Proving Identity in Three Moves

Yuliang ZHENG*, Nonmember, Tsutomu MATSUMOTO1 and Hideki IMAI1, Members

SUMMARY A challenge-and-response type identification protocol consists of three moves of messages between a prover and a verifier. Move-1—The prover claims to the verifier that his/her identity is ID. Move-2—The verifier challenges the prover with a question related to the ID. Move-3—The prover responds with the answer of the question. The verifier accepts the prover iff the answer is correct. The main contribution of this paper is to show that the folklore can be made provably secure under the sole assumption of the existence of one-way functions.

1. Introduction

This paper treats the identification problem. The problem can be described in terms of the goals of two sides, provers and verifiers. The goal of a prover is to convince a verifier that his/her identity is indeed the identity he/she claims in such a way that the prover can't be impersonated by the verifier even after he/she proves polynomially many times to the verifier. The goal of a verifier is to accept a prover if and only if the identity of the prover is indeed the identity claimed by him/her. They achieve their goals by exchanging messages back and forth according to a pre-determined identification protocol. Clearly, provers' identities should be authenticated by a third party trusted both by provers and by verifiers, and the authentication by the third party should be checkable by verifiers.

In Ref. (4), Fiat and Shamir constructed an elegant identification protocol based on the (supposed) intractability of factorization. The protocol is secure as it is of zero-knowledge. Another property of the protocol is that a verifier behaves in a passive way: all messages he/she sends to a prover are just outcomes of coin flips, i.e., random strings. Fiat and Shamir used that property to transform the protocol into a secure digital signature scheme, simply by substituting a verifier with a cryptographically secure pseudo-random function \(f \). Many later proposed identification protocols and signature schemes, such as those of Refs. (1), (6), (8), (10), (11) follow this line.

Manuscript received February 12, 1991.

* The authors are with the Faculty of Engineering, Yokohama National University, Yokohama-shi, 240 Japan.
† Presently, he is with the Department of Computer Science, University College, the University of New South Wales, Canberra, ACT, 2600, Australia.

Major problems with thus obtained identification protocols include:
(1) They are based on specific one-way functions. In particular, almost all of them are dangerously based on either of the following two supposed intractable problems: factorization and discrete logarithm. (The protocol in Ref. (11) is based on an NP-complete algebraic problem—the permuted kernel problem.) It seems that there is no hope of laying their bases upon an arbitrary one-way function, as they use in an essential way the trap-doors or specific (algebraic) properties of the underlying one-way functions.
(2) They are usually very complex, requiring many rounds of message exchanges between a prover and a verifier. (See the serial versions of Ref. (1), (2), (4), (6), (8)).

In this paper, we take the "reverse" of the above approach to obtain a simple identification protocol. The following is a bird's-eye view of our approach: Given an arbitrary one-way function, we first construct from the function a digital signature scheme that is secure against existential forgery under adaptive chosen message attack, then we adapt the signature scheme into a challenge-and-response type identification protocol that requires only three moves of messages between a prover and a verifier. As we have already mentioned in SUMMARY, the main idea behind the challenge-and-response type identification protocol itself is a folklore in cryptologic research society. The main contribution of this paper is to show a way of transforming the folklore into a provably secure protocol, with the weakest assumption of the existence of any one-way function.

The organization of the remaining part of the paper is as follows. In Sect. 2, we define basic concepts used later. In Sect. 3, we describe our identification protocol in detail. In Sect. 4 we prove that the protocol is secure against conspired dynamic attack. Finally, we give some remarks in Sect. 5.

2. Basic Definitions

This section gives formal definitions for secure identification protocols and digital signature schemes. We formulate the identification problem in the following way. Denote by \(\mathcal{L} \) the set of positive inte-
gers. Let \mathcal{A}, \mathcal{B} be a security parameter which determines the overall security of an identification protocol, the number of users, etc. Consider an organization dynamics of users U_1, U_2, \ldots, U_n, adding into its new bad users or removing from its existing bad users. This implies that the adversary is allowed to attack the trusted center too. Call such a type of attack composed dynamic attack. It seems that among all conceivable types of attack against an identification protocol, composed dynamic attack is the strongest. Denote by $\Pr[A, Q|n]$ the probability that the adversary A succeeds in convincing a good user U_i that A's identity is ID_i (i.e., in impersonating U_i), after participating as a verifier in $Q(n)$ executions of the identification protocol with U_i or any other users as provers. So $Pr[A, Q|n]$ is computed over the same space of coin flips that could have been made by the center C, the adversary A, the users U_i and U_k, and all other users. Informally, the identification protocol for the organization is secure against composed dynamic attack if for any impersonating adversary A, the probability $Pr[A, Q|n]$ is negligible. More precisely, \textit{Definition 1: An identification protocol is secure against composed dynamic attack} iff for any impersonating adversary A, for any polynomials Q_1 and Q_2, and for all sufficiently large n, $Pr[A, Q|n] < 1/2^{Q_1(n)}$.

Our protocol depends heavily on digital signature schemes. Here we introduce the notion of digital signature schemes secure against existential forgery under adaptive chosen message attack\cite{10}. A signature scheme consists of the following six components:

1. A security parameter n, which determines the overall security of the scheme, the lengths of messages and signatures.
2. A set \mathcal{M} of messages to which the signature algorithm may be applied.
3. A polynomial B_0 which bounds the total number of signatures that can be produced with an instance of the signature scheme.
4. A probabilistic polynomial time key generation algorithm (G, \mathcal{M}), which on input λ, chooses a pair (PK, SK) of matching public and secret keys from a key space X_{λ}. (In this paper, we assume that the size of X_{λ} is exponential in λ, and the output of G is randomly and uniformly distributed. The construction of Refs.\cite{7,9} satisfies the two conditions).
5. A probabilistic polynomial time signing algorithm S_{λ}, which on input PK, SK and $m \in \mathcal{M}$, outputs the signature s of m with respect to PK.
6. A polynomial time verifying algorithm V_{λ}, which given s, m and PK, tests whether or not s is a valid signature of m with respect to PK.

An adaptive adversary is a probabilistic polynomial time algorithm M that is allowed to adaptively choose messages and be supplied with signatures. Let Q be a polynomial, and denote by $Pr[M, Q|n]$ the probability that, after $Q(n)$ adaptive attacks, the adversary M is able to produce a valid signature for a message that we did not sign for him/her. $Pr[M, Q|n]$ is computed over the sample space of coin flips that the key generation algorithm G and the adversary M could have made.

Definition 2: A digital signature scheme is secure against existential forgery under adaptive chosen message attack iff for any adversary M, for any polynomials Q_1 and Q_2, and for all sufficiently large n, $Pr[M, Q|n] < 1/2^{Q_1(n)}$.

From now on, all secure digital signature schemes we always mean those schemes that are secure against existential forgery under adaptive chosen message attack. Notice that secure digital signature schemes can be obtained under the sole assumption that one-way functions exist\cite{10}.

3. A 3-Move Identification Protocol

The whole identification procedure is divided into three stages:

1. The initiation stage,
2. The registration stage, and
3. The identification stage.

The first stage will be completed by the trusted center only, and the second by the center too, but with the cooperation of a user. Both the first and the second stages are done once for all.
3.1 The Initiation Stage

Assume that \(f \) is a one-way function. The trusted center constructs from \(f \) a secure digital signature scheme, by using any known construction method, such as that of Refs. (7), (9). Let \(G \), \(SA \) and \(VA \) be the key generation, the signing and the verifying algorithms, respectively. Then the center runs with \(1^n \) as input the algorithm \(G \) to obtain a matching pair \((PK, SK)\) for himself. Finally, the center publishes \(SA \), \(VA \) and \(PK \) while keeping \(SK \) in secret.

3.2 The Registration Stage

When a user \(U_i \) wants to use the identification protocol under consideration in proving his/her identity \(ID_i \) he/she presents \(ID_i \) to the center. After checking the validity of \(ID_i \) the center runs with \(1^n \) as input the algorithm \(G \) to obtain a matching pair \((PK_i, SK_i)\) for \(U_i \). Then the center obtains the signature \(\sigma_i \) of \(ID_i, PK_i \) using the center's secret key \(SK \), where \(\sigma \) means concatenation. Finally, the center issues \((PK_i, SK_i, \sigma_i)\) to \(U_i \). Notice that it is \(U_i \)'s responsibility to keep \(SK_i \) in secret. Also notice that the probability that \((PK_i, SK_i) \) coincides with any previous output of \(G \) is negligible, since the size of the key space \(2^n \) is exponentially large and the output of \(G \) is randomly and uniformly distributed.

3.3 The Identification Stage

When the user \(U_i \) wants to prove his/her identity to a user \(U_j \), they follow the following 3-move identification protocol. See also Fig. 1.

Move-1: Preparation

\(U_i \) sends \((ID_i, PK_i, \sigma_i)\) to \(U_j \).

Move-2: Challenge

\(U_j \) checks whether or not \(\sigma_i \) is a valid signature of \((ID_i, PK_i)\) with respect to \(PK \). If \(\sigma_i \) is OK, \(U_j \) chooses a random message \(m \) and sends it to \(U_i \). Otherwise, \(U_j \) stops.

Move-3: Response

\(U_i \) obtains the signature \(\sigma \) of the message \(m \), using his/her secret key \(SK_i \), and sends the signature back to \(U_j \). After receiving \(\sigma \), \(U_j \) tests whether or not \(\sigma \) is a valid signature of \(m \) with respect to \(PK \), and accepts the user \(U_i \) if \(\sigma \) is OK.

4. Proof of Security

This section shows that the identification protocol is indeed secure against a conspired dynamic attack. Thus no (conspired) bad user(s) can impersonate a good user without being caught out.

Theorem 1: The identification protocol is secure against conspired dynamic attack.

Proof: First of all we note that the theorem should be proved for the case when the center \(C \) is the least one as described in Sect. 2. Such a center issues a matched public and secret keys to a user if only the user's identity differs from the identities of all previous users to whom matched public and secret keys have been issued.

Now let \(A \) be an impersonating adversary, \(U_i \) a good user, and \(Q \) a polynomial. Obviously the adversary \(A \), after participating as a verifier in \(Q(m) \) executions of the identification protocol with \(U_i \) or any other users as provers, succeeds in convincing a good user \(U_i \) that \(A \)'s identity is \(ID_i \) iff \(A \) is able to do one of the following two actions. The first action is to impersonate the trusted center \(C \), and hence to impersonate indirectly the user \(U_i \). And the second action is to impersonate directly the user \(U_i \). The probability that \(A \) is able to do the first action is
bounded by the probability that the following Event-1 occurs.

Event-1: \(A \) is able to, without knowing the secret keys \(SK_1 \) and \(SK_2 \), find a pair \((U, \sigma)\) such that \(PK_1 \equiv PK \), \(\sigma \) is a valid signature of \(ID \), \(PK_2 \), with respect to \(PK \). Consider the bound of the probability that Event-1 occurs. Since there are only polynomially many users in the organization and the computational power of a user is bounded by probabilistic polynomial time, the computation of the adversary \(A \) can be completely simulated by a probabilistic polynomial time algorithm \(\tilde{A} \). Thus Event-1 can be equivalently stated as: Event-1': There is a probabilistic polynomial time algorithm \(\tilde{A} \) as described above that, without knowing the secret keys \(SK_1 \) and \(SK_2 \), finds a pair \((U, \sigma)\) such that \(PK_1 \equiv PK \), \(\sigma \) is a valid signature of \(ID \), \(PK_2 \) with respect to \(PK \).

Now let \(A' \) be another probabilistic polynomial time algorithm that simulates the computation of \(A_1 \), \(U_1 \) and \(U_2 \). Such an algorithm exists as \(A_1 \), \(U_1 \) and \(U_2 \) are all probabilistic polynomial time algorithms. Then the probability that Event-1' occurs, hence the probability that Event-1 occurs, is less than the probability that the following Event-2' occurs.

Event-2': There is a probabilistic polynomial time algorithm \(A' \) as described above that, without knowing the center's secret key \(SK \), finds a pair \((ID, PK)\), \(\sigma \) such that \(PK \equiv PK \), \(\sigma \) is a valid signature of \(ID \), \(PK_2 \).

For Event-2', we know, by a similar analysis as above, that there is a probabilistic polynomial time algorithm \(A' \) that simulates the computation of \(A_1 \) and \(U_1 \) as well as the computation of the center \(C \) except the generation of \(PK_1 \), \(SK_1 \) for the user \(U_1 \). As a result, the probability that Event-2' occurs is less than the probability that the following Event-2'' occurs.

Event-2'': There is a probabilistic polynomial time algorithm \(A' \) as described above that, without knowing the user's secret key \(SK \), finds the signature \(\sigma \) of a random message \(m \) with respect to \(PK \).

By definition, the signature scheme used in the identification protocol is secure against existential forgers under adaptive chosen-message attack. This implies that for any polynomial \(Q \) and for all sufficiently large \(n \in \mathbb{N} \), both the probability that Event-2' occurs and the probability that Event-2'' occurs are less than \(1/2Q(n) \). Thus we have

\[
P_F(A, Q(n)) \leq P_{[\text{Event-1}]} + P_{[\text{Event-2}]} \\
\leq P_{[\text{Event-1}]} + P_{[\text{Event-2}]} \\
\leq 1/2Q(n) + 1/2Q(n) \\
= 1/2Q(n)
\]

This completes the proof.

5. Concluding Remarks

The efficiency of the protocol is determined by that of the digital signature scheme. The only currently available digital signature scheme based on any one-way function is due to Naor and Yung\(^6\), and Rompel\(^7\). However, the scheme is not very efficient. An interesting challenge is to find a really practical signature scheme from any one-way function. A final remark is that it is difficult, even if not impossible, to apply witness hiding protocols introduced in Ref.\(^3\) to the identification problem formulated in this paper, simply because it is infeasible for a probabilistic polynomial time algorithm to compute the witness of a user's identity with respect to an arbitrary one-way function.

Acknowledgements

The authors are grateful to Certoedo Manuel for helpful comments, and to Kouichi Sakurai for fruitful discussions.

References

Yujiang Zheng was born in Jiangu, China on February 5, 1962. He received his B. S. degree in computer science from Southwestern University (formerly Nanjing Institute of Technology), Nanjing, China, in 1982, and the M. E. and Ph. D. degrees, both in electrical and computer engineering, from Yokohama National University, Yokohama, Japan, in 1988 and 1991 respectively. From 1982 to 1984 he was with the Guangzhou Research Institute for Communications, Guangzhou (Cantone), China, and since February 1991 he has been with the Computer Science Department, University College, University of New South Wales, in Canberra, Australia. His current research interests include computer network security, cryptography, computational complexity theory and information theory. Dr. Zheng is a member of IEEE and IACR.

Tatsuo Matsumoto was born in Maebashi, Japan, on October 20, 1938. He received the B. E. and M. E. degrees in computer eng. both from Yokohama National University, Yokohama, Japan, in 1981 and 1983, respectively, and Ph. D. degree in electronic eng. from the University of Tokyo, Tokyo, Japan, in 1986. From 1986 to 1989, he was a Lecturer for Electrical and Computer Engineering at Yokohama National University. Since 1989, he has been an Associate Professor and is currently working in cryptography, complexity theory, computational mathematics, and their applications to information security. Dr. Matsumoto is a member of ACM, IACR, IEEE, IPSJ.