Bridge Load Testing
Bridge 3-437
SR 54 Over Assawoman Bay
Part II

by

Michael Chajes
Harry Shenton
William W. Finch, Jr.

Department of Civil and Environmental Engineering
University of Delaware

June 2002

DELAWARE CENTER FOR TRANSPORTATION

University of Delaware
355 DuPont Hall
Newark, Delaware 19716
(302) 831-1446
Bridge Load Testing
Bridge 3-437
SR 54 Over Assawoman Bay
Part II

by

MICHAEL CHAJES
HARRY SHENTON
WILLIAM W. FINCH, JR.

Department of Civil and Environmental Engineering
University of Delaware
Newark, Delaware 19716

DELAWARE CENTER FOR TRANSPORTATION
University of Delaware
Newark, Delaware 19716

This work was sponsored by the Delaware Transportation Institute and was prepared in cooperation with the Delaware Department of Transportation. The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views of the Delaware Transportation Institute or the Delaware Department of Transportation at the time of publication. This report does not constitute a standard, specification, or regulation.
The Delaware Center for Transportation is a university-wide multi-disciplinary research unit reporting to the Chair of the Department of Civil and Environmental Engineering, and is co-sponsored by the University of Delaware and the Delaware Department of Transportation.

DCT Staff

Ardeshir Faghri
Director

Jerome Lewis
Associate Director

Wanda L. Taylor
Assistant to the Director

DCT Policy Council

Carolann Wicks, Co-Chair
Acting Chief Engineer, Delaware Department of Transportation

Eric Kaler, Co-Chair
Dean, College of Engineering

Timothy K. Barnekov
Acting Dean, College of Human Resources, Education and Public Policy

The Honorable Timothy Boulden
Chair, Delaware House of Representatives Transportation Committee

Michael J. Chajes
Chair, Civil and Environmental Engineering

Phil Cherry
Representative of the Secretary of the Delaware Department of Natural Resources and Environmental Control

The Honorable Tony DeLuca
Chair, Delaware Senate Transportation Committee

Raymond C. Miller
Director, Delaware Transit Corporation

Donna Murray
Representative of the Director of the Delaware Development Office

Ralph A. Reeb
Director of Planning, Delaware Department of Transportation

Delaware Center for Transportation
University of Delaware
Newark, DE 19716
(302) 831-1446
Bridge Load Testing
BRIDGE 3-437
SR 54 OVER ASSAWOMAN BAY

Final Report

Report Prepared by:

Michael Chajes
Harry Shenton
William W. Finch, Jr.

Department of Civil and Environmental Engineering
University of Delaware
Executive Summary

A diagnostic load test of Delaware Bridge 3-437 was conducted on May 19, 1999. The purpose of the test was primarily to quantify the transverse load distribution of the superstructure.

The bridge, which carries State Rt. 54 traffic over Assawoman Bay, was built in 1957. Its superstructure is made up of eleven simple spans, with each span consisting of thirteen adjacent prestressed box-beam (or voided slabs). Each box beam has a cross section of 36 inches wide by 21 inches deep and contains two circular voids. A typical plan view and one of the bridge cross-section are shown in sketches SK1 and SK2.

The bridge was tested using two pre-weighed 3-axle trucks. The two trucks weighed 67.1 kips and 63.6 kips respectively. A total of six load passes were conducted (each pass consisted of two trucks crossing the bridge either individually or simultaneously). Five of the load passes were semi-static, while one was dynamic. Two spans of the bridge (spans 1 and 4) were instrumented. These spans were selected by Whitman, Requardt and Associates based upon visual inspections. Span 1 was thought to be representative of the more deteriorated spans, while span 4 was felt to be representative of the spans that were in better condition. The bridge was instrumented with 22 strain transducers. The transducers were mounted to the beam soffits primarily at the 4/10 point (the location that governed in terms of load rating). The peak tensile strain recorded during the test was 43με. As expected, this occurred during the pass in which the two trucks crossed side-by-side. Based on the strains measured, multiple vehicle distribution factors were found to range from 0.48 to 0.51 for span 1 and 0.49 to 0.50 for span 4. Impact effects measured during the test were less than predicted by AASHTO by roughly 50%. Computed peak strains due to the two test trucks are on the order of 140με, meaning that the measured peak strains were roughly 1/3 of the theoretically predicted values.

This report presents the details of the diagnostic load test and results.
Test Setup

The diagnostic test was conducted using the Bridge Diagnostics Inc. Structural testing System (STS) and two 3-axle trucks. Two spans of the bridge (spans 1 and 4) were instrumented with strain transducers. These spans were selected by Whitman, Requardt and Associates based upon visual inspections. Span 1 was thought to be representative of the more deteriorated spans, while span 4 was felt to be representative of the spans that were in better condition. The bridge was instrumented with 22 strain transducers. The transducers were mounted to the beam soffits primarily at the 4/10 point (the location that governed in terms of load rating). Sketches SK3 and SK4 show the layout of strain transducers. Strain transducers are identified by a three-digit number. Because of the damp weather, it was not possible to get the transducers to bond to some of the northern most beams.

Two pre-weighed 3-axle trucks were used to load the bridge during the tests. The trucks were weighed at the site using Intercorp portable scales (+/- 10 lbs). The gross weight of the two trucks was 67.1 kips (Truck 2921) and 63.6 kips (Truck 2739) respectively. Sketches SK5 and SK6 give the axle spacings and wheel loads for each truck.

A total of six load passes were conducted. Five of the load passes were semi-static, while one was dynamic. Semi-static tests involve having the trucks cross the bridge at a slow roll of approximately 2 to 5 mph (no impact effects) and recording data during the entire truck crossing at 20 Hz. The dynamic test, aimed at measuring impact effects, involved having the truck cross the bridge at full speed (approximately 25 mph) and recording data during the entire truck crossing at 60 Hz. Each pass consisted of the trucks moving in the eastbound direction. In the various passes, the trucks were positioned in different transverse locations (paths). A total of four different load paths were used (Paths A, B, C, and D). The load path locations are described below with sketches SK7 through SK10 show the location of the four different load paths (Paths A, B, C, and D).

Path A-Wheel on passenger side front axle on white line of eastbound lane.
Path B-Truck centered in eastbound lane.
Path C-Truck centered in westbound lane.
Path D-Truck straddling center yellow line.

In five of the passes, one truck crossed the bridge followed by the other truck (both trucks passed along the same transverse location). For each of these passes except pass 5, Truck 2921 (67.1
kips) was the first to cross the bridge. In one pass, the two trucks crossed side-by-side. The table that follows describes each of the six passes (referred to as Passes 1-6).

<table>
<thead>
<tr>
<th>Pass</th>
<th>Loading</th>
<th>Trucks</th>
<th>Load Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Semi-static</td>
<td>One truck at a time</td>
<td>Path A</td>
</tr>
<tr>
<td>2</td>
<td>Semi-static</td>
<td>One truck at a time</td>
<td>Path B</td>
</tr>
<tr>
<td>3</td>
<td>Semi-static</td>
<td>One truck at a time</td>
<td>Path C</td>
</tr>
<tr>
<td>4</td>
<td>Semi-static</td>
<td>Two trucks simultaneously</td>
<td>Path B&C</td>
</tr>
<tr>
<td>5</td>
<td>Semi-static</td>
<td>One truck at a time</td>
<td>Path D</td>
</tr>
<tr>
<td>6</td>
<td>Dynamic</td>
<td>One truck at a time</td>
<td>Path B</td>
</tr>
</tbody>
</table>

Results

The 22 strain transducers recorded longitudinal strains on the beam soffits due to the loaded trucks during each of the six passes. The peak tensile strain recorded during the test was 43\(\mu\)e, which was recorded by transducer 317 during Pass 4 (side-by-side trucks). Table 1 shows the peak strains (positive meaning tension) for all gages for each of the six passes.

Repeatability of Data

By comparing the data from simultaneous trucks of semi-static Passes 1, 2, 3, and 5 one sees a high degree of repeatability of the data (similar strain time histories due to the similar weight vehicles). The same type of comparison can be made by comparing the distribution of strains across the cross-section of the bridge for Passes 2 and 3 (reflections about centerline). Finally, the superposition of strains from Passes 2 and 3 are nearly identical as for Pass 4. The repeatability of the data indicates that the transducers are giving consistent data.

Transverse Load Distribution

The transverse distribution of strains across the cross-section of spans 1 and 4 for each pass and due to each truck are shown in Figures 1 through 6. These strains are recorded at the same time, and are plotted when the peak strain in the cross-section is measured. To get an idea of the Distribution Factor (DF) for each beam for multiple loaded lanes, we can either look at the results for Pass 4, or the superposition of results for Passes 2 and 3. These results are shown in Figures 7 and 8. Also shown in these figures is the distribution using the peak strains for each gage. Comparing the set of peak strains for each gage lying along the 4/10 point of the span, as compared to the strains recorded at a single time when the single largest peak strain occurs, we can see that the set of peak values do occur at virtually the same time. As a result, the peak values found in Table 1 can be used to evaluate the DF.
From the data, and filling in for missing gages using information gained from symmetric passes, we find that regardless of the location of the path (A, B, C, or D), the sum of the strains across the cross-section due to the heavier truck (Truck 2921) is roughly 175με for span 1 and roughly 165με for span 4. This summation of strains is proportional to the summation of moments. The summation of strains due to both trucks (Pass 4) is 335με for span 1. This values is consistent with the result from superimposing passes 2 and 3, and are roughly twice the amount of strain due to a single truck (the two trucks have fairly similar gross weights). From this we can conclude that the strain due to one wheel line would be approximately 1/4 of the total summation. With a maximum recorded strain of 43με, we get a DF of approximately 0.5. Figures 7 and 8 show that by considering the different passes and spans, multiple vehicle distribution factors are found to range from 0.48 to 0.51 on span 1 and 0.49 to 0.50 on span 4.

Impact Effects

By comparing peak strains from Passes 2 and 6, we can get some idea about the impact factor. The ratio of the peak strain during the dynamic pass (Pass 6) to the peak strain recorded during the semi-static pass (Pass 2) is 36με/31με = 1.16 for span 1 and 25με/26με = 0.96 for span 4. While only limited data exists, it appears that the first span has higher impact effects than span 4 (the measured data shows no measurable impact effects on span 4). This is expected since the approach to the bridge has an incline, and trucks are likely to bounce more on the first span. It should be noted that the impact effects measured on span 1 are only 16% which is lower than AASHTO's recommended value of 30% for the span lengths of this bridge. However, variation in truck speed, truck suspension, and condition of the wearing surface could cause the impact effects to be higher (i.e. closer to the AASHTO value).

Theoretical Peak Strain

Often it is found that the peak recorded strain is lower than the theoretically predicted peak strain. If we use Truck 2921 for a live load and use a distribution factor (DF) equal to 0.5, set impact effects to zero (to be consistent with the semi-static test), use a moment of inertia value for the cross-section of 25,473 in\(^4\) (uncracked section), a location of the centroid at 10.41 inches above the beam soffit, and a modulus of elasticity for the concrete of E = 4,287 ksi (f\(_c\) = 5 ksi), we get a peak tensile strain at the 4/10 point on the 40 foot span 4 of 138με. This is roughly 3 times greater than the peak measured strain. The differences may in part be attributed to partially restrained supports, higher strength concrete than assumed, load being carried by the thicker concrete sidewalk sections and the parapet/guardrail system.
Summary

Bridge 3-437 was instrumented with 22 strain transducers and tested using two pre-weighed 3-axle trucks. The transducers were mounted to the beam soffits of spans 1 and 4. These spans were selected by Whitman, Requardt and Associates based upon visual inspections. Span 1 was thought to be representative the more deteriorated spans, while span 4 was felt to be representative of the spans that were in better condition. The transducers were located primarily at the 4/10 point because that location governs for the load rating. The peak tensile strain recorded during the test was 43µε. Based on the strains measured, multiple vehicle distribution factors were found to be roughly 0.50 for both spans tested. Impact effects measured during the test were less than predicted by AASHTO by roughly 50%. Theoretically computed peak strains due to the two test trucks were roughly 1/3 of the theoretically predicted values.
PLAN VIEW
N.T.S.
<table>
<thead>
<tr>
<th>Span</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15' 4"</td>
</tr>
<tr>
<td>2</td>
<td>29' 4"</td>
</tr>
<tr>
<td>3</td>
<td>33' 6"</td>
</tr>
<tr>
<td>4</td>
<td>34' 8"</td>
</tr>
<tr>
<td>5</td>
<td>31' 7"</td>
</tr>
<tr>
<td>6</td>
<td>29' 2"</td>
</tr>
<tr>
<td>7</td>
<td>34' 9"</td>
</tr>
<tr>
<td>8</td>
<td>29' 5"</td>
</tr>
<tr>
<td>9</td>
<td>35' 6"</td>
</tr>
<tr>
<td>10</td>
<td>34' 2"</td>
</tr>
<tr>
<td>11</td>
<td>30' 5"</td>
</tr>
<tr>
<td>12</td>
<td>34' 4"</td>
</tr>
</tbody>
</table>
PLAN VIEW OF WEIGHED "TEN WHEEL" TRUCK NO. 2921

N.T.S.
PATH C (Front Tier)
LOCATION OF TRUCK PASSES
<table>
<thead>
<tr>
<th>Max 1</th>
<th>Max 2</th>
<th>High Speed - Eastbound Lane</th>
<th>Eastbound Lane</th>
<th>Dual - East and Westbound Lanes</th>
<th>Westbound Lane</th>
<th>Eastbound Lane</th>
<th>Westbound Lane</th>
<th>Passenger Train on White Line</th>
<th>Beam Span #1</th>
<th>Beam Span #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 8 5</td>
<td>5 8 6</td>
<td>7 11 12</td>
<td>10 14 13 15</td>
<td>11 12 14</td>
<td>29 30 27 22 19 14</td>
<td>22 24 0 12 10 0 33 35 40 41</td>
<td>13 37 43 49 36 22 18</td>
<td>11 15 0 19 22 24 15 13 14</td>
<td>5 3 6 8 10 16 20 23 12 17 9 15 14</td>
<td>5 11 10 9 6 5 4 3 2 1</td>
</tr>
</tbody>
</table>

TABLE 1

Summary of Peak Stairs for All Passes (all values are micro-seconds)

Fenwick Island - Route 54 Bridge
Pass 4
East and Westbound lanes
Span 1

Span 4

Figure 4
Figure 8

Superposition value used for input of pass 1, pass 2, max calculation.

Gauss 39.26 & 3.85 applied to location 11, 12, 13 for calculation.
Delaware Center for Transportation
University of Delaware
Newark, Delaware 19716

AN EQUAL OPPORTUNITY/AFFIRMATIVE ACTION EMPLOYER The University of Delaware is committed to assuring equal opportunity to all persons and does not discriminate on the basis of race, color, gender, religion, ancestry, national origin, sexual orientation, veteran status, age, or disability in its educational programs, activities, admissions, or employment practices as required by Title IX of the Education Amendments of 1972, Title VI of the Civil Rights Act of 1964, the Rehabilitation Act of 1973, the Americans with Disabilities Act, other applicable statutes and University policy. Inquiries concerning these statutes and information regarding campus accessibility should be referred to the Affirmative Action Officer, 305 Hullihen Hall, (302) 831-2835 (voice), (302) 831-4563 (TDD).