Application of Global Positioning System (GPS) to Travel Time And Delay Measurements

Summer 2006

by

ARDESHIR FAGHRI
ADAM CATHERINE
ROBERT SUAREZ
LINDSEY BOOZE
KIMBERLY FRIEDMAN
HARRY SHENTON

Department of Civil and Environmental Engineering
College of Engineering
University of Delaware

August 2006

Delaware Center for Transportation
University of Delaware
355 DuPont Hall
Newark, Delaware 19716
(302) 831-1446
Application of Global Positioning System (GPS) to Travel Time And Delay Measurements

Summer 2006

by:
Ardeshir Faghri
Adam Catherine
Robert Suarez
Lindsey Booz
Kimberly Friedman
Harry Shenton

Department of Civil & Environmental Engineering
University of Delaware

August 2006
Introduction

Since 1996, the Global Positioning System (GPS), a worldwide radio-navigation system formed from a constellation of 24 satellites and their ground stations, has collected travel time and delay data on major roadways throughout Delaware. The GPS statistically matches manual data collection in accuracy and efficiency and therefore continues to effectively collect data within Delaware today. Every year, a report is compiled documenting and summarizing the collected data. The Application of Global Positioning System (GPS) to Travel Time and Delay Measurements – 1997 Phase report describes the testing of the applicability and accuracy of the GPS system, while the 1998 Phase report provides step-by-step instructions for data collection.

In past years, travel data was collected during peak-travel times between mid-September and Thanksgiving. In 2002, data collection expanded to include summer peak-travel times as well. In 2003, the summer mileage covered increased from 652 to 896 miles, and in 2004, this mileage increased again from 896 to 1006 miles. This report describes the methodology used to collect summer peak-travel time data and includes a summary and conclusion of the collected data.

Methodology

The continued success of the travel time and delay data collected over the past ten years in monitoring congestion trends along Delaware roadways in the fall months has led the Delaware Department of Transportation (DelDOT) to include the major travel routes to and from the shore points during the summer months in the annual data collection. This data has become critical to the analysis of travel patterns surrounding the Delaware beaches and to the monitoring of congestion along these major routes.
All major routes leading to and from the Delaware beaches were covered. Routes and numerous additional segments were added in 2003 and even more have been added in 2004. No new segments were added in 2006. All of the routes covered can generally be divided into two groups:

- **North-South roads**: SR 1, US 13, US 113, SR 896, SR 71, SR 9 (new), I-95, and I-495. These routes are primarily used by travelers coming to and from the main northern points, including New Castle County, Pennsylvania, New Jersey, Cecil County (in Maryland), etc.

- **East-West roads**: SR 404, SR 14, SR 16, SR 20, SR 24, SR 26, SR 30, SR 36, SR 54, I-295. These roads are generally used by travelers from Maryland, Virginia, and Washington, D.C. entering the Delaware shore points.

For each route that was covered, control points were selected between the segments of the roadway. The control points were positioned at major intersections or where road characteristics, such as the number of lanes, speed limit, or development type changed. Once the control points were selected, they were entered into data dictionary files using the Pathfinder editing system, which allows control points and specific attributes to be added, deleted, or edited. Data dictionary files allow control points and other roadway attributes, such as the speed limit and number of lanes, to be collected and stored with only a click of the mouse.

A major feature that was added to data collection in 2004 was the addition of a background map with corresponding control points to the Aspen software used while driving. This background map would allow the data collector to view where the car was in relation to the next control point as well as the surrounding roads and intersections. The control points were represented by red crosses throughout the background map and were placed exactly where the
next segment began. Both the background map and control points were added by layering two shape files extracted from the Geographic Information Systems (GIS) network. By adding these features, the data collector no longer had to rely on the car odometer and predetermined distances to anticipate the next control point.

Prior to the start of the project, new equipment was purchased in order to facilitate easier and more accurate data collection. Much of the equipment that had been used in previous years was outdated and not functioning correctly. Two new laptops were purchased, as well as new software, a new antenna, and new cabling for the GPS units. The software upgrade was necessary because the new laptops would not support the older programs. Aspen, which is no longer produced, was replaced by TerraSync, and the GPS Pathfinder Office software was upgraded to version 3.10.

As for data collection times, data was collected on summer weekends between June 16th and August 18th. Generally, the majority of beach-goers travel to and from the shore points on Friday afternoons, Sunday afternoons, and throughout the day on Saturday. Traditionally, data has been collected heading toward the beach (southbound and eastbound) on Friday evenings from 3 to 7 PM and from 9 AM to noon on Saturday mornings. Data was also collected heading away from the beach (northbound and westbound) on Saturday evenings from 4 to 8 PM and on Sunday afternoons from 4 to 7 PM.

Due to the better than expected results of the summer data collection in 2005, the Delaware Center for Transportation was asked to revise their data collection times to attempt to capture more of the congestion associated with beach travel. A report entitled *Recommendations for Revised Methodology for Summer Data Collection Regarding DCT Projects: Applications of Global Positioning System to Travel Time and Delay* was completed in the winter of 2006. The
report recommended time intervals in which data collectors should expect to see the most traffic. The report concluded that data collection times for many of the routes should be adjusted on Saturdays in order to collect more accurate data. Data collection times on Friday and Sunday remained the same as the previous year. Appendix A shows the adjusted data collection times; any roads not included in the Appendix A did not need adjustments.

Due to the number of routes to be covered and the need for at least 2 successful runs of each route, it was necessary to use two vehicles to complete the project on time. Two people rode in each car: a driver and a data collector. The latter operated the laptop computer and noted each attribute, while the former attempted to approximate the average driver. While one person might feasibly drive and collect data at the same time, this would present a serious safety hazard.

Each route was driven at least twice in each direction to guarantee the accuracy of the data that was collected. Recommendations for revised Methodology for Summer Data Collection also recommended that SR 1 be completed four times, therefore data for SR 1 was collected four times and data collection was spread as evenly as possible over Friday, Saturday, and Sunday.

In the event of problems, whether due to equipment failure, weekend-long inclement weather, or large irregularities in the travel patterns, the roads were traveled again to ensure that peak beach-traffic patterns were captured. Also, in the event of heavy rain or very poor weather conditions, which did not happen this season, data was not collected at all, in order to avoid the collection of inaccurate data, which would not fully represent particular travel and delay times, as well as ensure the safety of data collectors. Where more than two runs were completed, only the results of the two or more that best captured the peak volume were used and averaged. Once
all the data was collected, exported, and printed, it was analyzed and summarized on a segment-by-segment basis.

**Differences between Fall and Summer Projects**

The same basic methodology is used in both the fall and summer GPS Travel Time projects. In addition, many of the roads covered are the same. However, there are some key differences separating the projects:

1. Some of the roads covered were different than those covered in the fall. The fall project emphasizes commuter routes, particularly in New Castle County, while the summer project covers major beach routes throughout the state.

2. Instead of weekday morning and afternoon collection times as in the fall, the summer data was collected on weekends.

3. In the fall, data is collected separately for both morning (AM) and afternoon (PM), and at least two runs of each route are completed in each direction at each time of day. Results are then tabulated separately for AM and PM. In the summer, there is no AM/PM division. Thus, roads are covered only twice in each direction.

4. Because the summer project focuses primarily on statewide, long-distance beach traffic rather than short intra-county commuter trips, the roads are not separated by county as they are in the fall.

**Interpretation of 2006 Summer Data**

This report includes a data table with all of the collected information arranged by route name. The leftmost column contains the name of the route being covered. Each route is then
divided into the different segments and data is provided in each direction. To the right of the segment names, the table contains the following information:

- **Distance (Miles)** – This is the distance in miles for the given segment of roadway shown to the left. When the term “Total” is specified, the distance corresponds to the total length from the first control point to the last.

- **Mean Peak Travel Time (Seconds)** – This is the average time in seconds that was required to travel the length of the segment.

- **Mean Peak Travel Speed (mph)** – The average speed of the test vehicle from one point to the next is the Mean Peak Travel Speed. This value is given in miles per hour and is obtained by dividing the Distance of the segment by the Mean Peak Travel Time.

- **Total Peak Delay (Seconds)** – This is the time, in seconds, spent in delay on the given segment. By DelDOT’s definition, delay is the time during which the vehicle speed drops below five miles per hour.

- **Peak Delay Source** – This is the reason for the delay noted in the previous column. Reasons for delay include signals, construction, accidents, congestion, pedestrian crossings, train crossings, etc. Traffic signals are the primary cause of delay.
• **Mean Peak Running Speed (mph)** – This is the average speed in miles per hour that a vehicle would travel through the section of roadway if delay were not experienced. The running speed, \( R \), is obtained by the following equation:

\[
R = \frac{\text{Distance}}{\text{Mean Peak Travel Time} - \text{Total Peak Delay}}
\]

• **Percent Time in Delay** – This is the percentage of time spent in delay for the route segment shown. The percentage is found by dividing the Total Peak Delay by the Mean Peak Travel Time, then multiplying the quantity by 100. Example:

\[
\text{Percent Time in Delay} = \frac{82.08 \text{ sec}}{360 \text{ sec}} \times 100 = 22.8\%
\]

• **Number of Lanes** – This represents the number of lanes during the given segment. For those segments that have a varying number of lanes, two or more values will appear in this column.

• **Posted Speed (mph)** – This represents the posted speed limit for the given segment of the roadway shown. For segments with more than one posted speed, two or more values will appear in this column.

**Conclusion**

Beach traffic congestion during the summer of 2006 was again collected both precisely and effectively by the GPS Travel Time and Delay project teams. Although no new roads
received attention, all roads covered in 2005 were again covered in 2006. This allowed for the continuing collection and analysis of travel time and delay time along the existing summer routes.

Data collection using a GPS unit is an advancement to manual data collection. The system, however, is not perfect and some problems arose. The new equipment eliminated the problems of notebook computers malfunctioning during data collection, which would shut off the GPS units. However, at times the satellite signal was lost, due to inclement weather or tree obstruction. Nonetheless, manual data collection was always feasible and was used in the few instances when necessary.

Due to the flooding in Sussex County in June and July, SR 20 was closed between Seaford and the Maryland state line. The route was completed one time in its entirety before the flooding; however, the road was closed for the remainder of the summer data collection period, therefore the second run of SR 20 was missing data for travel time and delay from Seaford to the Maryland line.

The results from the 2006 Summer data collection show a general improvement in LOS on almost all routes. Data collection was repeated on some roads due to the lack of congestion that was expected. Interstate 95 and 295 were collected on four separate occasions to try to catch peak traffic flows. During the first times that data was collected on both of the routes, there was little to no congestion. Data was re-collected on these roads during two more different time intervals to try to capture more of the expected congestion.

Data collection teams observed that while traffic was observed to be moderate to heavy on most runs, and speeds were below posted on many roadway segments, vehicles were still moving. Collection teams that were involved in previous years noted that there seemed to be less
traffic than the previous year, but the traffic seemed to be more steady throughout the day. It is possible that the extremely high price of gasoline affected some summer travel. In addition traffic seemed to flow at a more steady volume throughout the entire day on Saturday. It may be possible that travelers are becoming more conscious of traffic delays and therefore spreading their travel out over a longer period of time.

A high improvement rate was observed along the ten most improved segments. Three segments improved from LOS F to LOS A, while another two segments improved from an LOS E to an LOS A. Some segments on the most improved list were unexpected. Most of the largest LOS improvements occurred on I-295 and I-95, routes that are typically extremely busy during the summer. Even though these routes were completed four times, they still showed improvements. One explanation for the improvements is that in previous years data for I-95 and I-295 was collected on Friday evenings. This year, Friday evenings were avoided in order to eliminate data that mixed rush hour traffic with beach traffic.

Drivers to the beach appeared to be driving about as fast as in 2005, and drivers were very aggressive on the longer north and south bound roads. Speeds exceeding 70 miles per hour on roads with 55 mph speed limits was not uncommon. In addition, drivers were observed along I-95 and SR 1 driving down the breakdown lane in order to avoid the congestion. Most of the time the drivers on the breakdown lane were trying to turn off onto an exit.

Drivers experienced delays on US 13 in Seaford. Extremely short green times were observed on US 13 at the intersection of Tharp Road. It was observed that only 10-20 vehicles were making it through the green light, and the cross streets had more green time than was needed. In addition, the development of large shopping centers along SR 1 have caused
excessive delays near the beach. Drivers appear to be using US 113 to circumvent the
signalization along the last few segments of SR 1.

Variability in the time of peak traffic volume also caused difficulties. There are
numerous factors that cause variation in this peak time, some of which are current weather,
predicted weather, and holidays. If weather is predicted to be poor, fewer vacationers go to the
beaches, or if the weather is sunny and then turns rainy, people usually leave early. Even with
the report recommending travel times, those recommended peak times did not always coincide
with the peak times on Saturday.

Ideally, in the future, a computerized process to extract the GPS results and travel
data is expected to yield greater accuracy and efficiency. Additionally, observations noted that
data collection beyond US 13 on the East-West routes, not including SR 404, does not provide
strong travel time and delay data and may be unnecessary in future projects. It was determined
that hardly any congestion or even volume was observed past this point and up until the
Maryland state line. Thus, the last control point on these roads could be placed at the
intersections with US 13, as such a change would result in more resources being concentrated on
more heavily traveled segments of other routes.

For the most part, data is collected every day of the weekend with no specification given
to which day, only which direction. Thus, data collected on Friday evenings is averaged with
data collected on Saturday mornings, since both times represent southbound traffic to the shore
points. So far, there has been no serious problems or inaccuracies with this method; however, it
may be more beneficial to collect and analyze this data on more of a day-to-day basis, with
possibly two runs being completed for each route in each direction as well as on each day, in
order to allow for a more direct analysis of the data and a more specific account of when beach
roads are most congested. However; this may require the addition of one to two more vehicles and teams in order to schedule two runs of each road on each day of the weekend within the given data collection times period.

Also, after careful observation along with direct contact with the toll plazas, as mentioned earlier, it was discovered that congestion northbound on Saturday mornings can be just as high as congestion southbound at this time. Methods of collection including Saturday morning northbound routes may be a possible addition to future projects, and it may contribute to the accuracy and development of a successful travel time and delay study during the summer, when traffic peak times do vary considerably. In order to allow for these additions and the time constraints put on summer data collection, it may be necessary to include a third car, as well as a third set of data collectors, in accomplishing this summer project in the future. This summer project was very successful in capturing an accurate picture of travel time and delay all over Delaware and its shore points, and these changes would not only continue the success of the project but allow for a more detailed and comprehensive approach to GPS data collection and its application to such travel time and delay measurements.
Appendix A

Recommended Data Collection Intervals on Saturdays

<table>
<thead>
<tr>
<th>Route</th>
<th>Direction</th>
<th>Beginning Segment</th>
<th>Start Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 1</td>
<td>SB</td>
<td>SR 141</td>
<td>9:00–10:00am</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 54</td>
<td>10:00–11:00am, 3:00–4:00pm</td>
</tr>
<tr>
<td></td>
<td>NB</td>
<td>SR 1 Split</td>
<td>11:00am–12:00pm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maryland State Line</td>
<td>10:00–11:00am, 3:00–4:00pm</td>
</tr>
<tr>
<td>US 113</td>
<td>SB</td>
<td>I-495</td>
<td>9:00–10:00am</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 1/US 113 Split</td>
<td>12:00–1:00pm, 3:00–4:00pm</td>
</tr>
<tr>
<td></td>
<td>NB</td>
<td>SR 1/US 13 Split</td>
<td>9:00–10:00am</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 54</td>
<td>11:00am–12:00pm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3:00–4:00pm</td>
</tr>
<tr>
<td>US 13 (Wilmington to Dover)</td>
<td>SB</td>
<td>Maryland State Line</td>
<td>10:00–11:00am, 1:00–2:00pm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 1</td>
<td>10:00–11:00am, 1:00-2:00pm</td>
</tr>
<tr>
<td></td>
<td>NB</td>
<td>SR 1/US 13 Split</td>
<td>10:00–11:00am, 1:00–2:00pm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 54</td>
<td>10:00–11:00am, 1:00–2:00pm</td>
</tr>
<tr>
<td>US 13 (Dover to MD Line)</td>
<td>SB</td>
<td>SR 1/US 13 Split</td>
<td>9:00–10:00am</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 54</td>
<td>11:00am–12:00pm</td>
</tr>
<tr>
<td></td>
<td>NB</td>
<td></td>
<td>3:00–4:00pm</td>
</tr>
<tr>
<td>SR 404</td>
<td>EB</td>
<td>Maryland State Line</td>
<td>10:00–11:00am</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 1</td>
<td>10:00–11:00am, 4:00–5:00pm</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>SR 1</td>
<td>10:00–11:00am, 4:00–5:00pm</td>
</tr>
<tr>
<td>SR 16</td>
<td>EB</td>
<td>Maryland State Line</td>
<td>10:00–11:00am, 1:00–2:00pm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 1</td>
<td>10:00–11:00am, 1:00–2:00pm</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>SR 1</td>
<td>10:00–11:00am</td>
</tr>
<tr>
<td>SR 36</td>
<td>EB</td>
<td>SR 404</td>
<td>10:00–11:00am</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 36/16 Split</td>
<td>10:00–11:00am, 1:00–2:00pm</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>SR 404</td>
<td>10:00–11:00am, 1:00–2:00pm</td>
</tr>
<tr>
<td>SR 20</td>
<td>EB</td>
<td>Maryland State Line</td>
<td>10:00–11:00am, 1:00–2:00pm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 1</td>
<td>10:00–11:00am, 1:00–2:00pm</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>SR 1</td>
<td>10:00–11:00am</td>
</tr>
<tr>
<td>SR 24</td>
<td>EB</td>
<td>Maryland State Line</td>
<td>9:00–11:00am</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 1</td>
<td>10:00–11:00am, 4:00–5:00pm</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>SR 1</td>
<td>10:00–11:00am, 4:00–5:00pm</td>
</tr>
<tr>
<td>SR 26</td>
<td>EB</td>
<td>SR 54 Split</td>
<td>9:00–10:00am</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 1</td>
<td>10:00–11:00am, 4:00–5:00pm</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>SR 54 Split</td>
<td>10:00–11:00am</td>
</tr>
<tr>
<td>SR 30</td>
<td>EB</td>
<td>SR 26</td>
<td>11:00am–12:00pm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 24</td>
<td>10:00–11:00am</td>
</tr>
<tr>
<td>SR 54</td>
<td>EB</td>
<td>Maryland State Line</td>
<td>9:00–10:00am</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 20</td>
<td>9:00–10:00am, 3:00–4:00pm</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>SR 20</td>
<td>9:00–10:00am, 3:00–4:00pm</td>
</tr>
</tbody>
</table>

*Routes not included on this chart did not need adjustments in data collection intervals.
Appendix B

Notable Segments:

This is a listing of segments which appear to require special attention.

Equations:

\[
\%_{PS\_TS} = \frac{MeanPeakTravelSpeed - WeightedAverageSpeed}{WeightedAverageSpeed}
\]

\[
\%_{D\_PS\_TS} = \%_{PS\_TS\_2005} - \%_{PS\_TS\_2004}
\]

A1: 10-Most Degraded Segments

Segments are selected by taking the difference between the LOS of 2005 and the LOS of 2006 and taking the segments which indicated the most drastic decline. If two or more segments had the same level of degradation, the segment with the least \%_{D\_PS\_TS} took priority.

A2: 10-Most Improved Segments

Segments are selected by taking the difference between the LOS of 2005 and the LOS of 2006 and taking the segments which indicated the most notable improvement. If two or more segments had the same level of improvement, the segment with the greatest \%_{D\_PS\_TS} took priority.

A3: 20-Worst Segments

The 20 segments with the greatest LOS are selected and displayed in this table.
## B₁: 10-Most Degraded Segments:

<table>
<thead>
<tr>
<th>ID</th>
<th>Route Number</th>
<th>Dir</th>
<th>Segment</th>
<th>LOS 05</th>
<th>LOS 06</th>
<th>% D_PS_TS</th>
</tr>
</thead>
<tbody>
<tr>
<td>266</td>
<td>SR 54</td>
<td>EB</td>
<td>SR 26 Split to US 113</td>
<td>A</td>
<td>D</td>
<td>-102.49%</td>
</tr>
<tr>
<td>270</td>
<td>SR 54</td>
<td>EB</td>
<td>SR 17 to SR 20</td>
<td>A</td>
<td>E</td>
<td>-74.62%</td>
</tr>
<tr>
<td>95</td>
<td>Relief Route</td>
<td>NB</td>
<td>SR 12 to RD 18 (Bowers Beach)</td>
<td>A</td>
<td>B</td>
<td>-66.82%</td>
</tr>
<tr>
<td>64</td>
<td>Relief Route</td>
<td>SB</td>
<td>SR 273 (exit 162) to US 40 (exit 160)</td>
<td>A</td>
<td>B</td>
<td>-65.68%</td>
</tr>
<tr>
<td>47</td>
<td>DuPont Hwy</td>
<td>NB</td>
<td>SR 1 (to exit 114) to SR 6E (Commerce St)</td>
<td>B</td>
<td>F</td>
<td>-59.80%</td>
</tr>
<tr>
<td>113</td>
<td>Relief Route</td>
<td>NB</td>
<td>Collins St. to King Charles Ave (DE)</td>
<td>A</td>
<td>A</td>
<td>-58.27%</td>
</tr>
<tr>
<td>50</td>
<td>DuPont Hwy</td>
<td>SB</td>
<td>SR 42 to Scarborough Rd</td>
<td>A</td>
<td>B</td>
<td>-56.25%</td>
</tr>
<tr>
<td>279</td>
<td>I-95</td>
<td>SB</td>
<td>I-495 JCT to Exit 5 (SR 141/I-295 JCT)</td>
<td>A</td>
<td>D</td>
<td>-54.82%</td>
</tr>
<tr>
<td>101</td>
<td>Relief Route</td>
<td>NB</td>
<td>SR 36 (Slaughter Beach to SR 14)</td>
<td>A</td>
<td>A</td>
<td>-54.31%</td>
</tr>
<tr>
<td>28</td>
<td>DuPont Hwy</td>
<td>SB</td>
<td>SR 273 to US 40</td>
<td>B</td>
<td>E</td>
<td>-53.64%</td>
</tr>
</tbody>
</table>

## B₂: 10-Most Improved Segments:

<table>
<thead>
<tr>
<th>ID</th>
<th>Route Number</th>
<th>Dir</th>
<th>Segment</th>
<th>LOS 05</th>
<th>LOS 06</th>
<th>% D_PS_TS</th>
</tr>
</thead>
<tbody>
<tr>
<td>213</td>
<td>SR 24</td>
<td>WB</td>
<td>SR 30 to US 113</td>
<td>B</td>
<td>A</td>
<td>199.68%</td>
</tr>
<tr>
<td>290</td>
<td>I-295</td>
<td>EB</td>
<td>US 13 to SR 9</td>
<td>F</td>
<td>A</td>
<td>113.50%</td>
</tr>
<tr>
<td>292</td>
<td>I-295</td>
<td>EB</td>
<td>SR 9 to D.M.B.</td>
<td>F</td>
<td>A</td>
<td>95.49%</td>
</tr>
<tr>
<td>281</td>
<td>I-95</td>
<td>SB</td>
<td>I-295 to Exit 4 (SR 1/Churchmans)</td>
<td>E</td>
<td>A</td>
<td>85.27%</td>
</tr>
<tr>
<td>280</td>
<td>I-95</td>
<td>NB</td>
<td>Exit 4 (SR 1/Churchmans) to Exit 5 (I-295)</td>
<td>F</td>
<td>A</td>
<td>83.60%</td>
</tr>
<tr>
<td>285</td>
<td>I-95</td>
<td>SB</td>
<td>Exit 3 (SR 273) to Exit 1 (SR 896)</td>
<td>D</td>
<td>A</td>
<td>75.08%</td>
</tr>
<tr>
<td>56</td>
<td>US 113</td>
<td>SB</td>
<td>US 13/113 Split to 1/113 Merge (SR 1 Exit 95)</td>
<td>E</td>
<td>A</td>
<td>73.95%</td>
</tr>
<tr>
<td>195</td>
<td>SR 20</td>
<td>WB</td>
<td>SR 26 to SR 20 E / US 113 Merge</td>
<td>C</td>
<td>A</td>
<td>69.26%</td>
</tr>
<tr>
<td>185</td>
<td>SR 20</td>
<td>WB</td>
<td>US 13 / SR 20 E to US 13 / SR 20 W</td>
<td>F</td>
<td>B</td>
<td>63.39%</td>
</tr>
<tr>
<td>152</td>
<td>SR 404</td>
<td>EB</td>
<td>US 9 Split to Rt 30</td>
<td>C</td>
<td>A</td>
<td>50.55%</td>
</tr>
</tbody>
</table>
### B₃: 20-Worst Segments:

<table>
<thead>
<tr>
<th>ID</th>
<th>Route Number</th>
<th>Dir</th>
<th>Segment</th>
<th>LOS</th>
<th>LOS %</th>
<th>Avg. Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>DuPont Hwy SB</td>
<td>SR 6E (Commerce St) to SR 1 (to exit 114)</td>
<td>F</td>
<td>75.50%</td>
<td>12.4</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>US 113 SB</td>
<td>SR 404/18 to US 9 (non truck route)</td>
<td>F</td>
<td>72.32%</td>
<td>15.2</td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>SR 20 EB</td>
<td>SR 20 W / US 113 Split to SR 24</td>
<td>E</td>
<td>69.78%</td>
<td>15.1</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>DuPont Hwy SB</td>
<td>I-495 to I-295</td>
<td>E</td>
<td>67.93%</td>
<td>16.0</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>US 113 SB</td>
<td>SR 20 West to SR 24</td>
<td>E</td>
<td>67.83%</td>
<td>16.1</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Relief Route NB</td>
<td>Christiana Mall (exit 164) to I-95 Merge</td>
<td>E</td>
<td>65.83%</td>
<td>18.8</td>
<td></td>
</tr>
<tr>
<td>214</td>
<td>SR 24 WB</td>
<td>SR 30 to US 113</td>
<td>E</td>
<td>64.62%</td>
<td>11.8</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>DuPont Hwy NB</td>
<td>SR 273 to SR 141</td>
<td>E</td>
<td>64.41%</td>
<td>17.8</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>SR 54 WB</td>
<td>SR 17 to US 113</td>
<td>E</td>
<td>63.41%</td>
<td>9.9</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>404/US 13 WB</td>
<td>US 13/404 E Split to US 13/404 W Split</td>
<td>E</td>
<td>60.34%</td>
<td>20.8</td>
<td></td>
</tr>
<tr>
<td>266</td>
<td>SR 54 WB</td>
<td>SR 26 Merge to MD 353 Split</td>
<td>D</td>
<td>52.97%</td>
<td>16.5</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>DuPont Hwy SB</td>
<td>SR 141 to SR 273</td>
<td>D</td>
<td>51.34%</td>
<td>27.2</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>DuPont Hwy NB</td>
<td>SR 896 to C&amp;D Canal</td>
<td>D</td>
<td>50.84%</td>
<td>28.8</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>DuPont Hwy NB</td>
<td>SR 1 (to exit 114) to SR 6E (Commerce St)</td>
<td>D</td>
<td>48.97%</td>
<td>35.2</td>
<td></td>
</tr>
<tr>
<td>283</td>
<td>I-95 NB</td>
<td>Exit 3 (SR 273) to Exit 4 (SR 1)</td>
<td>D</td>
<td>46.95%</td>
<td>29.2</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>DuPont Hwy NB</td>
<td>US 40 to SR 273</td>
<td>D</td>
<td>46.67%</td>
<td>26.7</td>
<td></td>
</tr>
<tr>
<td>262</td>
<td>SR 54 WB</td>
<td>US 13 to Waller Road</td>
<td>D</td>
<td>46.12%</td>
<td>17.0</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>DuPont Hwy NB</td>
<td>SR 273 to SR 141</td>
<td>D</td>
<td>45.53%</td>
<td>27.2</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>US 113 SB</td>
<td>SR 1 Merge to SR 14</td>
<td>D</td>
<td>45.19%</td>
<td>24.7</td>
<td></td>
</tr>
<tr>
<td>279</td>
<td>I-95 SB</td>
<td>Exit 5 (SR 141/I-295 JCT) to I-495 JCT</td>
<td>D</td>
<td>45.18%</td>
<td>30.2</td>
<td></td>
</tr>
</tbody>
</table>
Appendix C:

Summer Coverage:

The following GIS drawing displays in red all the routes that are covered by the Summer 2006 GPS data collection.
Appendix D:

Mean Peak Travel Speed:

The following GIS drawing displays the mean peak travel time in miles per hour in both directions for every segment of the Summer 2006 GPS data collection.

Methodology:

The mean peak travel speed for every segment is calculated by averaging the total time required to travel the length of each segment of all runs (mean peak travel time), and dividing the segment length by that time.

Equations:

\[
MeanPeakTravelTime = \frac{\sum_{i=1}^{n} TotalTravelTime_{-Run(x)}}{n}
\]

\[
MeanPeakTravelSpeed = \frac{SegmentDistance(Miles)}{MeanPeakTravelTime(Seconds)} * \frac{3600 seconds}{1 hour}
\]
Appendix E:

Mean Peak Delay:

The following GIS drawing displays the average delay along each segment in both directions for every segment of the Summer 2006 GPS data collection.

Methodology:

Average delay is calculated by adding together the delay measured in each run and dividing the total by the number of runs. The result is displayed in seconds of delay.

Equations:

\[
\text{AverageDelay(\text{seconds})} = \frac{\sum_{i=1}^{n} \text{Delay(\text{seconds})}_\text{run(x)}}{n}
\]
Appendix F:

Posted Speed vs. Average Speed Difference:

The following GIS drawing displays the percent difference between the posted speed and the average speed for every segment of the Summer 2006 GPS data collection.

**Methodology:**

The percent difference between the posted speed and the average speed is calculated by subtracting the average speed of all runs from the posted speed and dividing the difference by the posted speed. This is done for all segments.

**Equations:**

\[
\text{AverageSpeed}_{\text{run}} = \frac{\sum_{x=1}^{n} \text{AverageSpeed}_{\text{run}}(x)}{n}
\]

\[
\text{Posted & AverageSpeedDiff} \% = \frac{(\text{PostedSpeed} - \text{AverageSpeed})}{\text{PostedSpeed}} \times 100\%
\]
Appendix G:

Level of Service 2005:

The following GIS drawing displays the calculated level of service for each direction of all segments for every segment of the Summer 2005 GPS data collection.

Methodology:

Using the percent difference between the posted speed and average speed, the level of service is calculated. By first identifying segments that are interstates or interstate/freeways and roads that are arterials in 2005, the following tables are used to classify the appropriate level of service.

Percentage of speed below the posted speed limit:

For Interstate or Interstate/Freeways:  Arterials:

LOS A: 0-14%        LOS A: 0-10%
LOS B: 14-18%       LOS B: 10-30%
LOS C: 18-20%       LOS C: 30-45%
LOS D: 20-30%       LOS D: 45-60%
LOS E: 30-50%       LOS E: 60-70%
LOS F: 50% +        LOS F: 70% +
Appendix H:

Level of Service 2006:

The following GIS drawing displays the calculated level of service for each direction of all segments for every segment of the Summer 2006 GPS data collection.

Methodology:

Using the percent difference between the posted speed and average speed, the level of service is calculated. By first identifying segments that are interstates or interstate/freeways and roads that are arterials in 2006, the following tables are used to classify the appropriate level of service.

Percentage of speed below the posted speed limit:

For Interstate or Interstate/Freeways:  
- LOS A: 0-14%
- LOS B: 14-18%
- LOS C: 18-20%
- LOS D: 20-30%
- LOS E: 30-50%
- LOS F: 50% +

For Arterials:
- LOS A: 0-10%
- LOS B: 10-30%
- LOS C: 30-45%
- LOS D: 45-60%
- LOS E: 60-70%
- LOS F: 70% +
Appendix I:

Peak Travel Time Data – Summer 2006

The following table is the averaged data for all segments analyzed during the summer 2006 GPS data collection. The table includes the route number, route name, segment direction, segment distance, mean peak travel time, mean peak travel speed, total delay, peak delay source, mean peak running speed, percent time in delay, number of lanes and the posted speeds.
Delaware Center for Transportation
University of Delaware
Newark, Delaware 19716

AN EQUAL OPPORTUNITY/AFFIRMATIVE ACTION EMPLOYER
The University of Delaware is committed to assuring equal opportunity to all persons and does not discriminate on the basis of race, creed, color, gender, age, religion, national origin, veteran or handicapped status, or sexual orientation in its educational programs, activities, admissions or employment practices as required by Title IX of the Educational Amendments of 1972, Section 504 of the Rehabilitation Act of 1973, Title VII of the Civil Rights Act of 1964, and other applicable statutes. Inquiries concerning Section 504 compliance and information regarding campus accessibility should be referred to the Americans with Disabilities Act (ADA) Coordinator, 831-4643, located at 413 Academy Street. Inquiries concerning Title VII and Title IX should be referred to the Office of the Assistant Vice President for Affirmative Action, 831-8735, located at 124 Hullihen Hall.