Encryption and signature schemes are fundamental cryptographic tools for providing privacy and authenticity, respectively, in the public-key setting. Traditionally, these two important building-blocks of public-key cryptography have been considered as distinct entities that may be composed in various ways to ensure simultaneous message privacy and authentication. However, in the last few years a new, separate primitive — called signcryption [14] — has emerged to model a process simultaneously achieving privacy and authenticity. This emergence was caused by many related reasons. The obvious one is the fact that given that both privacy and authenticity are simultaneously needed in so many applications, it makes a lot of sense to invest special effort into designing a tailored, more efficient solution than a mere composition of signature and encryption. Another reason is that viewing authenticated encryption as a separate primitive may conceptually simplify the design of complex protocols which require both privacy and authenticity, as signcryption could now be viewed as an “indivisible” atomic operation. Perhaps most importantly, it was noticed by [3, 2] (following some previous work in the symmetric-key setting [4, 10]) that proper modeling of signcryption is not so obvious. For example, a straightforward composition of signature and encryption might not always work; at least, unless some special care is applied [2]. The main reason for such difficulties is the fact that signcryption is a complex multi-user primitive, which opens a possibility for some subtle attacks (discussed below), not present in the settings of stand-alone signature and encryption.

Defining Signcryption. Syntactically, a signcryption scheme consists of the three efficient algorithms (Gen, SC, DSC). The key generation algorithm Gen(1^\lambda) generates the key-pair (SDK_U, VEK_U) for user U, where \lambda is the security parameter, SDK_U is the signing/decryption key that is kept private, and VEK_U is the verification/encryption key that is made public. The randomized signcryption algorithm SC for user U implicitly takes as input the user’s secret key SDK_U, and explicitly takes as input the message m and the identity of the recipient ID_R, in order to compute and output the signcryptext on II. For simplicity, we consider this identity ID_R to be a public key VEK_R of the recipient R, although ID’s could generally include more convoluted information (as long as users can easily obtain VEK from ID). Thus, we write SC_{SDK_U}(m, ID_R) as SC_{SDK_U}(m, VEK_R), or simply SC_U(m, VEK_R).
Similarly, user U’s deterministic de-signcryption algorithm DSC implicitly takes the user’s private SDK_U, and explicitly takes as input the signcryption text Π and the senders’ identity ID_S. Again, we assume $ID_S = VEK_S$, and write $DSC_{SDK_U}(\Pi, VEK_S)$, or simply $DSC_U(\Pi, VEK_S)$. The algorithm outputs some message \tilde{m}, or \perp if the signcryption does not verify or decrypt successfully. Correctness property ensures that for any users S, R, and message m, we have $DSC_R(SC_S(m, VEK_R), VEK_S) = m$.

We also remark that it is often useful to add another optional parameter to both SC and DSC algorithms: a label L (also termed associated data [11]). This label can be viewed as a public identifier which is “inseparably bound” to the message m inside the signcryption. Intuitively, de-signcrypting the signcryption Π of m with the wrong label should be impossible, as well as changing Π into a valid signcryption $\tilde{\Pi}$ of the same m under a different label.

Security of Signcryption. Security of signcryption consists of two distinct components: one ensuring privacy, and the other — authenticity. On a high level, privacy is defined somewhat analogously to the privacy of an ordinary encryption, while authenticity — to that of an ordinary digital signature. For example, one can talk about indistinguishability of signcryption texts under chosen ciphertext attack, or existential unforgeability of signcryption texts under chosen message attack, among others. For concreteness, we concentrate on the above two forms of security too, since they are the strongest.

However, several new issues come up due to the fact that signcryption / de-signcryption take as an extra argument the identity of the sender / recipient. Below, we semi-formally introduce some of those issues (see [2] for in-depth technical discussion, as well as formal definitions of signcryption).

- **Simultaneous Attacks.** Since the user U utilizes its secret key SDK_U to both send and receive the data, it is reasonable to allow the adversary A oracle access to both the signcryption and the de-signcryption oracle for user U, irrespective of whether A is attacking privacy or authenticity of U.

- **Two- vs. Multi-user Setting.** In the simplistic two-user setting, where there are only two users S and R in the network, the explicit identities become redundant. This considerably simplifies the design of secure signcryption schemes (see below), while providing a very useful intermediate step towards general, multi-user constructions (which are often obtained by adding a simple twist to the basic two-user construction). Intuitively, the security in the two-user model already ensures that there are no weaknesses in the way the message is encapsulated inside the signcryption, but does not ensure that the message is bound to the identities of the sender and/or recipient. In particular, it might still allow the adversary a large class of so called identity fraud attacks, where the adversary can “mess up” correct user identities without affecting the hidden message.

- **Public Non-Repudiation?** In a regular signature scheme, anybody can verify the validity of the signature, and unforgeability of the signature ensures that a signer S
indeed certified the message. Thus, we say that a signcryption scheme provides non-repudiation if the recipient can extract a regular (publicly verifiable) digital signature from the corresponding signcryption. In general, however, it is a-priori only clear that the recipient R is sure that S sent the message. Indeed, without R’s secret key SDK_R others might not be able to verify the authenticity of the message, and it might not be possible for R to extract a regular signature of m. Thus, signcryption does not necessarily provide non-repudiation. In fact, for some applications we might explicitly want not to have non-repudiation. For example, S might be willing to send some confidential information to R only under the condition that R cannot convince others of this fact. To summarize, non-repudiation is an optional feature which some schemes support, others don’t, and others explicitly avoid!

- **Insider vs. Outsider Security.** In fact, even with R’s secret key SDK_R it might be unclear to an observer whether S indeed sent the message m to R, as opposed to R “making it up” with the help of SDK_R. This forms the main basis for distinction between insider- and outsider-secure signcryption. Intuitively, in an outsider-secure scheme the adversary must compromise communication between two honest users (whose keys he does not know). Insider-secure signcryption protects a given user U even if his partner might be malicious. For example, without U’s key, one cannot forge signcryption from U to any other user R, even with R’s secret key. Similarly, if honest S sent $\Pi = SC_S(m, VEK_U)$ to U and later exposed his key SDK_S to the adversary, the latter still cannot decrypt Π. Clearly, insider-security is stronger than outsider-security, but might not be needed in a given application. In fact, for applications supporting message repudiation, one typically does not want to have insider-security.

Supporting Long Inputs. Sometimes, it is easier to design natural signcryption schemes supporting short inputs. Below we give a general method how to create signcryption $SC’$ supporting arbitrarily long inputs from SC which only supports fixed-length (and much shorter) inputs. The method was suggested by [8] and uses a new primitive called **concealment**. A concealment is a publicly known randomized transformation, which, on input m, outputs a *hider* h and a *binder* b. Together, h and b allow one to recover m, but separately, (1) the hider h reveals “no information” about m, while (2) the binder b can be “meaningfully opened” by at most one hider h. Further, we require $|b| \ll |m|$ (otherwise, one could trivially set $b = m$, $h = \emptyset$). Now, we let $SC’(m) = \langle SC(b), h \rangle$ (and $DSC’$ is similar). It was shown in [8] that the above method yields a secure signcryption $SC’$. Further, a simple construction of concealment was given: set $h = E_\tau(m)$, $b = \langle \tau, H(h) \rangle$, where E is a symmetric-key one-time secure encryption (with short key τ) and H is a collision-resistant hash function (with short output).

Current Signcryption Schemes

We now survey several signcryption schemes achieving various levels of provable security.
Generic Composition Schemes. The two natural composition paradigms are “encrypt-then-sign” ($\text{E}t\text{S}$) and “sign-then-encrypt” (StE). More specifically, assume Enc is a semantically secure encryption against chosen ciphertext attack, and Sig is an existentially unforgeable signature (with message recovery) against chosen message attack. Each user U has a key for Sig and Enc. Then the “basic” $\text{E}t\text{S}$ from S to R outputs $\text{Sig}_S(\text{Enc}_R(m))$, while $\text{StE} = \text{Enc}_R(\text{Sig}_S(m))$. Additionally, [2] introduced a novel generic composition paradigm for parallel signcryption. Namely, assume we have a secure commitment scheme, which on input m, outputs a commitment c and a decommitment d (where c is both hiding and binding). Then “commit-then-encrypt-and-sign” (CtE&S) outputs a pair $(\text{Enc}_R(d), \text{Sig}_S(c))$. Intuitively, the scheme is private as public c reveals no information about m (while d is encrypted), and authentic since c binds one to m. The advantage of the above scheme over the sequential $\text{E}t\text{S}$ and StE variants is the fact that expensive signature and encryption operations are performed in parallel. In fact, by using trapdoor commitments in place of regular commitments, most computation in CtE&S — including the expensive computation of both public-key signature and encryption — can be done off-line, even before the message m is known!

It was shown by [2] that all three basic composition paradigms yield an insider-secure signcryption in the two-user model. Moreover, $\text{E}t\text{S}$ is outsider-secure even if Enc is secure only against the chosen plaintext attack, and StE is outsider-secure even if Sig is only secure against no message attack. Clearly, all three paradigms are insecure in the multi-user model, since no effort is made to bind the message m to the identities of the sender / recipient. For example, intercepting a signciphertext of the form $\text{Sig}_S(e)$ from S to R, an adversary \mathcal{A} can produce $\text{Sig}_A(e)$, which is a valid signciphertext from \mathcal{A} to R of the same message m, even though m is unknown to \mathcal{A}. [2] suggest a simple solution: when encrypting, always append the identity of the sender to the message, and when signing — of the recipient. For example, a multi-user secure variant of $\text{E}t\text{S}$ is $\text{Sig}_S(\text{Enc}_R(m, \text{VEK}_S), \text{VEK}_R)$. Notice, if Enc and/or Sig support labels, these identities can be part of the label rather than the message.

Finally, we remark that StE and CtE&S always support non-repudiation, while StE might or might not.

Schemes from Trapdoor Permutations. The generic schemes above validate the fact that signcryption can be built from ordinary signature and encryption, but will be inefficient unless the latter are efficiently implemented. In practice, efficient signature and encryption schemes, such as OAEP [5], OAEP+ [13], PSS-R [6], are built from trapdoor permutations, such as RSA, and are analyzed in the random oracle model. Even with these efficient implementations, however, the generic schemes will have several drawbacks. For example, users have to store two independent keys, the message bandwidth is suboptimal and the “exact security” of the scheme is not as good as one might expect. Thus, given that practical schemes are anyway built from trapdoor permutations, it is natural to have highly optimized direct signcryption constructions from trapdoor permutations (in the random oracle model).

This is the approach of [9]. In their model, each user U independently picks a trapdoor permutation f_U (together with its trapdoor, denoted f_U^{-1}) and publishes f_U as its public key. (Notice, only a single key is chosen, unlike what is needed for the generic schemes.)
Then, [9] considers the following three paradigms termed \textbf{P}-Pad, \textbf{S}-Pad and \textbf{X}-Pad. Each paradigm proceeds by constructing a padding scheme produces $\pi(m) = w \parallel s$, and then these composing it with the corresponding permutations of the sender and the recipient as shown in Figure 1. Table 1 also shows how the corresponding approaches could be used for plain signature and encryption as well.

The convenience of each padding scheme depends on the application for which it is used. As was shown in [9], \textbf{P}-Pad signcryption provides parallel application of “signing” f^{-1}_S and “encrypting” f_R, which can result in efficiency improvements on parallel machines. However, the minimum ciphertext length is twice as large as compared to \textbf{S}-Pad, yet the exact security offered by \textbf{S}-Pad is not as tight as that of \textbf{P}-Pad. Finally, \textbf{X}-Pad regains the optimal exact security of \textbf{P}-Pad, while maintaining ciphertext length nearly equal to the length of the trapdoor permutation (by achieving quite short s).

It remains to describe secure padding schemes π for \textbf{P}-Pad, \textbf{S}-Pad and \textbf{X}-Pad. All constructions offered by [9] are quite similar. One starts with any extractable commitment (c, d), where c is the commitment and d is the decommitment. Such schemes are very easy to construct in the random oracle model. For example, if $|m| = n$, for any $0 \leq a \leq n$, the following scheme is an extractable commitment: split $m = m_1 \parallel m_2$, where $|m_1| = a$, $|m_2| = n - a$, and set

$$c = G(r) \oplus m_1 \parallel H(m_2 \parallel r)$$
$$d = m_2 \parallel r$$

where G and H are random oracles (with appropriate input/output lengths) and r is a random salt.

<table>
<thead>
<tr>
<th>Padding Type</th>
<th>Encryption</th>
<th>Signature</th>
<th>Signcryption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel</td>
<td>$f_R(w) \parallel s$</td>
<td>$w \parallel f^{-1}_S(s)$</td>
<td>$f_R(w) \parallel f^{-1}_S(s)$</td>
</tr>
<tr>
<td>Sequential</td>
<td>$f_R(w) \parallel s$</td>
<td>$f^{-1}_S(w) \parallel s$</td>
<td>$f_R(f^{-1}_S(w) \parallel s)$</td>
</tr>
<tr>
<td>eXtended sequential</td>
<td>$f_R(w) \parallel s$</td>
<td>$f^{-1}_S(w) \parallel s$</td>
<td>$f_R(f^{-1}_S(w) \parallel s)$</td>
</tr>
</tbody>
</table>

Table 1: Signcryption Schemes Based on Trapdoor Permutations.
To get a secure padding scheme for the P-Pad paradigm, one should then apply the Feistel Transform to the resulting pair \((d, c)\), with yet another random oracle \(F\) as the round function. Namely, set \(w = c, s = F(c) \oplus d\). For example, using the extractable commitment above with \(a = n\), we get nothing else but the OAEP padding, while \(a = 0\) would give the PSS-R padding! For arbitrary \(a\), [9] call the resulting hybrid between PSS-R and OAEP Probabilistic Signature-Encryption Padding (PSEP).

To get the padding \(\pi\) sufficient for either S-Pad or P-Pad, one only needs to perform one more Feistel round to the construction above: \(w' = s, s' = F'(s) \oplus w\), and set \(\pi(m) = w'\|s'\). Coincidentally, the resulting \(\pi\) also gives a very general construction of the so called universal padding schemes [7].

As described, the Feistel-based padding schemes above would only give the insider security in the two-user setting. To get multi-user security, all one needs to do is to prepend the pair \((\text{VEK}_S, \text{VEK}_R)\) to all the inputs to the random oracles \(F\) and \(F'\): namely, create effectively independent \(F\) and \(F'\) for every sender-recipient pairing! More generally, the padding above also provide label support, if one sticks the label \(L\) as part of the inputs to \(F\) and \(F'\).

Finally, we remark that P-Pad, S-Pad and X-Pad always support non-repudiation.

Schemes based on Gap Diffie-Hellman. Finally, we present two very specific, but efficient schemes based on the so called Gap Diffie-Hellman assumption. Given a cyclic group \(G\) of prime order \(q\), and a generator \(g\) of \(G\), the assumption states that the computational Diffie-Hellman problem (CDH) is computationally hard, even if one is given oracle access to the decisional Diffie-Hellman (DDH) oracle. Specifically, it is hard to compute \(g^{ab}\) from \(g^a\) and \(g^b\), even if one can test whether a tuple \(\langle g^a, g^b, g^z \rangle\) satisfies \(z = xy \mod q\).

In both schemes, the user \(U\) chooses a random \(x_U \in \mathbb{Z}_q\) as its secret key \(\text{VEK}_U\), and sets its public key \(\text{SDK}_U = y_U = g^{x_U}\). The scheme of [1] is based on the following non-interactive key agreement between users \(S\) and \(R\). Namely, both \(S\) and \(R\) can compute the quantity \(Q_{SR} = g^{x_Rx_S} = y_S^x = y_R^x\). They then set the key \(K_{SR} = H(Q_{SR})\), where \(H\) is a random oracle, and then always use \(K_{SR}\) to perform symmetric-key authenticated encryption of the message \(m\). For the latter, they can use any secure symmetric-key scheme, like “encrypt-then-mac” [4] or OCB [12]. The resulting signcryption scheme can be shown to be outsider-secure for both privacy and authenticity, in the multi-user setting. Clearly, it is not insider-secure, since both \(S\) and \(R\) know the key \(K_{SR}\). In fact, the scheme is perfectly repudiable, since all the signcrypted texts from \(S\) could have been easily faked by \(R\).

To get insider-security for authenticity under the same assumption, one can instead consider the following scheme, originally due to [14], but formally analyzed by [3]. Below \(G\) and \(H\) are random oracles with appropriate domains, and \(E\) is a one-time secure symmetric-key encryption (e.g., one-time pad will do). To signcrypt a message from \(S\) to \(R\), \(S\) chooses a random \(x \in \mathbb{Z}_q\), computes \(Q = y_R^x\), makes a symmetric key \(K = H(Q)\), sets \(c \leftarrow E_K(m)\), computes the “validation tag” \(r = G(m, y_A, y_B; Q)\) and finally \(t = x(r + x_S)^{-1} \mod q\). Then \(S\) outputs \(\langle c, r, t \rangle\) as the signcryption of \(m\). To de-signcrypt \(\langle c, r, t \rangle\), \(R\) first recovers \(g^x\) via \(w = (y_S g^t)^t\), then recovers the Diffie-Hellman key \(Q = w^{x_R}\), the encryption key \(K = H(Q)\) and the message \(m = D_K(c)\).

Before outputting \(m\), however, it double checks if \(r = G(m, y_A, y_B, Q)\). While this scheme is insider-secure for authenticity, it is still not
insider-secure for privacy.

We also mention that the scheme supports public non-repudiation. All that R has to do is to reveal Q, m and a proof that $Q = w^x R$ (which can be done non-interactively using the Fiat-Shamir heuristics, applied to the three-move proof that $\langle g, y_R, w, Q \rangle$ form a DDH-tuple).

References

