**Background**
Features are rapidly integrated in RSVP photo streams $\approx 100$ ms/pic.
- Objects and scenes are readily understood
  
  
  - (Potter, 1976; Thorpe et al., 1996).
  - Descriptions suggest that features of the picture cohere
    
  
- Temporal Migration: unrelated object (frame) on one picture (target).
  
  
  - $50\%$ of trials, participants reported it around the wrong picture
    - usually the $-1$ or $+1$ picture (Intraub, 1985; 1989).
- Results suggested this was not due to the target being masked, or to spatial separation between target and frame.
- Most important: RT to detect the frame was 26 ms faster when the frame "migrated" to the $-1$ than the $+1$ picture (Intraub, 1989).

**Method**
**Stimulus Selection**
- Pictures with Visual Duration Thresholds (VDTs: Intraub, 1979) $< 50$ ms used.
- Pictures analyzed with k-means clustering (Altman & Krzywinski, 2017) to obtain best matched (most representative) color and a mismatched color to create frames.
- Stimuli: 24 pictures, encompassing a full color range.

**Design and Procedure**

**Experiment 1**
- Repeated-measures design ($n = 57$):
  - Matched trials: target presented with frame of best matched color.
  - Mismatched trials: target presented with frame of different color.
- 48 trials: 24 matched and 24 mismatched (randomly intermixed).
- Target picture in serial positions 2, 5, 8, and 11.
- Participants called out where they saw the frame and confidence score.

**Experiment 2**
- Would Exp 1 color effect strengthen at a faster rate (more impoverished input) or at a slower rate (more time to integrate all features)?
- 96 trials, in 2 blocks of 48: one at $83$ ms (fast) and one at $117$ ms (slow), otherwise, same design ($n = 64$).

**Results**

**Experiment 1**

**Color-Me Matched: Temporal Migration of Visual Components**

Harrison Adler & Helene Intraub
Department of Psychological and Brain Sciences, University of Delaware, Newark DE

- Repeated: Stimuli: 24 pictures, encompassing a full color range.
- Temporal Migration: unrelated object (frame) on one picture (target).
- $50\%$ of trials, participants reported it around the wrong picture - usually the $-1$ or $+1$ picture (Intraub, 1985; 1989).
- Results suggested this was not due to the target being masked, or to spatial separation between target and frame.
- Most important: RT to detect the frame was 26 ms faster when the frame "migrated" to the $-1$ than the $+1$ picture (Intraub, 1989).

 Might integration of target/frame be facilitated by shared CSTM (Potter, 1976)?