Hybrid Signcryption with Outsider Security

Alexander W. Dent

Signcryption

- Combines advantages of PKE and signatures:
 - Confidentiality
 - Integrity/Origin authentication
 - Non-repudiation?
- A relatively new type of primitive.
- We haven’t even agreed a security model yet.
Signcryption

- A common parameter generation algorithm.
- A receiver key-pair \((pk_R, sk_R)\) generation algorithm.
- A sender key-pair \((pk_S, sk_S)\) generation algorithm.
 - A generation-encryption algorithm.
 - A verification-decryption algorithm.

Signcryption

- This is a two user model.
- Outsider security
 - Security against all third parties, i.e. anyone who isn't the sender or receiver.
- Insider security
 - Full security, including integrity protection against attacks made by the receiver.
Signcryption: confidentiality

- No third party can distinguish between a signcryption of one message and a signcryption of another message.
- Normal IND criteria, except that we must provide the attacker with encryption and decryption oracles.
- We do not consider forward security (with can be expressed using the Baek et al. model).

Signcryption: integrity

- An outside attack is one in which a third party attempts to forge a signcryption from the sender to the receiver.
- Normal existential unforgeability game, except that the attacker has access to encryption and decryption oracles.
- It has a similar security guarantee to a MAC.
- This is satisfactory for most applications (but gives simpler schemes).
Signcryption: non-repudiation

- The ability for a third party to check that a given signcryption is a proper signcryption of a given message.
- Not required for most applications.
- Schemes which are outsider secure can never provide non-repudiation.
- Most signcryption schemes “cheat” and use NIZK proofs.

Hybrid encryption

- Involves the use of black-box symmetric algorithms with certain security properties.
- Very popular trick:
 - ECIES/DHAES
 - Fujisaki-Okamoto and related transforms.
- Most use the same “trick” of encrypting a random symmetric key with the asymmetric algorithm.
Hybrid encryption

- **KEM**
 - Provides the confidentiality service (against active attackers).
 - Controls the security service by generating random symmetric keys.

Hybrid signcryption
Hybrid signcryption

Hybrid signcryption
Hybrid signcryption: confidentiality

- **IND security as a KEM**: Given an encapsulation, it should be impossible to tell the difference between the real key and a completely random one.

- **IND security as a DEM**: It should be able to resist active attacks against its confidentiality (when used with a random key).

Hybrid signcryption: integrity

- **INT security for a DEM**: It should be impossible to forge a ciphertext that decrypts to give a message (using a random key).

- **LoR security for a KEM**: It must be impossible to distinguish the real KEM from an “ideal” version, in which every valid encapsulation is associated with a completely randomly generated key.

All practical (encryption) DEMs are INT and IND secure!
Hybrid signcryption

- Very easy to “bolt on” outsider secure hybrid signcryption to hybrid encryption schemes.
- The paper contains a practical signcryption KEM which we call ECISS-KEM:
 - Encryption: One exponentiation (and one pre-computed group exponentiation).
 - Decryption: One group multiplication (and one pre-computed group exponentiation).

Hybrid signcryption

- The attacker finds a valid signcryption \((C_1, C_2)\).
- Recovers the key \(K\) associated with \(C_1\).
- Computes \(C_2' = \text{DEM}_K(m')\).
- \((C_1, C_2')\) is a forgery.
Hybrid signcryption

There must be a binding between the message m, the encapsulation C_1 and the symmetric key K.

Key agreement using KEMs

- KEMs and key agreement mechanisms have a lot in common...
- ...but KEMs can only be thought of as the most basic method of agreeing a key.
- No authentication or freshness guarantees.
- Signcryption KEMs go part of the way to solving this problem by allowing the users to authenticate each other.
Key agreement using KEMs

- Alice uses a signcryption KEM to compute a \((K,C)\) pair.
- Use the key \(K\) to compute the MAC of a timestamp \(t\).
- Sends \((C,t,MAC)\) to Bob.
- Bob checks the timestamp \(t\) is current.
- Recovers the key \(K\) using the signcryption KEM.
- Checks the authenticity of the MAC on the timestamp.

Vulnerable to a known-key attack!

Insider security

- A paper appeared in ACISP 2005 describing a construction paradigm for a hybrid signcryption scheme with insider security.
- A paper is currently being prepared which improves on this result using tag-KEMs.
- This also allows us to build key agreement mechanisms.
Open problems

- Can we use this framework to develop new schemes?

- No satisfactory model for multi-user security.
- Multi-user model should allow the attacker to initiate users, replace public keys?, corrupt users, make test queries, force users to encrypt messages, force users to decrypt signcryption.
- Similar to Certificateless PKE security model.
- Should be easy for outsider security!
Conclusions

- Signcryption schemes are easy to build if we recognise that outsider security is all that is required for a lot of applications.
- It’s easy to build efficient, provably secure hybrid signcryption schemes.
- However, more work can be done in this particularly under-researched area.