of graph problems. Although users need to get familiar with
several computation models rather than just a unified vertex-centric
framework like Pregel, the introduced systems are all user-friendly to
programmers familiar with vertex-centric interfaces, and the perfor-
mance improvement can often be orders of magnitude.

5
Vertex-Centric Systems with Shared Memory

Abstraction

In this chapter, we review another class of vertex-centric big graph
systems, which adopt the shared memory programming abstraction
instead of message passing for exchanging information among the ver-
tices. We first review the pioneering distributed system GraphLab [Low
et al., 2012], as well as its successor, PowerGraph [Gonzalez et al., 2012].
We then introduce four single-machine systems that adopt shared mem-
ory abstraction: GraphChi [Kyrola et al., 2012], X-Stream [Roy et al.,
2013], VENUS [Cheng et al., 2015] and GridGraph [Zhu et al., 2015].
These systems are designed to perform out-of-core graph processing on
a single PC, but they adopt different execution models.

In a system that adopts shared memory programming abstraction,
a vertex v directly accesses the data values of its adjacent vertices and
edges, rather than passively receiving messages pushed by other vertices
like in Pregel. The shared memory abstraction does not mean that the
underlying execution is shared memory (such as PRAM), but rather
the execution is often distributed or out-of-core, and thus a vertex
cannot access the value of a non-neighbor even if it knows the ID of
that vertex. As a result, these systems cannot support algorithms that
use pointer jumping (e.g., those described in Section 3.2).

77

78 Vertex-Centric Systems with Shared Memory Abstraction

We denote the value of a vertex v by Dv, and the value of an edge
(u, v) by D(u,v). A vertex v can access the following five types of data,
where we regard u (and w) as an in-neighbor (and an out-neighbor) of
v:

1. Du for any u ∈ Γin(v);

2. D(u,v) for any u ∈ Γin(v);

3. Dv;

4. D(v,w) for any w ∈ Γout(v);

5. Dw for any w ∈ Γout(v).

We call the set of these values as the scope (or full-scope) of vertex v.
We also defined two other scopes: (1) value-scope, where a vertex v can
only access Du, Dv and Dw; and (2) edge-scope, where a vertex v can
only access D(u,v), Dv and D(v,w). Full scope access is supported by
GraphLab and PowerGraph, while the two more restricted scopes are
adopted by single-machine systems that emerge later.

5.1 Distributed Systems with Shared Memory Abstraction

We now review the GraphLab system, which pioneered the shared-
memory programming abstraction for distributed graph processing.

5.1.1 Distributed GraphLab

GraphLab was originally developed for a single machine, and was ex-
tended to a distributed setting in 2012 [Low et al., 2012]. Distributed
GraphLab keeps the shared memory programming abstraction of a
single-machine environment, where a vertex can access its full scope
(including data of adjacent vertices and edges).

Computation and Programming Model. Since GraphLab is origi-
nally proposed for writing machine learning algorithms, it adopts vertex
scheduling to favor iterative algorithms where vertex values converge

5.1. Distributed Systems with Shared Memory Abstraction 79

asymmetrically. Specifically, a scheduler (FIFO or prioritized) is em-
ployed to schedule the computation of vertices in each machine. Sim-
ilar to compute(.) in Pregel, a GraphLab program requires a user to
specify a UDF update() to be called by a vertex v. In v.update(), v may
read and update the values in its scope, and submit any of the ver-
tices in its scope to the scheduler for further processing. The execution
in GraphLab guarantees serializability, i.e., the parallel computation
has an equivalent sequential execution counterpart, where the sched-
uler calls the update() function on the vertex with the highest priority
at a time, and more vertices may be submitted to the scheduler for
execution during each update() call.

To illustrate how to write update(), we consider PageRank compu-
tation. In v.update(), v directly reads Du of all u ∈ Γin(v) to compute
its new PageRank Dnew

v and checks whether |Dnew
v −Dv| is larger than

a convergence threshold ε. If not, Dv is considered as converged and
there is nothing to do; otherwise, v updates Dv ← Dnew

v and adds all
out-neighbors to the scheduler for further processing. This algorithm
is much faster than the PageRank algorithm of Pregel, since more and
more vertices have their PageRank values converge during the execu-
tion, and thus, fewer and fewer vertices call the update() function1.

GraphLab adopts an asynchronous computation model and hides
network communication from its programming model. This is in con-
trast to the bulk synchronous parallel (BSP) model of Pregel, where
users explicitly send messages in their programs, and messages are syn-
chronized (i.e., transmitted) in batches among all workers in every su-
perstep. However, the asynchronous model requires additional effort to
enforce data consistency under race conditions (e.g., by using locks),
and it does not guarantee exactness of results nor determinism for algo-
rithms like PageRank. In fact, GraphLab has a synchronous mode that
simulates the computation model of Pregel, and both [Lu et al., 2014]
and [Han et al., 2014a] found that the synchronous mode is faster than

1Arguably, one may also simply vote a vertex v to halt in Pregel if v’s PageRank
changes by less than ε; both this method and that of GraphLab’s may omit the
transmission of some small values, leading to approximate results

80 Vertex-Centric Systems with Shared Memory Abstraction

the asynchronous mode for algorithms where asymmetric convergence
does not help (e.g., Hash-Min).

Data Organization & Communication Model. While GraphLab
adopts a shared memory abstraction, network communication is in-
evitable and GraphLab achieves transparent communication by syn-
chronizing overlapped data values across the cluster. Specifically, an
input graph is first partitioned among different worker machines, where
each workerW is assigned a subset of vertices VW along with their adja-
cent edges. The partitioning can be done either by hashing, or by more
expensive algorithms like ParMETIS [Karypis and Kumar, 1998]. In
practice, GraphLab over-partitions a graph into many more partitions
(called atoms) than the number of workers, so that these partitions can
be evenly distributed to worker machines in a cluster of arbitrary size,
avoiding the need of repartitioning.

Now consider an edge (u, v), where u is assigned to a worker Wu

while v is assigned to another workerWv. In this case, bothWu andWv

need to maintain Du, D(u,v) and Dv, which belong to the set of over-
lapped data values between Wu and Wv. The overlapped data values
are called ghosts, and if a worker updates a data value in its ghosts, the
update needs to be synchronized with the corresponding data values in
other workers using a versioning system.

This data organization has some weaknesses in scalability, which we
analyze next. For each partition, it is desirable to reduce the overlap
with other partitions (i.e., reduce the number of ghosts) since those data
values need to be replicated and synchronized. However, computing a
high-quality partitioning (e.g., using ParMetis [Karypis and Kumar,
1998]) for a big graph is very expensive. On the other hand, using
hashing leads to a large amount of overlap: suppose that there are |W|
workers, then for an edge (u, v), the probability that u and v are on the
same worker is only 1/|W|; in other words, approximately (1− 1/|W|)
fraction of data are in the ghosts in expectation. Consider a vertex u on
Wu whose out-degree is much higher than |W|; the out-neighbors of u
may be spread across almost all workers, and thus Du may need to be
replicated |W| times. The high replication factor limits the scalability of

5.1. Distributed Systems with Shared Memory Abstraction 81

GraphLab. For example, in [Low et al., 2012], the largest graph tested
has merely 200M edges, which is too small for distributed processing.

Fault Tolerance. GraphLab supports two checkpointing-based mech-
anisms for fault tolerance: (1) it can construct synchronous snapshots
(i.e., checkpoints) as in Pregel, where computation is suspended dur-
ing the construction of a snapshot; or (2) it can incrementally con-
struct such snapshots without suspending execution. The second mech-
anism adapts the Chandy-Lamport snapshot technique described in
Section 3.6.1 to the shared-memory abstraction, which treats the snap-
shotting of a vertex’s scope as an independent operation just like the
calling of update() on a vertex. When a vertex v snapshots its scope, it
adds all its neighbors into the scheduler to be snapshotted before any
UDF update() is called.

5.1.2 PowerGraph: the GAS Model

Motivation of the GAS Model. GraphLab soon replaced its vertex-
centric programming model by a GAS programming model which as-
sociates UDFs with the adjacent edges of each vertex, in a subsequent
version called PowerGraph [Gonzalez et al., 2012]. This is motivated
by the following observation.

Many natural graphs follow a power-law like vertex degree distri-
bution, and hence often contain some vertices with very high degree
(e.g., having millions of neighbors), while most vertices have only a few
neighbors. An example is the Twitter who-follows-who graph where
celebrities are followed by many others (i.e., in-neighbors). In Pregel, a
high-degree vertex v needs to compute and send many more messages to
its neighbors than an average vertex; while in distributed GraphLab,
v.update() needs to process all its neighbors in v’s scope, leading to
a much larger workload than that of an average vertex. Due to the
large workload variance associated with different vertices, partitioning
vertices among workers tends to lead to an unbalanced workload dis-
tribution. Partitioning edges among workers solves this problem, since
the edges (and the associated computation) of a high-degree vertex can
be distributed among multiple workers.

82 Vertex-Centric Systems with Shared Memory Abstraction

The GAS Model. PowerGraph adopts a Gather-Apply-Scatter
(GAS) model for both programming and computation. Put simply, a
vertex v first gathers values along adjacent edges, and aggregates these
values to compute its vertex value a(v), and then scatters value updates
along adjacent edges.

Four UDFs need to be specified:

1. gather(u, v), which is invoked on each edge adjacent to v to com-
pute a value towards v, and has access to Du, D(u,v), and Dv;

2. sum(combined, value), which accumulates the value along a local
edge to a locally combined value;

3. apply(Dv, combined), which uses the globally combined value and
the old value of Dv to compute a new value for Dv; and

4. scatter(v, u), which is invoked on each edge adjacent to v (e.g.,
to activate the neighbor u or to update D(v,u)), and has access to
the updated Dv, and D(v,u) and Du.

We illustrate how to program with the GAS model using PageRank
computation: (i) gather(u, v) simply returns a(u)/dout(u) where both
a(u) and dout(u) are accessed from Du; (ii) sum(.) simply sums the
values returned by gather(.); (iii) apply(.) adjusts the summation by
a damping factor (e.g., 0.85) to compute a new value for a(v), and
the difference ∆a(v) between the old and new values; (iv) scatter(v, u)
activates out-neighbor u only if ∆a(v) > ε.

When a vertex v performs computation, it needs to gather values
from every neighbor, but it is possible that only one neighbor u has
updated its data Du. For example, in the late stages of Hash-Min, the
values of most vertices are usually converged. PowerGraph uses delta
caching to avoid redundant gather operations. Specifically, PowerGraph
caches the globally combined values from the previous gather phase for
each vertex. The UDF scatter(u, v) can optionally return ∆a(v) to be
atomically added to the cached value for v, so that v can bypass the
gather phase and call apply(.) with the cached value directly.

Edge Partitioning. PowerGraph evenly partitions the edges of a
graph among the workers in a cluster. However, since the edges of a

5.1. Distributed Systems with Shared Memory Abstraction 83

vertex v may be distributed to different workers, v (and thus Dv) may
span multiple machines which incurs synchronization overhead. There
are two goals for edge partitioning: (1) load balancing, i.e., to distribute
edges uniformly over worker machines; (2) to minimize the total num-
ber of vertex replicas. We now formalize the second goal. Let A(v) be
the set of workers that contains at least one edge adjacent to v; then
every worker in A(v) maintains a replica of Dv. Goal (2) aims to mini-
mize N =

∑
v∈V |A(v)|, and N/|V | is called the replication factor (i.e.,

the size of A(v) averaged over all v ∈ V). We say that Goal (2) mini-
mizes the size of vertex-cut, since a vertex may span different machines
and causes communication; this is in contrast to the more common
vertex-partitioning approach where edges may span different machines
and the goal is to minimize the size of edge-cut (or simply cut).

PowerGraph uses greedy edge placement rules to assign edges to
different worker machines. Let us first assume that the edges are pro-
cessed one after another. Assume that we are assigning the i-th edge
(u, v) to a worker, and thus for any vertex w, A(w) is obtained accord-
ing to the assignment of the previous (i− 1) edges. Then, the rules are
given as follows, which correspond to three different cases:

• Case 1: A(u) ∩ A(v) 6= ∅. In this case, (u, v) is assigned to the
least loaded worker in A(u) ∩A(v).

• Case 2: A(u) ∪ A(v) 6= ∅ and A(u) ∩ A(v) = ∅. In this case,
(u, v) is assigned to the least loaded worker in A(u) ∪A(v).

• Case 3: A(u), A(v) = ∅. In this case, (u, v) is assigned to the
least loaded worker.

The actual partitioning of edges is performed in parallel by the workers,
and each worker periodically coordinates with other workers to keep
A(v) relatively up to date, with some loss in the accuracy of estimating
A(v). Similar greedy strategies have also been studied and compared
in the context of vertex partitioning by [Stanton and Kliot, 2012].

Notably, since the greedy rules reduce the replication factor, the
ghost size becomes much smaller than in distributed GraphLab, and
thus PowerGraph scales to much larger graphs. For example, the largest
graph tested in [Gonzalez et al., 2012] contains 1.5B edges.

84 Vertex-Centric Systems with Shared Memory Abstraction

5.2 Out-of-Core Systems for a Single PC

While GraphLab is sometimes less efficient than Pregel-like systems in
the distributed setting, the shared memory abstraction is dominantly
adopted by single-machine big graph systems. This is because a single
machine is a natural shared-memory environment, and the overhead
in GraphLab, e.g., ghost state synchronization, remote locking, etc., is
no longer a problem. In this section, we review four popular single-PC
systems that adopt shared memory abstraction and support efficient
out-of-core execution, and we analyze the disk-IO cost tradeoffs of their
designs.

5.2.1 GraphChi

GraphChi [Kyrola et al., 2012] was proposed as a single-PC counterpart
to distributed GraphLab, which keeps the GAS programming model
but eliminates the requirement of a cluster of machines with large cu-
mulative main memory space. Instead, GraphChi loads a disk-resident
graph part by part into the main memory of a single PC for process-
ing, and is efficient for moderate-sized graphs due to the elimination
of network communication. However, since the disk-IO bandwidth of
a single PC is fixed and limited, GraphChi is often an order of mag-
nitude slower than distributed big graph systems [Lu et al., 2014] for
very large graphs.

Edge-Scope GAS Programming.GraphChi adopts a simplified ver-
sion of the GAS programming model, where a vertex v only has ac-
cess to its edge-scope during computation, including (1) D(u,v) for all
u ∈ Γin(v), (2) Dv, and (3) D(v,w) for all w ∈ Γout(v). However, for a
broad range of vertex-centric graph algorithms, it is sufficient to only
access the edge-scope of a vertex. For example, in PageRank compu-
tation, a vertex v may distribute a(v)/dout(v) to every out-edge (i.e.,
D(u,v) ← a(v)/dout(v)); and v may update a(v) by summing the values
from all in-edges, and adjusting it by a damping factor (e.g., 0.85).

To realize the above programming model, it is important to make
sure that when v performs vertex-centric computation, the data values
of v and all its in-edges and out-edges are in main memory. There are

5.2. Out-of-Core Systems for a Single PC 85

two challenges: (1) since the memory space of a single PC is limited,
we cannot even assume that Dv of all vertices v ∈ V can fit in memory;
and (2) although D(u,v) will be written by u and read by v, we only
want to keep one copy of D(u,v) on secondary storage to avoid expensive
value synchronization.

Data Organization & Computation Model. We now explain how
GraphChi achieves the above goals. Specifically, GraphChi requires
that the IDs of the vertices in a graph with |V | vertices should be num-
bered as 1, 2, . . ., |V |. The IDs are partitioned into P disjoint intervals,
I1, . . ., IP . All vertices whose IDs fall into an interval Ii constitute a
shard (we also denote the shard by Ii for simplicity). In GraphChi,
each shard Ii stores not only (1) Dv of every v ∈ Ii, but also (2) all
in-edges to vertices in Ii, i.e., (u, v) (along with D(u,v)) for all v ∈ Ii

and u ∈ Γin(v). The in-edges in a shard are stored in the order of their
source u.

All vertices in a shard are loaded from secondary storage into main
memory as one batch for computation. To load a shard Ii for processing,
for any vertex v ∈ Ii, the data of v and its in-edges are already in main
memory, but we still need to load the data of every out-edge (v, w) into
memory. For this goal, GraphChi loads out-edges of vertices in Ii from
every other shard Ij (j 6= i) on secondary storage. Since in-edges (v, w)
of all vertices w ∈ Ij are already ordered by source v, all out-edges of
vertices v ∈ Ii are stored consecutively in Ij and can be loaded with
only one sequential read. The updated edge values are then written
back to the shard Ij by one sequential write. Therefore, processing a
shard Ii takes one sequential loading of Ii and (P − 1) sequential reads
and writes of out-edges. GraphChi processes every shard once in each
iteration, and thus requires Θ(P 2) non-sequential seeks to secondary
storage.

If Dv of all vertices v ∈ V can fit in memory, GraphChi supports a
more efficient semi-streaming model, where a vertex v updates Dv by
directly accessing Du of every in-neighbor u ∈ Γin(v), eliminating the
need of transmitting values through adjacent edges. This optimization
saves a lot of disk-IO cost, since otherwise D(u,v) of an edge (u, v) needs
to be written by u’s shard and read by v’s shard. In fact, this model

86 Vertex-Centric Systems with Shared Memory Abstraction

is extended to the case when Dv of all vertices v ∈ V cannot fit in
memory by VENUS [Cheng et al., 2015] to achieve better performance
than GraphChi, which we will introduce in Section 5.2.3.

Shard Preparation. One drawback of GraphChi is the requirement of
expensive preprocessing to prepare shards. Specifically, a user needs to
first preprocess a graph to make sure that vertex IDs are numbered as 1,
2, . . ., |V |. Then, GraphChi takes one pass over the disk-resident graph
to collect the in-degree of every vertex. Using the in-degree information,
GraphChi then divides the vertices into P intervals with approximately
the same number of in-edges, to form P shard files. In-edges in each
shard file are sorted by source vertex. Finally, the in-degree and out-
degree of every vertex are written to a binary degree file for later use.

So far, the preprocessing step guarantees that each shard file has
roughly the same size. However, when loading a shard Ii into memory
for processing, we still need to load out-edges of vertices in Ii from
other shards, and if many vertices in Ii have high out-degree, the num-
ber of out-edges to load may exceed the memory space. To solve this
problem, GraphChi further divides an interval into sub-intervals, using
the information loaded from the degree file, so that each sub-interval
can be processed in main memory. The use of sub-intervals allows the
same set of shard files to be applicable to machines of different memory
sizes.

Other Features. GraphChi also supports graph mutation. Specifi-
cally, each shard Ii has an edge-buffer Bi for appending new in-edges
to vertices in Ii, while removed edges are simply flagged and ignored.
After an iteration, each shard Ii is merged with its edge buffer Bi to
form a new shard, and if the shard becomes too large, it will be split
into two shards.

GraphChi adopts multithreading in two places. Firstly, the process-
ing of different vertices in a shard Ii is performed in parallel. However,
to solve race conditions, vertices that have an edge (u, v) where u, v ∈ Ii

are flagged as critical and updated in serial. Secondly, GraphChi over-
laps disk operations and in-memory computation as much as possible,
i.e., while one thread is loading/writing data, another thread is per-
forming computation on a shard.

5.2. Out-of-Core Systems for a Single PC 87

Finally, GraphChi supports selective scheduling so that vertices can
be processed with different frequencies. Specifically, in an iteration, a
vertex that performs computation can flag a neighboring vertex to be
updated in the next iteration. A bitmap of all vertices is maintained for
each iteration, and the bit corresponding to a vertex is set as 1 iff the
vertex is flagged. Using the bitmap, GraphChi skips the computation
on unflagged vertices.

5.2.2 X-Stream & Chaos

In this section, we first introduce X-Stream [Roy et al., 2013], a
single-machine big graph system that follows a different design from
GraphChi; we then introduce Chaos, a system that scales X-Stream
out to run on multiple machines.

X-Stream is designed for both in-memory execution and out-of-
core execution. According to Roy et al. [2013], X-Stream has very good
performance for in-memory execution. For out-of-core execution, X-
Stream does not require preprocessing, and the computation of a job
finishes before GraphChi finishes shard preparation. Even excluding
the preprocessing time of GraphChi, [Roy et al., 2013] reports that X-
Stream is faster than GraphChi when SSD is used. However, when hard
disk is used, X-Stream is usually slower than GraphChi, as reported
by [Cheng et al., 2015] and [Yan et al., 2016d], possibly due to the lack
of a mechanism to skip streaming inactive vertices.

Computation Model of X-Stream. Like GraphChi, X-Stream
adopts the edge-scope GAS programming model, but the execution
model is different. X-Stream eliminates the need for sorting edges, but
instead streams a completely unordered list of edges. Streaming disk-
resident (resp., memory-resident) edge lists allows X-Stream to fully
utilize the high sequential bandwidth of a hard-disk (resp., main mem-
ory) with the help of a main-memory buffer (resp., CPU cache).

The computation model of X-Stream is edge-centric, and each iter-
ation consists of two sequential passes. We now illustrate the two passes
by considering PageRank computation (with damping factor of 0.85),
assuming that the vertex states are all maintained in an in-memory ar-
ray, and edges are stored on disk in random order. The first pass streams

88 Vertex-Centric Systems with Shared Memory Abstraction

the edge list and performs edge-centric scattering. For each edge (u, v),
X-Stream gets a(u) and dout(u) from the in-memory state of u, and
computes an update value a(u)/dout(u) for the edge (u, v), which is
then appended to an update stream on disk. After the first pass, X-
Stream re-initializes all in-memory vertex values a(v) as (1−0.85)/|V |.
The second pass streams the list of updates and performs edge-centric
gathering. For each update m = a(u)/dout(u) of an edge (u, v), we add
0.85 ·m to the in-memory value field a(v). After the second pass, the
PageRank values of all vertices are advanced for one iteration.

To sum up, there are three important UDFs in X-Stream: (1)init(.),
which indicates how to re-initialize the value of a vertex before the gath-
ering pass; (2)apply_one_update(.), which indicates how to update the
value of a vertex using a gathered update; and (3) generate_update(.),
which indicates how to generate the update value of an edge (u, v) using
u’s state (and possibly the edge value of (u, v)).

Out-Of-Core Engine of X-Stream. The above example assumes
that all vertex states fit in main memory. When the assumption does
not hold, the vertices are partitioned into P disjoint intervals like in
GraphChi, so that all vertices in an interval Ii fit in main memory and
constitute a vertex partition, which we denote by Vi. Since a vertex
partition does not keep edges, when we are given a memory space
constraint, a partition in X-Stream contains more vertices than a shard
in GraphChi. Therefore, the number of partitions in X-Stream is much
smaller than the number of shards in GraphChi.

Each vertex partition Vi is also associated with an edge partition
Ei, which contains all out-edges of vertices in Vi, i.e. {(u, v) ∈ E | u ∈
Vi}. In the first pass for edge-centric scattering, each vertex partition
Vi is loaded into memory to generate updates by streaming the edge
partition file Ei. This pass writes to P update files, U1, . . . , UP , one
for each partition. When an update on edge (u, v) (where v ∈ Vj) is
generated, the update is appended to the update file Uj .

In the second pass for edge-centric gathering, each vertex partition
Vi is loaded into memory to update vertex values by streaming the
update file Ui generated by the first pass.

5.2. Out-of-Core Systems for a Single PC 89

The edge partition can be generated in one pass over the whole
edge list, and by appending each edge (u, v) where u ∈ Vi to the edge
file Ei. This is the only preprocessing required by X-Stream.

In-memory Engine of X-Stream. When all edges also fit in main
memory, the goal becomes to fully exploit the parallelism of all available
cores, which is possible since disk bandwidth is no longer the bottleneck.
To hide the memory bandwidth, the data required in processing of each
vertex partition Vi should fit in a CPU cache. However, unlike in main
memory where we can pin the vertex states and only use a small buffer
for streaming edges and updates, users do not have direct control over
CPU caches. Therefore, X-Stream partitions vertices into intervals so
that for each interval Ii, the total space required by Vi, Ei and Ui does
not exceed the size of a CPU cache. This requirement leads to much
smaller partition size and thus a much larger number of partitions.

Since the number of partitions is large, there are many update lists
Uj to write to. To shuffle the generated updates to the update lists
efficiently, X-Stream adopts a tree-structured multi-stage shuffler to
improve the cache locality of shuffling. Moreover, to avoid write con-
tention, each thread only appends updates to its own private buffer,
and flushes them to update lists in batches. Work stealing is also used
to avoid workload imbalance: if a thread finishes processing all its as-
signed partitions, it will steal partitions from other threads to process.

The Weakness of X-Stream. As admitted in [Roy et al., 2013], X-
Stream is inefficient for graphs whose structure requires a large number
of iterations, such as a large graph diameter. This is because each
iteration streams all edges of a graph even if only a small number of
vertices participate in computation. This weakness is also observed by
other works such as [Yan et al., 2016d].

Chaos: Scaling-out X-Stream. In a single-machine environment,
there is only one disk (or RAID), which limits the disk streaming band-
width. Chaos [Roy et al., 2015] scales out X-Stream by distributing the
partitions (i.e., (Vi, Ei) pairs) evenly to multiple machines for process-
ing, so that each machine only streams part of the partitions. In this

90 Vertex-Centric Systems with Shared Memory Abstraction

way, the disks of all machines are streamed in parallel, which leads to
a much larger cumulative disk streaming bandwidth.

Chaos uses a storage sub-system to manage the vertex states, edges
and updates. A master keeps track of the vertices and edges of every
partition, and the generated updates towards every partition; while a
computing thread sends requests to the master for the necessary data
for processing a partition. This approach assumes that cluster network
bandwidth far outstrips storage bandwidth, which is a fundamental as-
sumption underlying the design of Chaos [Roy et al., 2015]. In fact, [Roy
et al., 2015] reported that Chaos only achieves good performance by
using large-SSD machines connected by 40 Gigabit Ethernet, and the
performance is undesirable when the more common Gigabit Ethernet
is used.

When a machine Wa finishes all its assigned partitions in an itera-
tion, it may send request to another machine Wb to steal the workload
of processing a partition Pi = (Vi, Ei) assigned to Wb. If Wb accepts
the request, Wa may pull the data of Pi for processing. Since both Wa

and Wb may be processing Pk, the master of the storage sub-system
should assign disjoint sets of edges (during scatter) and updates (dur-
ing gather) to Wa and Wb. Multiple accumulated values of a vertex
(processed by different computing threads) need to be combined be-
fore completing the gather phase.

5.2.3 VENUS

We now introduce VENUS [Cheng et al., 2015], which is designed for
vertex-centric iterative computation on a static graph and thus does
not support graph mutation.

Programming Model. Unlike the edge-scope GAS programming
model of GraphChi and X-Stream, VENUS adopts a value-scope GAS
programming model where a vertex v only accesses Dv, and Du for all
u ∈ Γin(v). For example, in PageRank computation, when a vertex v
computes Dv by summing a(u)/dout(u) of every u ∈ Γin(v), it directly
accesses the vertex value of u. This is in contrast to the approach of
GraphChi and X-Stream, where u first distributes the value (or update)
to edge (u, v), and then v gets the value (or update) from (u, v). As

5.2. Out-of-Core Systems for a Single PC 91

a result, this approach saves the disk-IO cost of writing O(|E|) values
(or updates) to the edges.

Data Organization. In the above programming model, each iteration
only needs to scan the static graph topology data once, but the value of
a vertex may be accessed multiple times to update the value of its out-
neighbors. Therefore, VENUS separates the read-only structure data
from mutable vertex values on disk: the structure data are streamed
(or sequentially read) during the computation which only requires a
small in-memory buffer, and thus the available main memory can be
used to cache as many mutable vertex values as possible (for efficient
access during the computation). This is in contrast to GraphChi where
all adjacent edges of a shard need to be loaded into main memory
before the shard can be processed. This new computation model is
called vertex-centric streamlined processing (VSP).

We now introduce the data organization of VENUS in more detail.
Like in GraphChi, VENUS requires the IDs of the vertices in a graph
to be numbered as 1, 2, · · · . The vertices are partitioned into P disjoint
intervals according to their IDs, I1, . . . , IP , and each interval Ii defines
a g-shard and a v-shard as follows: (1) the g-shard stores all the edges
(and the associated read-only attributes) with destinations in Ii, and
(2) the v-shard contains all vertices in the corresponding g-shard, in-
cluding the source and destination of each edge. Moreover, edges in a
g-shard are ordered by destination, and thus the in-edges of each vertex
are stored consecutively. In other words, the g-shard of Ii stores Γin(v)
(and the associated edge attributes) of every vertex v ∈ Ii one by one.
All g-shards are further concatenated to form the structure table, which
is streamed during VSP.

Computation Model. In each iteration, the VSP model processes
vertices of I1, . . . , IP one by one, where the in-edges of each vertex is
streamed from the structure table. If the values of all vertices fit in
memory, VENUS supports a semi-streaming in-memory mode similar
to that of GraphChi. Otherwise, VENUS supports two IO-friendly al-
gorithms described as follows.

The first algorithm materializes all v-shard values as a view for each
shard. To process the vertices in Ii, the relevant vertex values are loaded

92 Vertex-Centric Systems with Shared Memory Abstraction

from the v-shard of Ii. After all vertices in Ii are processed, their new
values need to be updated to all the relevant v-shards. This is because,
a vertex u ∈ Ii may be the in-neighbor of another vertex v ∈ Ij (j 6= i),
and thus u’s value is included in the v-shard of Ij . VENUS orders the
values of the vertices in each v-shard by their vertex ID, and thus for
each v-shard Ij , the values of those vertices whose IDs are in interval Ii

are stored consecutively and can be updated by one sequential write.
To eliminate the cost of materializing all (possibly replicated) vertex

values in v-shards, the second algorithm merge-joins each v-shard with
the table of all vertex values. In this case, the v-shard of Ii only stores
the IDs of the relevant vertices, and their values are obtained by joining
the v-shard with the vertex value table by vertex ID. Since data in both
a shard and the vertex value table are ordered by vertex ID, merge-join
is applicable and efficient. The join results include all relevant vertex
values and are cached in memory for processing Ii.

The vertex decomposition and the use of joins to reconstruct ver-
tices in VENUS is very similar to that in Vertexica [Jindal et al.,
2014b], a graph processing system built on top of Vertica2. Although
Pregelix [Bu et al., 2014] provides out-of-core supports, it does not de-
compose vertices. The details of both Vertexica and Pregelix can be
found in Section 8.2.

5.2.4 GridGraph

GridGraph [Zhu et al., 2015] is a single-machine out-of-core system
which represents a graph by a grid to reduce the amount of I/O during
the processing. Similar to GraphChi, the vertices are partitioned into
P intervals. Using the P intervals, the vertex vector is broken into P
chunks, and the adjacency matrix A is broken into a grid of P ×P edge
blocks. Here, a block (Ia, Ib) includes all edges with source in interval
Ia and destination in interval Ib, and are stored (in any order) as a file
on the disk. Note that unlike GraphChi, X-Stream and VENUS, the
edges of a vertex may be stored in multiple files in GridGraph.

2Vertica: http://www.vertica.com

http://www.vertica.com

5.2. Out-of-Core Systems for a Single PC 93

Computation Model. GridGraph combines the scattering and gath-
ering phases into one “streaming-apply” phase, which streams every
edge and applies the generated update instantly onto the vertex. Let
ai(v) be the vertex value of v at iteration i. In an iteration i, Grid-
Graph processes each block (Ia, Ib) once if any vertex v ∈ Ia is active.
To process the edges in block (Ia, Ib), GridGraph pins the following
data in main memory: (1) the vertex value chunk of Ia for iteration i,
(2) the vertex value chunk of Ib for iteration (i + 1). The update on
an edge (u, v) is computed from ai(u) (obtained from the chunk of Ia)
and the value of edge (u, v), which is then aggregated to ai+1(v) in the
chunk of Ib.

GridGraph processes the blocks in the grid column by column, and
for each column, the blocks are processed from top to bottom. The
benefit of column-oriented computation is that, all blocks in a column
for interval Ib updates the vertex values in chunk Ib, and thus chunk Ib

can be pinned in memory during the processing of the whole column,
and flushed to the disk after the column is processed. Therefore, the
processing of each column needs to read P chunks of Ia (i.e., O(|V |)
vertex values) and write one chunk of Ib. Accordingly, each iteration
needs to read O(P · |V |) data of vertex chunks and write O(|V |) data
of vertex chunks, in addition to streamingly reading O(|E|) edges in
the grid. The efficiency of this computation model lies in the fact that
the data written to disk is linear to the vertex number, rather than the
edge number as in GraphChi and X-Stream.

Since the edges are processed in parallel, different threads may ap-
ply in-place updates to the same vertex in chunk Ib, and thus data
aggregations are implemented by atomic operations.

Other Optimizations. Besides the BSP model described above, Grid-
Graph can also run in asynchronous mode, in which case for a block
(Ia, Ib), there is no concept of iteration number for the corresponding
vertex chunks Ia and Ib, and they are just the states of subsets (i.e.
intervals) of vertices that can be both read and updated. This allows
faster convergence for algorithms like Hash-Min.

Note that the edges in a block are streamed during the “streaming-
apply” computation, which only requires a small in-memory buffer to

94 Vertex-Centric Systems with Shared Memory Abstraction

achieve full sequential bandwidth for large block files. However, some
blocks can be very sparse, and the small file size may lead to frequent
disk seeks. Therefore, the blocks are appended into one large file for
streaming, with block boundaries recorded so that GridGraph knows
when to pin/unpin a vertex chunk.

Recall that each iteration in GridGraph reads O(P · |V |) data of
vertex chunks, and thus a small value of P reduces the I/O accesses
of vertices. GridGraph sets P as the smallest integer that still guar-
antees that a vertex chunk (with |V |/P vertices) fits in main memory.
Moreover, since each block (Ia, Ib) is processed in main memory, and
to maximize the CPU-to-memory access locality, each block is further
partitioned by a Q ×Q grid, and accordingly, each vertex chunk (i.e.,
Ia and Ib) is partitioned into Q smaller sub-chunks such that each sub-
chunk fits into the last-level CPU cache. Like the processing in the
upper-level grid, the lower-level grid of each block is also processed in
a column-oriented manner to reduce cache misses.

5.3 Summary

We have reviewed two kinds of systems that adopt the shared memory
programming abstraction: (1) GraphLab and PowerGraph that keep
data in main memory and execute asynchronously, and (2) single-
machine out-of-core systems that execute synchronously. We remark
that unlike the real shared memory systems that we shall introduce
in Chapter 9.2, the systems we reviewed here do not actually perform
shared memory computation at the backend. As a result, a vertex can
only access data of its adjacent vertices/edges, rather than any vertex
it keeps track of like in Pregel. We regard the edge-streaming models
of X-Stream and GridGraph as a special vertex-centric model (that
is disk-friendly), since the edge values still need to be aggregated at
the receiving vertices. Also, we consider single-machine out-of-core sys-
tems as performing synchronous execution, since each iteration needs
to stream the whole graph on disk(s); but this is different from Pregel’s
model where a vertex always receives a value from the last iteration.
Here, a vertex may be accessing the value of another vertex that is

5.3. Summary 95

written to disk when processing a previous shard in the same itera-
tion, and thus the total number of iterations can be less than that of
a Pregel algorithm. Last but not least, we remark that single-machine
out-of-core systems may not a wise choice for algorithms running for
many iterations but only a small number of vertices compute in each
iteration, since the entire graph needs to be streamed again and again.

Part II

Beyond Vertex-Centric
Programming Model

6
Matrix Algebra-Based Systems

Graphs and matrices are inherently related, so a number of big graph
systems expose a matrix-based interface for users, instead of using
the vertex-centric programming model. In this chapter, we review
three important matrix-based systems for big graph processing, PE-
GASUS [Kang et al., 2009], GBASE [Kang et al., 2011], and Sys-
temML [Ghoting et al., 2011]. All three systems expose a matrix-based
interface for users, and rely on a general purpose data processing sys-
tem, such as MapReduce or Spark, for distributed execution.

6.1 PEGASUS

Before the advent of Pregel, big graphs were processed using MapRe-
duce, and many tailor-made MapReduce algorithms were proposed for
solving specific graph problems. [Kang et al., 2009] pioneered the re-
search in developing general-purpose MapReduce-based frameworks for
designing parallel graph algorithms. They developed a MapReduce-
based system called PEGASUS, which models graph computation by
a generalization of matrix-vector multiplication. Compared with the
vertex-centric systems that were proposed later, PEGASUS suffers

99

100 Matrix Algebra-Based Systems

from two problems: (1) it is not user-friendly to programmers that are
not familiar with matrix computations, and (2) it relies on the disk-
based Hadoop MapReduce for execution, which limits its performance.

We now review the PEGASUS system. PEGASUS models each it-
eration in iterative graph computation by a generalized matrix-vector
multiplication operation, which is repeated until the vertex values in
the vector converge. Taking the PageRank algorithm as an example,
each superstep can be formulated by the following matrix-vector mul-
tiplication operation:

~v ← (0.85 ·AT + 0.15 · U) · ~v. (6.1)

In Equation (6.1), (1) ~v is a column vector with |V | elements, and
each element ~v[i] refers to the value of a vertex vi (i.e., a(vi)); (2) A
is the adjacency matrix, and A[i][j] = 1/dout(vi) if edge (vi, vj) exists,
and A[i][j] = 0 otherwise; (3) U is a |V | × |V | matrix with all elements
set to 1/|V |. Let us denoteM = 0.85 ·AT +0.15 ·U , then Equation (6.1)
has the form ~v ←M ·~v. This matrix-vector multiplication operation is
defined by three operators:

1. combine2: to multiply M [i][j] and ~v[j];

2. combineAll: to sum the |V | multiplication results for vi (i.e.,∑|V |
j=1{M [i][j] · ~v[j]});

3. assign: to overwrite the old value of vi with the new sum.

In the PageRank algorithm, combine2 simply performs multiplica-
tion while combineAll simply performs summation. PEGASUS lets a
user customize the above three operators to implement different graph
algorithms. For example, to implement the Hash-Min algorithm, we
simply set M to be the 0-1 adjacency matrix of an undirected graph
G, and the three operators are defined as follows:

1. combine2(i, j) = M [i][j] · ~v[j];

2. combineAll(i) = min|V |j=1{combine2(i, j)};

3. assign: ~v[i]← min{~v[i], combineAll(i)}.

6.2. GBASE 101

Note that every iteration in PEGASUS processes all vertices in a
graph. For example, in the above Hash-Min algorithm, even in later
iterations, every vertex vi needs to recompute its value since there is
no mechanism for individual vertices to halt.

To improve performance, PEGASUS partitions the matrix M into
b×b submatrices, and partitions the vector ~v into groups of b elements,
so that the matrix-vector multiplication is performed in coarser granu-
larity: combine2 now becomes multiplying a b× b matrix by a column
vector with b elements, rather than multiplying two scalars. The block-
ing approach provides several performance advantages: (1) the coarser-
grained computation decreases the number of items to sort during the
shuffling phase of MapReduce; (2) each submatrix is represented by two
4-byte integers (block-rowID, block-columnID) followed by non-zero el-
ements represented by two log b-bit integers (rowID, columnID); this is
more compact than associating each non-zero element with two 4-byte
integers individually.

PEGASUS further adopts two optimizations to the block multi-
plication approach. Firstly, PEGASUS preprocesses the matrix M by
co-clustering (i.e., reordering rows and columns), so that there are fewer
submatrices but each submatrix contains more non-zero elements. As
a result, there are fewer (block-rowID, block-columnID) pairs, reducing
the data volume (and number of data items) to be streamed (and shuf-
fled) by MapReduce. Secondly, to reduce the number of iterations (i.e.,
MapReduce jobs), PEGASUS multiplies each diagonal matrix block
with the corresponding vector block repeatedly in each iteration un-
til the contents of the vector block do not change. This optimization
propagates vertex states throughout the whole submatrix block (i.e.,
a subset of vertices), and thus reduces the number of iterations. This
method shares the same idea as the block-centric computation dis-
cussed in Section 4.1.

6.2 GBASE

GBASE [Kang et al., 2011] is another MapReduce-based big graph sys-
tem, with the following differences from PEGASUS. Firstly, GBASE

102 Matrix Algebra-Based Systems

aims to efficiently support “targeted” queries which need to access only
part of the graph, in addition to “global” queries that traverse the
whole graph. Secondly, a user of GBASE uses built-in graph operations
to process and mine graphs, rather than write their own algorithms.
Thirdly, each built-in graph operation is implemented by the exact
matrix-vector multiplication(s) (run on MapReduce), not the general-
ized matrix-vector multiplication(s).

Querying. GBASE unifies different graph operations by the matrix-
vector multiplication operation ~vout ← M · ~vin. Here, ~vin is a column
vector with |V | elements (one for each vertex), which serves as the
query input. There are two cases for M and ~vout, which we describe
below.

Case 1: M is the adjacency matrix A or its transpose AT , and
~vout is a column vector with |V | elements (one for each vertex). For
example, the vector of in-neighbors (resp. out-neighbors) of a vertex vi

is computed by A ·~evi (resp. AT ·~evi), where ~evi is the indicator vector
of vi (i.e., ~evi [i] = 1 and all other elements of ~evi are 0).

Case 2: M is the |E| × |V | incidence matrix B, where B[i][j] = 1 if
edge ei is adjacent to vj , and B[i][j] = 0 otherwise; and ~vout is a column
vector with |E| elements (one for each edge). For example, to compute
the subgraph induced by a subset of vertices S, we can compute B ·~vin

where ~vin[i] = 1 if vi ∈ S and ~vin[i] = 0 otherwise. The result ~vout

consists of elements with values 0, 1, or 2, and the induced subgraph
is given by those edges whose corresponding values in ~vout are 2 (since
it means that both endpoints of the edges are in S).

The built-in operations can be further combined to perform more
advanced graph operations. For example, to get the set of vertices
within k hops from v, one may left-multiply ~ev by AT for k times;
while to get the k-ego network of v, one may left-multiply B to the
result vector of v’s k-hop neighbors.

Storage. To support the querying of a graph G, GBASE needs to first
preprocess the adjacency matrix A into multiple files, so that during
the processing of a query q, only those files relevant to q are read by
MapReduce. As a result, a “targeted” query usually reads only a small
portion of files.

6.3. SystemML 103

For this goal, GBASE first reorders the rows and columns of A
and partitions A into homogeneous submatrices called blocks. This is
achieved by using an existing graph partitioning algorithm like METIS,
and each block is either very dense or very sparse. This step is similar
to the optimization of matrix co-clustering in PEGASUS. However, in-
stead of encoding a block with the coordinates of its non-zero entries as
in PEGASUS, GBASE converts each block into a binary string (e.g., by
concatenating the rows of the 0-1 submatrix), and then compresses the
string using GZip. [Kang et al., 2011] reported that the total size of the
compressed files is less than 2% of the original graph size. As a trade-
off, the files have to be unzipped for processing, but the storage savings
and the reduced amount of data transfer outweigh the decompression
overhead.

The compressed blocks (or, submatrices) are then grouped into files.
One may group the blocks by rows, so that for an out-neighbor query
where only a row of A is required, only one file is read; however, all
files need to be read for an in-neighbor query. Symmetrically, grouping
blocks by columns is undesirable for out-neighbor queries. To solve the
problem, GBASE divides the matrix of blocks by a coarser-grained
grid, and groups all blocks in each grid cell into a file. Let the total
number of files be n, then with the grid placement of blocks, both an
in-neighbor query and an out-neighbor query read O(

√
n) files.

6.3 SystemML

Different from the above two matrix-based systems, SystemML [Ghot-
ing et al., 2011] takes a declarative approach to graph analytics and,
more generally, to machine learning (ML). Instead of exposing program-
ming APIs to the end users, SystemML provides a high-level scripting
language for users to express their analytics algorithms, without them
worrying about how to execute individual operations. SystemML com-
piles the algorithm scripts, and then optimizes and executes them in
a hybrid runtime of a single node and a distributed cluster by using
either MapReduce or Spark. Furthermore, SystemML supports general
linear algebra operations, besides just matrix-vector multiplication, and

104 Matrix Algebra-Based Systems

is thus applicable for any ML or analytics algorithms that can be ex-
pressed using linear algebra.

Programming Language. Algorithms in SystemML are written
in a high-level language called Declarative Machine learning Language
(DML). This language includes linear algebra, statistical functions, and
control flow constructs like loops and branches. Script 1 shows how the
PageRank algorithm can be written in just 11 lines of code in this
high-level language.
Script 1. PageRank
1: G = readMM("in/G", rows=1e6, cols=1e6, nnzs=1e9); // G: input graph
2: p = readMM("in/p", rows=1e6, cols=1); //p: initial uniform pagerank
3: e = readMM("in/e", rows=1e6, cols=1); //e: all-ones vector
4: ut = readMM("in/ut", rows=1, cols=1e6); //ut: a vector for per-node
personalization, e.g. uti = 1

d(vi) , where d(v) is the out-degree of v
5: alpha = 0.85; //teleport probability
6: max_iteration = 100;
7: i = 0;
8: while(i < max_iteration) {
9: p = alpha * (G %*% p) + (1 - alpha) * (e %*% ut %*% p);
10: i = i + 1; }
11:writeMM(p, "out/p");

Optimization. The high-level scripts are compiled into DAGs of
high-level operators (HOPs), then DAGs of low-level operators (LOPs),
and eventually executable instructions. SystemML applies optimiza-
tions at different levels of abstraction during algorithm compilation,
including constant propagation/folding, common subexpression elimi-
nation (CSE), operator ordering, operator selection, recompilation de-
cisions, and piggybacking (packing multiple instructions into a single
MapReduce job). The cost-based optimizer in SystemML generates ex-
ecution plans based on data characteristics, like the dimensionality and
sparsity of matrices, as well as cluster and machine characteristics, such
as memory and CPUs.

Matrix Representation. Similar to PEGASUS and GBASE, a
matrix in SystemML is divided into blocks for efficient processing and
storage. However, unlike the other two systems, SystemML does not
require the expensive clustering of vertices in a preprocessing step to
form the matrix blocks. At the per matrix-block level, dynamic run-
time optimizations are also applied for choosing block layout (sparse or

6.4. Summary 105

dense layout) and implementations of block-level operations, based on
the statistics (e.g. density of a matrix block) gathered at runtime. In
addition, lightweight database compression techniques can be applied
to matrix blocks, and then linear algebra operations, such as matrix-
vector multiplication, can be executed directly on the compressed rep-
resentations [Elgohary et al., 2016].

Runtime. SystemML generates hybrid runtime execution plans
that range from in-memory, single node execution to large-scale cluster
execution of operators on either MapReduce or Spark [Boehm et al.,
2016], hence enabling scaling up or down of computation. For clus-
ter execution, SystemML utilizes resource negotiation frameworks like
YARN [Vavilapalli et al., 2013], to achieve automatic resource elas-
ticity in a cluster [Huang et al., 2015]. Besides data parallelism that
would be normally achieved using MapReduce or Spark, SystemML
also supports task parallelism through which independent iterations in
loops can be executed in parallel [Boehm et al., 2014]. Furthermore,
SystemML also strives to achieve the numerical accuracy [Tian et al.,
2012] of operations in addition to efficiency.

6.4 Summary

This chapter describes three matrix-based big graph systems. We now
summarize their commonalities and differences, and compare them to
the vertex-centric graph systems.

6.4.1 Comparison of the Matrix-Based Systems

In a high level, the three matrix-based graph systems share commonal-
ities, such as exposing a matrix-based interface for graph analytics and
relying on a underlying general-purpose distributed processing system
for execution. But they are also very different in many aspects. Ta-
ble 6.1 summaries the major differences of the three systems.

In terms of supported analytics, PEGASUS and GBASE are purely
designed for graph analytics, whereas SystemML is for general ML (in-
cluding graph analytics). As a result, SystemML supports general linear
algebra as its primitive operations, beyond just matrix-vector multipli-

106 Matrix Algebra-Based Systems

PEGASUS GBASE SystemML

Supported global targeted & global graph analysis
Analytics graph analysis graph analysis & ML

Core matrix-vector matrix-vector general
Operations multiplication multiplication linear algebra

User customizable built-in R-like
Interface APIs algorithms language
Matrix general general
Blocking square rectangular rectangular
Block clustering clustering no clustering

Formation nodes nodes needed
Matrix compressed, compressed,
Storage uncompressed special placement per-block layout
Query cost-based &

Optimization NA NA rule-based
Runtime single node &
Platform MapReduce MapReduce MapReduce/Spark

Table 6.1: Comparison of PEGASUS, GBASE and SystemML

cation. Although all are matrix based, the three systems provide very
different interfaces, hence different levels of flexibilities to the users:
GBASE only exposes built-in algorithms for users to choose, PEGASUS
allows users to customize the API implementation for matrix-vector
multiplications, whereas SystemML provides a rich scripting language
to compose a graph/ML algorithm using linear algebra operations.

All three systems break a matrix into blocks for efficient process-
ing and storage. PEGASUS only uses square blocks, whereas the other
two support general rectangular blocks. Both PEGASUS and GBASE
require a preprocessing step to cluster the nodes in order to gener-
ate compact blocks. In terms of storage, both GBASE and SystemML
support compression on the blocks. To support efficient access to a
matrix, GBASE uses a grid placement to minimize file access, whereas
SystemML optimizes the physical layout at the matrix-block level.

Although a number of system optimizations are used in PEGASUS
and GBASE, these two systems do not apply any query-specific op-

6.4. Summary 107

timizations. Taking a declarative approach, SystemML employs both
cost-based and rule-based optimizations for each graph/ML algorithm.
In addition, SystemML also generates a hybrid runtime to scale up and
down the computation.

6.4.2 Comparison of Matrix-Based and Vertex-Centric Systems

Finally, let’s compare the matrix-based graph systems to the vertex-
centric graph systems.

Which interface is better, matrix-based or vertex-centric, is in the
eye of the beholder. For data analysts who are more familiar with writ-
ing algorithms using linear algebra operations in R or MATLAB, the
matrix-based systems may be more intuitive to them. But for program-
mers who are comfortable writing code, the vertex-centric systems can
give them more flexibility and control, as they can express more cus-
tomized logic for their graph algorithms, which can be hard to express
using matrix operations.

As for the runtime, the three matrix-based systems all rely on an
existing general-purpose data processing engine for execution, whereas
many vertex-centric graph systems implement their own runtime en-
gines specially designed for graph processing. On one hand, this makes
graph analytics on the matrix-based systems more easily integrated
with other types of data processing tasks, such as Extract-Transform-
Load (ETL) and ML, on the same underlying processing platform. On
the other hand, this also means that the vertex-centric systems can
often avoid some unnecessary overhead incurred in matrix-based sys-
tems. For example, MapReduce materializes results after each Map-
and-Reduce phase. As a result, the matrix-based systems built on
MapReduce have to read and write graph data many times through-
out an algorithm. In comparison, many vertex-centric systems can keep
graph data in memory across iterations without incurring IO.

In addition, vertex-centric systems often keep track of whether a
vertex is active or not throughout an algorithm, so that computation
is only occurred on active vertices. Many iterative graph algorithms,
such PageRank and Connected Component, only involve a very small
number of active vertices for computation, as the algorithm approaches

108 Matrix Algebra-Based Systems

to its convergence. But in matrix-based systems, each iteration requires
a full matrix computation, even though only a few of the matrix ele-
ments will change their values. As a result, the matrix-based systems
may show some disadvantage in performance compared to the vertex-
centric systems.

In summary, both matrix-based and vertex-centric graph systems
have their pros and cons. There are many factors that affect the choice
of a system for a particular user, including the intuitiveness and the
expressiveness of the user interface, the ease of integration with other
analytics tasks, and of course the runtime performance.

7
Subgraph-Centric Programming Models

While the vertex-centric and matrix-based systems presented in the
previous sections are expressive enough to solve many graph problems,
they are not good at solving problems like graph matching and motif
mining, where the outputs are sets of subgraphs that may overlap with
each other. In fact, existing vertex-centric and matrix-based systems
are mainly designed for graph problems whose output size is linear
or sub-linear in the size of the input graph, e.g., tasks that require
computing one value for each vertex. However, the size of the outputs
for graph matching and motif mining can be much larger than the
graph size.

Further, many graph analysis tasks need to reason about the lo-
cal neighborhoods of different nodes; doing this using a vertex-centric
programming model can result in very high messaging and memory
overheads. A simple example of such a task is the computation of local
clustering coefficient (a measure of local density around a node) for all
nodes of the graph; computing this metric for a node requires access to
the adjacency lists of the neighbors of that node, and cannot be easily
done in the vertex-centric systems.

109

110 Subgraph-Centric Programming Models

In order to handle such problems, several recent systems bind the
user-defined computation logic to individual subgraphs, rather than
individual vertices or edges. We call such a computation model a
subgraph-centric programming model, to differentiate it from the block-
centric model discussed in Section 4.1 (the scope of the computation
for block-centric is similarly limited as vertex-centric models and the
outputs there have linear size).

In this chapter, we first look at some existing solutions for graph
matching, motif mining, and several other analysis tasks in Section 7.1,
and explain why these problems cannot be efficiently processed using a
vertex-centric system. Then, in Sections 7.2 and 7.3, we review two re-
cent subgraph-centric systems for solving these problems, NScale [Qua-
mar et al., 2016] and Arabesque [Teixeira et al., 2015].

7.1 Complex Analysis Tasks

7.1.1 Graph Matching & Motif Mining

Graph Matching. In graph matching, we are given a query graph
(aka a pattern graph) where each vertex (and/or edge) may have a
label, and the goal is to find all subgraph instances in a large data
graph that are isomorphic to the query graph. This problem cannot be
simply solved by graph traversal as in existing vertex-centric systems,
since a cycle in a query graph implies a join operation on the data
graph. To see this, consider the query graph to be a cycle of 4 vertices
with labels a, b, c and d. In this case, if we do graph traversal in the
data graph starting from vertices matching a till vertices matching d,
we finally need to check each vertex matching d to see (1) whether its
has a neighbor with label a, and (2) whether the neighbor is exactly the
vertex matching a when we start the traversal. This essentially requires
a join operation on those vertices with label a.

Vertex-Centric Filtering. We are only aware of one solution to graph
matching that uses a vertex-centric platform: Gao et al. [2014] solve
the problem of approximately detecting a given pattern over a large
dynamic graph using Giraph. Since Giraph is not good at problems
whose outputs are overlapping subgraphs, their technique simply out-

7.1. Complex Analysis Tasks 111

puts a flag for each vertex v indicating whether there exists a subgraph
containing v that matches the pattern graph. Their approach first finds
the highest-degree vertex in the query graph, called the sink vertex s,
and then breaks the query graph into multiple smaller components that
only connect with each other through s. Subgraph instances that match
each component are then found by graph traversal, and joined at s at
last to find those subgraphs that match the whole query graph.

To find the subgraph instances that match a component, the edges
in the component are first given directions so that the whole compo-
nent forms a DAG. Edge directions are computed by BFS from s. The
data graph is traversed according to the edge directions in the DAG,
starting from those vertices with zero in-degree in the query graph. If
all incoming edges of a vertex is matched, then the vertex is flagged as
matching and it sends messages to match its downstream neighbors in
the DAG. However, since the neighbors may be traversed from the same
upstream vertex (e.g., with label a) in the query graph, it is necessary
to check whether the two matching vertex of a are the same vertex in
the data graph. For this goal, Gao et al. [2014] propose to expand each
message by including the ID of the matched upstream vertex in the
data graph for filtering. Thus, the algorithm is exact if each compo-
nent contains only one cycle, but false positives may be introduced if
there is more than one cycle (the tradeoff being that the message sizes
are constant).

Twig Joining. Another solution is to decompose the query into acyclic
subgraphs called twigs: the matching subgraphs of each twig are first
found by (join-free) graph traversal, and then, these subgraphs are
joined on connecting vertices to compute the exactly matched sub-
graphs. For example, Sun et al. [2012] implement such an algorithm on
top of their Trinity system, which we briefly review next.

Trinity [Shao et al., 2013] (now calledGraph Engine) is a distributed
graph engine built on top of a memory cloud. It stores billions of run-
time vertex objects with high memory utilization ratios, to enable fast
vertex access. A unified declarative language called Trinity Specifica-
tion Language (TSL) is provided for data modeling (e.g., to define
data schemata) and message passing. While vertex-centric computa-

112 Subgraph-Centric Programming Models

tion paradigms are supported by Trinity for both online querying and
offline analytics, Trinity can also support other flexible computations
on top of its memory cloud, such as to build a local inverted index on
each machine W that maps each label a to those vertices in W that
match a, or to perform distributed join, both of which are required by
their graph matching algorithm [Sun et al., 2012].

While the algorithm by Sun et al. [2012] is designed for labeled
graphs, there is another MapReduce-based solution for graph matching
on unlabeled graphs [Lai et al., 2015], which also joins small twigs to
compute the matched subgraphs (in terms of topology only).

Motif Mining. There are also a few MapReduce solutions to find-
ing motifs. For example, Suri and Vassilvitskii [2011] proposed two
MapReduce algorithms for triangle counting, while Xiang et al. [2013]
proposed a MapReduce algorithm for finding the maximum clique. For
these two problems, it is sufficient to check the 1-ego network of every
vertex since a triangle and a clique are both complete graphs. Some
motifs may require checking a larger neighborhood of every vertex. For
example, to find quasi-cliques, the algorithm by Liu and Wong [2008]
checks the two-hop neighborhood of each vertex.

Both of the above-mentioned approaches [Suri and Vassilvitskii,
2011] and [Xiang et al., 2013] divide a graph into subgraphs to be
processed by different reducers in parallel. Although a Pregel-like al-
gorithm has been proposed for triangle counting [Quick et al., 2012], a
superstep may generate O(|V |1.5) amount of messages, and thus, that
approach is not scalable.

Summary. To summarize, while there exist some vertex-centric so-
lutions to graph matching and motif mining, they either provide ap-
proximate outputs [Gao et al., 2014] or are not scalable [Quick et al.,
2012]. Exact algorithms for graph matching may require join opera-
tions that are not well-supported by vertex-centric systems, while for
motif mining, the size of the intermediate results is usually superlinear
to the graph size, and those problems are hence often solved by the
disk-based MapReduce framework to avoid memory overflow.

7.1. Complex Analysis Tasks 113

7.1.2 Neighborhood-Oriented Analysis Tasks

The vertex-centric model limits the compute program’s access to a
single vertex’s state and so the overall computation needs to be de-
composed into smaller local tasks that can be (largely) independently
executed; it is not clear how to do this for many graph algorithms
of interest, without requiring a large number of iterations. For exam-
ple, to analyze a 2-hop neighborhood around a vertex to find social
circles [Leskovec and Mcauley, 2012], one would first need to gather
all the information from the 2-hop neighbors through message-passing,
and reconstruct those neighborhoods locally (i.e., in the vertex program
local state). Even something as simple as computing the number of tri-
angles for a node requires gathering information from 1-hop neighbors
(since we need to reason about the edges between the neighbors). This
requires significant network communication and an enormous amount
of memory.

Consider some back-of-the-envelope calculations (from Quamar
et al. [2016]) for estimating the message passing and memory over-
head for constructing neighborhoods of various sizes at each vertex for
the Orkut social network graph with approximately 3M nodes, 234M
edges and an average degree of 77. The original graph occupies 14GB
of memory for a data structure that stores the graph as a bag of ver-
tices in adjacency list format. Constructing the 1-hop neighborhoods
for all vertices through message passing requires 231M messages and
consumes a total of 233 GB of cluster memory, whereas constructing
2-hop neighborhoods would require approximately 18B messages and
18TB of memory. It is clear that a vertex-centric approach requires
inordinate amounts of network traffic, beyond what can be addressed
by “combiners” in Pregel or GPS, and impractical amount of cluster
memory. Although GraphLab is based on a shared memory model, it
too would require two phases of GAS (Gather, Apply, Scatter) to con-
struct a 2-hop neighborhood at each vertex and suffers from duplication
of state and high memory overhead. Furthermore, because most exist-
ing graph processing frameworks hash-partition vertices by default, this
approach will create much duplication of neighborhood data structures.

114 Subgraph-Centric Programming Models

Some specific applications which require analyzing neighborhoods
are discussed below.

Local Clustering Coefficient (LCC). In a social network, the LCC quan-
tifies, for a user, the fraction of his or her friends who are also friends
of each other—this is an important starting point for many graph ana-
lytics tasks. Computing the LCC for a vertex requires constructing its
ego network, which includes the vertex, its 1-hop neighbors, and all the
edges between the neighbors. Even for this simple task, the limitations
of vertex-centric approaches are apparent, since they require multiple
iterations to collect the ego-network before performing the LCC com-
putation.

Identifying Social Circles. Given a user’s social network (k-hop neigh-
borhood), the goal is to identify the social circles (subsets of the user’s
friends), which provide the basis for information dissemination and
other tasks. Current social networks either do this manually, which is
time consuming, or group friends based on common attributes, which
fails to capture the individual aspects of the user’s communities. Auto-
matic identification of social circles can be formulated as a clustering
problem in the user’s k-hop neighborhood, for example, based on identi-
fying sets of densely connected neighbors [Leskovec and Mcauley, 2012].
Once again, vertex-centric approaches are not amenable to algorithms
that consider subgraphs as primitives, both from the point of view of
performance and ease of programming.

Social Recommendations. Random walks with restarts (such as per-
sonalized PageRank [Backstrom and Leskovec, 2011]) lie at the core
of several social recommendation algorithms. These algorithms can be
implemented using Monte-Carlo methods [Gupta et al., 2013] where
the random walk starts at a vertex v, and repeatedly chooses a random
outgoing edge and updates a visit counter with the restriction that the
walk jumps back only to v with a certain probability. The stationary
distribution of such a walk assigns a PageRank score to each vertex in
the neighborhood of v; these provide the basis for link prediction and
recommendation algorithms. Implementing random walks in a vertex-

7.2. NScale 115

centric framework would involve one iteration with message passing for
each step of the random walk.

7.2 NScale

NScale [Quamar et al., 2016] is a MapReduce-based framework, which
pioneered the overlapping-subgraph centric model for solving problems
like graph matching and motif mining. They call their programming
model as neighborhood-centric or subgraph-centric. One benefit of this
model is that, since computation on a subgraph is performed in the
memory of a single machine, there is no network communication. An-
other benefit is that the memory of each machine only needs to be able
to keep a subgraph, and there is no need to keep the whole graph in
main memories like in a vertex-centric system.

To be more specific, the programming model of NScale requires
users to specify: (a) subgraphs of interest on which to run the compu-
tations through a subgraph extraction query, and (b) a user program.
NScale supports extraction queries that are specified in terms of four
parameters: (1) a predicate on vertex attributes that identifies a set
of query vertices, (2) k – the radius of the subgraphs of interest, (3)
edge and vertex predicates to select a subset of vertices and edges from
those k-hop neighborhoods, and (4) a list of edge and vertex attributes
that are of interest. The user computation to be run against the sub-
graphs is specified as a Java program against the BluePrints API 1, a
collection of interfaces analogous to JDBC but for graph data.

However, in order to call user-defined computation logic on sub-
graphs, NScale needs to first extract all relevant subgraphs from the
original graph, and then pack them into larger compact subgraph par-
titions to be processed by different reducers, so that if a vertex (and its
adjacency list) is shared by many subgraphs in a subgraph partition,
the partition only needs to store it once.

Graph extraction is performed by computing the k-hop neighbor-
hood of each relevant vertex (e.g., using k rounds of MapReduce), and
then pruning each obtained subgraph by edge and vertex predicates. To

1BluePrints API. https://github.com/tinkerpop/blueprints/wiki

https://github.com/tinkerpop/blueprints/wiki

116 Subgraph-Centric Programming Models

group subgraphs into compact partitions for use by different reducers,
each mapper then computes a Minhash signature (a kind of locality
sensitive hashing on sets) from the vertex set of each subgraph, and
shuffles the subgraphs according to the signatures.

Since a partition may still be too large to be kept in the memory of
a machine, each reducer then packs its received subgraphs into larger
units called bins, such that the graph corresponding to each bin can
be kept in the memory of a machine. Bins of a reducer are constructed
from its assigned subgraphs, using either a greedy one-pass strategy
or a graph clustering algorithm. Each vertex in a bin also maintains a
bitmap indicating whether it is contained in each individual subgraph
in that bin. During subgraph-centric computation, a reducer loads each
of its bin to memory at a time, and processes those subgraphs packed
in it.

While NScale supports subgraph-centric computation with small
memory requirement, the expensive preprocessing cost is a concern.
Specifically, for each graph task, it needs to extract all relevant sub-
graphs using MapReduce. For example, to obtain the 3-hop neighbor-
hood of a vertex using MapReduce, its 1-hop and 2-hop neighborhoods
need to be dumped to and loaded from HDFS. Moreover, it is possible
that the graph packing algorithm is even more expensive than if we call
user-defined computation logic directly on each subgraph right after its
extraction, as the extraction is task-specific and thus cannot be easily
reused.

The original NScale system was built on top of Apache Hadoop
MapReduce; a later work reimplemented some aspects of it on top
of Apache Spark, which helps alleviate some of the efficiency con-
cerns [Quamar and Deshpande, 2016].

7.3 Arabesque

Arabesque [Teixeira et al., 2015] proposed a similar programming
model called “think like an embedding” to automate the exploration of
a large number of subgraphs, where an embedding is simply a subgraph
instance of the original data graph. Besides graph matching and motif

7.3. Arabesque 117

mining, Arabesque also supports the mining of frequent subgraph pat-
terns from a large graph, and they term all these problems as graph
mining problems.

Unlike NScale where vertices and their adjacency lists are dis-
tributed to subgraphs using MapReduce, Arabesque assumes that the
entire data graph resides in the memory of every machine, so that graph
topology and attribute values can be directly accessed. This allows each
machine to grow an embedding without generating any communication.

The computation model of Arabesque is iterative: in the i-th itera-
tion, it grows the set of subgraphs (i.e., embeddings) with i edges/ver-
tices by one adjacent edge/vertex, to construct subgraphs with (i+ 1)
edges/vertices for processing. Those subgraphs with (i+ 1) edges/ver-
tices that pass the processing are collected into a set for processing by
the (i+ 1)-th iteration. Automorphism checking is performed to avoid
generating and processing redundant subgraphs with (i+1) edges/ver-
tices. The processing of each iteration is distributed (where each ma-
chine only processes a portion of the embeddings), and the computation
stops if there are no more subgraphs to process at the beginning of an
iteration.

Arabesque adopts a filter-process programming model where a user
defines two UDFs: (1) filter(e), which indicates whether a newly-
grown embedding e should be filtered out; if e is not filtered, then
(2) process(e) is called to compute output subgraphs from e, and to
pass e for processing by the next iteration (e.g., to be grown further to
generate candidate embeddings). For example, to find cliques, filter(e)
checks whether e is a clique, and if so, e gets output by process(e), and
it is passed to the next iteration to grow larger clique candidates. For
frequent subgraph pattern mining, additional UDFs need to be defined
to specify the aggregation logic.

Multiple embeddings may be grown into one identical embedding,
and Arabesque avoids this redundancy by a coordination-free explo-
ration strategy that only keeps canonical embeddings. An embedding e
is canonical iff its vertices were visited in the following order: start by
visiting the vertex with the smallest ID, and then recursively add the
neighbor in e with smallest ID that has not been visited yet. Arabesque

118 Subgraph-Centric Programming Models

characterizes an embedding as the sequence of its vertices ordered by
the order in which they were visited.

Since the embeddings may overlap with each other and have a
much larger data volume than the graph itself, Arabesque uses a
new data structure called Overapproximating Directed Acyclic Graph
(ODAG) to store embeddings compactly. Recall that each embedding
is canonical and can be represented as a node sequence according to the
coordination-free exploration order. ODAG collapses all nodes at the
same sequence level that correspond to the same vertex in the graph
into one single node. Since restoring the embeddings from the edges
between nodes may generate false-positive embeddings (called spuri-
ous embeddings), Arabesque filters these spurious embeddings by the
canonicality check and the UDF filter(e).

7.4 Summary

The two systems discussed in this chapter exemplify efforts to develop
more expressive graph programming models that can efficiently handle
a larger variety of graph analysis tasks. Of course, another option would
be to use single-machine, shared-memory systems like Ligra [Shun and
Blelloch, 2013] that expose lower-level programming models; however,
those models are typically not as simple and intuitive to program
against, and cannot scale out to run with a cluster of machines.

8
DBMS-Inspired Systems

Google’s Pregel platform allows problem-solvers to “think like a ver-
tex” by writing a few user-defined functions (UDFs) that operate on
vertices, which the framework can then apply to an arbitrarily large
graph in a parallel fashion. Open source versions of Pregel such as Gi-
raph1 [Ching et al., 2015] and Hama2 have since been developed in the
systems community. Each such platform is a distinct new system that
had to be built from the ground up. Usually, these systems follow a
process-centric design, in which a set of worker processes are assigned
partitions (containing sub-graphs) of the graph data and scheduled
across a machine cluster. When a worker process launches, it reads its
assigned partition into memory, and executes a Pregel (message pass-
ing) algorithm.

Meanwhile, the DBMS (database management system) community
has spent nearly three decades building efficient shared-nothing paral-
lel dataflow engines [DeWitt and Gray, 1992] that support bulk data
processing operators (such as join and group-by [Graefe, 1993]), and
query optimizers [Chaudhuri, 1998] that choose an “optimal” execu-

1Giraph: http://giraph.apache.org
2Hama: http://hama.apache.org

119

http://giraph.apache.org
http://hama.apache.org

120 DBMS-Inspired Systems

Data-parallel Query Execution Engine

Query Optimizer

Datalog SQL Pregel/GAS/...

Graph Algorithms

Storage Engine

SociaLite/Myria
REX

GraphX/Pregelix

Naiad

Pregel
Vertexica

Figure 8.1: The architectural diagram of DBMS-style Big Graph analytics systems.

tion plan among different alternatives. In addition, deductive database
systems—based on Datalog—were proposed to efficiently process re-
cursive queries [Bancilhon and Ramakrishnan, 1986], which can be
used to solve graph problems such as transitive closure. Extended ver-
sions (such as [Beeri et al., 1987], [Mumick et al., 1990], [Seo et al.,
2013a] and [Mazuran et al., 2013]) of Datalog with aggregations pro-
vide a more declarative user-level programming abstraction than graph-
specific “think like a vertex” programming models for expressing graph
algorithms. Though recursive queries might not be as intuitive as “think
like a vertex” programming models for users who are not familiar with
logic programming languages, techniques for rewriting and evaluating
recursive queries—most notably magic-sets rewriting [Bancilhon et al.,
1986] and semi-naïve evaluation [Balbin and Ramamohanarao, 1987]
as well as other general-purpose query evaluation techniques [Graefe,
1993] — still apply and can be used to implement a scalable, fault-
tolerant graph processing runtime.

In this section, we provide a review of recently developed Big Graph
analytics platforms that are inspired by database query languages,
query processing primitives, and applications, including:

8.1. The Recursive Query Abstraction 121

• systems that provide declarative programming abstractions like Dat-
alog for Big Graph analytics (Section 8.1),
• systems that provide vertex-centric programming models but inter-
nally leverage DBMS-style query evaluation and query optimization
techniques for graph processing (Section 8.2),
• systems that support incremental graph processing (Section 8.3),
• systems that integrate a vertex-centric programming model with a
declarative query language to support complex, end-to-end analytical
pipelines where graph analysis is a sub-task. (Section 8.4).

Figure 8.1 provides a high-level architectural view of several rep-
resentive DBMS-inspired graph analytics systems that we discuss in
this chapter. In spite of differences in programming models, i.e., Data-
log, SQL, or vertex-centric programming models, those systems share
a similar dataflow-based execution model under the hood.

8.1 The Recursive Query Abstraction

There had been a flurry of studies on semantics and evaluation tech-
niques for recursive queries in 1980s and 1990s. Due to the space lim-
itations, we only cover several important results that are relevant to
Big Graph analytical systems here.

We use a dialect of Datalog with recursive aggregate functions [Seo
et al., 2013a]3, to describe the basic concepts. A Datalog program P is
a finite set of rules, or Horn Clauses, where rule r in P has the following
form:

A : −A1, ..., An

This rule can be read declaratively as “A1 and A2 and and An

implies A”. Each of A (the head) and the Ai’s (the subgoals of the body)
is an atomic formula, consisting of a predicate applied to terms, which
are either constants, variables, or function symbols applied to terms.
An atom has the form p(t1, . . . , tj) where p is a predicate and t1, .
. . , tj are terms which can be constants, variables or functions. Each

3Yedalog [Chin et al., 2015] has a similar syntax and semantics for aggregates.

122 DBMS-Inspired Systems

rule can have multiple bodies. Aggregate functions are expressed as an
argument in a head predicate and such an aggregate function is applied
to all the terms matching the subgoals. In most literature, initial facts
are called EDB (existential database) while derived facts are called IDB
(intensional database). The meaning of a Datalog program is defined
by the fixpoint semantics, i.e., an interpreter starts with the facts in
EDB and derives new facts for IDB by applying the rules iteratively
until no new facts can be derived.

Given a graph represented by EDB relation Edge(src, dest, distance)
where distance is a positive number and each edge is a fact (i.e., tuple)
in the relation, let us describe following example graph algorithms in
Datalog programs.

Program 8.1. Transitive closure for directed graph [Even, 2011]. The
following set of rules generates facts of the form TC(u, v) if there is a
directed path from u to v.
TC(u, u) :- Edge(u, _)
TC(v, v) :- Edge(_, v)
TC(u, v) :- TC(u, w), Edge(w, v), u 6= v

Program 8.2. Single source shortest path for a directed graph [Even,
2011] (from vertex u0).
Path(u0, 0.0)
Path(v, min(d)) :- Path(u, d1), Edge(u, v, d2), d = d1 + d2

Program 8.3. All pair shortest path for directed graph [Even, 2011] .
Path(u, v, min(d)) :- Edge(u, v, d);

:- Path(u, w, d1), Edge(w, v, d2), d=d1+d2

Program 8.4. Connected Components for undirected graph [Even,
2011]. Here, we use the minimum vertex id as the identifier of a
connected component and the following rules recursively propagate
connected component ids. The last rule is to count the number of
vertexes in each connected component.
Vertex(s) :- Edge(s, _)

8.1. The Recursive Query Abstraction 123

Vertex(t) :- Edge(_, t)
Comp(t, min(c)) :- Vertex(t), c=t;

:- Edge(s, t), Comp(s, c)
Comp_Count(c, count(1)) :- Comp(_, c)

Program 8.5. PageRank for directed graph (with the convergence
threshold being θ). The first two rules obtain the set of vertexes from
the Edge relation; the third rule “computes” the total number of ver-
texes in the graph; the fourth rule retrieves the out-bound edge count
of each vertex; the fifth fule initializes rank values; the six rule describes
how rank values are propagated from one iteration to the other; the
seventh rule removes vertexes whose rank value change is less than the
convergence threshold θ; the last two rules retrieves the final rank val-
ues of all vertexes.
Vertex(s) :- Edge(s, _)
Vertex(t) :- Edge(_, t)
N=count(1) :- Vertex(_)
EdgeCount(v, count(1)) :- Edge(v, _)
Rank(v, 0, 1.0/N) :- Vertex(v)
Rank2(v, i, 0.85*sum(ro)+0.15/N) :- Rank(s, i-1, r), Edge(s, v),

EdgeCount(s, c), ro=r/c
Rank(v, i, r2) :- Rank2(v, i, r2), Rank(v, i-1, r1), |r2-r1|>θ
Round(v, max(i)) :- Rank(v, i, _)
Rank_Final(v, r) :- Rank(v, i, r), Round(v, rd), i=rd

A straightforward evaluation according to the fixpoint semantics
is to apply rules one round after another until no more facts can be
derived, which obviously is too slow for large volumes of data. Thus, a
typical Datalog implementation would compile user-defined rules into a
query plan, including bulk operators such as joins and group-by aggre-
gations to deal with the large number of facts (i.e., tuples). For example,
the third rule in Program 8.1 could be compiled to a join between IDB
relation TC and EDB relation Edge, which is executed one round af-
ter the other until no more new tuples could be derived for relation
TC. To scale for Big Graphs, database-style bulk operators like joins
and group-bys can be parallelized to multiple machines by partitioning

124 DBMS-Inspired Systems

the join keys or group-by keys [DeWitt and Gray, 1992]. For instance,
systems like Myria [Wang et al., 2015] scale Datalog evaluations to a
cluster of machines in this way.

To further improve the efficiency, a number of evaluation techniques
have been proposed. Due to the space limitations, we cannot cover all
the techniques but will enumerate several important ones with exam-
ples.

• Semi-naïve evaluation [Balbin and Ramamohanarao, 1987]:
In Program 8.1, re-applying the rules on discovered TC facts multiple
times could not derive new facts. Therefore, in each round, we can use
only the new TC facts from the previous round, to join with existing
Edge facts to derive new facts. Since in general, only a small fraction
of the TC facts will be new in any one round, we can significantly
reduce the amount of work required. The key concept of semi-naïve
evaluation could be summarized by the following formula, by which
re-computing R on S could be avoided:

(R∪∆R) on (S∪∆S) = (R on S)∪(R on ∆S)∪(∆R on S)∪(∆R on ∆S)

• Magic-sets rewriting [Bancilhon et al., 1986]: In Program 8.3,
the same Datalog program can be used to answer a single source
shortest path query Path(u0, _, _). In order to efficiently evaluate
this query, a query compiler can push the filter down to avoid unnec-
essary computations. The technique is called magic-sets rewriting.
After the rewriting, the query becomes Program 8.6. The resulting
query prunes computations over vertexes that are not reachable from
u0 and hence can have the same performance as Program 8.2.
• Stratified evaluation [Mumick et al., 1990]: If a rule contains
aggregation in the head, all existing facts must be fully examined
against the subgoal predicates before deriving a new fact using this
rule. In other words, there has to be an execution barrier imposed by
every rule containing aggregation in the head and the computation is
done one iteration (stratum) after the other until reaching a fixpoint.
Bulk-synchronous processing in Big Graph analytics systems has a
similar execution model to stratified evaluation.

8.1. The Recursive Query Abstraction 125

• Monotonic queries [Mumick et al., 1990, Ross and Sagiv,
1992, Eisner and Filardo, 2010]: Though in general, an aggrega-
tion in a rule head requires fully examining existing facts, it is not
necessary for certain cases. For instance, in Programs 8.2 to 8.4, intu-
itively, the aggregates can only be monotonically decreased, therefore
it is possible to generate and use intermediate partially aggregated
tuples when existing facts are not fully examined without changing
the final answer to the query. The theoretical results presented in
literature [Mumick et al., 1990, Ross and Sagiv, 1992], and [Eisner
and Filardo, 2010] are vital for us to understand why asynchronous
execution could be used for cases such as Program 8.1 to 8.4 but not
for Program 8.5.

Program 8.6. Program 8.3 for query Path(u0, _, _) after applying
magic-sets rewriting.
Path(u, v, min(d)) :- Magic_Path(u), Edge(u, v, d);

:- Magic_Path(u), Path(u, w, d1), Edge(w, v, d2), d=d1+d2
Magic_Path(v) :- Magic_Path(u), Path(u, w, _), Edge(w, v, _)
Magic_Path(u0)

Note that expressing Programs 8.1 and 8.3 in vertex-centric pro-
gramming models is possible but the state size in a vertex has to be
proportional to the total number of vertices in the graph, which makes
the user defined vertex-centric programs difficult to scale to very large
graphs. In addition, Datalog programs such as Program 8.1 to 8.5 are
more concise and provide better logical-physical separation than their
vertex-centric counterparts.

A few recent research projects are “resurging” Datalog in the con-
text of scalable Big Graph analytics:

• Distributed SociaLite [Seo et al., 2013a,b]. The Datalog dialect we
used to express Program 8.1 to 8.5 was proposed by the SociaLite
project. The work has shown that a small class of aggregates, meet
operations, can be evaluated asynchronously. These aggregate func-
tions are associative, commutative, and idempotent binary operations
defined on a domain. SociaLite has a working compiler and runtime

126 DBMS-Inspired Systems

that automatically translates SociaLite Datalog programs to Java
code that runs on a cluster of machines.
• DeALS [Mazuran et al., 2013, Shkapsky et al., 2015, Yang et al.,
2015]. The DeALS (Deductive Application Language System) project
proposed an alternative approach for monotonic queries. It added
monotonic aggregates, i.e., stateful running aggregates that continu-
ously produce partial results, as built-in aggregates for the Datalog
language. Therefore, it’s programmers’ decision to choose between
standard aggregates and monotonic aggregates for a particular prob-
lem. Mazuran et al. [2013] described the formal semantics, expressive
power, and evaluation techniques for this kind of Datalog extensions.
However, as far as we know, DeALS is still a single machine system,
though it supports multicore processing.
• Myria [Wang et al., 2015]. The Myria project has built a shared-
nothing distributed data management system with a data-parallel
Datalog query processor that supports synchronous evaluation for
general cases as well as asynchronous evaluation for monotonic
queries. Interestingly, the experimental results in paper [Wang et al.,
2015] show that asynchronous query evaluation does not always lead
to the fastest query run times since the benefit of asynchronous ex-
ecution could be offset by a larger number of intermediate result
tuples as well as unnecessary work.
• Yedalog [Chin et al., 2015]. Yedalog is a Datalog implementation de-
veloped by Google for exploring knowledge graphs. A Yedalog pro-
gram can be compiled to three different runtimes: a single machine
runtime, an interactive runtime similar to Dremel [Melnik et al.,
2010], and a batch runtime (Flume [Chambers et al., 2010]). In addi-
tion, Yedalog adopts a flexible data model to support semi-structured
data processing. However, the distributed backends of Yedalog are
not optimized for expensive recursive queries over very large data
sets.

8.2. Dataflow-Based Graph Analytical Systems 127

8.2 Dataflow-Based Graph Analytical Systems

Although there have been four decades of researches on recursive
queries and their query evaluation techniques, Datalog, and even the
recursion support in SQL4, have not been widely adopted as a pro-
gramming model by the majority of industry. In our opinion, under-
standability and debuggability are two major downsides that prevent
the prevalence of recursive queries — it is relatively difficult for a pro-
grammer to understand a legacy recursive query or to find what is
wrong in the query. Recent years, because of the simplicity, “think-
like-a-vertex” programming models [Malewicz et al., 2010, Low et al.,
2012, Gonzalez et al., 2012] have become de facto application program-
ming interfaces for Big Graph analytics. But as discussed in several
recent papers [Bu et al., 2014], [Gonzalez et al., 2014], and [Jindal
et al., 2014b], specialized graph processing systems do not yet possess
the physical flexibility, scaling properties, and software simplicity that
a general-purpose dataflow system can offer.

To bridge the gap, two system projects — Pregelix [Bu et al., 2014]
and GraphX [Gonzalez et al., 2014] have tried to build graph-specific
programming models on top of general-purpose data-parallel dataflow
engines. Both systems replace recursive queries with “modern”, user-
friendly graph programming models as user interfaces, but internally
recast graph-specific optimizations as general-purpose data storage op-
timizations and query evaluation optimizations in a distributed envi-
ronment, which have been studied for a long time in the database com-
munity. GraphX [Gonzalez et al., 2014] extends Spark [Zaharia et al.,
2012] by introducing a small set of specialized graph operators that are
sufficient to express existing graph APIs such Pregel [Malewicz et al.,
2010] and GAS [Gonzalez et al., 2012]. Pregelix [Bu et al., 2014, Bu,
2015] offers the standard Pregel programming model with global ag-
gregations and graph mutations, as well as an integration with the As-
terixDB [Alsubaiee et al., 2014] query language for the ETL support.
Regardless of the variance in APIs, both systems implement graph

4SQL: https://en.wikipedia.org/wiki/SQL:1999

https://en.wikipedia.org/wiki/SQL:1999

128 DBMS-Inspired Systems

Relation Schema
Vertex (vid, halt, value, edges)
Msg (vid, payload)
GS (halt, aggregate, superstep)

Table 8.1: Nested relational schema that models the Pregel state.

computations as distributed joins (for passing messages) and group-by
aggregations (for combining messages).

Let us use Pregelix to walk through the details on how the Pregel
think-like-a-vertex programming model can be conceptualized as a set
of database algebraic operations. Table 8.1 defines a set of nested re-
lations that Pregelix uses to model the state of a Pregel execution.
The input data is modeled as an instance of the Vertex relation; each
row identifies a single vertex with its halt, value, and edge states. All
vertices with a halt = false state are active in the current superstep.
The value and edges attributes represent the vertex state and neighbor
list, which can each be of a user-defined type. The messages exchanged
between vertices in a superstep are modeled by an instance of the Msg
relation, which associates a destination vertex identifier with a mes-
sage payload. Finally, the GS relation from Table 8.1 models the global
state of the Pregel program; here, when halt = true the program ter-
minates5, aggregate is a global state value, and superstep tracks the
current iteration count.

Figure 8.2 models message passing as a join between the Msg and
Vertex relations. A full-outer-join is used to match messages with ver-
tices corresponding to the Pregel semantics as follows:

• The inner case matches incoming messages with existing destination
vertices;
• The left-outer case captures messages sent to vertices that may not
exist; in this case, a vertex with the given vid is created with other
fields set to NULL.

5This global halting state depends on the halting states of all vertices as well as
the existence of messages.

8.2. Dataflow-Based Graph Analytical Systems 129

1.0

vid edges

vid msg

vid=vid

2
4

halt
false
false

value
2.0
1.0

(3,1.0),(4,1.0)
(1,1.0)

2
4 3.0

Msg

Vertex

5
3

3.0

1.0

1 false 3.0 (3,1.0),(4,1.0)
3 false 3.0 (2,1.0),(3,1.0)

3

vid edges

1

halt

false
false

value

3.0
3.0

(3,1.0),(4,1.0)
(2,1.0),(3,1.0)

msg

NULL
1.0

5 1.0 NULL NULL NULL
2 false 2.0 (3,1.0),(4,1.0)3.0
4 false 1.0 (1,1.0)3.0

Figure 8.2: Implementing message-passing as a logical full-outer join.

UDF Description
compute Executed at each active vertex in every superstep.
combine Aggregation function for messages.
aggregate Aggregation function for the global state.
resolve Used to resolve conflicts in graph mutations.

Table 8.2: UDFs used to capture a Pregel program.

• The right-outer case captures vertices that have no messages; in this
case, compute still needs to be called for such a vertex if it is active.

The output of the full-outer-join will be sent to further operator pro-
cessing steps that implement the Pregel semantics; some of these down-
stream operators will involve UDFs that capture the details (e.g.,
compute implementation) of the given Pregel program.

Table 8.2 lists the UDFs that implement a given Pregel program.
In a given superstep, each active vertex is processed through a call to
the compute UDF, which is passed the messages sent to the vertex in
the previous superstep. The output of a call to compute is a tuple that
contains the following fields:

• The possibly updated Vertex tuple.

130 DBMS-Inspired Systems

• A list of outbound messages (delivered in the next superstep).
• The global halt state contribution, which is true when the outbound
message list is empty and the halt field of the updated vertex is true,
and false otherwise.
• The global aggregate state contribution (tuples nested in bag).
• The graph mutations (a nested bag of tuples to insert/delete to/from
the Vertex relation).

As we will see below, this output is routed to downstream operators
that extract (project) one or more of these fields and execute the
dataflow of a superstep. For instance, output messages are grouped
by the destination vertex id and aggregated by the combine UDF. The
global aggregate state contributions of all vertices are passed to the
aggregate function, which produces the global aggregate state value for
the subsequent superstep. Finally, the resolve UDF accepts all graph
mutations—expressed as insertion/deletion tuples against the Vertex
relation—as input, and it resolves any conflicts before they are applied
to the Vertex relation.

We now turn to the description of a single logical dataflow plan;
we divide it into three figures that each focus on a specific application
of the (shared) output of the compute function. The relevant dataflows
are labeled in each figure. Figure 8.3 defines the input to the compute
UDF, the output messages, and updated vertices. Flow D1 describes
the compute input for superstep i as being the output of a full-outer-
join between Msg and Vertex (as described by Figure 8.2) followed by
a selection predicate that prunes inactive vertices. The compute output
pertaining to vertex data is projected onto dataflow D2, which then
updates the Vertex relation. In datafow D3, the message output is
grouped by destination vertex id and aggregated by the combine func-
tion6, which produces flow D7 that is inserted into the Msg relation.

The global state relation GS contains a single tuple whose fields com-
prise the global state. Figure 8.4 describes the flows that revise these
fields in each superstep. The halt state and global aggregate fields de-
pend on the output of compute, while the superstep counter is simply
its previous value plus one. Flow D4 applies a boolean aggregate func-

6The default combine gathers all messages for a given destination into a list.

8.2. Dataflow-Based Graph Analytical Systems 131

…
D2 D4,D5,D6

vid combine

UDF Call (compute)

M.vid=V.vid

Vertexi(V)Msgi(M)

Vertexi+1 Msgi+1

(V.halt =false || M.payload != NULL)

D3

D7 Flow Data

D2 Vertex tuples

D3 Msg tuples

D7 Msg tuples
after
combination

D1

Figure 8.3: The basic logical query plan of a Pregel superstep i which reads the
data generated from the last superstep (e.g., Vertexi, Msgi, and GSi) and produces
the data (e.g., Vertexi+1, Msgi+1, and GSi+1) for superstep i+ 1. Global aggrega-
tion and synchronization are in Figure 8.4, and vertex addition and removal are in
Figure 8.5.

D1

Agg(aggregate)Agg(bool-and)
D4 D5

UDF Call (compute)

GSi+1

GSi(G)

superstep=G.superstep+1
D10

Flow Data

D4 The global halting state
contribution

D5 Values for aggregate

D8 The global halt state

D9 The global aggregate value

D10 The increased superstep

D9D8

D2,D3,D6 …

Figure 8.4: The plan segment that revises the global state.

tion (logical AND) to the global halting state contribution from each
vertex; the output (flow D8) indicates the global halt state, which con-
trols the execution of another superstep. Flow D5 routes the global
aggregate state contributions from all active vertices to the aggregate
UDF which then produces the global aggregate value (flow D9) for the
next superstep.

Graph mutations are specified by a Vertex tuple with an operation
that indicates insertion (adding a new vertex) or deletion (removing a

132 DBMS-Inspired Systems

D2,D3,D4,D5

D1

vid(resolve)

UDF Call (compute)

Vertexi+1
Flow Data

D6 Vertex tuples for
deletions and
insertions

D6
…

Figure 8.5: The plan segment for vertex addition/removal.

Distributed graph processing system Parallel DBMS
network communication exchange operator
message passing join operator
message combination group-by operator
vertex format record management
vertex storage storage management
memory-first computation buffer cache management
vertex update storage management
global aggregate aggregate operator
conflict resolution group-by operator

Table 8.3: Parallel DBMS primitives for a specialized distributed graph processing
system.

vertex)7. Flow D6 in Figure 8.5 groups these mutation tuples by vertex
id and applies the resolve function to each group. The output is then
applied to the Vertex relation.

Table 8.3 summarizes how key components in a distributed graph
processing system can be mapped to primitives in a parallel DBMS.
By conceptualizing the standard Pregel semantics as a logical query
plan, Pregelix turns the problem of how to implement an efficient and
flexible distributed graph processing system into how to get an effi-
cient physical query plan that can be evaluated in on a shared-nothing

7Pregelix leaves the application-specific vertex deletion semantics in terms of
integrity constraints to application programmers.

8.2. Dataflow-Based Graph Analytical Systems 133

cluster for the Pregel logical plan. Accordingly, Pregelix uses B-Trees
to store vertexes and uses Hyracks [Borkar et al., 2011], an extensi-
ble, general purpose dataflow runtime (which is also the runtime for
AsterixDB [Alsubaiee et al., 2014]) to scale the evaluation of physical
query plans to a cluster of machines. As described in [Bu et al., 2014],
such an algebraic conceptualization also allows Pregelix to provide var-
ious physical plans that implement the same Pregel semantics to serve
different kinds of workloads or clusters.

From a user’s perspective, a Pregelix program is almost identical
to a Pregel program (e.g., a Giraph program), except that a user can
set a few “hint” properties, e.g., message passing strategies (i.e. join al-
gorithms), message combination strategies (i.e., group-by algorithms),
and message exchange mechanisms (i.e., data redistribution patterns),
to choose a specific physical query plan.

Along the same direction but different from Pregelix and GraphX,
the Vertexica project [Jindal et al., 2014b] builds the vertex-centric
programming model one level above, i.e., on top of SQL. It has demon-
strated that a set of vertex-centric graph algorithms like single source
shortest paths, connected components, and PageRank could be trans-
lated to SQL queries with user-defined compute functions. It also shows
that running the resulting SQL queries on top of the Vertica8 parallel
database offers comparable performance to Giraph [Ching et al., 2015]
and GraphLab [Low et al., 2012]. However, Vertexica has not imple-
mented the full-fledged Pregel programming model [Malewicz et al.,
2010] regarding to global states, global aggregations, missing destina-
tion vertex handling, and no-message vertex handling, all of which to-
gether can potentially make the resulting SQL queries harder to read
and optimize.

The benefits of building specialized graph programming models on
top of general-purpose dataflow systems include:

• Performance and scaling properties: A mature general-purpose
dataflow engine usually has undergone a lot of performance improve-
ments for a variety of workloads, hence it could be more robust and

8Vertica: http://www.vertica.com

http://www.vertica.com

134 DBMS-Inspired Systems

reliable. For example, Pregelix demonstrated its superiority on out-
of-core workloads over Giraph, while GraphX achieved low-cost fault-
tolerance by leveraging logical partitioning and lineage from Spark.
• Physical flexibility: Several works [Bu et al., 2014], [Jindal et al.,
2014b], and [Wang et al., 2015] have found that it is important for a
graph processing system to be able to choose among alternative run-
time evaluation strategies that would offer a better fit to a particular
dataset, algorithm, cluster or desktop.
• Software simplicity: The implementation of a specialized graph
system spans a full stack of network management, communication
protocol, vertex storage, message delivery and combination, memory
management, and fault-tolerance; the result is a complex (and hard-
to-get-right) runtime system that implements an elegantly simple
Pregel-like semantics. For instance, excluding test code and com-
ments, the lines of code of GraphX, Pregelix, and Giraph are 2.5K,
8K, and 32K respectively.
• Runtime integration: Dataflow-based graph systems like GraphX
and Pregelix can potentially eliminate the need to learn and support
multiple systems or write data interchange formats and plumbing
to move between systems. Use of SQL makes Vertexica even more
attractive in regards to this aspect.

It should be noted that both GraphX and Pregelix are bulk-
synchronous graph processing systems— although it is possible, neither
of them have provided asynchronous execution alternatives for “mono-
tonic” graph algorithms as discussed in Section 8.1.

The dataflow architecture shown in Figure 8.1 could be (or are be-
ing [Jindal et al., 2014a]) adopted by parallel data warehouse vendors
(such as Teradata9, Pivotal10, or Vertica11 to build Big Graph process-
ing support by properly reusing their existing software stacks.

9Teradata: http://www.teradata.com
10Pivotal: http://pivotal.io
11Vertica: http://www.vertica.com

http://www.teradata.com
http://pivotal.io
http://www.vertica.com

8.3. Incremental Graph Processing 135

8.3 Incremental Graph Processing

A substantial subclass of graph algorithms can be expressed by spec-
ifying how changes, i.e., deltas, are propagated from a vertex to its
neighborhood. PageRank, single-source shortest path, connected com-
ponents are such examples. Two recent research projects, REX [Mi-
haylov et al., 2012] and Maiter [Zhang et al., 2014] have proposed
delta-based programming models for expressing this kind of incremen-
tal graph computations.

REX developed an SQL extension that supports delta accumula-
tions and allows user-defined delta-handlers for recursions and can com-
pile a program which is a mix of SQL statements and delta-handlers to
a runtime query plan that runs synchronously on a data-parallel query
execution engine. The key difference between RQL (REX SQL exten-
sion) and SQL-9912 is that SQL-99 recursion accumulates the set of
answers, whereas RQL recursion refines the answers with deltas, which
fits many graph and machine learning algorithms. Given the same Edge
relation as described in Section 8.1, the following code is the PageRank
program on REX, where PRAgg.update reads the current and previous
page rank value of a vertex to produce delta values for its neighbors
and the SQL WITH clause accumulates delta values for PR.pr into the
base value for each srcId until a fixpoint is reached.

Maiter [Zhang et al., 2014] is a specialized graph system that pro-
vides a similar delta-based, accumulative, message passing program-
ming model and implicitly assumes there is a massing passing graph
underneath. However, different from REX, Maiter offers data-parallel
asynchronous execution for user-defined delta-handlers. To guarantee
an accumulative update will yield the same result as its corresponding
synchronous iterative update, a user-defined delta handler must meet
several conditions:

• Condition A. A vertex can only send messages to a fixed set of “neigh-
bor” vertexes, and every outgoing message from the vertex must be
sent to every vertex in the “neighbor” set, which implicitly preclude
graph mutations.

12SQL: https://en.wikipedia.org/wiki/SQL:1999

https://en.wikipedia.org/wiki/SQL:1999

136 DBMS-Inspired Systems

1 c l a s s PRAgg {
2 S t r i n g [] inTypes = {" I n t e g e r " , " Double " } ;
3 S t r i n g [] outTypes = {" nbr : I n t e g e r " , " p r d i f f : Double " } ;
4
5 Object [] [] update (Object [] [] prBucket ,
6 Object [] [] nbrBucket , i n t nbrId , double pr) {
7 double de l taPr = prBucket . get (nbrId)−pr ;
8 prBucket . put (nbrId , pr) ;
9 i f (Math . abs (de l taPr) > 0 . 0 1) {

10 Object [] [] resBag ={};
11 f o r (I n t e g e r nbr : nbrBucket)
12 resBag . add (nbr , de l taPr / nbrBucket . s i z e ()) ;
13 r e t u r n resBag ;
14 }
15 }
16 }
17
18 WITH
19 Vertex (id) AS SELECT s r c FROM Edge UNION SELECT dest FROM Edge ,
20 N AS SELECT count (∗) FROM Vertex ,
21 PR (src Id , pr) AS /∗ Base case i n i t i a l i z e s ∗/
22 (
23 /∗PageRank to 1 . 0/N ∗/
24 SELECT id as src Id , 1 . 0/N AS pr FROM Vertex
25)
26 UNION UNTIL FIXPOINT BY s r c I d
27 (/∗ Recurs ive case ∗/
28 SELECT nbr , 0 .15/N+0.85∗sum(p r D i f f) /∗ produces d e l t a s ∗/
29 FROM (SELECT PRAgg(src Id , pr) . { nbr , p r D i f f }
30 FROM Edge , PR /∗ d e l t a s from prev . i t e r a t i o n ∗/
31 WHERE Edge . s r c = PR. s r c I d
32 GROUP BY s r c I d)
33 GROUP BY nbr
34)

• Condition B. A vertex is aware of the initial states of its “neighbor”
vertexes;
• Condition C. The delta-handler function must be associative, com-
mutative and distributive.

These conditions together make asynchronous evaluations viable.
Interestingly, although PageRank (Program 8.5) is not a monotonic
Datalog query, it can be asynchronously evaluated by leveraging ad-
ditional constraints — Condition A and B. Condition A and B guar-
antee no delta update for a vertex can get lost, and the final state of
a vertex can be recovered by replaying all the deltas that propagated
from the neighborhood. Condition A and B are graph-special proper-
ties instead of a general available property of Datalog programs, which
means, graph-specific program properties are useful for optimizing the
evaluation strategies.

8.4. Integrated Analytical Pipelines 137

SQL

Pregel

SQL

Data Lake HDFS

Figure 8.6: The enterprise Big Graph analytics flow.

Stratosphere [Ewen et al., 2012] (now Apache Flink13) and Na-
iad [Murray et al., 2013] are two general-purpose data-parallel dataflow
engines that supports asynchronous incremental processing. Different
from REX and Maiter, Naiad aims to support yet-another kind of in-
cremental processing, where the delta comes from the source data in
addition to the computation itself. A motivating application for Naiad
is to compute and update connected components over a dynamically
changed Twitter graph in real-time. In spite of the added source of
deltas, the internal asynchronous dataflow engine of Naiad is similar
to that in Myria [Wang et al., 2015]. Note that the application of the
Naiad-style incremental processing is also limited to monotonic queries
as we discussed in Section 8.1.

8.4 Integrated Analytical Pipelines

Our previous discussions assume that there is an existing graph for
analysis. However, Big Graph analytics are not only about graphs.
Many real-world applications do not have a pre-loaded graph dataset
for analysis, and instead, graphs are often constructed by querying the
data that are dynamically ingested into an enterprise data lake14, i.e.,

13Flink: http://flink.apache.org
14Data Lake: https://en.wikipedia.org/wiki/Data_lake

http://flink.apache.org
https://en.wikipedia.org/wiki/Data_lake

138 DBMS-Inspired Systems

a storage repository (e.g., HDFS15) that holds a vast amount of raw
data. Figure 8.6 shows a dataflow for richer forms of graph analytics,
i.e., end-to-end analytical pipelines spanning from the raw data to the
final mined insights. As the figure indicates, various data from web, mo-
bile, and IoT (internet of things) applications are continuously ingested
into a data lake. In the meantime, data scientists run SQL queries us-
ing typical SQL-on-Hadoop systems (e.g., Hive [Thusoo et al., 2010],
Impala [Kornacker et al., 2015], or Tez16) to extract graphs (e.g., in the
adjacency list representation) of interests from the raw data, put the
intermediate graph data onto HDFS, run distributed graph algorithms
using typical graph analytical systems (e.g., Pregel [Malewicz et al.,
2010], Giraph [Ching et al., 2015], or PowerGraph [Gonzalez et al.,
2012]), and finally run another set of SQL queries over the graph com-
putation results to generate user-readable reports 17. In this process,
a data scientist needs to figure out the physical locations of the inter-
mediate results, manage their life-cycles, determine their formats, and
write customized client scripts to glue SQL-on-Hadoop systems and
graph analytical systems together through HDFS. All these tedious
ETL (extract, transform, load) tasks draw the data scientist’s energy
from thinking of the analytical task at a logical level.

Several systems have tried to address the issue. GraphX has been
integrated with Spark to allow a user to run together a wide range of
Spark ecosystem tools, such as SparkSQL18, DataFrames19, Spark-R20

and so on. In Aster Data, a commercial parallel data warehouse, Pregel-
like, user-defined graph analytics functions could be invoked from SQL
queries [Simmen et al., 2014]. Similar to GraphX and Aster Data, the
integration of Pregelix and AsterixDB [Alsubaiee et al., 2014] also offers
users a single, logical entry for richer graph analytics, by providing
them a “Run Pregel” statement in the query language [Bu, 2015]. The

15HDFS: https://hadoop.apache.org/
16Tez: https://tez.apache.org/
17Hive+Giraph: https://www.facebook.com/notes/facebook-engineering/

scaling-apache-giraph-to-a-trillion-edges/10151617006153920
18SparkSQL: https://spark.apache.org/sql/
19DataFrames: http://ddf.io/
20Spark-R: https://spark.apache.org/docs/latest/sparkr.html

https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://spark.apache.org/sql/
http://ddf.io/
https://spark.apache.org/docs/latest/sparkr.html

8.4. Integrated Analytical Pipelines 139

indexing capability of AsterixDB, as well its built-in support for semi-
structured data and its ability to work against data that does not fit
into main memory, further expends the landscape of well-supported
analytics.

Let us take the following example query in Aster Data (from liter-
ature [Simmen et al., 2014]) to sketch the concept.

1 −− DDLs (j u s t f o r e x p l a i n i n g the schemas)
2 CREATE TABLE C a l l e r s (c a l l e r I d varchar , c i t y varchar)
3 DISTRIBUTE BY HASH (c a l l e r I d) ;
4 CREATE TABLE C a l l s (ca l l e r IdFrom varchar ,
5 c a l l e r I d T o varchar) DISTRIBUTE BY HASH (ca l l e r IdFrom) ;
6
7 −− Query
8 SELECT c i t y , SUM(pagerank) AS sum
9 FROM PageRank (

10 ON C a l l e r s AS ‘ ‘ V e r t i c e s ’ ’ PARTITION BY c a l l e r I d
11 ON C a l l s AS " Edges " PARTITION BY cal l e r IdFrom
12 ON (SELECT COUNT(∗) FROM C a l l e r s) AS ‘ ‘ Total ’ ’
13 DIMENSION
14 TargetKey (‘ c a l l e r I d T o ’)
15 Accumulate (‘ c i t y ’)
16 Directed (‘ True ’)
17 DampFactor (‘ 0 . 8 5 ’)
18 Threshold (‘ 1E−8 ’))
19 GROUP BY c i t y
20 ORDER BY sum DESC
21 LIMIT 10

The above SQL query finds the 10 most popular cities in the call
network of a telecommunications company. The graph for analysis
is built dynamically in the query. Vertexes in the graph are formed
from callers while edge adjacency lists are constructed from calls. The
PageRank for each caller in the network is computed and aggregated by
city. The final result consists of top 10 aggregated scores. Line 9 to 18
invoke a user-defined, Pregel-style, vertex-centric PageRank function
with parameters including vertexes, edges, total number of vertexes,
the vertex key (‘callerIdTo’), the attached value in each vertex (‘city’),
whether the graph is directed, the damping factor, and the convergence
threshold. Under the hood of Aster Data, there is a distributed query
execution engine as well as distributed graph computation engine and
intermediate data is routed back and forth between the two. However,
all those low-level details are transparent to data scientists.

140 DBMS-Inspired Systems

Distributed GraphLab [Low et al., 2012] is also adding more and
more tabular data processing capabilities into its runtime21, and Gi-
raph [Ching et al., 2015] has built connectors for Hive [Thusoo et al.,
2010] and HBase22. However, the two graph processing systems still
require users to interact with multiple data processing platforms to
achieve a complex analytical task.

8.5 Summary

This section has surveyed literature in the recursive query abstraction,
dataflow-based graph analytical systems, incremental graph processing,
and integrated analytical pipelines. Here is a brief summary:

• The theoretical results obtained in recursive query processing let us
better understand existing Big Graph analytical systems, regarding
to expressive powers, evaluation strategies, and potential limitations.
• A large set of graph-specific optimizations can be recast to DBMS-
style query optimization and query evaluation techniques (as shown
in paper [Bu et al., 2014], [Gonzalez et al., 2014], and [Jindal et al.,
2014b]) while others require the knowledge of graph-only properties
(i.e., the optimization in Maiter [Zhang et al., 2014]). Dataflow-based
architecture is a practical solution for existing DBMS vendors to add
their support for graph analytics.
• Building a unified programming model to support batch graph pro-
cessing, incremental graph processing, and integrated graph analyt-
ics in a single system is an interesting direction for further research
explorations.

21SFrame: https://dato.com/products/create/docs/generated/graphlab.SFrame.html
22HBase: http://hbase.apache.org/

http://hbase.apache.org/

Part III

Miscellaneous Issues

9
More on Single-Machine Systems

In Chapter 5.2, we have reviewed four standalone systems that adopt
vertex-centric shared memory abstraction, and support out-of-core ex-
ecution. In this chapter, we introduce other single-machine systems
whose computation models are not purely vertex-centric. Specifically,
Section 9.1 introduces two systems that adopt matrix backends for ex-
ecution but expose a vertex-centric interface to users, and Section 9.2
describes four in-memory systems whose APIs expose high parallelism
for execution in a high-end server. We will see more single-machine sys-
tems that use new hardware technologies to improve the performance
of execution in Chapter 10.

9.1 Vertex-Centric Systems with Matrix Backends

We now review the two single-machine systems GraphMat [Sundaram
et al., 2015] and GraphTwist [Zhou et al., 2015], which expose a vertex-
centric programming interface to users, but perform matrix-based ex-
ecution.

143

144 More on Single-Machine Systems

9.1.1 GraphMat

GraphMat [Sundaram et al., 2015] is a single-machine in-memory sys-
tem that takes users’ vertex-centric programs and maps them to gen-
eralized sparse matrix operations in the backend. The benefits are
twofold: (1) users can use the familiar vertex-centric programming
model to design graph algorithms, while for execution, (2) GraphMat
is able to achieve performance comparable to native, hand-optimized
code, by leveraging decades of research on techniques to optimize sparse
linear algebra in High Performance Computing.

Vertex-Centric API. GraphMat adopts a BSP programming model
similar to that of Giraph. Unlike PEGASUS, GraphMat maintains a
boolean array to indicate whether each vertex is active, and in each
iteration, this array is scanned to find the active vertices for message
generation. Users define the following UDFs: (1) send_msg(.), called
by a vertex v to read its value and to produce a message, which is then
broadcast to all v’s neighbors; (2) process_msg(.), which reads the mes-
sage, the value of the edge along which the message arrives, and the
data of the destination vertex, to postprocess the message value; (3) re-
duce(.), a commutative function that takes the postprocessed messages
for a vertex, and produces a single reduced value; (4) apply(.), which
updates the vertex value according to the reduced value. In an itera-
tion, these four UDFs are called on the related vertices/edges in order,
and only those vertices whose values get updated will become active
for the next iteration.

As an example, consider the problem of finding the shortest path
distance from a vertex s to every vertex in a graph, where each vertex v
maintains a value a(v) indicating the current distance estimation. Here,
v.send_msg(.) assigns a(v) to the message value, (u, v).process_msg(.)
adds the weight of (u, v) to the message, reduce(.) computes the
minimum message value min, and v.apply(.) updates a(v) as min if
min < a(v).

Notably, compared with other vertex-centric systems, the UDF pro-
cess_msg(.) of GraphMat not only allows a user to access the value of
the corresponding edge, but also the data of the destination vertex.

9.1. Vertex-Centric Systems with Matrix Backends 145

Compared with the conventional GAS model, this relaxation is able
to cover a larger range of graph algorithms efficiently, such as triangle
counting. Specifically, in triangle counting, a vertex u needs to com-
pute the intersection between Γ(u) and each neighbor list Γ(v) that it
receives from a neighbor v ∈ Γ(u), and thus (v, u).process_msg(.) will
access Γ(u) in its computation.

GraphMat saves the memory cost by using one message per ver-
tex as opposed to one message per edge, which is possible since
v.send_msg(.) generates the same message to all neighbors. Graph-
Mat can also avoid redundant data copies while generating messages.
For example, in the above triangle counting example, the messages sent
by v (whose values are the neighbor list Γ(v)) need not be copied but
are rather passed as pointers to the actual data of Γ(v). This is possi-
ble since GraphMat performs in-memory graph processing in a single
machine.

Implementation. GraphMat translates the above vertex-centric pro-
gram with process_msg(.) and reduce(.) functions into a generalized
sparse matrix-vector multiplication ~vout ← AT · ~vin, for efficient paral-
lel execution. Specifically, for each active vertex vj , Column j of AT

(denoted by AT
∗,j) is processed as follows: for each neighbor vk ∈ Γ(vj),

(vj , vk).process_msg(.) is called to compute a postprocessed message
by accessing vj ’s value ~vin[j], the edge value AT

k,j , and the data of vk

such as Γ(vk). The postprocessed message is then combined to ~vout[k]
by calling reduce(.).

In the above algorithm, matrix AT is represented in a Compressed
Sparse Column (CSC) format, and partitioned into many chunks to
improve parallelism and load balancing; while a vector (e.g., ~vin) is
represented with a bitvector for storing valid indices and an array with
constant size |V | but only storing values at the valid indices. To improve
performance, the bitvector of ~vin is cached and shared among multiple
threads that together performs the matrix-vector multiplication.

9.1.2 GraphTwist

GraphTwist [Zhou et al., 2015] is a single-machine system for iterative
graph computation, with the following two unique features. Firstly,

146 More on Single-Machine Systems

GraphTwist adopts a multi-level graph partitioning to (1) enable more
balanced parallel workloads among computing threads (even for graphs
with skewed vertex degree distribution), and to (2) allow the system to
choose the right granularity of graph parallel abstractions for different
graphs and different applications, so that each partition can be pro-
cessed in the main memory of a commodity PC. In comparison, earlier
systems (e.g., GraphChi) usually support only one level of granular-
ity (e.g., shard). Secondly, GraphTwist adopts a randomized sampling-
based approach to significantly reduce the computation workload, while
achieving good approximation with bounds on the introduced error. We
now introduce GraphTwist as follows.

Graph Partitioning Granularities. GraphTwist regards a directed
weighted graph G as a 3D cube with three dimensions: source vertex u,
destination vertex v, and the weight of edge (u, v), denoted by w. Note
that each element (u, v, w) in the cube corresponds to an edge in G,
and thus a partitioning of the cube is also a partitioning of the edges
in G. Here, the weight of an edge can be either a numeric value, or a
label (a.k.a. categorical value).

GraphTwist supports four levels of partitioning granularities of the
cube: slice, strip, dice and vertex cut. We now describe them, where we
assume that all source (resp. destination) vertices are ordered by ID
and partitioned into a set of ranges S (resp. D), and that the weights
are ordered and partitioned into a set of weight ranges W.

Let S (resp. D, and W) be an arbitrary set in S (resp. D, and
W). A dice (S,D,W) consists of all edges (u, v, w) such that u ∈ S,
v ∈ D, and w ∈W . Intuitively, a dice is the smallest cubic unit in the
cube partitioned by S, D, and W. Since different graph applications
often use either in-edges or out-edges, to provide efficient access for
different graph applications, a dice (S,D,W) is physically organized in
two types: (1) in-edge dice, where all edges in the dice are regarded as
in-edges to vertices of D, and are stored in the order of source vertices;
(2) out-edge dice, where all edges in the dice are regarded as out-edges
from vertices of S, and are stored in the order of destination vertices.

A strip represents a larger partition unit than a dice, which groups
dices either along S or along D. Intuitively, a strip can be viewed

9.1. Vertex-Centric Systems with Matrix Backends 147

as a sequence of dices stored physically together. There are two
types of strips. An in-edge strip (D,W) contains all in-edge dices
(S,D,W), ∀S ∈ S, and an out-edge strip (S,W) contains all out-edge
dices (S,D,W), ∀D ∈ D.

Slice partitioning is introduced as an effective parallel abstraction to
deal with the skewed edge weight distribution. It partitions the 3D cube
into slices along dimension W, so that edges with similar weights are
clustered into the same slice. There are two types of slices corresponding
to each weight range W . An in-edge slice contains all in-edge strips
(D,W), ∀D ∈ D, and an out-edge slice contains all out-edge strips
(S,W), ∀S ∈ S.

Finally, a dice can be further partitioned into vertex cuts, one per
vertex. Specifically, since edges in an in-edge dice (S,D,W) are stored
in the order of source vertices, it can be split into multiple out-edge
cuts ({u}, D,W) (or simply (u,D,W)), ∀u ∈ S. Similarly, an out-edge
dice (S,D,W) can be split into multiple in-edge cuts (S, v,W), ∀v ∈ D.

Computation Model. Like in GraphMat, users only write iterative
graph algorithms with a vertex-centric scatter-gather programming in-
terface. GraphTwist compiles the vertex-centric code, and carries out
the iterative computation on each vertex in the proper granularity (i.e.,
slice by slice, strip by strip, dice by dice, cut by cut). To support fast ac-
cess to different kinds of partitions, GraphTwist builds a partition-level
index and a vertex-to-partition index for an input graph. Specifically,
(1) the dice-level index is a dense index that maps a dice ID (S,D,W)
to the corresponding chunks on disk where the dice block is physically
stored; (2) the strip-level index is a sparse index on top of the dice-level
index, which maps a strip ID (D,W) (or (S,W)) to all the dice-level
index entries relevant to that strip; (3) the slice-level index is a sparse
index on top of all the strip-level index, which maps each weight range
W to the strip-level index entries relevant to this slice; (4) the vertex-
to-partition index maps each vertex to the set of partitions that contain
in-edges or out-edges of this vertex.

GraphTwist partitions the 3D cube in a divide-and-conquer man-
ner: (1) it first partitions the cube into slices; (2) if a slice cannot be
processed in main memory, it is further partitioned into strips; (3) if a

148 More on Single-Machine Systems

strip cannot be processed in main memory, it is further partitioned into
dices. Therefore, the edges in different partitions are disjoint, and thus
different partitions can be processed in parallel. Moreover, different
vertices in the same partition can also be processed in parallel.

Each iteration of computation consists of two steps: (1) to calcu-
late partial vertex updates in each subgraph partition in parallel; and
(2) to aggregate partial vertex updates from all subgraph partitions to
generate complete vertex updates. Note that for a vertex with a high
in-degree, its value update may depend on multiple partitions, and such
a vertex is called a critical border vertex. Since the in-edges of a critical
border vertex v belong to multiple partitions, denoted by P1, . . . , Pm,
GraphTwist maintains a partial update list for v in memory (to avoid
conflict), with an initial counter of 0. A thread that processes Pi puts
the partial update of v to the partial list and increments the counter
by 1. If the counter reaches m, the thread then continues to perform
the Gather process to aggregate all partial updates of v in its partial
list, to generate a complete update for v.

Fast Randomized Approximation. GraphTwist executes graph
computation by a series of matrix-vector computations, or more gen-
erally, matrix-matrix computations. To speed up the iterative compu-
tation, GraphTwist supports the pruning of statistically insignificant
vertices or edges. To illustrate the idea, one may perform PageRank
computation only using the high-weight edges (with proper value ad-
justments to guarantee unbiased estimation), and the results tend to
preserve the ranking order of important vertices.

The first pruning technique is slice pruning (or subgraph-based
pruning), which operates on matrix multiplication A · B as follows.
Firstly, an importance score is computed for each slice of A and B,
as the Frobenius norm1 of the slice’s matrix representation M where
M [u][v] = w if (u, v, w) is in the slice and M [u][v] = 0 otherwise. Let
WA (resp. WB) be a slice of A (resp. B), and let its importance score
be pA (resp. pB). Then, the slice pruning approach computes A ·B by
sampling (WA,WB) pairs with probability proportional to pA · pB, and

1http://mathworld.wolfram.com/FrobeniusNorm.html

http://mathworld.wolfram.com/FrobeniusNorm.html

9.2. In-Memory Systems for Multi-Core Execution 149

computes WA · WB for each sample. The results computed from the
sample pairs are then used to compute an unbiased estimator of A ·B.

Note that the computation of WA · WB can be further decom-
posed into a few strip-level multiplications (S,WA) · (D,WB), ∀S ∈
S,∀D ∈ D for parallel execution. To compute a strip-level multiplica-
tion (S,WA) · (D,WB) efficiently, GraphTwist decomposes the in-edge
strip (S,WA) (resp. the out-edge strip (D,WB)) into multiple out-edge
cuts (u,D,W), ∀u ∈ S (resp. in-edge cuts (S, v,W), ∀v ∈ D). Thus,
the strip-level multiplication can be efficiently estimated by randomized
sampling on vertex cut pairs, in a similar manner as in slice pruning.
This method is called cut pruning (or vertex-based pruning).

9.2 In-Memory Systems for Multi-Core Execution

There are also a few systems designed to process a big graph in the
main memory of a single high-end server with large RAM space and
tens of cores. In this section, we introduce four such systems, Green-
Marl [Hong et al., 2012], Ligra [Shun and Blelloch, 2013], GRACE [Xie
et al., 2013] and Galois [Nguyen et al., 2013]. Green-Marl, Ligra, and
GRACE focus on the programming simplicity of developing parallel
graph algorithms, while GRACE and Galois aim at the full utilization
of all cores in a machine.

Compared with distributed big graph systems, these systems elim-
inate the expensive network communication, and are often able to
achieve performance comparable to or even better than distributed
systems. However, a high-end server is required which can be more ex-
pensive than a cluster of commodity machines. The graph size is also
limited by the available RAM space, e.g., the largest graph tested on
GRACE has less than 300 million edges [Xie et al., 2013]. The biggest
problem, however, is the high startup overhead. Specifically, consider
the processing of a graph with size 100GB. In a distributed system run-
ning with 100 PCs, each PC only needs to load around 1GB data from
HDFS. In contrast, a single-machine in-memory system needs to load
all the 100GB data from its local disk to main memory before start-
ing processing, with which time a distributed system may have already

150 More on Single-Machine Systems

finished many graph jobs. This is not an issue for an out-of-core single-
machine system since the computation itself scans the disk-resident
graph.

9.2.1 Green-Marl

Green-Marl [Hong et al., 2012] is a domain-specific language (DSL)
that provides a set of high-level language constructs. These constructs
allow developers to describe their graph analysis algorithms intuitively,
but meanwhile expose the data-level parallelism inherent in the algo-
rithms for efficient parallel execution. The Green-Marl compiler trans-
lates high-level algorithmic description written in Green-Marl into a
C++ program (rather than a machine language), for efficient paral-
lel execution in the main memory of a single machine. This approach
allows compiler-level optimizations to be used to improve the perfor-
mance of the generated code. Recently, [Hong et al., 2014] extended
this compiler to generate Pregel programs for distributed processing in
the GPS system [Salihoglu and Widom, 2013].

The Green-Marl language includes language constructs for implicit
parallelism, and meanwhile allows users to explicitly specify parallel
execution regions. For example, users may process a collection of data
using the Foreach statement, which indicates that the order of process-
ing is unimportant. The Foreach statement is executed similarly as the
parallel-for loop of OpenMP: multiple threads are forked to process
the data in parallel, and are then synchronized at a join point before
ending the for loop. One may also use the For statement of Green-Marl
to indicate sequential execution of the data by one single thread (e.g.,
due to data dependencies).

As a DSL for graph algorithms, the Foreach or For statement can
iterate through the following ranges: (1) all vertices in a graph, (2) all
in-neighbors or out-neighbors of a vertex, (3) all up-neighbors or down-
neighbors of a vertex, which we explain next. Up-neighbors and down-
neighbors are only defined during a BFS from a specific node s: let v
be a vertex i hops from s, then an up-neighbor (resp. down-neighbor)
of v is an in-neighbor (resp. out-neighbor) of v that is (i − 1) (resp.
(i+ 1)) hops from s.

9.2. In-Memory Systems for Multi-Core Execution 151

Green-Marl also provides two graph traversal schemes: breadth-
first search (BFS) and depth-first search (DFS) from a root s, which
are specified by the InBFS(s) and InDFS(s) statements, respectively.
DFS implies sequential execution, while BFS implies level-synchronous
parallel execution, i.e., vertices with the same distance from s are vis-
ited concurrently but execution is synchronized before moving on to the
next level. Inside the InBFS(s) statement, one may iterate up-neighbors
or down-neighbors using for loop. The BFS statement also allows an
optional branch of reverse BFS, which is useful for implementing algo-
rithms like computing strongly connected components (which requires
a BFS followed by a reverse BFS [Yan et al., 2014b]).

Other useful language constructs include reductions (e.g., SUM,
MIN, AND) and deferred assignment. Deferred assignment (as specified
by operator <=) is used to support the BSP model, where if users write
a <= f(~b), then ~b will always use the old values and the write to a
becomes effective only at the end of the binding iteration.

9.2.2 Ligra

Ligra targets at making graph traversal algorithms easy to write, and
meanwhile, supporting efficient shared-memory parallel execution that
adapts the computation mode to the number of active vertices. Unlike
existing vertex-centric systems, Ligra routines operate on a subset of
vertices U . More specifically, Ligra supports two routines, edgeMap(.)
and vertexMap(.), which we describe below.

EdgeMap. edgeMap(U,F,C) operates on a set of vertices U (consid-
ered active) as follows: for each out-edge (u, v) of a vertex u ∈ U ,
it checks whether the target vertex satisfies C (i.e., whether C(v) =
true). If so, function F is applied to (u, v), and F also decides whether
v should be included into the output vertex set U ′ (e.g., the active
vertices for the next iteration). Here, both functions C(v) and F (u, v)
are user-defined, and since F may update the vertex value a(v), users
need to use atomic operation for the update to avoid write conflicts.

We now illustrate how to write C(v) and F (u, v) for graph algo-
rithms in the BSP model, where U (resp. U ′) is the set of active ver-
tices for the current (resp. next) iteration. Consider the BFS algorithm,

152 More on Single-Machine Systems

where an array parent[] is maintained such that parent[v] records the
parent of v in the BFS tree, which is initialized as null. Each itera-
tion performs edgeMap(U,F,C) to activate the new level of vertices
U ′, where C(v) checks whether parent[v] = null (i.e., v has never
been visited), and if so, F (u, v) sets parent[v] as u using an atomic
compare-and-swap instruction, which checks whether parent[v] = null
again since another thread may have updated parent[v] after the last
call of C(v).

VertexMap. vertexMap(U,F) operates on a set of vertices U as fol-
lows: for each vertex u ∈ U , it runs the user-defined function F on
u, which also decides whether v should be included into the output
vertex set U ′. Some graph algorithms require using both edgeMap and
vertexMap, such as PageRank computation which we describe below.

In this algorithm, two arrays pcur[] and pnext[] are maintained, where
pcur[v] (resp. pnext[v]) records the PageRank value of v in the current
(resp. next) iteration. When an iteration begins, pnext[v] = 0 for all v ∈
V . Function edgeMap(V, F,C) operates on all vertices in V first, where
C(v) always returns true, and F (u, v) atomically add (pcur(u)/dout(u))
to pnext[v]. Then, vertexMap(V, F) operates on every v ∈ V , where F (v)
adjusts the value of pnext[v] with the damping factor, assigns the value
to pcur[v] and reinitializes pnext[v] as 0, to be used in next iteration.

Mode Switch Based on Vertex Sparseness. Depending on the
size of U (i.e., sparseness of active vertices) during the execution, Ligra
switches between a sparse and dense representation of U (which is
a set of integer IDs). Accordingly, routine edgeMap(.) also switches its
execution algorithm based on the representation of U . When U is small,
edgeMap(.) iterates (in parallel) through every vertex u ∈ U to process
its out-edges (in parallel). But this approach is inefficient when U is
large, since a vertex u ∈ U needs to check every out-neighbor v (e.g.,
to compute C(v)), and a vertex v may be checked for multiple times
by its in-neighbors.

Therefore, when U is large, edgeMap(.) iterates (in parallel) through
every vertex v ∈ V , and if C(v) = true, then F (u, v) is executed for each
in-neighbor u ∈ Γin(v)∩U . This method is faster since for each vertex
v ∈ V , C(v) is performed for only once. Moreover, for each vertex

9.2. In-Memory Systems for Multi-Core Execution 153

v, we can specify F (u, v) to be executed in serial among u to allow
early termination. For example, in BFS, for each vertex v, F (u, v) only
needs to be executed for one in-neighbor u. Accordingly, F (.) no longer
needs to update a(v) atomically. This optimization not only improves
the performance of BFS, but also many other graph problems that
perform multiple BFSs, such as betweenness centrality and graph radii
estimation.

9.2.3 GRACE

Many vertex-centric graph algorithms are computationally light, which
exhibit a high “data access to computation” ratio. When such an al-
gorithm is processed in the main memory of a multi-core machine, the
performance hits an early “memory wall” when we increase the num-
ber of used cores. To achieve reasonable speedup with all the cores in
a machine, GRACE [Xie et al., 2013] adopts a block-centric execution
model, in which computation is iterated locally over blocks of highly
connected nodes to improve the cache hit rate. Blocks are disjoint and
are obtained by graph partitioning using METIS.

Meanwhile, GRACE only requires users to write familiar vertex-
centric programs, and regards the computation within a block B as a
scheduling of vertex-centric computation among the vertices in B.

There are two levels of computations: block-level computation and
inner-block computation. In block-level computation, blocks are sched-
uled for processing by a block-level scheduler, which, for example, can
give priority to a block that contains the vertex with the worst residual
error. To process a block B, an inner-block scheduler iterates over the
vertices inside B (e.g., in a round-robin fashion), and applies the user-
defined vertex-centric computing logic to these vertices. The scheduling
policy of both the block-level scheduler and the inner-block scheduler
can be specified by users, or users may use the pre-defined schedulers.

Unlike in Blogel (see Section 4.1.2), depending on the convergence
rate, some blocks may be processed for more times than other blocks;
also, a vertex may be processed for multiple times during the processing
of its block. The processing of a block B ends either when the values

154 More on Single-Machine Systems

of its vertices converge, or when a user-specified maximum iteration
number is reached.

In a block B, if a neighbor u of a vertex v ∈ B resides in another
block B′, then u is called as a boundary vertex to B. Note that the
value of u is read by B (when processing v), and it may also be updated
when processing B′. To guarantee serializability while permitting the
concurrent processing of both B and B′, GRACE implements a simple
form of multi-version concurrency control, where B (as well as B′) reads
the old value of u while B′ writes to a replica of u that gets committed
when B′ finishes its processing.

9.2.4 Galois

Like Green-Marl, the Galois system [Nguyen et al., 2013] let users write
graph algorithms using a domain specific language (DSL) so that the
system can utilize the exposed parallelism to fully utilize the CPU re-
sources. Galois adopts a data-centric programming model called amor-
phous data-parallelism (ADP) [Pingali et al., 2011], which enables spec-
ulative execution (or optimistic concurrency control) to fully use any
extra CPU resources. Specifically, the computation of a vertex v needs
to read/write data from/to v’s direct neighbors, and if the neighbor-
hoods of two vertices va and vb overlap, then conflicts may happen
when va and vb are processed in parallel. In this case, speculative exe-
cution allows both vertices to be processed (by two threads), but if a
conflict happens, one of the conflicting computations is rolled back.

Application programmers of Galois specify parallelism implicitly by
using an unordered-set iterator which iterates over a worklist of active
vertices. The worklist is initialized with a set of active vertices before
the iterator begins execution, and the execution of an iteration can
create new active vertices, which are added to the worklist when that
iteration completes execution. To ensure serializability of iterations,
programmers must use a library of built-in concurrent data structures
for graphs, worklists, etc. When there are no application-specific exe-
cution priorities, Galois adopts a machine-topology-aware scheduler to
schedule active vertices for processing. Priority scheduling can also be
adopted which is layered on top of this scheduler.

9.3. Summary 155

To understand the design of the machine-topology-aware scheduler,
we first review the CPU architecture in a machine. Specifically, the
motherboard contains many CPU sockets, and each socket can ac-
commodate one commodity multi-core CPU (or CPU package). The
machine-topology-aware scheduler uses a concurrent bag to hold the
set of pending tasks (i.e., active nodes), which supports the concurrent
insertion and retrieval of tasks. We now review the structure of a bag
which is distributed among all CPUs. Specifically, each core maintains
a stack of tasks (implemented as a ring-buffer with a size limit) for
pushing/popping tasks. Each CPU also maintains a list of such stacks,
called package-level list. When the stack associated with a core be-
comes full, it is moved to the package-level list of its CPU; while if
the stack associated with a core becomes empty, the core fetches a full
stack of tasks from the local package-level list if the list is not empty,
or otherwise, the core needs to probe the package-level lists of other
CPUs.

The priority scheduler of Galois, called obim, uses a sequence of
bags instead of just one bag, to implement “soft” priorities. Tasks in
the same bag have the same priority, while different bags have different
priorities. Galois processes the tasks in a higher-priority bag first, before
processing any task in a lower-priority bag. The bags are maintained
by a global structure called global map. To improve locality, each core
also maintains a lazy cache of the global map, called a local map. When
a core (or its associated thread) cannot find a bag of required priority
for inserting or retrieving tasks in its local map, it needs to synchronize
with the global map. Since the global map is a central data structure
that is read and written by all threads, it is represented as an append-
only log-based structure, and a thread synchronizes with the global
map by replaying the global log from its last synchronized log entry.

9.3 Summary

Both the systems described in Chapter 5.2 and those described in Chap-
ter 9.1 are single-machine systems with vertex-centric API. The differ-
ence is that each system described in Chapter 5.2 adopts a backend

156 More on Single-Machine Systems

specially designed for the respective vertex-centric (or edge-centric)
API, while GraphMat and GraphTwist map vertex-centric API to ma-
trix backend for execution. It remains an interesting question to answer
whether a dedicated vertex-centric backend is more efficient, or a ma-
trix backend is, which may benefit from the years of HPC research on
optimizing matrix operations (e.g., better utilization of cache locality).
The systems described in Chapter 9.2 demonstrate a few other pro-
gramming interfaces that could be more flexible (though of lower level)
than the vertex-centric interface, and that enables additional optimiza-
tions specified to the shared memory environment.

10
Hardware-Accelerated Systems

In this chapter, we introduce those graph analytics systems that accel-
erate their computation by applying new hardware technologies. Specif-
ically, Section 10.1 introduces systems for out-of-core execution with
SSDs (instead of disks) to achieve higher IO throughput and allow bet-
ter parallelism, while Section 10.2 describes systems that use GPUs to
achieve massive parallelism in a shared memory environment. It hap-
pens that all the systems reviewed in this chapter are single-machines
systems, but hardware acceleration has also been applied to distributed
systems recently, as we shall briefly discuss in Section 10.3.

10.1 Out-of-Core SSD-Based Systems

The single-machine out-of-core systems discussed in Chapter 5.2 all
focus on iterative graph algorithms where each iteration scans the entire
disk-resident graph. As a result, their designs all require that vertex
IDs be consecutive integers that can be partitioned into intervals, and
the execution of each iteration is essentially a hash-join between vertex
values and edge values/updates, where the hash function maps a vertex
ID to the corresponding interval.

157

158 Hardware-Accelerated Systems

However, when a graph is stored on SSDs, it is very important to
support asynchronous random I/O requests in order to better overlap
computation with I/O. This is because, compared with a magnetic disk
with only one access arm, an SSD is composed of many flash chips,
each with multiple dies that can read/write independently. Multiple
asynchronous I/O requests can be submitted to an SSD in parallel,
which are pipelined to achieve very high throughput. Computation may
continue after an asynchronous I/O request is submitted, and when the
transmission finishes, the data can be processed by a callback function.

In this section, we introduce two systems, TurboGraph [Han et al.,
2013] and FlashGraph [Zheng et al., 2015], that process a big graph
stored on SSDs. These systems support asynchronous random I/O re-
quests to SSDs, and use memory as a cache to pin/unpin data from/to
SSDs. TurboGraph focuses more on the efficient processing of light-
weight graph queries, while FlashGraph focuses more on the full uti-
lization of the IO bandwidth of an SSD array.

10.1.1 TurboGraph

In TurboGraph [Han et al., 2013], users write their graph algorithms
with engine-level graph primitives such as generalized matrix-vector
computation, and breadth-first search. These operations are imple-
mented under the pin-and-slide execution model of TurboGraph, which
leverages the parallelism of multi-core and SSD-IO, and fully overlaps
CPU processing with IO processing.

In TurboGraph, vertices are ordered by their IDs and stored along
with their adjacency lists. The vertices are stored as a list of pages,
and each page stores some vertices (along with their adjacency lists).
In the adjacency list of a vertex v, each neighbor u is represented by
a pair indicating (1) the page of u, and (2) the order of u among the
vertices in the page.

TurboGraph maintains an in-memory page table, where each entry
only stores the ID of the first vertex in a page. Since the number of
entries is the same as the number of pages, the page table is small
enough to be kept in main memory. There are two usages of the page
table. Firstly, queries like finding 2-hop neighbors of a vertex s can

10.1. Out-of-Core SSD-Based Systems 159

be efficiently supported, since the page of s can be directly located
by binary search on the page table. Secondly, given an adjacency list
element (page(u), order(u)), we can get the start vertex w of page(u)
from the page table, and compute u’s ID as (w+order(u)). For a high-
degree vertex v, its adjacency list may not fit into a single page, and
thus TurboGraph stores the adjacency list using multiple pages, which
are also tracked by the in-memory page table.

Two thread pools are maintained in TurboGraph, one for the execu-
tion threads, and the other for the asynchronous I/O callback threads.
Meanwhile, a buffer manager is maintained to cache pages that are read
from the SSD. We now consider how TurboGraph processes a set of ver-
tices S represented the vertex vector ~vin, i.e., to perform ~vout ← AT ·~vin.
In this case, only those columns of AT that correspond to the adjacency
lists of vertices in S need to be accessed. We only present the simple
case where ~vin and ~vout fit in main memory, and thus the computa-
tion only needs to read adjacency lists (i.e., columns of AT) from SSD.
Otherwise, a block-nested loop (BNL) style algorithm is needed.

Specifically, to process S, TurboGraph first identifies the corre-
sponding pages for these vertices, and pins those pages that are already
in the buffer pool. Then, parallel asynchronous I/O requests are sub-
mitted to the SSD for those required pages that are not in the buffer
pool. Note that TurboGraph does not wait for the completion of those
I/O requests, but instead, the execution threads concurrently process
vertices of V whose pages are already pinned. A page is unpinned as
soon as it is processed (by either an execution thread or a callback
thread), so that an execution thread may issue more asynchronous I/O
requests to the SSD.

10.1.2 FlashGraph

FlashGraph [Zheng et al., 2015] is a semi-external memory graph engine
that stores vertex state in memory and edge lists (i.e., adjacency lists)
on SSDs, and its design goal is to achieve performance comparable to
an in-memory engine. FlashGraph is built on top of a user-space SSD
file system called SAFS (set-associative file system), which supports
high-throughput asynchronous I/Os over an array of SSDs. During the

160 Hardware-Accelerated Systems

computation, FlashGraph only accesses edge lists requested by the user-
defined logic from SSDs, and requests to the same page or adjacent
pages are merged into one sequential access to improve I/O throughput.

In FlashGraph, the edge lists of vertices are stored as a file on SAFS
in the increasing order of vertex ID. An in-memory table is maintained,
which stores the positions of the edge lists (in the edge list file) for every
vertex whose ID is a multiple of 32. This structure is much more space-
efficient than if we store the edge list position for every vertex, and with
the help of another in-memory array that records the degree of every
vertex, the edge list location of any vertex can be efficiently computed
(for random access from SSD). FlashGraph also maintains an array of
vertex states, but does not explicitly store the vertex IDs. When the
user program needs to access the ID of a vertex, it is computed based
on the address of its vertex state in memory and that of the first vertex.

FlashGraph exposes a vertex-centric programming interface to
users, where vertices communicate with each other by message passing
(and thus there are no race conditions). UDFs are provided for users
to define (1) how to process a vertex when its edge list is returned
from SARS, (2) how to process a message in memory, and (3) how to
postprocess the vertex values (e.g., adjusting them by a damping factor
in PageRank computation). FlashGraph requires a vertex to explicitly
request its own edge list before accessing it, and this requirement can
save I/O bandwidth. For example, if a vertex votes to halt directly in its
computation, it does not need to access its edge list from SAFS. There
are three possible states for a vertex v: (1) running, which indicates
that v is in the middle of computation (e.g., v submitted a request to
access its edge list, but the transmission is not finished yet); (2) active,
which indicates that v is scheduled for processing; and (3) inactive.

FlashGraph splits V into multiple partitions and assigns a worker
thread to each partition. Each worker thread maintains a queue of ac-
tive vertices within its own partition and executes user-defined vertex
programs on them. The threads also send and receive messages on be-
half of their vertices and buffer messages to improve performance. More
specifically, the vertices are first partitioned into intervals I1, I2, . . .,
and then assigned to the worker threads in a round-robin fashion. This

10.2. Systems for Execution with GPU(s) 161

scheme increases the chance of merging I/O requests. For example, as-
sume that there are only two workers, then it is likely that worker 1
is processing vertices in I1 when worker 2 is processing vertices in I2,
and then worker 1 is processing vertices in I3 when worker 2 is process-
ing vertices in I4. Note that the edge lists of I1 and I2 (resp. I3 and
I4) are stored consecutively in the file. Moreover, each worker thread
schedules active vertices for execution in the order of vertex ID, which
also increases the chance of merging I/O requests as the edge lists are
ordered by vertex ID in the file on SAFS.

10.2 Systems for Execution with GPU(s)

Due to the success of general-purpose computing on graphics processing
units (GPGPU), several recent works started to explore the potential of
using GPU(s) for vertex-centric graph processing [Zhong and He, 2014,
Fu et al., 2014, Khorasani et al., 2014]. These systems aim to provide
users with a familiar vertex-centric programming interface, while their
execution models are designed to fully explore the massive parallelism
of GPU(s). Before introducing the individual systems, we first review
the GPU architecture, and identify the important design issues for
efficient execution with GPU(s).

GPU Architecture. A GPU is connected to the host CPU via PCI-e
(PCI Express) bus. A GPU consists of an array of streaming multipro-
cessors (SMs), where each SM contains multiple streaming processors
(SPs) (let the number be 32), and executes with the SIMT (single in-
struction, multiple threads) model. Specifically, when an SM executes
an SIMD instruction, it is executed on all 32 threads (run by its 32
SPs). If different threads of an SM need to execute different control
flows (e.g., different branches of an if-else block), the processor exe-
cutes all paths, using masking to disable/enable the relevant threads
as appropriate. As a result, a GPU program needs to be carefully de-
signed to avoid path divergence that leads to GPU underutilization.

An SM typically contains multiple warps (let the number be 48),
where a warp contains 32 threads to be concurrently executed with
the 32 SPs. The warp scheduler of an SM issues one of its 48 warps for

162 Hardware-Accelerated Systems

execution at a time, and thus an SM can process 48×32 = 1536 threads.
In the more general case, an SM may be able to process multiple warps
at a time, achieving not only intra-warp parallelism but also inter-warp
parallelism in one SM. Each SM is associated with a private L1 cache
and a low latency shared memory (scratchpad memory), while SMs
share an L2 cache and the interface to a global memory.

In NVIDIA’s CUDA computing architecture, developers write de-
vice programs called kernels. A kernel needs to be explicitly configured
and invoked to run on a GPU, with many threads running the same
kernel program in parallel. A GPU executes one or more kernels (or ker-
nel grids), where each kernel grid consists of an array of thread blocks
that execute the same kernel program. Each thread block is also called
a cooperative thread array (CTA), which contains multiple warps (let
the number be 6, and thus an SM can accommodate 48/6=8 CTAs).
The CTAs of a kernel grid are enumerated and distributed to those
SMs with available execution capacity. The threads of a CTA execute
concurrently on one SM, and when the CTA is processed, it is released
from the SM so that the SM can take more CTAs for processing.

Due to the memory hierarchy of GPU, the intra-warp parallelism,
and the inter-warp parallelism within an SM (and also a CTA), coa-
lesced (i.e. locality-aware) memory accesses are prefered, and a GPU
program should avoid irregular memory accesses.

We now introduce three GPU-based vertex-centric systems,
Medusa [Zhong and He, 2014], MapGraph [Fu et al., 2014] and
CuSha [Khorasani et al., 2014]. Among them, Medusa adopts the BSP
model of Pregel where vertices send messages to each other, while Map-
Graph and CuSha adopts the GAS model of PowerGraph.

10.2.1 Medusa

Medusa [Zhong and He, 2014] adopts the BSP model of Pregel for
computation. However, instead of letting users define a single com-
pute(.) function, Medusa provides a fine-grained programming model,
called Edge-Message-Vertex (EMV), for users to specify (1) how to pro-
cess each individual edge, vertex, and message; (2) how to process the
edge-list of a vertex, and how to process the message-list received by a

10.2. Systems for Execution with GPU(s) 163

vertex; (3) how to apply a combiner to all edge-lists or message-lists.
Compared with binding all computation of one vertex to one thread,
the fine-grained EMV model avoids path divergence caused by different
edge-list size and message-list size of individual vertices.

In a Medusa job, all vertices and edges are processed in each iter-
ation by default, but users may indicate active vertices and edges so
that Medusa will not process inactive vertices and edges. There are two
ways of terminating a job: (1) users may specify the maximum num-
ber of iterations that the job is allowed to run, or (2) a user-defined
function may explicitly signal the system to terminate.

Observing that in many graph algorithms, at most k messages are
passed along each edge in an iteration, Medusa pre-allocates an array of
k · |E| for buffering messages. Let us consider the common case where
k = 1 for simplicity, then for the set of vertices v1, . . . , vn, the first
din(v1) elements are used for storing messages towards v1, one for each
in-edge of v1; the next din(v2) elements are used for storing messages
towards v2, one for each in-edge of v2; and so on. Each edge is also
stored with the array position for the message sent along that edge. This
scheme has two benefits: (1) write positions of the messages that are
sent to the same vertex are consecutive, leading to coalesced memory
accesses; (2) write positions of different messages do not conflict with
each other.

When multiple GPUs are used, Medusa partitions the graph to the
GPUs using METIS, to reduce the amount of data transfer on the
host-device communication link (i.e., the PCI-e bus). For each cross-
partition edge (u, v) where u (resp. v) is in partition Pu (resp. Pv),
we assign (u, v) to Pv and replicate vertex u in Pv. In this way, the
message from u to v can be directly emitted from the replica of u
in Pv, rather than u itself (on another GPU different from the one
processing v). Medusa also supports a multi-hop replication scheme to
further reduce inter-GPU data transfer, with a tradeoff of having more
edges to process.

164 Hardware-Accelerated Systems

10.2.2 MapGraph

MapGraph [Fu et al., 2014] targets at high-throughput graph process-
ing with a single GPU. It adopts the GAS programming model as in
PowerGraph: (1) the gathering phase computes a generalized sum for
vertex v from the data of its adjacent edges and vertices; (2) the ap-
plying phase updates the value of v using the generalized sum; (3) the
scattering phase distributes messages of v to its adjacent edges and
vertices. However, unlike the asynchronous execution of PowerGraph,
MapGraph executes in iterations, where vertices in the current frontier
are processed and may activate their adjacent vertices to be included
into the frontier for the next iteration. This design allows fine-grained
processing on vertices and edges with large parallelism and small path
divergence.

The topology of a graph is stored in the Compressed Sparse Row
(CSR) format with two arrays: (1) column-index[], which is a concate-
nation of the adjacency lists of all vertices, and (2) row-offset[], which
contains the indices indicating where each adjacency list starts, i.e.,
row-offset[i] is the starting position of the subarray of vi’s neighbors in
column-index[].

Since the applying phase is embarrassingly parallel, MapGraph fo-
cuses on improving the performance of the gathering and scattering
phase. The gathering phase adopts the two-phase decomposition strat-
egy to achieve good load-balancing for threads within and across CTAs
(which also applies to the scattering phase). Specifically, the process-
ing is divided into two sub-phases, one for scheduling and the other
for actual computation. The scheduling sub-phase assigns vertices into
CTAs, so that the number of adjacent edges in each CTA is the same.
Then, in the computation sub-phase, each thread accesses the same
number of adjacent vertices and performs the same operation. While
the scheduling sub-phase incurs additional overhead, the workload is
balanced during computation.

The scattering phase only adopts the two-phase decomposition
strategy when the frontier of active vertices is large. When the frontier
is small (i.e., computation is sparse), a more efficient dynamic schedul-
ing strategy is adopted for scattering. This strategy distributes the

10.2. Systems for Execution with GPU(s) 165

workload of vertices to threads of CTAs according to the vertex degree,
so that the adjacent edges of a high-degree vertex can be concurrently
processed by all threads in a CTA or a warp (depending on the con-
crete degree value). However, when the computation is dense, the total
number of adjacent edges to process can vary largely among CTAs,
leading to imbalanced workload among CTAs.

10.2.3 CuSha

Like MapGraph, CuSha [Khorasani et al., 2014] also adopts the GAS
programming model. However, instead of organizing a graph in CSR
format, it operates on shards similarly defined as in GraphChi (see
Section 5.2.1) to achieve fully coalesced memory accesses.

To see why CSR leads to irregular memory accesses, assume that the
vertex values are stored in an array vertex-value[] where vertex-value[i]
stores a(vi). Recall from Section 10.2.2 that the edges (w.l.o.g., let them
be in-edges) are stored as an array column-index[] that concatenates
the adjacency lists of all vertices, i.e., each element column-index[j]
stores the source vertex u of its corresponding edge, in the form of u’s
position in vertex-value[]. During scattering, edges in column-index[]
are processed in parallel by GPU, to compute a value for each edge
(u, v) from a(u), to be gathered by v. However, consecutive elements in
column-index[] may point to non-consecutive positions in vertex-value[],
leading to non-coalesced memory accesses.

Like GraphChi, CuSha partitions vertices into P disjoint intervals
(or shards), I1, . . ., IP . Each shard Ii stores the in-edges of all vertices
whose IDs fall into Ii, and the edges are ordered by their source. As
a result, the edges in shard Ii are stored as a sequence of P windows,
W1,i, . . .,WP,i, whereWj,i consists of those edges pointed from vertices
in shard Ij . Each edge (u, v) is also stored with the value of the edge
(denoted by a(u, v)), and the value of the source (i.e., a(u)).

Each shard Ii is processed by one CTA, by the following steps that
only perform coalesced memory accesses: (1) For each edge (u, v) in
Ii, we assume that the stored a(u) is up-to-date, then the new value
of a(u, v) is computed from a(u) and stored with (u, v). (2) Each edge
(u, v) in Ii atomically aggregates a(u, v) to the new value of a(v) (note

166 Hardware-Accelerated Systems

that v ∈ Ii). (3) The new values of vertices in Ii are propagated to
every shard Ij , so that the field a(u) of each edge (u, v) in window Wi,j

of Ij is up-to-date (for use by next iteration).
While guaranteeing coalesced memory accesses, the above method

may suffer from imbalanced workload among CTAs. This is because
each shard is processed by one CTA, but shards can have very differ-
ence sizes due to skewed vertex degree distribution. Moreover, Step (3)
may suffer from inter-warp divergence in a CTA due to the difference in
window sizes. There may be many small windows, causing most threads
in a warp being idle. To solve this problem, CuSha also creates P con-
catenated windows CW1, . . ., CWP , where each concatenated window
(abbr. CW) CWi concatenates the windows of all shards that Ii needs
to propagate its updated vertex values to, i.e., Wi,1, . . ., Wi,P . How-
ever, instead of storing each edge of Wi,j in CWi, a pointer to this edge
in Ij is stored. In this way, for Step (3), consecutive threads within a
CTA may process consecutive CW entries (which may now span across
window boundaries) to improve GPU utilization.

10.3 Summary

The systems we discussed in this chapter use new hardware technolo-
gies mainly to improve performance in a shared memory environment
on a single machine. This is not a coincidence since these systems tar-
get data-intensive jobs, which can substantially benefit from SSDs and
GPUs. For a distributed graph system, on the other hand, network
communication is often the bottleneck. For example, in PageRank com-
putation, a vertex v computes each out-going message as pr(v)/dout(v)
(pr(v) is the current PageRank of v) in negligible time, but the time
to transmit this message through the network is much higher.

There has recently been a few distributed systems designed to
take advantage of high-speed network hardware technologies. For ex-
ample, GraM [Wu et al., 2015] uses a specially designed multi-core
aware RDMA-based communication stack that preserves parallelism in
a balanced way (i.e., NUMA-aware) and allows overlapping of com-
munication and computation, which achieves good performance with a

10.3. Summary 167

Mellanox ConnectX-3 InfiniBand NIC with 54Gbps bandwidth. Sim-
ilarly, Chaos [Roy et al., 2015] scales out the disk-based execution of
X-Stream with a cluster where each machine has a 480GB SSD, and
where machines are connected by 40 GigE links. As expected, Roy et al.
[2015] reported poor performance of Chaos when the normal Gigabit
Ethernet is used. Gemini [Zhu et al., 2016] extends the hybrid push-
pull computation model from shared-memory to distributed scenarios,
and is designed to be NUMA-aware and locality-aware. It is reported
to significantly outperforms existing distributed systems with the help
of Infiniband EDR network with up to 100Gbps bandwidth.

In general, we remark that (1) while single-machine systems can
readily benefit from new computation-intensive hardware, distributed
graph systems should exploit advanced network technologies to avoid
slow network from throttling the available parallelism; (2) if high-speed
network is used in a distributed system, the out-of-core mode should
use SSDs instead of hard disks in order to match the bandwidth of the
network; and (3) the design of multithreading strategy is important
when there are sufficient network bandwidth to utilize the parallelism
of multiple cores in each machine.

11
Temporal and Streaming Graph Analytics

The systems described so far are designed to analyze static graphs.
However, real world graphs often evolve over time, with vertices and
edges continually being added or deleted, and their attribute values
being frequently updated. Examples of such graphs include phone-
call graphs generated by telecommunication service providers, mes-
sage graphs from social networking sites, and mention-activity graphs
formed by Twitter users mentioning one another in their tweets. Ana-
lyzing these temporal graphs is crucial for gaining insights relevant to
real-time decision making.

There are two somewhat orthogonal challenges here, that have re-
sulted in two distinct bodies of work. First, there is often interest in
doing temporal analysis over historical traces of graphs, often called
time-evolving graphs or historical graphs; examples of such analysis
tasks include network evolution, historical queries, and many others.
Here the main computational challenges include storing very large vol-
umes of historical data compactly, and retrieving the data needed for
any specific temporal analysis task or historical query efficiently. There
is also a need for better and more user-friendly high-level interfaces
for specifying complex analytical tasks. Second, there is a need to do

169

170 Temporal and Streaming Graph Analytics

real-time analytics on the streaming data as it is being generated; here
the scope of the analysis typically only includes the latest snapshot or
the snapshots from a recent window. The key challenge here is to be
able to deal with the high rate at which the data is often generated.
Although these topics have received relatively less attention compared
to static graph analysis, both of them have seen a flurry of activity in
the recent years that we review in this chapter.

11.1 Overview

We first provide an overview of the existing temporal graph systems. We
remark that while systems for incremental iterative data flows (see Sec-
tion 8.3), such as Naiad [Murray et al., 2013] and Stratosphere [Ewen
et al., 2012], can also be used for processing dynamic graphs, they are
not specially designed for processing graphs. Also, several recent works
have investigated, from a graph database perspective, the problems of
storing and retrieving large-scale evolving graphs [Mondal and Desh-
pande, 2012, Ren et al., 2011]; however they do not consider complex
graph analytics, such as influence analysis or community detection al-
gorithms, as the graph engines surveyed in this section do.

Computation Model. In all of the systems that we survey, a tempo-
ral graph is viewed as a continuous stream of graph updates. A graph
update can be an addition or a deletion of a vertex or an edge, or it
can also be an update of an attribute associated with a node or an
edge. Of the systems discussed here, Kineograph [Cheng et al., 2012],
Chronos [Han et al., 2014b], DeltaGraph [Khurana and Deshpande,
2013], and LLAMA [Macko et al., 2015], all support general graph up-
dates, whereas TIDE [Xie et al., 2015b] focuses on addition of vertices
and edges in the context of dynamic interaction graphs, in which new
interactions (edges) are continually added over time.

The frequent change of a temporal graph poses a significant chal-
lenge to algorithm design, because the overwhelming majority of graph
algorithms assume static graph structures. One would have to design
special algorithms for each application to accommodate the dynamic
aspects of graphs. To support general-purpose computations, most of

11.1. Overview 171

the temporal graph systems adopt a strategy to separate graph up-
dates from graph computation. More specifically, although updates are
continually applied to a temporal graph, graph computation is only
performed on a sequence of successive static views of the temporal
graph. For simplicity, most systems adopt a discretized-time approach,
so that time domain is set of natural numbers, i.e., t ∈ N . We use GVt

to denote the static view of a temporal graph G at time t. An analytic
function F applied to a temporal graph G at time t is actually applied
to GVt, with the result F (GVt). As time advances to t′, the result is
updated to F (GVt′) either by computing it from scratch on GVt′ or by
incrementally updating the result from F (GVt) to F (GVt′).

Kineograph and TIDE both focus on point-in-time analysis that
continually delivers the up-to-date results F (GVtnow), where tnow is
the current time (which is constantly changing); on the other hand,
Chronos, DeltaGraph, and LLAMA are designed for analysis within a
time range, i.e., computing results over a series of static views within
a time range.

The separation of graph update and graph computation not only
allows existing algorithms designed for static graphs to be used for
analyzing temporal graphs, but also enables the same familiar com-
putation interface in existing static graph processing systems to be
used for temporal graphs. In fact, TIDE employs the message passing-
based vertex-centric programming model like in Pregel [Malewicz et al.,
2010] for analyzing dynamic graphs, while Kineograph and Chronos
use the vertex-centric scatter-gather model (like the GAS model of
GraphLab [Low et al., 2012]) in either a pull mode or a push mode. In
addition, Chronos can also support the edge-centric model proposed in
X-Stream [Roy et al., 2013].

Static Views of Temporal Graphs. The static view of a temporal
graph, however, can be defined differently depending on the applica-
tion requirements. The most straightforward definition is a snapshot.
A snapshot of a temporal graph G at time t, denoted as Gt, is de-
fined as the static graph formed by applying all the graph updates
before t. Chronos, DeltaGraph, LLAMA, and Kineograph all adopt
this snapshot definition of static view for temporal or streaming graph

172 Temporal and Streaming Graph Analytics

analysis. However, the snapshot model has two major drawbacks: 1)
the ever-increasing size of a snapshot, especially for insertion-heavy
graph updates, and 2) the growing reflection of the out-of-date char-
acteristics of the temporal graph, due to the swelling proportion of
the stale data in a snapshot. To address these drawbacks, TIDE pro-
poses a novel probabilistic-edge-decay (PED) model to generate static
views of temporal graphs. More details of this model are provided in
Section 11.3.2.

Incremental Computation. To guarantee the timeliness of analysis,
systems for dynamic graphs need to continually update results as time
advances. The naive way is to recompute on a new static view from
scratch, which is obviously expensive. Given the significant overlap of
graph structures between two successive static views, is it possible to
exploit the results at t to more efficiently generate results at t+1? The
answer is yes, for iterative algorithms, such as Katz centrality [Katz,
1953] and PageRank [Brin and Page, 1998]. More specifically, the in-
cremental computation can use the ending vertex and edge states at
time t as the starting states for the iterative computation at time t+1.
These improved starting states can lead to faster convergence. For some
single-source shortest path algorithms [Roditty and Zwick, 2011], such
incremental computation is also possible if only edge insertions (dele-
tions) are allowed. Unfortunately, some algorithms do not work cor-
rectly under this incremental scheme [Eppstein et al., 1999], so that
recomputation from scratch is required.

Several of the systems that we survey support incremental compu-
tation for dynamic graph analysis, among which Chronos exploits this
technique more heavily (for details, see Section 11.2.1).

11.2 Historical Graph Systems

Broadly speaking the focus of this work is on providing the ability to
analyze and to reason over the entire history of the changes to a graph.
There are many different types of analyses that may be of interest. For
example, an analyst may wish to study the evolution of well-studied
static graph properties such as centrality measures, density, conduc-

11.2. Historical Graph Systems 173

tance, etc., over time. Another approach is through the search and
discovery of temporal patterns, where the events that constitute the
pattern are spread out over time. Comparative analysis, such as juxta-
position of a statistic over time, or perhaps, computing aggregates such
as max or mean over time, possibly gives another style of knowledge
discovery into temporal graphs. Most of all, a primitive notion of just
being able to access past states of the graphs and performing simple
static graph analytics, empowers a data scientist with the capacity to
perform analysis in arbitrary and unconventional patterns.

Supporting such a diverse set of temporal analytics and querying
over large volumes of historical graph data requires addressing several
data management challenges. Specifically, we need techniques for stor-
ing the historical information in a compact manner, while allowing a
user to retrieve graph snapshots as of any time point in the past or the
evolution history of a specific node or a specific neighborhood. Further
the data must be stored and queried in a distributed fashion to handle
the increasing scale of the data. We must also develop an expressive,
high-level, easy-to-use programming framework that will allow users
to specify complex temporal graph analysis tasks, while ensuring that
the specified tasks can be executed efficiently in a data-parallel fashion
across a cluster.

11.2.1 Chronos

Chronos [Han et al., 2014b] targets time-range graph analytics, requir-
ing computation on the sequence of static snapshots of a temporal
graph within a time range. An example is analyzing the change of each
vertex’s PageRank for a given time range. Obviously, the most straight-
forward approach of applying computation on each snapshot separately
is too expensive. Chronos achieves efficiency by exploiting locality of
temporal graphs.

In-Memory Graph Layout. There are two kinds of locality for tem-
poral graphs that can be exploited for efficient data layout: time local-
ity, where states of a vertex (or an edge) in consecutive snapshots are
stored together; and structure locality, where states of neighboring ver-
tices in the same snapshot are laid out close to each other. Due to the

174 Temporal and Streaming Graph Analytics

complex structure of a graph, structure locality is very hard to achieve.
Chronos thus favors time locality for graph layout. The selected snap-
shots for a temporal graph in a time range are stored together in a
vertex data array and an edge array. In the vertex data array, data is
grouped by the vertices. The data of a vertex in consecutive snapshots
are placed together. In the edge array, all the edges are grouped by the
source vertices. Inside each group, every edge stores the target vertex
ID and a bitmap indicating the snapshots that contain the edge.

Scheduling of Graph Computation. To leverage the time-locality
graph layout, Chronos employs the locality-aware batch scheduling
(LABS) of graph computation. More specifically, LABS batches the
processing of a vertex across all the snapshots, as well as the informa-
tion propagation to a neighboring vertex for all the snapshots. In [Han
et al., 2014b], the authors show that with a simple partition-by-vertex
strategy, LABS significantly improves the performance of graph com-
putation in a multi-core parallel setting.

Incremental Computation. Since Chronos targets at time-range
graph analysis, it benefits more from incremental computation. Besides
the incremental approach discussed at the end of Section 11.1, Chronos
proposes two enhancements. First, if the target time-range contains a
sequence of N snapshots S0 to SN−1, it first computes on S0, and then
uses the final states of S0 as the initial states for S1 to SN−1, and
computes the remaining N − 1 snapshots in one batch using LABS.
In the second enhancement, Chronos pre-computes the intersection (or
the union) of the N snapshots, applies graph computation on the in-
tersection (or union) graph first, and then uses the final states of this
computation as the initial states for all the snapshots and computes all
the snapshots in a batch. The second enhancement allows incremen-
tal algorithms designed for edge-insertion only to work with temporal
graphs with edge deletion.

On-Disk Graph Layout. Chronos also leverages the time locality to
store temporal graphs on disk in a compact way. The layout is organized
in snapshot groups. A snapshot group Gt1,t2 contains the state of G in
the time range [t1, t2], by including a checkpoint of the snapshot of G

11.2. Historical Graph Systems 175

at t1 followed by all the updates made till t2. The snapshot group is
physically stored as edge files and vertex files in time-locality fashion.
For example, an edge file begins with an index to each vertex in the
snapshot group, followed by segments of vertex data. The segment of a
vertex, in turn, first contains a set of edges associated with the vertex at
the start time of the snapshot group, followed by all the edge updates to
the vertex. A link structure is further introduced to link edge updates
related to the same vertex/edge, so that the state of a vertex/edge at
a given time t can be efficiently constructed.

11.2.2 DeltaGraph

The original DeltaGraph [Khurana and Deshpande, 2013] system only
supported retrieval of individual snapshots of the historical graph as of
specific time instances. Here we instead discuss the extension of that
work [Khurana and Deshpande, 2016] that allows retrieval of different
temporal graph primitives including neighborhood versions, node histo-
ries, and graph snapshots, and that features a temporal graph analysis
framework built on top of Apache Spark.

Temporal Graph Index. DeltaGraph organizes the historical graph
data in a hierarchical data structure, whose lowest level corresponds to
the snapshots of the network over time, and whose interior nodes corre-
spond to graphs constructed by “combining” the lower level snapshots
in some fashion; the interior nodes are typically not valid snapshots
as of any specific time point. Neither the lowest-level graph snapshots
nor the graphs corresponding to the interior nodes are actually stored
explicitly. Instead, for each edge, a delta, i.e., the difference between
the two graphs corresponding to its endpoints, is computed, and these
deltas are explicitly stored. In addition, the graph corresponding to
the root is explicitly stored. Given those, any specific snapshot can be
constructed by traversing any path from the root to the node corre-
sponding to the snapshot in the index, and by appropriately combin-
ing the information present in the deltas. Use of different “combining”
functions leads to a different point in the performance-storage trade-
off, with intersection being the most natural such function. This index
structure especially shines with multi-snapshot retrieval queries which

176 Temporal and Streaming Graph Analytics

are expected to be common in temporal analysis, as it can share the
computation and retrieval of deltas across the multiple snapshots. The
index structure is also extensible, providing a user the opportunity
to define additional indexes to be created and maintained in order to
efficiently execute specific queries (e.g., subgraph pattern matching,
reachability, etc.) over the historical graph data.

To facilitate distributed storage and parallel retrieval, the deltas
themselves are partitioned horizontally by nodes and vertically by at-
tributes of the nodes, and these partitions are stored in a key-value
store (specifically, Apache Cassandra). This allows efficient retrieval
of not only entire snapshots, but also of individual neighborhoods or
temporal histories of individual neighborhoods.

Temporal Graph Analysis Framework. The second, somewhat or-
thogonal, component of this system is a Apache Spark-based analy-
sis framework to specify temporal graph analysis tasks. This analysis
framework is based on an abstraction of a set of nodes (or subgraphs)
evolving over time. Several operations are supported on top of this ab-
straction, including selection, timeslicing, and temporalmap and reduce
operations. The library is implemented in Python and Java, is built on
top of Apache Spark, and also provides integration with GraphX for
executing graph algorithms supported by that system.

11.2.3 LLAMA

So far, we have only reviewed distributed temporal-graph systems.
There also exist some single-machine systems that support graph an-
alytics on temporal graphs. In this subsection, we introduce a single-
machine system called LLAMA [Macko et al., 2015] for storing and
analyzing evolving graphs. LLAMA aims at applications that receive
a steady stream of graph updates, but need to perform various whole-
graph analysis on consistent views. It is worth mentioning that there
also exist some single-machine temporal-graph systems for specific
types of graph queries. For example, EAGr [Mondal and Deshpande,
2014] is an in-memory system for continuously answering ego-centric
aggregate queries on a temporal graph, where a query computes an
aggregate in the neighborhood of a vertex over a recent time window.

11.2. Historical Graph Systems 177

LLAMA is a single machine system that stores and incrementally
updates an evolving graph in multi-version representation, and it sup-
ports both in-memory and out-of-core graph analysis on graph snap-
shots. LLAMA provides a general-purpose programming model, though
vertex-centric or edge-centric computations can be implemented on top
of it.

In LLAMA, an evolving graph is modeled as a time series of graph
snapshots, where each batch of incremental updates produces a new
graph snapshot. The graph storage is read-optimized, while the update
buffer is write-optimized.

The most important contribution of LLAMA is that, it augments
the compact read-only CSR representation to support mutability and
persistence. Specifically, a graph is represented by a single vertex table,
and multiple edge tables, one per snapshot. The vertex table is orga-
nized as a large multi-versioned array (LAMA) that uses a software
copy-on-write technique for snapshotting, and the record of each ver-
tex v in the vertex table maintains the necessary information to track
v’s adjacency list from the edge tables across snapshots.

We now review the LAMA data structure for representing the vertex
table. Specifically, the array of records is partitioned into equal-sized
data pages, and an indirection array is constructed that contains point-
ers to the data pages. The indirection array fits in L3 cache. To create a
new snapshot, the indirection array is copied, with those references to
out-dated pages replaced by those to the newly modified pages. Thus,
we do not need to copy unmodified pages across snapshots. LAMA
stores 16 consecutive snapshots of the vertex table in each file, so that
disk space can be easily reclaimed from deleted snapshots.

The edge table for a snapshot i is organized as a fixed-length array
that stores adjacency list fragments consecutively, where each adja-
cency list fragment contains the edges of a vertex added in snapshot i.
An adjacency list fragment of vertex v also stores a continuation record,
which points to the next fragment for v, or null if there are no more
edges. To support edge deletion, each edge table may maintain a dele-
tion vector, which is an array that encodes in which snapshot an edge
was deleted.

178 Temporal and Streaming Graph Analytics

Properties on vertices and edges may change and should also sup-
port snapshotting. Like the vertex table, each type of property is also
stored with a LAMA. Different types of properties are stored in sep-
arate LAMAs, so that a job may only load the needed property (or
properties) for graph analysis.

LLAMA buffers incoming updates in a write-optimized lookup ta-
ble, which stores the newly-added and deleted edges for each vertex.
The buffered updates are only written into a new snapshot, and a graph
analytics query only runs on the read-optimized graph storage without
checking the table of buffered updates.

11.3 Streaming Graph Systems

In this section, we review some of the work on streaming graph systems.

11.3.1 Kineograph

Kineograph [Cheng et al., 2012] is a dynamic graph system designed to
continuously deliver analytics results on static snapshots of a dynamic
graph periodically (say every 10 seconds). The system consists of two
layers: a storage layer that continuously applies updates to a dynamic
graph and a computation layer that performs graph computation on a
graph snapshot.

Storage Layer. In the storage layer, a dynamic graph is stored in a
distributed key/value store among a set of graph nodes. Each record in
the key/value store is a vertex with its sorted list of directed weighted
edges and its associated attributes. A separate set of ingest nodes serve
as the front end of incoming graph updates. Each update received by
an ingest node is turned into a transaction consisting of a set of update
operations that may span multiple graph nodes. In addition, each trans-
action received by an ingest node is assigned a continuously increasing
sequence number si. Kineograph employs an epoch commit protocol to
produce snapshots of a dynamic graph. A global progress table is used
to keep track of the process made by each ingest node. When an in-
gest node i receives the acknowledgment from all relevant graph nodes
that update operations for all transactions up to si have been received

11.3. Streaming Graph Systems 179

and stored, it updates its corresponding entry in the progress table to
si. A snapshot is created by periodically taking the vector of sequence
numbers, <s(1), s(2), ..., s(n)>, from the global progress table, where s(i)

represents the entry for ingest node i. This vector of sequence numbers
serves as a logical time stamp to define the end of an epoch, and ulti-
mately a snapshot. The epoch commit protocol guarantees consistent
snapshots without blocking the ingest nodes.

Computation Layer. Once a snapshot is generated, it is passed to
the computation layer for processing. Kineograph uses the vertex-based
GAS computation model, and supports both push and pull models for
inter-vertex communication. In the push model, a vertex sends partial
updates to other vertices after changing its value, whereas in the pull
model, a vertex reads the values of its neighbors before updating its
own value.

11.3.2 TIDE

TIDE [Xie et al., 2015b] is a distributed system specially designed for
analyzing dynamic interaction graphs in which new interactions, rep-
resented by edges, are continually added. One of the key features that
sets TIDE apart from the other temporal or streaming graph systems
is a novel and unique way of generating a static view of a dynamic
graph, which is called the probabilistic edge decay (PED) model.

As discussed in Section 11.1, all other temporal or streaming graph
systems use the snapshot model to generate a static view of a dynamic
graph. A key drawback of the snapshot model is the ever-increasing size
of the snapshots, especially for insertion-heavy graph updates. Graph
analysis is usually much more complex than maintenance of simple ag-
gregates over a stream of data, and the memory usage of virtually all
available graph algorithms increases with increasing graph size. As a
result, computation and memory resources quickly run out as new ver-
tices or edges are added to the temporal graph. Another drawback of
the snapshot model is the recency problem: as time progresses, the pro-
portion of stale data in the snapshot becomes ever larger and analysis
results increasingly reflect out-of-date characteristics of the dynamic
graph.

180 Temporal and Streaming Graph Analytics

One simple approach to reducing the size of the snapshots and
enforcing recency requirements is to use a sliding-window model, where
only recent graph updates that happen within a small fixed-size time
window are considered in the analysis. This simplistic cut-off approach
completely forgets historical interactions and thus loses the continuity
of the analytic results with time. Historical interactions may be less
relevant to today’s decision making, but do not completely lack value,
especially in the aggregate.

To address the drawbacks of both the snapshot and the sliding-
window models, TIDE proposes a probabilistic-edge-decay (PED)
model, which takes one or more samples of the snapshot at a given
time. The probability that a given edge of the snapshot graph is in-
cluded in a sample decays over time according to a user specified decay
function. The PED model allows a controlled trade-off between recency
and continuity. In fact, both the snapshot model and the sliding-window
model are two special cases of the PED model.

The PED Model. When applying a function to a dynamic graph
at time t under the PED model, an edge e with a timestamp t(e) ≤ t

has an independent probability P f (e) of being included in the analysis,
where P f (e) = f

(
t−t(e)

)
for a non-increasing decay function f : <+ 7→

[0, 1]. As time advances, e’s age (t − t(e)) increases and the inclusion
probability P f (e) either decreases or remains unchanged. Note that the
snapshot model and the sliding-window model are two special cases of
the PED model with f ≡ 1 and f(x) = I(x ≤ w) respectively, where
I(X) denotes the indicator function of event X.

In the PED model, an analytic function F applied to G at time t
is actually applied to N (≥ 1) independent and identically dis-
tributed (i.i.d.) sample graphs Gf,1

t , Gf,2
t , . . . , Gf,N

t to yield i.i.d. results
F (Gf,1

t), F (Gf,2
t), . . . , F (Gf,N

t). These results can be used to control the
variability introduced by the sampling process. In the simplest cases,
the results can be averaged together.

TIDE focuses on the important class of exponential decay functions
of the form f(x) = px for some 0 < p < 1, where x denotes the age of an
edge. Exponential decay of edges is able to capture many application
scenarios and has been widely adopted in practice Roth et al. [2010], Yu

11.3. Streaming Graph Systems 181

et al. [2004], Zheng et al. [2011]. Moreover, using the exponential decay
functions, the authors in [Xie et al., 2015b] prove that the PED model
has a bounded memory requirement as new edges are added over time.
This is in contrast to the continually increasing memory requirement
under the snapshot model.

Maintaining Sample Graphs. As time advances from t to t+ 1, in-
stead of naively generating the sample graph Gf,i

t+1 from scratch, TIDE
employs an incremental approach by subsampling the edge set of Gf,i

t

using Bernoulli sampling with probability p and combining the sub-
sample with the edges in the arriving edge batch at (t+1). In addition,
taking advantage of the overlap between different sample graphs at the
same time point, TIDE compactly stores all the N sample graphs to-
gether as a single aggregate graph G̃f

t = (V,
⋃N

i=1E
f,i
t), where the edge

sets of the sample graphs are simply unioned. The attributes for an
edge that appears in multiple sample graphs need only be stored once
in the aggregate graph. For each aggregate edge, TIDE keeps track of
the sample graph(s) to which the edge belongs.

A straightforward implementation of the incremental sample main-
taining process results in an eager incremental updating algorithm,
where a bit array of size N , denoted as β, is attached to each edge e in
the aggregate graph, to indicate the sample graphs to which this edge
belongs. At each batch arrival time, this algorithm scans through the
bit array and, for each bit that equals 1, the algorithm sets it to 0 with
probability 1−p. Once β contains all 0s, the edge can be removed from
the aggregate graph. Albeit simple and straightforward, this algorithm
requires storing a bit array of size N for each edge in the aggregate
graph.

The lazy incremental updating method avoids materializing the bit
arrays based on the observation that the life span of edge e in the ith
sample graph, denoted by Li

e, follows a geometric distribution; the life
span is the time from when the edge arrives until it is permanently
removed from the aggregate graph via a Bernoulli subsampling step.
For an edge e that has just been added to the ith sample graph, we can
directly sample the lifetime Li

e. Then, based on the edge’s time stamp
t(e) and the life span Li

e, we know exactly when it will disappear from

182 Temporal and Streaming Graph Analytics

the ith sample graph. To avoid materializing the life span of each edge
in each sample graph, this algorithm exploits a 64-bit version of the
MurmurHash3 random hash function1 to efficiently and deterministi-
cally regenerate the life spans whenever needed, while maintaining their
mutual statistical independence.

Bulk Analysis of Sample Graphs. When applying analytics algo-
rithms, TIDE takes advantage of the similarities among sample graphs,
and employs a bulk execution model on multiple sample graphs to im-
prove efficiency. It first partitions the N sample graphs into one or more
bulk sets comprising s (≤ N) sample graphs. For each bulk set, TIDE
combines the s sample graphs into a partial aggregate graph, and pro-
cesses the partial aggregate graph as a whole instead of processing the
s sample graphs individually. The state of a vertex or an edge in the
partial aggregate graph is an array of the states of the corresponding
vertex or edge in the s sample graphs.

TIDE allows users to use exactly the same Pregel API for their
graph algorithms as if the computation were applied on a single static
graph. Underneath, the computation at a vertex v in the partial ag-
gregate graph proceeds by looping through the s sample graphs, re-
constructing the set of v’s adjacent edges in each sample graph and
applying the compute(.) function. The resulting updates to other ver-
tices are then grouped by the destination vertex ID and the combined
updates are propagated via message passing or scheduling of updates.
After one bulk set is complete, TIDE proceeds to the next bulk set
until all of the N sample graphs are processed.

11.4 Brief Summary of Other Work

There has been a flurry of work on temporal and stream graph analytics
in recent years. In this chapter, we only covered a representative set of
systems to emphasize some of the key challenges in this space. Here we
briefly review some of the other work in these topics.

Temporal graph analytics is an area of growing interest. Evolution
of shortest paths in dynamic graphs has been studied by Huo et al. [Huo

1MurmurHash: sites.google.com/site/murmurhash

sites.google.com/site/murmurhash

11.4. Brief Summary of Other Work 183

and Tsotras, 2014], and Ren et al. [Ren et al., 2011]. Evolution of com-
munity structures in graphs has been of interest as well [Berger-Wolf
and Saia, 2006, Greene et al., 2010]. Change in page rank with evolving
graphs [Bahmani et al., 2010], and the study of change in centrality of
vertices, path lengths of vertex pairs, etc. [Pan and Saramäki, 2011],
also lie under the larger umbrella of temporal graph analysis. Ahn et
al. [Ahn et al., 2014] provide a taxonomy of analytical tasks over evolv-
ing graphs. Barrat et al. [Barrat et al., 2008], provide a good reference
for studying several dynamic processes modeled over graphs. Kolaczyk’s
book on statistical analysis of graphs [Kolaczyk, 2009], serves as a good
reference for techniques and applications for graph analysis in general.

Regarding systems for storing and querying historical graph data:
G* [Labouseur et al., 2014] stores multiple snapshots compactly by
utilizing commonalities. ImmortalGraph [Miao et al., 2015] is an in-
memory system for processing dynamic graphs, with the objectives of
shared storage and computation for overlapping snapshots. Ghrab et al.
[2013] provide a system for network analytics through labeling graph
components. Gedik and Bordawekar [2014] describe a block-oriented
and cache-enabled system to exploit spatio-temporal locality for solv-
ing temporal neighborhood queries. Koloniari and Pitoura [2013] also
utilize caching to fetch selective portions of temporal graphs they refer
to as partial views.

There are fewer general-purpose systems for real-time analytics over
streaming graph data, but this area has seen increased interest in recent
years. Several works have looked at the problem of continuous detec-
tion of subgraph pattern matching queries over streaming graph data.
Song et al. [2014] study the problem of event pattern matching over
graph streams; they consider queries that have additional timing order
constraints (i.e., happened before relationships in events) along with
the graph structure. Choudhury et al. [2015] investigate a selectivity-
driven approach for continuous pattern detection on streaming graphs.
Their approach is to do continuous pattern mining by decomposing the
main query based on the selectivity of the node attributes, matching
the individual components, and finally performing a multi-way join. In
a recent work, Gao et al. [2014] propose a vertex-centric approach for

184 Temporal and Streaming Graph Analytics

continuous pattern matching for dynamic graphs using Apache Giraph.
Their approach focuses on decomposing the query graph into a DAG
and then using the DAG to define message transition rules for each of
the nodes in the Giraph framework. The DAGs could be seen as explo-
ration plans, to be traversed by Giraph, one edge at a time. While their
approach is a nice fit for Giraph’s programming model, such a frame-
work might not be usable when there exist strict latency requirements.
Their approach is more suitable for tree patterns, and may require a
very large number of steps to detect structures like cliques and bi-
cliques. Another work by Wang and Chen [2009] used an index-based
technique for continuous subgraph pattern matching. For each vertex
in the graph, the index, named node-neighbor tree, encodes all the
simple paths of length l rooted at the vertex. Designing specification
languages for continuous subgraph pattern queries has also received
much attention. Two extensions to SPARQL have also been proposed
in recent work for specifying continuous queries over streaming RDF
data [Barbieri et al., 2010, Anicic et al., 2011].

There is also much work on streaming algorithms for specific prob-
lems like counting triangles, PageRank computation, sketching, etc.
(e.g., counting triangles [Jowhari and Ghodsi, 2005, Becchetti et al.,
2008], PageRank computation [Das Sarma et al., 2008], sketching [Zhao
et al., 2011, Aggarwal et al., 2010], etc.), on theoretical models and
approximation algorithms [Feigenbaum et al., 2004, 2005, Demetrescu
et al., 2009]. Mondal et al. [Mondal and Deshpande, 2014] consider the
problem of executing a large number of ego-centric aggregate queries
over streaming graph data, and present a series of techniques for shar-
ing computation across those. Given the increasing prevalence of graph-
structured data, we expect to see much more work on real-time graph
analytics in the near future.

11.5 Summary

In this chapter, we briefly surveyed the work on enabling temporal
and real-time analytics over time-evolving, dynamic graphs. Although
some patterns are beginning to emerge, the existing works on these

11.5. Summary 185

topics still exhibit significant and fundamental differences, both in the
high-level interfaces and in the low-level data structures and execution
paradigms. For static graph analytics, the benefits of the vertex-centric
programming model, and its applicability to a wide range of graph
analysis tasks, were immediately evident, and this allowed the initial
research to coalesce around that model. There is no such consensus
yet for temporal or real-time graph analytics, although that may pri-
marily be a result of the limited amount of work (with very different
starting points) on this topic to date. As static graph analytics sys-
tems mature, we expect an increasing amount of work on extending
those systems to handle temporal analytics. In terms of programming
models, similar expressivity vs efficiency trade-offs are likely to emerge
as with static graph analytics; in other words, it should be easier to
support a vertex-centric programming model than the more expressive
programming models discussed in previous chapters (in fact, several
of the systems we surveyed in this chapter already support the vertex-
centric programming model). Overall, this remains a rich area for future
work in graph analytics.

12
Conclusions and Future Directions

In this survey, we have reviewed the landscape of big graph analytics
platforms, summarizing a large number of systems that have been de-
veloped over the last decade, introduced their key ideas and features,
and discussed their weaknesses. As we discussed early on, the graph
analytics tasks that are of interest exhibit significant diversity in the
types of computations they need to do, leading to the different systems
adopting a range of different designs that we attempted to categorize
in this survey.

Over the last decade, many lessons have been learnt in developing
big graph systems, and insights have been developed about the various
inherent tradeoffs, especially in the distributed context. For example,
in a distributed graph-parallel platform, the expensive cost of vertex
migration may outweigh the performance improvement resulting from
a balanced computation workload (see Section 3.4); while maintaining
data as raw Java objects may lead to a high memory consumption and
garbage collection cost, and thus it may be important to perform seri-
alization and to support out-of-core execution. Also, some optimization
techniques for Pregel-like systems may not guarantee result exactness
for all Pregel algorithms: GiraphUC only computes approximate results

187

188 Conclusions and Future Directions

for PageRank computation (see Section 4.2.2), while the message online
computing model of MOCgraph (see Section 3.3) and the DAIC model
of Maiter (see Section 4.2.1) are only applicable to Pregel algorithms
where message combining applies. As another example, while the ex-
ecution model of X-Stream avoids edge sorting, each iteration needs
to stream all edges (see Section 5.2.2) and it is thus not suitable for
graph algorithms that run a lot of iterations but only a small portion of
vertices perform computation in each iteration (e.g., BFS). Similarly,
the more complex programming models that we discussed in the latter
parts of the survey may make it easier or more intuitive to write some
tasks, but often exhibit significant performance or environment limita-
tions. Being aware of the pros and cons of existing big graph analytics
platforms, data scientists may select the right platform for their partic-
ular graph problems, while system practitioners may apply the proper
techniques in their systems and avoid ineffective approaches.

In terms of future research in this field, we identify several directions
where we believe more research is required.

Firstly, it is important to understand the expressiveness of a graph-
parallel computation paradigm, such as whether the model supports
pointer-jumping algorithms, and whether the model supports graph
mining problems. For instance, many existing works focus too much on
the GAS model of PowerGraph, or Pregel algorithms where message
combining is applicable. In these algorithms, messages can be directly
aggregated to vertex value without being buffered, and the narrower
algorithm domain naturally generates more opportunities for optimiza-
tion. However, it is also important to explore the opportunity of opti-
mizing graph algorithms that are more general, such as those previously
studied in the PRAM (parallel random-access machine) model, where
vertices may communicate with non-neighbors (e.g., pointer jumping)
but there are still performance guarantees. Similarly, a large class of
graph algorithms cannot be easily and/or efficiently handled using the
vertex-centric frameworks that most works primarily use. This includes
graph mining problems whose outputs can be overlapping subgraphs, as
well as a range of other tasks where the scope of computation goes be-
yond the neighborhood of a vertex (Section 7.1). Although we have re-

189

viewed two very recent subgraph-centric systems, NScale (Section 7.2)
and Arabesque (Section 7.3), these solutions are still not satisfactory.
For example, they need to construct subgraphs first for later processing,
and subgraph construction often involves saving (resp. loading) the par-
tially constructed subgraphs to (resp. from) HDFS. A better solution
could be to handle a portion of subgraphs each time, by pulling remote
vertices without the need of saving subgraphs back to HDFS, while
still fully utilizing the message bandwidth by batched message trans-
mission. Most of the other systems that support more complex graph
programming paradigms are designed for multi-core shared-memory
environments (Section 9.2), and it is not clear how one may support
those in a distributed setting.

Secondly, existing experimental studies on big graph systems [Lu
et al., 2014, Han et al., 2014a, Satish et al., 2014, Guo et al., 2014]
mainly compare the performance of in-memory vertex-centric systems.
We have reviewed a lot of other systems, with different optimization
techniques, programming models (e.g., matrix-centric, DSL), execu-
tion environments (e.g., single-machine or distributed, in-memory or
out-of-core), and hardwares (e.g., SSD, GPU), and therefore, an in-
teresting direction is to conduct experimental comparisons along these
richer aspects, to gain more insight into the performance, strengths,
and features of existing big graph systems, and to guide the choice of
the right graph platforms and hardwares for specific applications and
graph sizes.

Thirdly, despite the plurality of graph systems, majority of them
support processing static graphs only. In reality, however, many graph
applications today need to handle changes to the graphs over time. In
Chapter 11, we surveyed the few emerging systems that support the
analysis of temporal and streaming graphs. Still, many challenges re-
main in this sub-field. For example, most temporal and streaming graph
systems cannot efficiently handle frequent vertex and edge deletions, as
deletions often break the nice properties that enable incremental com-
putation in these systems. Certainly, more work can be done in this
area to support efficient analysis of dynamic graphs.

190 Conclusions and Future Directions

Fourthly, most graph analysis systems assume that the graph is
already generated in the requisite format for ingesting into the system.
In practice, however, usually the graphs must first be extracted from
non-graph data stores using a pre-processing step that generates the
lists of nodes and edges [Xirogiannopoulos et al., 2015]. In many cases,
graph analysis may form one component of a deep analysis pipeline,
that also involves non-graph analytics operations [Dave et al., 2016];
in such cases also, we may need to convert the data among different
representations. The costs of such pre-processing or conversion steps
can be significant, and in some cases, the cost of extracting graphs
may dominate the actual computation that follows (e.g., if edges are
generated by computing similarities between node attributes).

Lastly, with the popularity of new hardwares such as Infiniband,
SSD and GPU, the architecture of existing big graph analytics plat-
forms may need to be changed due to the different speeds of the net-
work, storage and computing resources. Also, as the memory size is
getting larger and larger, the CPU cache misses will become an increas-
ingly more important factor. Although we have reviewed some novel
systems designed to exploit the high potential of new hardware tech-
nologies in Sections 5.2.2, 10.1 and 10.2, we expect that more hardware-
aware designs of big graph systems will emerge in the future.

References

Charu C. Aggarwal, Yao Li, Philip S. Yu, and Ruoming Jin. On dense pattern
mining in graph streams. VLDB, 2010.

Jae-wook Ahn, Catherine Plaisant, and Ben Shneiderman. A task taxonomy
for network evolution analysis. IEEE Transactions on Visualization and
Computer Graphics, 2014.

Sattam Alsubaiee, Yasser Altowim, Hotham Altwaijry, Alexander Behm,
Vinayak R. Borkar, Yingyi Bu, Michael J. Carey, Inci Cetindil, Mad-
husudan Cheelangi, Khurram Faraaz, Eugenia Gabrielova, Raman Grover,
Zachary Heilbron, Young-Seok Kim, Chen Li, Guangqiang Li, Ji Mahn Ok,
Nicola Onose, Pouria Pirzadeh, Vassilis J. Tsotras, Rares Vernica, JianWen,
and Till Westmann. Asterixdb: A scalable, open source BDMS. PVLDB,
7(14):1905–1916, 2014.

Darko Anicic, Paul Fodor, Sebastian Rudolph, and Nenad Stojanovic. EP-
SPARQL: a unified language for event processing and stream reasoning. In
WWW, 2011.

Lars Backstrom and Jure Leskovec. Supervised random walks: predicting and
recommending links in social networks. In WSDM, pages 635–644, 2011.

Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. Fast incremental
and personalized pagerank. VLDB, 2010.

Isaac Balbin and Kotagiri Ramamohanarao. A generalization of the differen-
tial approach to recursive query evaluation. J. Log. Program., 4(3):259–262,
1987.

191

192 References

François Bancilhon and Raghu Ramakrishnan. An amateur’s introduction to
recursive query processing strategies. In SIGMOD, pages 16–52, 1986.

François Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman.
Magic sets and other strange ways to implement logic programs. In VLDB,
pages 1–15, 1986.

Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, and Michael Gross-
niklaus. An execution environment for C-SPARQL queries. In EDBT,
2010.

Alain Barrat, Marc Barthelemy, and Alessandro Vespignani. Dynamical pro-
cesses on complex networks. Cambridge University Press Cambridge, 2008.

Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. Efficient
semi-streaming algorithms for local triangle counting in massive graphs. In
KDD, pages 16–24, 2008.

Catriel Beeri, Shamim A. Naqvi, Raghu Ramakrishnan, Oded Shmueli, and
Shalom Tsur. Sets and negation in a logic database language (LDL1). In
PODS, pages 21–37, 1987.

Tanya Y Berger-Wolf and Jared Saia. A framework for analysis of dynamic
social networks. In SIGKDD, 2006.

Matthias Boehm, Shirish Tatikonda, Berthold Reinwald, Prithviraj Sen,
Yuanyuan Tian, Douglas R. Burdick, and Shivakumar Vaithyanathan. Hy-
brid parallelization strategies for large-scale machine learning in systemml.
PVLDB, 7(7):553–564, 2014.

Matthias Boehm, Michael W. Dusenberry, Deron Eriksson, Alexandre V. Ev-
fimievski, Faraz Makari Manshadi, Niketan Pansare, Berthold Reinwald,
Frederick R. Reiss, Prithviraj Sen, Arvind C. Surve, and Shirish Tatikonda.
Systemml: Declarative machine learning on spark. PVLDB, 9(13):1425 –
1436, 2016.

Vinayak R. Borkar, Michael J. Carey, Raman Grover, Nicola Onose, and Rares
Vernica. Hyracks: A flexible and extensible foundation for data-intensive
computing. In ICDE, 2011.

Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual
web search engine. In Proceedings of the Seventh International World-Wide
Web Conference (WWW), pages 107–117, 1998.

Yingyi Bu. On Software Infrastructure for Scalable Graph Analytics. PhD the-
sis, Computer Science Department, University of California, Irvine, August
2015.

References 193

Yingyi Bu, Vinayak R. Borkar, Jianfeng Jia, Michael J. Carey, and Tyson
Condie. Pregelix: Big(ger) graph analytics on a dataflow engine. PVLDB,
8(2):161–172, 2014.

Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R.
Henry, Robert Bradshaw, and Nathan Weizenbaum. FlumeJava: easy, effi-
cient data-parallel pipelines. In PLDI, pages 363–375, 2010.

K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining
global states of distributed systems. ACM Trans. Comput. Syst., 3(1):63–
75, 1985.

Surajit Chaudhuri. An overview of query optimization in relational systems.
In PODS, pages 34–43, 1998.

Jiefeng Cheng, Qin Liu, Zhenguo Li, Wei Fan, John C. S. Lui, and Cheng He.
VENUS: vertex-centric streamlined graph computation on a single PC. In
ICDE, pages 1131–1142, 2015.

Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming
Wu, Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. Kineograph:
taking the pulse of a fast-changing and connected world. In EuroSys, pages
85–98, 2012.

Brian Chin, Daniel von Dincklage, Vuk Ercegovac, Peter Hawkins, Mark S.
Miller, Franz Josef Och, Christopher Olston, and Fernando Pereira. Yeda-
log: Exploring knowledge at scale. In SNAPL, pages 63–78, 2015.

Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sam-
bavi Muthukrishnan. One trillion edges: Graph processing at facebook-
scale. PVLDB, 8(12):1804–1815, 2015.

Sutanay Choudhury, Lawrence Holder, George Chin, Khushbu Agarwal, and
John Feo. A selectivity based approach to continuous pattern detection in
streaming graphs. EDBT, 2015.

Atish Das Sarma, Sreenivas Gollapudi, and Rina Panigrahy. Estimating pager-
ank on graph streams. In PODS, 2008.

Ankur Dave, Alekh Jindal, Li Erran Li, Reynold Xin, Joseph Gonzalez, and
Matei Zaharia. GraphFrames: An integrated api for mixing graph and
relational queries. In Proceedings of the Fourth International Workshop on
Graph Data Management Experiences and Systems, GRADES ’16, pages
2:1–2:8, 2016.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing
on large clusters. In OSDI, pages 137–150, 2004.

Camil Demetrescu, Irene Finocchi, and Andrea Ribichini. Trading off space
for passes in graph streaming problems. ACM Trans. Algorithms, 2009.

194 References

David J. DeWitt and Jim Gray. Parallel database systems: The future of high
performance database systems. Commun. ACM, 35(6):85–98, 1992.

Jason Eisner and Nathaniel Wesley Filardo. Dyna: Extending datalog for
modern AI. In Datalog, pages 181–220, 2010.

Ahmed Elgohary, Matthias Boehm, Peter J. Haas, Frederick R. Reiss, and
Berthold Reinwald. Compressed linear algebra for large-scale machine
learning. PVLDB, 9(12):960–971, 2016.

E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. John-
son. A survey of rollback-recovery protocols in message-passing systems.
ACM Comput. Surv., 34(3):375–408, September 2002. ISSN 0360-0300.

David Eppstein, Zvi Galil, and Giuseppe F. Italiano. Dynamic Graph Algo-
rithms. CRC Press, 1999.

Shimon Even. Graph Algorithms. Cambridge University Press, New York,
NY, USA, 2nd edition, 2011.

Stephan Ewen, Kostas Tzoumas, Moritz Kaufmann, and Volker Markl. Spin-
ning fast iterative data flows. PVLDB, 5(11):1268–1279, 2012.

Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and
Jian Zhang. On graph problems in a semi-streaming model. In ICALP,
2004.

Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and
Jian Zhang. Graph distances in the streaming model: the value of space.
In SODA, 2005.

Zhisong Fu, Bryan B. Thompson, and Michael Personick. Mapgraph: A high
level API for fast development of high performance graph analytics on gpus.
In GRADES, pages 2:1–2:6, 2014.

Jun Gao, Chang Zhou, Jiashuai Zhou, and Jeffrey Xu Yu. Continuous pattern
detection over billion-edge graph using distributed framework. In ICDE,
pages 556–567, 2014.

B. Gedik and R. Bordawekar. Disk-based management of interaction graphs.
TKDE, 2014.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file
system. In SOSP, pages 29–43, 2003.

Amol Ghoting, Rajasekar Krishnamurthy, Edwin Pednault, Berthold Rein-
wald, Vikas Sindhwani, Shirish Tatikonda, Yuanyuan Tian, and Shivaku-
mar Vaithyanathan. Systemml: Declarative machine learning on mapre-
duce. In ICDE, pages 231–242, 2011.

References 195

A. Ghrab, S. Skhiri, S. Jouili, and E. Zimányi. An analytics-aware conceptual
model for evolving graphs. In Data Warehousing and Knowledge Discovery.
Springer, 2013.

Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos
Guestrin. Powergraph: Distributed graph-parallel computation on natural
graphs. In OSDI, pages 17–30, 2012.

Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw,
Michael J. Franklin, and Ion Stoica. Graphx: Graph processing in a dis-
tributed dataflow framework. In OSDI, pages 599–613, 2014.

Goetz Graefe. Query evaluation techniques for large databases. ACM Comput.
Surv., 25(2):73–170, 1993.

D. Greene, D. Doyle, and P. Cunningham. Tracking the evolution of commu-
nities in dynamic social networks. In ASONAM, 2010.

Yong Guo, Marcin Biczak, Ana Lucia Varbanescu, Alexandru Iosup, Claudio
Martella, and Theodore L. Willke. How well do graph-processing platforms
perform? an empirical performance evaluation and analysis. In IPDPS,
pages 395–404, 2014.

Pankaj Gupta, Ashish Goel, Jimmy Lin, Aneesh Sharma, Dong Wang, and
Reza Zadeh. WTF: the who to follow service at twitter. In WWW, pages
505–514, 2013.

Minyang Han and Khuzaima Daudjee. Giraph unchained: Barrierless
asynchronous parallel execution in pregel-like graph processing systems.
PVLDB, 8(9):950–961, 2015.

Minyang Han, Khuzaima Daudjee, Khaled Ammar, M Tamer Özsu, Xingfang
Wang, and Tianqi Jin. An experimental comparison of Pregel-like graph
processing systems. PVLDB, 7(12):1047–1058, 2014a.

Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou,
Vijayan Prabhakaran, Wenguang Chen, and Enhong Chen. Chronos: a
graph engine for temporal graph analysis. In EuroSys, pages 1:1–1:14,
2014b.

Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon Lee, Min-Soo
Kim, Jinha Kim, and Hwanjo Yu. TurboGraph: a fast parallel graph engine
handling billion-scale graphs in a single PC. In KDD, pages 77–85, 2013.

Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim,
Phillip B. Gibbons, Garth A. Gibson, Gregory R. Ganger, and Eric P. Xing.
More effective distributed ML via a stale synchronous parallel parameter
server. In NIPS, pages 1223–1231, 2013.

196 References

Sungpack Hong, Hassan Chafi, Eric Sedlar, and Kunle Olukotun. Green-marl:
a DSL for easy and efficient graph analysis. In ASPLOS, pages 349–362,
2012.

Sungpack Hong, Semih Salihoglu, Jennifer Widom, and Kunle Olukotun. Sim-
plifying scalable graph processing with a domain-specific language. In CGO,
page 208, 2014.

Botong Huang, Matthias Boehm, Yuanyuan Tian, Berthold Reinwald, Shirish
Tatikonda, and Frederick R. Reiss. Resource elasticity for large-scale ma-
chine learning. In SIGMOD, pages 137–152, 2015.

W. Huo and V. Tsotras. Efficient temporal shortest path queries on evolving
social graphs. In SSDBM, 2014.

Dawei Jiang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Sai Wu. epic:
an extensible and scalable system for processing big data. PVLDB, 7(7):
541–552, 2014.

Alekh Jindal, Samuel Madden, Malú Castellanos, and Meichun Hsu. Graph
analytics using the Vertica relational database. CoRR, abs/1412.5263,
2014a.

Alekh Jindal, Praynaa Rawlani, Eugene Wu, Samuel Madden, Amol Desh-
pande, and Mike Stonebraker. VERTEXICA: your relational friend for
graph analytics! PVLDB, 7(13):1669–1672, 2014b.

Hossein Jowhari and Mohammad Ghodsi. New streaming algorithms for
counting triangles in graphs. In Lusheng Wang, editor, Computing and
Combinatorics, Lecture Notes in Computer Science. Springer Berlin / Hei-
delberg, 2005.

U. Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. PEGASUS:
A peta-scale graph mining system. In ICDM, pages 229–238, 2009.

U. Kang, Hanghang Tong, Jimeng Sun, Ching-Yung Lin, and Christos Falout-
sos. GBASE: a scalable and general graph management system. In
SIGKDD, pages 1091–1099, 2011.

George Karypis and Vipin Kumar. Multilevel k-way partitioning scheme for
irregular graphs. J. Parallel Distrib. Comput., 48(1):96–129, 1998.

Leo Katz. A new status index derived from sociometric analysis. Psychome-
trika, 18(1):39–43, 1953.

Jeremy Kepner and John Gilbert. Graph algorithms in the language of linear
algebra, volume 22. SIAM, 2011.

References 197

Zuhair Khayyat, Karim Awara, Amani Alonazi, Hani Jamjoom, DanWilliams,
and Panos Kalnis. Mizan: a system for dynamic load balancing in large-
scale graph processing. In EuroSys, pages 169–182, 2013.

Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N. Bhuyan. Cusha:
vertex-centric graph processing on gpus. In HPDC, pages 239–252, 2014.

Udayan Khurana and Amol Deshpande. Efficient snapshot retrieval over his-
torical graph data. In ICDE, pages 997–1008, 2013.

Udayan Khurana and Amol Deshpande. Storing and analyzing historical
graph data at scale. In EDBT, pages 65–76, 2016.

Eric D Kolaczyk. Statistical analysis of network data. Springer, 2009.
G. Koloniari and E. Pitoura. Partial view selection for evolving social graphs.

In GRADES workshop, 2013.
M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi,

J. Erickson, M. Grund, D. Hecht, M. Jacobs, I. Joshi, L. Kuff, D. Kumar,
A. Leblang, N. Li, I. Pandis, H. Robinson, D. Rorke, S. Rus, J. Russell,
D. Tsirogiannis, S. Wanderman-Milne, and M. Yoder. Impala: A Modern,
Open-Source SQL Engine for Hadoop. In CIDR, 2015.

Aapo Kyrola, Guy E. Blelloch, and Carlos Guestrin. GraphChi: Large-scale
graph computation on just a PC. In OSDI, pages 31–46, 2012.

A. Labouseur, J. Birnbaum, Jr. Olsen, P., S. Spillane, J. Vijayan, J. Hwang,
and W. Han. The G* graph database: efficiently managing large distributed
dynamic graphs. Distributed and Parallel Databases, 2014.

Longbin Lai, Lu Qin, Xuemin Lin, and Lijun Chang. Scalable subgraph enu-
meration in mapreduce. PVLDB, 8(10):974–985, 2015.

Jure Leskovec and Julian J. Mcauley. Learning to discover social circles in
ego networks. In NIPS, pages 548–556, 2012.

Jimmy Lin and Michael Schatz. Design patterns for efficient graph algorithms
in mapreduce. In MLG, pages 78–85. ACM, 2010. ISBN 978-1-4503-0214-2.

Guimei Liu and Limsoon Wong. Effective pruning techniques for mining
quasi-cliques. In ECML/PKDD Part II, pages 33–49, 2008.

Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos
Guestrin, and Joseph M. Hellerstein. Graphlab: A new framework for par-
allel machine learning. In UAI, pages 340–349, 2010.

Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos
Guestrin, and Joseph M. Hellerstein. Distributed GraphLab: A framework
for machine learning in the cloud. PVLDB, 5(8):716–727, 2012.

198 References

Yi Lu, James Cheng, Da Yan, and Huanhuan Wu. Large-scale distributed
graph computing systems: An experimental evaluation. PVLDB, 8(3):281–
292, 2014.

Peter Macko, Virendra J. Marathe, Daniel W. Margo, and Margo I. Seltzer.
LLAMA: efficient graph analytics using large multiversioned arrays. In
ICDE, pages 363–374, 2015.

Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for
large-scale graph processing. In SIGMOD Conference, pages 135–146, 2010.

Mirjana Mazuran, Edoardo Serra, and Carlo Zaniolo. Extending the power
of datalog recursion. VLDB J., 22(4):471–493, 2013.

Robert Ryan McCune, Tim Weninger, and Greg Madey. Thinking like a
vertex: A survey of vertex-centric frameworks for large-scale distributed
graph processing. ACM Comput. Surv., 48(2):25, 2015.

Frank McSherry, Michael Isard, and Derek G Murray. Scalability! but at what
cost. In HotOS. USENIX Association, 2015.

Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, and Theo Vassilakis. Dremel: Interactive analysis of
web-scale datasets. PVLDB, 3(1):330–339, 2010.

Youshan Miao, Wentao Han, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou,
Vijayan Prabhakaran, Enhong Chen, and Wenguang Chen. Immortal-
graph: A system for storage and analysis of temporal graphs. ACM TOS,
July 2015. URL http://research.microsoft.com/apps/pubs/default.
aspx?id=242176.

Svilen R. Mihaylov, Zachary G. Ives, and Sudipto Guha. REX: Recursive,
delta-based data-centric computation. PVLDB, 5(11):1280–1291, 2012.

Jayanta Mondal and Amol Deshpande. Managing large dynamic graphs effi-
ciently. In SIGMOD, pages 145–156, 2012.

Jayanta Mondal and Amol Deshpande. Eagr: supporting continuous ego-
centric aggregate queries over large dynamic graphs. In SIGMOD, pages
1335–1346, 2014.

Inderpal Singh Mumick, Hamid Pirahesh, and Raghu Ramakrishnan. The
magic of duplicates and aggregates. In VLDB, pages 264–277, 1990.

Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Martín Abadi. Naiad: A timely dataflow system. In SOSP,
pages 439–455, 2013.

http://research.microsoft.com/apps/pubs/default.aspx?id=242176
http://research.microsoft.com/apps/pubs/default.aspx?id=242176

References 199

Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight infras-
tructure for graph analytics. In SOSP, pages 456–471, 2013.

Raj Kumar Pan and Jari Saramäki. Path lengths, correlations, and centrality
in temporal networks. Physical Review E, 2011.

Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, Muham-
mad Amber Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew Lenharth,
Roman Manevich, Mario Méndez-Lojo, Dimitrios Prountzos, and Xin Sui.
The tao of parallelism in algorithms. In PLDI, pages 12–25, 2011.

Abdul Quamar and Amol Deshpande. NScaleSpark: Subgraph-centric graph
analytics on Apache Spark. In Proceedings of the SIGMOD Workshop on
Network Data Analytics (NDA), pages 5:1–5:8, 2016.

Abdul Quamar, Amol Deshpande, and Jimmy Lin. NScale: neighborhood-
centric large-scale graph analytics in the cloud. VLDB Journal, 25(2):
125–150, 2016.

Louise Quick, Paul Wilkinson, and David Hardcastle. Using pregel-like
large scale graph processing frameworks for social network analysis. In
ASONAM, pages 457–463, 2012.

Chenghui Ren, Eric Lo, Ben Kao, Xinjie Zhu, and Reynold Cheng. On query-
ing historical evolving graph sequences. PVLDB, 4(11):726–737, 2011.

Liam Roditty and Uri Zwick. On dynamic shortest paths problems. Algorith-
mica, 61(2):389–401, 2011.

Kenneth A. Ross and Yehoshua Sagiv. Monotonic aggregation in deductive
databases. In PODS, pages 114–126, 1992.

Maayan Roth, Assaf Ben-David, David Deutscher, Guy Flysher, Ilan Horn,
Ari Leichtberg, Naty Leiser, Yossi Matias, and Ron Merom. Suggesting
friends using the implicit social graph. In KDD, pages 233–242, 2010.

Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream: edge-centric
graph processing using streaming partitions. In SOSP, pages 472–488, 2013.

Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy
Zwaenepoel. Chaos: scale-out graph processing from secondary storage.
In SOSP, pages 410–424, 2015.

Semih Salihoglu and Jennifer Widom. GPS: a graph processing system. In
SSDBM, pages 22:1–22:12, 2013.

Semih Salihoglu and Jennifer Widom. Optimizing graph algorithms on pregel-
like systems. PVLDB, 7(7):577–588, 2014.

200 References

Nadathur Satish, Narayanan Sundaram, Md. Mostofa Ali Patwary, Jiwon Seo,
Jongsoo Park, M. Amber Hassaan, Shubho Sengupta, Zhaoming Yin, and
Pradeep Dubey. Navigating the maze of graph analytics frameworks using
massive graph datasets. In SIGMOD, pages 979–990, 2014.

Sebastian Schelter, Stephan Ewen, Kostas Tzoumas, and Volker Markl. “All
roads lead to rome”: optimistic recovery for distributed iterative data pro-
cessing. In CIKM, pages 1919–1928, 2013.

Jiwon Seo, Stephen Guo, and Monica S. Lam. Socialite: Datalog extensions
for efficient social network analysis. In ICDE, pages 278–289, 2013a.

Jiwon Seo, Jongsoo Park, Jaeho Shin, and Monica S. Lam. Distributed so-
cialite: A datalog-based language for large-scale graph analysis. PVLDB, 6
(14):1906–1917, 2013b.

Zechao Shang and Jeffrey Xu Yu. Catch the wind: Graph workload balancing
on cloud. In ICDE, pages 553–564, 2013.

Bin Shao, Haixun Wang, and Yatao Li. Trinity: a distributed graph engine
on a memory cloud. In SIGMOD, pages 505–516, 2013.

Yingxia Shao, Bin Cui, and Lin Ma. PAGE: A partition aware engine for
parallel graph computation. IEEE Trans. Knowl. Data Eng., 27(2):518–
530, 2015.

Yanyan Shen, Gang Chen, H. V. Jagadish, Wei Lu, Beng Chin Ooi, and Bog-
dan Marius Tudor. Fast failure recovery in distributed graph processing
systems. PVLDB, 8(4):437–448, 2014.

Yossi Shiloach and Uzi Vishkin. An O(log n) parallel connectivity algorithm.
J. Algorithms, 3(1):57–67, 1982.

Alexander Shkapsky, Mohan Yang, and Carlo Zaniolo. Optimizing recursive
queries with monotonic aggregates in deals. In ICDE, pages 867–878, 2015.

Julian Shun and Guy E. Blelloch. Ligra: a lightweight graph processing frame-
work for shared memory. In ACM SIGPLAN Notices, pages 135–146, 2013.

David E. Simmen, Karl Schnaitter, Jeff Davis, Yingjie He, Sangeet Lohari-
wala, Ajay Mysore, Vinayak Shenoi, Mingfeng Tan, and Yu Xiao. Large-
scale graph analytics in aster 6: Bringing context to big data discovery.
PVLDB, 7(13):1405–1416, 2014.

Yogesh Simmhan, Alok Gautam Kumbhare, Charith Wickramaarachchi,
Soonil Nagarkar, Santosh Ravi, Cauligi S. Raghavendra, and Viktor K.
Prasanna. Goffish: A sub-graph centric framework for large-scale graph
analytics. In Euro-Par, pages 451–462, 2014.

References 201

Chunyao Song, Tingjian Ge, Cindy Chen, and Jie Wang. Event pattern match-
ing over graph streams. VLDB, 2014.

Isabelle Stanton and Gabriel Kliot. Streaming graph partitioning for large
distributed graphs. In SIGKDD, pages 1222–1230, 2012.

Zhao Sun, Hongzhi Wang, Haixun Wang, Bin Shao, and Jianzhong Li. Ef-
ficient subgraph matching on billion node graphs. PVLDB, 5(9):788–799,
2012.

Narayanan Sundaram, Nadathur Satish, Md. Mostofa Ali Patwary, Subra-
manya Dulloor, Michael J. Anderson, Satya Gautam Vadlamudi, Dipankar
Das, and Pradeep Dubey. Graphmat: High performance graph analytics
made productive. PVLDB, 8(11):1214–1225, 2015.

Siddharth Suri and Sergei Vassilvitskii. Counting triangles and the curse of
the last reducer. In WWW, pages 607–614, 2011.

Aubrey Tatarowicz, Carlo Curino, Evan P. C. Jones, and Sam Madden.
Lookup tables: Fine-grained partitioning for distributed databases. In
ICDE, pages 102–113, 2012.

Carlos H. C. Teixeira, Alexandre J. Fonseca, Marco Serafini, Georgos Siganos,
Mohammed J. Zaki, and Ashraf Aboulnaga. Arabesque: a system for dis-
tributed graph mining. In SOSP, pages 425–440, 2015.

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Ning Zhang, Suresh Anthony, Hao Liu, and Raghotham Murthy. Hive - a
petabyte scale data warehouse using hadoop. In ICDE, pages 996–1005,
2010.

Yuanyuan Tian, Shirish Tatikonda, and Berthold Reinwald. Scalable and
numerically stable descriptive statistics in systemml. In ICDE, pages 1351–
1359, 2012.

Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda,
and John McPherson. From ”think like a vertex” to “think like a graph”.
PVLDB, 7(3):193–204, 2013.

Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal,
Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah,
Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia,
Benjamin Reed, and Eric Baldeschwieler. Apache hadoop yarn: Yet another
resource negotiator. In SOCC, pages 5:1–5:16, 2013.

Changliang Wang and Lei Chen. Continuous subgraph pattern search over
graph streams. In ICDE, 2009.

202 References

Jingjing Wang, Magdalena Balazinska, and Daniel Halperin. Asynchronous
and fault-tolerant recursive datalog evaluation in shared-nothing engines.
PVLDB, 8(12):1542–1553, 2015.

Peng Wang, Kaiyuan Zhang, Rong Chen, Haibo Chen, and Haibing Guan.
Replication-based fault-tolerance for large-scale graph processing. In DSN,
pages 562–573, 2014.

Ming Wu, Fan Yang, Jilong Xue, Wencong Xiao, Youshan Miao, Lan Wei,
Haoxiang Lin, Yafei Dai, and Lidong Zhou. Gram: Scaling graph compu-
tation to the trillions. In SoCC, pages 408–421, 2015.

Jingen Xiang, Cong Guo, and Ashraf Aboulnaga. Scalable maximum clique
computation using mapreduce. In ICDE, pages 74–85, 2013.

Chenning Xie, Rong Chen, Haibing Guan, Binyu Zang, and Haibo Chen.
SYNC or ASYNC: time to fuse for distributed graph-parallel computation.
In PPoPP, pages 194–204, 2015a.

Wenlei Xie, Guozhang Wang, David Bindel, Alan J. Demers, and Johannes
Gehrke. Fast iterative graph computation with block updates. PVLDB, 6
(14):2014–2025, 2013.

Wenlei Xie, Yuanyuan Tian, Yannis Sismanis, Andrey Balmin, and Peter J.
Haas. Dynamic interaction graphs with probabilistic edge decay. In ICDE,
pages 1143–1154, 2015b.

Konstantinos Xirogiannopoulos, Udayan Khurana, and Amol Deshpande.
Graphgen: Exploring interesting graphs in relational data. PVLDB, 8(12),
2015.

Da Yan, James Cheng, Yi Lu, and Wilfred Ng. Blogel: A block-centric frame-
work for distributed computation on real-world graphs. PVLDB, 7(14):
1981–1992, 2014a.

Da Yan, James Cheng, Kai Xing, Yi Lu, Wilfred Ng, and Yingyi Bu. Pregel
algorithms for graph connectivity problems with performance guarantees.
PVLDB, 7(14):1821–1832, 2014b.

Da Yan, James Cheng, Yi Lu, and Wilfred Ng. Effective techniques for mes-
sage reduction and load balancing in distributed graph computation. In
WWW, pages 1307–1317, 2015.

Da Yan, Yingyi Bu, Yuanyuan Tian, Amol Deshpande, and James Cheng.
Big graph analytics systems. In SIGMOD, pages 2241–2243, 2016a.

Da Yan, James Cheng, M. Tamer Özsu, Fan Yang, Yi Lu, John C. S. Lui,
Qizhen Zhang, and Wilfred Ng. A general-purpose query-centric framework
for querying big graphs. PVLDB, 9(7):564–575, 2016b.

References 203

Da Yan, James Cheng, and Fan Yang. Lightweight fault tolerance in large-
scale distributed graph processing. CoRR, abs/1601.06496, 2016c.

Da Yan, Yuzhen Huang, James Cheng, and Huanhuan Wu. Efficient process-
ing of very large graphs in a small cluster. CoRR, abs/1601.05590, 2016d.

Mohan Yang, Alexander Shkapsky, and Carlo Zaniolo. Parallel bottom-up
evaluation of logic programs: Deals on shared-memory multicore machines.
In ICLP, 2015.

Philip S. Yu, Xin Li, and Bing Liu. On the temporal dimension of search. In
WWW Alt, pages 448–449, 2004.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In NSDI, pages 15–28, 2012.

Honglei Zhang, Jenni Raitoharju, Serkan Kiranyaz, and Moncef Gabbouj.
Limited random walk algorithm for big graph data clustering. CoRR,
abs/1606.06450, 2016.

Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang. Maiter: An asyn-
chronous graph processing framework for delta-based accumulative iterative
computation. IEEE Trans. Parallel Distrib. Syst., 25(8):2091–2100, 2014.

Peixiang Zhao, Charu C. Aggarwal, and Min Wang. gSketch: on query esti-
mation in graph streams. VLDB, 2011.

Da Zheng, Disa Mhembere, Randal C. Burns, Joshua T. Vogelstein, Carey E.
Priebe, and Alexander S. Szalay. Flashgraph: Processing billion-node
graphs on an array of commodity ssds. In FAST, pages 45–58, 2015.

Li Zheng, Chao Shen, Liang Tang, Tao Li, Steve Luis, and Shu-Ching Chen.
Applying data mining techniques to address disaster information manage-
ment challenges on mobile devices. In KDD, pages 283–291, 2011.

Jianlong Zhong and Bingsheng He. Medusa: Simplified graph processing on
gpus. IEEE Trans. Parallel Distrib. Syst., 25(6):1543–1552, 2014.

Chang Zhou, Jun Gao, Binbin Sun, and Jeffrey Xu Yu. Mocgraph: Scalable
distributed graph processing using message online computing. PVLDB, 8
(4):377–388, 2014.

Yang Zhou, Ling Liu, Kisung Lee, and Qi Zhang. Graphtwist: Fast iterative
graph computation with two-tier optimizations. PVLDB, 8(11):1262–1273,
2015.

204 References

Xiaowei Zhu, Wentao Han, and Wenguang Chen. Gridgraph: Large-scale
graph processing on a single machine using 2-level hierarchical partitioning.
In USENIX ATC, pages 375–386, 2015.

Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. Gemini: A
computation-centric distributed graph processing system. In OSDI, 2016.

	Introduction
	History of Big Graph Systems Research
	Features of Big Graph Systems
	Organization of the Survey

	Preliminaries
	Data Models and Analytics Tasks
	Distributed Architecture
	Single-Machine Architecture

	I Vertex-Centric Programming Model
	Vertex-Centric Message Passing (Pregel-like) Systems
	The Framework of Pregel
	Algorithm Design in Pregel
	Optimizations in Communication Mechanism
	Load Balancing
	Out-Of-Core Execution
	Fault Tolerance
	Summary

	Vertex-Centric Message-Passing Systems Beyond Pregel
	Block-Centric Computation
	Asynchronous Execution
	Vertex-Centric Query Processing
	Summary

	Vertex-Centric Systems with Shared Memory Abstraction
	Distributed Systems with Shared Memory Abstraction
	Out-of-Core Systems for a Single PC
	Summary

	II Beyond Vertex-Centric Programming Model
	Matrix Algebra-Based Systems
	PEGASUS
	GBASE
	SystemML
	Summary

	Subgraph-Centric Programming Models
	Complex Analysis Tasks
	NScale
	Arabesque
	Summary

	DBMS-Inspired Systems
	The Recursive Query Abstraction
	Dataflow-Based Graph Analytical Systems
	Incremental Graph Processing
	Integrated Analytical Pipelines
	Summary

	III Miscellaneous Issues
	More on Single-Machine Systems
	Vertex-Centric Systems with Matrix Backends
	In-Memory Systems for Multi-Core Execution
	Summary

	Hardware-Accelerated Systems
	Out-of-Core SSD-Based Systems
	Systems for Execution with GPU(s)
	Summary

	Temporal and Streaming Graph Analytics
	Overview
	Historical Graph Systems
	Streaming Graph Systems
	Brief Summary of Other Work
	Summary

	Conclusions and Future Directions
	References

