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Abstract This article puts forward a framework for assessing the optimal refinancing
strategy in continuous time when the interest rate is stochastic and follows a Vasicek
model. The optimal refinancing time is obtained by minimizing the conditional expec-
tation of the discounted total payment. Amoment generating function is used to derive
a closed-form approximation to the refinancing function with infinite maturity under
the Vasicek model. The approximation is studied both analytically and numerically.
The results indicate three different types of behaviour in the refinancing function,
depending on the underlying parameters in the model. Two types indicate optimal
refinancing in finite time. We outline a strategy by which a borrower can continually
evaluatewhether to refinance. By providing a systematicway to evaluate the likelihood
of refinancing, these results should be of interest to those trading mortgage-backed
securities.
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1 Introduction

A fixed-rate mortgage contract is a financial product that requires the contract holder
(the mortgage borrower) to make a periodic repayment of the loan to the contract
issuer (the mortgage lender) until the end of the contract. Matching the payment of
principal and interest method is a widely used scheme, i.e., the borrower regularly
makes the same amount of repayment before its maturity.

The residential mortgage market has seen a slow recovery since the 2008 financial
crisis and the recent low level of mortgage rates has caused mortgage borrowers’ great
interest in seeking refinancing opportunities. For instance, the borrower can prepay
the outstanding balance to terminate the existing mortgage contract by entering a
new mortgage contract with a lower mortgage rate based on the current spot rate.
Consequently, the total interest payment is reduced.

However, refinancing costs (attorney, document, title fees, etc.) and transaction
costs are considerably large. Frequent refinancing can quickly cancel out the potential
gain. In this work, we concentrate on the optimal refinancing problem where only one
refinancing opportunity is allowed under the stochastic interest rate environment. One
then can relax this restriction and allow more than one refinancing through suitable
generalizations of the model.

In a deterministic interest rate environment, it is always optimal to refinance the
mortgage whenever the value of gain from refinancing is positive (Siegel 1984). How-
ever, in the stochastic interest rate environment, a potential benefit may exist if one
waits for the rate to decline further. In order to see how the stochastic factor influences
the optimal refinancing time, we assume no refinancing costs, transaction costs or
prepayment penalty.

The one-opportunity no-cost refinancing problem can be considered as an optimal
early exercise decision for American options, in which a possible solution is known
as the option-based approach. That is, given a lower prevailing mortgage rate, at any
time one can exercise the option to refinance the mortgage debt. Kalotay et al. (2004)
worked backwards through the lattice interest rate model and compared the value
with no refinancing and the value of a newly refinanced mortgage. Stanton (1995),
Dunn and Spatt (1999) and Longstaff (2004) studied discrete-timemodels with a finite
horizon that allowed computation of the endogenous values of the fixed ratemortgages.
Agarwal et al. (2002) and Agarwal et al. (2013) considered minimizing the net present
value of the interest payments with fixed discount rate. Chen and Ling (1989) built a
backward-solvingmodel and calculated theminimumdifferential between the contract
rate and the current interest rates under the stochastic environment. Gan et al. (2012)
focused on using Monte Carlo simulation in finding a desirable refinancing time that
minimizes the total payment under the stochastic interest rate of the Vasicek model.
Such a simulation approach has been recently extended by Xie et al. (2017) to solve
for the two-dimensional refinancing problem.
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In this paper, we provide analytical modeling for refinancing decisions from amort-
gage borrower’s point of view and construct the mortgage repayment and refinancing
in a continuous-time setting. We use a Vasicek model for the stochastic interest rate
due to its analytical tractability and statistical flexibility; however, this framework can
be extended to other affine models. We then derive a closed form of the net present
value (NPV) function, and define the optimal refinancing time to be the time at which
its expected value is minimized. By introducing the simplifications of an infinite-time
horizon of the mortgage and the Vasicek interest rate model, we obtain an expression
which can be studied both numerically and analytically. We shall verify that these
simplifying assumptions do not materially affect the results of our model. Our results
demonstrate three separate behaviours, depending on the parameters in the model.
Two indicate optimal refinancing in finite time.

Our analytical results illustrate parameter regimes where decisions can be made
simply, and others where numerical calculations must be made. We outline a strategy
whereby a borrower can continually incorporate new data into the calculations to
determine whether or not to refinance.

The paper proceeds as follows. Section 2 contains a few assumptions and nota-
tions of the optimal mortgage refinancing. Section 3 gives a general solution to the
refinancing problem, an outline of the refinancing strategy, and a closed form of the
approximation to the refinancing function with infinite maturity under the Vasicek
model. Section 4 presents the results of numerical simulations illustrating the effect of
parameters in the Vasicek model on the refinancing decision. An analytical discussion
of our results is given in Sect. 5, and we conclude in Sect. 6. The Appendix presents
simulation results that verify that the Vasicek model is appropriate for our system.

2 Model Setup

To model the mortgage refinancing problem and find the optimal refinancing time that
benefits the borrower most, we make the following assumptions:

1. The contract follows the repayment of principal and interest method; that is, a
fixed amount m1 is paid continuously at the beginning of the contract, based on
the initial mortgage rate. This payment stream will repay both the principal and
any interest due by the end of the contract period.

2. We assume a fixed positive difference κ between the rate of the newly-issued
mortgage contract ct and the current risk-free interest rate rt .

3. Oneopportunity of adjustment to the payment is under consideration.Theborrower
desires an optimal refinancing strategy that minimizes the expectation of the net
present value of the future payment.

4. The one-opportunity refinancing does not involve transaction cost, refinancing
cost, taxation, prepayment, or default risk.

Notation

rt Stochastic risk-free interest rate at time t , measured in terms of percentage per
year.

ct Stochastic mortgage rate at time t , i.e., c0 is the initial mortgage rate.
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κ A fixed positive difference between the rate of the newly-issued mortgage con-
tract ct and the current risk-free interest rate rt , i.e., ct = κ + rt .

p0 Initial principal of the mortgage.
m1 Fixed amount paid continuously for the initial contract with the mortgage rate

c0.
m2 Fixed amount paid continuously after refinancing.
T Mortgage maturity date.
P(t) Principal balance at time t ; the initial principal is P(0) = p0 and P(T ) = 0.
t∗ Potential optimal refinancing time.

The model is defined in the probability space (Ω,F , (Ft )t≥0,Q), where (Ft )t≥0
represents the information flow of the market and Q is the risk-neutral probability
measure. For the purposes of this manuscript, the interest rate {rt , t ≥ 0} follows a
Vasicek model with initial value r0, i.e.,

drt = α(μ − rt ) dt + σ dWt , α > 0, μ > 0, σ > 0, (1)

where {Wt , t ≥ 0} is a Wiener process under the measure Q. It is possible for interest
rates to become negative under such a model; we shall address that shortcoming in
more detail below. Moreover, we note that the types of analysis we present will still
apply for general affine interest rate models for which unique solutions exist.

3 Mortgage Refinancing

The value of the mortgage payment satisfies the ordinary differential equation (ODE):

dP(t) = −m1 dt + c0P(t) dt, t ∈ [0, t∗],
P(0) = p0,

so its solution is

P(t) = m1

c0

[
1 − e−c0(T−t)

]
, m1 = c0 p0

1 − e−c0T
. (2)

Herem1 has been chosen so that P(T ) = 0. Suppose at time t∗, the adjusted mortgage
payment gives the following ODE:

dP(t) = −m2 dt + ct∗ P(t) dt, t ∈ [t∗, T ],
P(t∗) = m1

c0

[
1 − e−c0(T−t∗)

]
,

(3)

where the second condition ensures continuity with (2) at t = t∗. Note that instead
we could have imposed P(t∗+) = P(t∗−) + C , where C would represent one-time
refinancing costs.
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The solution of (3) is given by

P(t) = m2

ct∗

[
1 − e−ct∗ (T−t)

]
, t ∈ [t∗, T ],

m2(ct∗ , t
∗) = ct∗ P(t∗)

1 − e−ct∗ (T−t∗) ,
(4)

wherem2 has been chosen to ensure that P(T ) = 0. The intrinsic value of the refinanc-
ing is defined as the extra benefit to the mortgage borrower due to the “refinancing
option”—that is, the difference between the value in holding the contract until its
maturity and the value of the mortgage that refinancing is occurred. Our objective is
to obtain the time t∗ that maximizes this difference. Since the value of the contract is
a constant given at the beginning of the contract, our objective is equivalent to mini-
mizing the value of the adjusted total payments, which is the sum of the net present
value of the continuous cash flows before and after the refinancing decision, i.e.,

v(t∗) =
∫ t∗

0
m1e

− ∫ t
0 rs ds dt +

∫ T

t∗
m2(ct∗ , t

∗)e− ∫ t
0 rs ds dt

= m1

∫ t∗

0
e− ∫ t

0 rs ds dt

+ m1

c0

(
1 − e−c0(T−t∗)

) ∫ T

t∗
ct∗

1 − e−ct∗ (T−t∗) e
− ∫ t

0 rs ds dt, (5)

where we have used (4). The above equation implies that two factors influence v(t∗):
the refinancing time and the refinancing mortgage rate. The dependence of the two
factors and the randomness of the interest rate increase the difficulties in solving for
the minimum value of v(t∗).

Our approach is to firstly eliminate the randomness of the interest rate by taking the
conditional expectation of v(t∗) given r0 and then to look for the optimal refinancing
time t∗, denoted as t∗∗, that leads to the minimum values of E[v(t∗)|r0], i.e.,

t∗∗ = arg min
t∗∈[0,T ]E[v(t∗)|r0]. (6)

From the borrowers’ perspective, the optimization strategy proceeds as follows. At
any time (which can be shifted to correspond to t = 0), the borrower uses information
from the behaviour of the interest rates for previous times to estimate the parameters
α, μ, and σ in the Vasicek model (1). Then the borrower will calculate t∗∗ using (6).

If t∗∗ = 0, the borrower refinances immediately. If t∗∗ �= 0, the borrower does
not refinance, and continues to gather information about interest rates to refine the
estimates of the parameters. This iterative process continues iteratively until t∗∗ = 0.
Hence the situation can be interpreted as a stopping-time problem.

In the discrete-time case, the problem of calculating t∗∗ can be solved by Monte
Carlo simulation (see Gan et al. 2012). However, in continuous time, difficulties in
solving (6) arise due to the complex form of the second term on the right hand side
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of (5). In the following section, we simplify the problem by assuming an infinite time
horizon for the mortgage contract.

3.1 Mortgage Refinancing with Infinite Time Horizon

In order to justify using the infinite time horizon approximation, we must estimate
the errors we make in introducing it. Letting T → ∞ while assuming t∗ < ∞ and
E[et∗ ] < ∞, we may make the following replacements (with the listed errors):

m1 → c0 p0 + O(e−c0T ),

1 − e−c0(T−t∗) → 1 + O(e−c0T ),

1 − e−ct∗ (T−t∗) → 1 + O(e−ct∗T ). (7)

Letting Xt = ∫ t
0 rs ds and substituting the above into (5), we obtain

v(t∗) = c0 p0

∫ t∗

0
e−Xt dt + p0

∫ ∞

t∗
ct∗e

−Xt dt − p0

∫ ∞

T
ct∗e

−Xt dt, (8)

where we have broken the second integral in (5) into two pieces to isolate the one
remaining error involved in the approximation.

To bound the last integral above, let

rmin = inf
t∈[0,∞)

rt , cmax = sup
t∈[0,∞)

ct .

Then we have

∫ ∞

T
ct∗e

−Xt dt ≤
∫ ∞

T
cmaxe

−rmint dt = cmax

rmin
e−rminT .

Therefore, ignoring the final integral in (8) introduces an O(e−rminT ) error, which
is larger than the errors in (7) by the definition of ct . But this error becomes tran-
scendentally small as T increases, and so our infinite time horizon approximation is
reasonable. Moreover, we shall show in Sect. 4 that changing the value of T does not
affect the overall shape of the graph. In particular, varying T does not change the sign
of F ′(0), which is the key parameter the borrower uses when estimating t∗∗ and hence
deciding whether or not to refinance.

Therefore, it is safe to omit the last integral in (8) to yield

v(t∗) = c0 p0

∫ t∗

0
e−Xt dt + p0

∫ ∞

t∗
rt∗e

−Xt dt + κp0

∫ ∞

t∗
e−Xt dt, (9)

where we have used the fact that ct∗ = rt∗ +κ . Note that (9) is similar to the expression
for a perpetuity, an annuity for which the payments continue forever. That is, the
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amount of the periodic payment equals the present value of the perpetuity multiplied
by the interest rate.

Under the stochastic processes r and X , the conditional expectation of v(t∗) given
r0 is

E[v(t∗)|r0] = c0 p0E

[∫ t∗

0
e−Xt dt

∣∣∣∣∣ r0
]

+ p0E

[∫ ∞

t∗
rt∗e

−Xt dt

∣∣∣∣ r0
]

+ κp0E

[∫ ∞

t∗
e−Xt dt

∣∣∣∣ r0
]

. (10)

As expected, v(t∗) is proportional to the initial principal p0, and hence we can scale
by p0 and minimize the normalized refinancing function F(t∗) instead:

F(t∗) = c0E

[∫ t∗

0
e−Xt dt

∣∣∣∣∣ r0
]

+ E

[∫ ∞

t∗
rt∗e

−Xt dt

∣∣∣∣ r0
]

+ κE

[∫ ∞

t∗
e−Xt dt

∣∣∣∣ r0
]

= c0

∫ t∗

0
E

[
e−Xt |r0

]
dt +

∫ ∞

t∗
E[rt∗e−Xt |r0] dt + κ

∫ ∞

t∗
E

[
e−Xt |r0

]
dt,

(11)

where the last equality holds by Fubini’s Theorem (Klebaner 2012, p. 53).
To minimize F(t∗), we must compute E

[
e−Xt |r0

]
and E[rt∗e−Xt |r0], which can

be done by Laplace transforms (Bladt and Nielsen 2010). After the elimination of
the random factor, one can find the optimal refinancing time by calculating F(t∗) for
t∗ ∈ [0,+∞).

For later algebraic convenience, we define the following expression:

I (λ) = E
[
e−Xt+λrt∗ |r0

]
. (12)

Substituting (12) into (11), we obtain

F(t∗) = c0

∫ t∗

0
I (0) dt +

∫ ∞

t∗
I ′(0) dt + κ

∫ ∞

t∗
I (0) dt. (13)

3.1.1 Vasicek Model

Some of our results vitally depend on the Vasicek model, which as noted above, can
yield negative interest rates. Obviously, this is a significant problem from the practical
standpoint, if it is likely to occur. Nevertheless, the Vasicek model is commonly used
for interest rates (Vasicek 1977; Cairns 2004) due to the fact that the probability of
negative r is very small as a result of the short time scale and the low volatility σ (we
verify exactly how small for our particular problem in the Appendix).
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The solution of Eq. (1) is

rt = μ + (r0 − μ)e−αt + σ

∫ t

0
e−α(t−s) dWs .

With this result, it can be shown that Xt = ∫ t
0 rs ds, the variable of interest in our

analysis, is given by

Xt =
∫ t

0
rs ds = μt + (r0 − μ)

1 − e−αt

α
+

∫ t

0
σ

∫ s

0
e−α(s−r) dWr ds. (14)

Letμ1(t∗) andμ2(t) be the conditional expectations of rt∗ and Xt given r0, respec-
tively. They have the forms

μ1(t
∗) = E[rt∗ |r0] = μ + (r0 − μ)e−αt∗ , (15)

μ2(t) = E[Xt |r0] = μt + (r0 − μ)
1 − e−αt

α
. (16)

Correspondingly, let σ 2
1 (t∗) and σ 2

2 (t) be the variances of rt∗ and Xt , and
Cov[rt∗ , Xt |r0] be the covariance of rt∗ and Xt . Using It ô’s Isometry, we have

σ 2
1 (t∗) = σ 2 1 − e−2αt∗

2α
,

σ 2
2 (t) = σ 2

α2

[
t − 2(1 − e−αt )

α
+ 1 − e−2αt

2α

]
,

Cov[rt∗ , Xt |r0] = σ 2

α

[
1 − e−αt∗

α
− e−α(t−t∗)(1 − e−2αt∗)

2α

]
. (17)

3.1.2 The Closed Form of the Refinancing Function

In this subsection, the aim is to compute I (λ) = E
[
e−Xt+λrt∗ |r0

]
and then the refi-

nancing function F(t∗). We require the following lemma (Wackerly et al. 2007):

Lemma 3.1 Given a random vector X ∈ Rn that follows an n-variate normal dis-
tribution, i.e., X ∼Nn(μ,Σ), and a vector of real numbers t = (t1, t2, · · · , tn)′, the
moment generating function of X is given by

MX(t) = et
′μ+ 1

2 t
′Σt.

Note that for a fixed t , rt and Xt are normally distributed and (rt , Xt ) is a bivariate
normal distribution. Let t = (− 1, λ)T and compute the moment generating functions
for the bivariate vector (Xt , rt ). By Lemma 3.1, we get

I (λ) = E
[
e−Xt+λrt∗ |r0

]
= e−μ2(t)+σ 2

2 (t)/2+λμ1(t∗)+λ2σ 2
1 (t∗)/2−λCov[rt∗ ,Xt |r0]. (18)
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Using this expression in (13), we have the exact expression

F(t∗) = c0

∫ t∗

0
e−μ2(t)+σ 2

2 (t)/2 dt

+
∫ ∞

t∗

{
μ1(t

∗) − Cov[rt∗, Xt |r0]
}
e−μ2(t)+σ 2

2 (t)/2 dt

+ κ

∫ ∞

t∗
e−μ2(t)+σ 2

2 (t)/2 dt. (19)

Our objective is to find the t∗ that minimizes the function F(t∗), which can be done
using MATLAB. However, we should choose the right parameters that guarantee the
convergence of the refinancing function F(t∗). The following claim indicates the
condition for the convergence of the function F(t∗).

Lemma 3.2 For any t∗ ∈ [0,∞), F(t∗) as defined in Eq. (19) converges if and only
if

σ 2 < 2α2μ.

Proof As the exponential is bounded for all finite t , the first term in (19) is bounded.
The remaining two terms converge if the exponents of the integrands go to −∞ as
t → ∞. For large t , we have

− μ2(t) + 1

2
σ 2
2 (t) ∼

(
−μ + σ 2

2α2

)
t = (σ 2 − 2α2μ)t

2α2 . (20)

Hence F(t∗) converges if and only if the numerator of (20) is negative, which occurs
when σ 2 < 2α2μ. ��

We now compute an actual value using the following theorem:

Theorem 3.3 Given σ 2 < 2α2μ,

lim
t∗→+∞ F(t∗) = c0

α
eA1−A2

2/4A3G1(1),

where

G1(x) =
∫ x

0
u

−
(
A
α

+1
)
e
A3

(
u+ A2

2A3

)2
du,

A = −μ + σ 2

2α2 ,

A1 = −
(
r0 − μ + 3σ 2

4α2

)
1

α
,
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A2 = 1

α

(
σ 2

α2 + r0 − μ

)
,

A3 = − σ 2

4α3 .

Proof Since σ 2 < 2α2μ, the integrands in (19) are well-behaved and hence we have
that

F(∞) = c0

∫ ∞

0
e−μ2(t)+σ 2

2 (t)/2 dt. (21)

Fully expanding the exponent in the above, we obtain

−μ2(t) + 1

2
σ 2
2 (t) = −

(
r0 − μ + 3σ 2

4α2

)
1

α
+

(
σ 2

2α2 − μ

)
t

+ 1

α

(
σ 2

α2 + r0 − μ

)
e−αt − σ 2

4α3 e
−2αt

= A1 + At + A2e
−αt + A3e

−2αt . (22)

We change variables by letting u = e−αt , which gives

∫ ∞

0
e−μ2(t)+ 1

2 σ 2
2 (t) dt = 1

α
eA1−A2

2/(4A3)

∫ 1

0
u−( A

α
+1)e

A3(u+ A2
2A3

)2
du

= 1

α
eA1−A2

2/(4A3)G1(1).

Wenote that the integrand ofG1(x) has a singularity at the origin.Hence the integral
converges when 1 + A/α < 1, which is equivalent to σ 2 < 2α2μ. ��

Before presenting our numerical results, we note that

F(0) =
∫ ∞

0
{μ1(0) − Cov[r0, Xt |r0]} e−μ2(t)+σ 2

2 (t)/2 dt

+ κ

∫ ∞

0
e−μ2(t)+σ 2

2 (t)/2 dt

= (r0 + κ)

∫ ∞

0
e−μ2(t)+σ 2

2 (t)/2 dt = F(∞), (23)

where we have used (21). The fact that F(0) = F(∞) is just a restatement of the
no-arbitrage principle: the expected NPV of the contract at the beginning and end of
the contract must be the same. Otherwise, one could initially make a risk-free profit
by buying or selling the contract.
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Table 1 Values of the
parameters for the refinancing
function F(t∗)

Parameters c0 κ r0 α μ σ

Values 0.035 0.005 0.03 0.1 0.06 0.03

0 5 10 15 20 25 30
0

0.5

1

1.5

2

Fig. 1 Convergence of numerical results for various values of T

4 Numerical Results

There are five independent parameters in the refinancing function (19), namely κ , α,
μ, σ , r0, playing important roles in shaping the curve y = F(t∗). Initially, we give
each parameter a value shown in Table 1.

We begin by verifying the assumption of the infinite time horizon in Sect. 3.1.
Figure 1 shows how the behaviour of F(t) varies for the parameters in Table 1 and
various values of T . We see that for relatively large values of T , F(t) converges to
the behaviour when T → ∞. Moreover, even for smaller values of T , the behaviour
of the graph most relevant to the borrower [i.e., the sign of F ′(0), which determines
whether the borrower should immediately refinance] remains the same.

Depending on the choice of the values of the parameters, the shapes of the curve can
be very different. Our experiments show that there are basically three types of shapes
for y = F(t∗). Listed below are the descriptions of each type together with a typical
set of parameters that will yield the specific shape. These typical sets of parameters
and the corresponding plots of y = F(t∗) are illustrated in Fig. 2. Note that in contrast
to the other figures in this manuscript, we use an extremely long time horizon for this
graph to illustrate the asymptotic behaviour.

1. The curve declines quickly at the beginning and reaches the lowest point in a
short time. After a concave increase for a considerable period, the upward trend
slows down and the curve asymptotes to an upper bound. Thus, there is an optimal
refinancing time, but it is in the future, so the borrower should wait to refinance.
Note from the curves that despite the infinite-time horizon for the problem, the
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0 50 100 150 200 250 300
0

0.5

1

1.5

2

Type 1
Type 2
Type 3
US 15-year Rate Case

Fig. 2 Three types of the curve for the refinancing function F(t∗), alongwith data using historicalmortgage
rate data

optimal refinancing time is well within the duration of a 15- or 30-year mortgage.
An example set of parameters of this type is r0 = 0.03, σ = 0.03, α = 0.1, μ =
0.06, κ = 0.005.

2. The curve increases quickly at the beginning and reaches the highest point in a short
time. After a convex increase for a considerable period, the downward trend slows
down and the curve asymptotes to a lower bound. Thus, the optimal refinancing
time is now, and the borrower should refinance immediately. An example set of
parameters of this type is r0 = 0.03, σ = 0.003, α = 0.1, μ = 0.06, κ = 0.005.

3. The curve increases quickly at the beginning, reaching amaximum before decreas-
ing below the long-term asymptote. Then the curve reaches a minimum before
increasing with lower speed until the curve asymptotes to an upper bound. Thus,
there is a finite optimal refinancing time. An example set of parameters of this
type is r0 = 0.03, σ = 0.003, α = 0.001, μ = 0.06, κ = 0.005. The variance
in this case is quite small, and is barely noticeable in Fig. 2. With this choice of
parameters, the optimal refinancing time is around t∗ = 70, which is outside the
realm of a typical contract. Therefore, in this case the borrower should refinance
immediately at the local minimum t∗ = 0. However, one could imagine other
parameter sets that would drive the optimal refinancing time smaller.

In order to see the effects of the recent interest rate environment, we examined
monthly data on 15-year fixed mortgage rates in monthly basis from Freddie Mac
(2016) for the period from Jan. 1992 to Feb. 2016. Using maximum likelihood cali-
bration, we found the parameters in the Vasicek model to beμ = 0.0241, σ = 0.0066,
and α = 0.0641. Hence the current interest rate environment yields Type 1 behaviour,
as seen in Fig. 2.

In order to see how the optimal refinancing time changes with respect to the param-
eters, we run the algorithm using the values in Table 1 as an initial reference, changing
the value of one parameter while fixing the value of others. Table 2 provides the
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Table 2 Curve type with
different parameters

α = 0.1 α = 0.1 σ = 0.03
μ σ = 0.03 σ μ = 0.06 α μ = 0.06

0.05 Type 1 0.001 Type 2 0.1 Type 1

0.07 Type 1 0.01 Type 2 0.15 Type 1

0.09 Type 1 0.015 Type 2 0.2 Type 2

0.11 Type 2 0.02 Type 3 0.25 Type 2

0.13 Type 2 0.025 Type 1 0.3 Type 2

0.15 Type 2 0.03 Type 1 0.35 Type 2

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Fig. 3 Curves for y = F(t∗) with different initial rates r0 and so c0

comparison of optimal refinancing times as one of the key parameters changes sys-
tematically.

In Fig. 3, we plot the influence of r0 on the shape of y = F(t∗). We note that with
the parameters chosen, if the curve is of Type 1, it stays of the same type for any choice
of r0. Figure 4 shows the influence of κ on the shape of y = F(t∗): e.g., if the curve
is of Type 1, it stays of the same type for any choice of κ . Note that as κ decreases,
the optimal refinancing time slightly decreases. This makes financial sense, since with
r0 < μ (as in the graph), we would expect to refinance more quickly when we pay a
smaller interest rate premium.

In contrast, the parameters α, μ and σ play more significant roles. In Fig. 5, we see
that by increasing the value of μ from 0.05 to 0.15, the shape of the curve changes
from Type 1 to Type 2 and so the optimal time for refinancing shifts from some time
in the future to now. This makes financial sense, since for fixed r0, increasingμmakes
immediate refinancing more attractive, since it is unlikely that rates will remain as low
as r0 in the future.

We see similar behaviour in Fig. 6 when we decrease σ from 0.03 to 0.001. When
r0 < μ (as shown in Table 1), a smaller variance indicates that it is less likely for rates
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Fig. 4 Curves for y = F(t∗) with different κ and so c0
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=0.15

Fig. 5 Curves for y = F(t∗) with different long term rates μ

to remain as low as r0 in the future; it is more likely that they will remain in a tight
band around μ. Hence it is more favourable to refinance immediately, and the graphs
with lower σ show this Type 2 behaviour. Note that σ = 0.02 corresponds to the Type
3 case, which is a transitional case between Types 1 and 2.

In Fig. 7 we see that when we increase α from 0.1 to 0.35, we also transition from
Type 1 (delay) behaviour to Type 2 (refinance) behaviour. For r0 < μ, an increase in
α means that one would expect rates to rise more quickly to the mean μ. Hence it is
advantageous to refinance immediately, and the graphs with higher α show this Type
2 behaviour.
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Fig. 6 Curves for y = F(t∗) with different volatilities σ
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Fig. 7 Curves y = F(t∗) with different reverting rates α

Lastly, in Fig. 8 we show a graph indicating whether the borrower should refinance
immediately [i.e., whether F ′(0) > 0] for various values ofμ and σ . The graph shows
that for high μ and low σ , the borrower should refinance immediately, since it is
unlikely that rates will remain as low as their current state. Then there is a region with
lower μ and higher σ where the borrower should wait, since there is now a better
chance that rates will decrease even further in the future.

The vertical line in Fig. 8 corresponds to the fixed value of μ = 0.06 in Table
1; the curves in Fig. 6 correspond to values on this line. Similarly, curves in Fig. 5
correspond to values on the horizontal line.
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μ
0.05 0.1 0.15 0.2

σ

0

0.01

0.02

0.03

0.04

0.05

0.06

Fig. 8 Decision plot for various μ and σ . Dark region: borrower should wait to refinance. Light region:
borrower should refinance immediately. Crosshairs correspond to the parameter values in Figs. 5 and 6.
Solid curve: bound in (28). Dashed curve: bound in (36)

Note that the above analysis of parameter effects is based on the values given in
Table 1. For other values of parameters, one might expect to have slightly different
conclusions depending on the trend of the expected interest rates over time.

5 Analytical Results

In order to interpret our results from Sect. 4, we analyze the function F(t∗) for small
and large argument. Since F(0) = F(∞), the signs of F ′(0) and F ′(∞) will help
determine the shape of the graph. Calculating F ′(t∗) using Leibniz’s Rule, we obtain

F ′(t∗) = c0e
−μ2(t∗)+σ 2

2 (t∗)/2 − {
μ1(t

∗) − Cov[rt∗, Xt |r0]
}
t=t∗ e

−μ2(t∗)+σ 2
2 (t∗)/2

+
∫ ∞

t∗
∂

∂t∗
{
μ1(t

∗) − Cov[rt∗ , Xt |r0]
}
e−μ2(t)+σ 2

2 (t)/2 dt

− κe−μ2(t∗)+σ 2
2 (t∗)/2

= (1 − e−αt∗)

[
r0 − μ + σ 2(1 − e−αt∗)

2α2

]
e−μ2(t∗)+σ 2

2 (t∗)/2

+
∫ ∞

t∗

[
−αe−αt∗

(
r0 − μ + σ 2

α2

)
+ σ 2

α
e−αt cosh αt∗

]

× e−μ2(t)+σ 2
2 (t)/2 dt, (24)

where we have used (15) and (17). Note that F ′ is independent of κ; hence varying κ

will cause simply a translation in the graph, as discussed above.
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We may obtain explicit bounds for F ′(∞) by noting that

F ′(t∗) ∼
(
r0 − μ + σ 2

2α2

)
exp(At∗ + A1)

+ σ 2 cosh(αt∗)
α

∫ ∞

t∗
exp((A − α)t + A1) dt, t∗ → ∞,

where we have used (22). Continuing to simplify, we obtain

F ′(t∗) ∼
(
r0 − μ + σ 2

2α2 + σ 2α

2α2(α + μ) − σ 2

)
exp(A1t

∗ + A).

Sincewe are considering the casewhere F(∞) is finite, obviously the above expression
tends to 0 by the convergence proof. However, we see that the sign of F ′ for large t∗
is given by the sign of the parenthetical quantity. In particular:

if r0 > μ − σ 2

2α2 − σ 2α

2α2(α+μ) − σ 2 , the asymptote is an upper limit (cases 1 and 3),

(25)

if r0 < μ − σ 2

2α2 − σ 2α

2α2(α + μ) − σ 2 , the asymptote is a lower limit (case 2). (26)

We conclude by proving two results regarding F ′(0), which is the key value a
borrower considers when deciding whether to refinance immediately.

Theorem 5.1

If r0 > μ, F ′(0) < 0 and the buyer should delay refinancing. (27)

If r0 < μ − σ 2

α2 , F ′(0) > 0 and the buyer should refinance immediately.

(28)

From a financial perspective, if r0 > μ, the interest rate today is above the expected
long-term mean, so the borrower should delay refinancing. Since σ 2 < 2α2μ by the
convergence proof, we have that the bound in (28) is more restrictive than the bound
in (26). Hence we are in case 2. This makes financial sense, for if r0, the interest rate
today, is significantly less than μ, the expected long-term mean, the borrower should
refinance immediately. The boundary given by (28) is the solid curve in Fig. 8.

Proof Substituting t∗ = 0 into (24), we have

F ′(0) =
∫ ∞

0
K (r0)e

−μ2(t)+σ 2
2 (t)/2 dt, (29)

K (r0) = −α(r0 − μ) − σ 2

α
(1 − e−αt ). (30)
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The exponential in the integrand of F ′(0) is always positive. Hence if K (r0) has the
same sign for t > 0, that will also be the sign of F ′(0). The last term in (30) is always
negative, so if r0 > μ, then K (r0) < 0 and hence F ′(0) < 0.

Similarly,

r0 < μ − σ 2

α2 
⇒ K (r0) >
σ 2e−αt

α
> 0,

so F ′(0) > 0. ��
Note also that for some choice of parameters, the bound in (28) may be negative,

and hence case 2 never occurs. This is the situation that appears in Fig. 2. Essentially,
since the Vasicek model allows negative interest rates, our formulation can indicate
that under certain circumstances (given by the parameters in Table 1) one should
refinance only if r0 is negative. However, we note that the parameters obtained from
real-world data have a smaller ratio σ/α, and hence a positive bound.

Note that the bounds in (27) and (28) provide intervals where mortgage refinancing
decisions may be made easily, without calculating F . This then leaves the case

μ − σ 2

α2 < r0 < μ, (31)

where detailed computations must be made. By continuity we know that F ′(0) = 0
somewhere in this interval, and under certain conditions, we can establish that it is
unique:

Theorem 5.2 If σ 2 < α3, F ′(0) = 0 for exactly one r0 in the interval (31).

Proof We compute

∂F ′(0)
∂r0

=
∫ ∞

0
B(r0)e

−μ2(t)+σ 2
2 (t)/2 dt, (32)

B(r0) = −α +
[
α(r0 − μ) + σ 2

α
(1 − e−αt )

]
1 − e−αt

α
, (33)

where we have used (16). The exponential in the integrand of (32) is always positive.
Hence if B(r0) has the same sign for t > 0, that will also be the sign of ∂F ′(0)/∂r0.

We then check the sign of B at the two endpoints of our interval (31):

B

(
μ − σ 2

α2

)
= −α − σ 2e−αt (1 − e−αt )

α2 < 0, (34)

B(μ) = σ 2(1 − e−αt )2

α2 − α <
σ 2

α2 − α. (35)

Therefore, if σ 2 < α3, then B(μ) < 0. Since B ′(r0) = 1 − e−αt > 0, B(r0) < 0 for
r0 in the interval (31), as is ∂F ′(0)/∂r0. Thus F ′(0) is monotonic in (31), and its zero
is unique. ��
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Our numerical evidence leads us to believe that F ′(0) > 0 for

r0 < μ − σ 2

2α2 − σ 2α

2α2(α + μ) − σ 2 + ε, (36)

where ε is some positive number. The combination of F ′(0) > 0 and F ′(∞) > 0
leads to case 3. The boundary given by (36) (with ε = 0) is the dashed curve in Fig. 8.

6 Conclusions and Further Research

This paper aims to find the optimal refinancing time of a mortgage loan when the
mortgage interest rate in the market follows a stochastic model. We assume such a
stochastic model is mathematically tractable, in the form of a Vasicek model, for
instance. The net present value of the refinancing mortgage is formulated, i.e., Eq. (5).
Accordingly, a general approach is provided to obtain the optimal refinancing time that
gives the minimum value of the expected total net present payment for the mortgage
contract.

Several simplifying steps were employed to solve the complex form of Eq. (5).
First, we assume the mortgage contract has an infinite maturity, which leads to the
much simpler Eq. (11). We demonstrated that such an assumption introduces small
errors into the value of F(t∗). However, the sign of F ′(0) (which is the key fact needed
to determine whether to immediately refinance) does not change. A full analysis of
the finite time horizon is an interesting problem in its own right, and will form the
basis of further research.

Second, by taking the stochastic interest rates as following a Vasicek model, the
moment generating function can be used to derive a closed-form approximation to
the expected total net present payment for the mortgage. It is proven that to guarantee
the convergence of the refinancing function F(t∗), σ 2 must be less than 2α2μ. Hence
the values of the parameters should be checked to meet the condition of convergence
before applying the method provided in this paper for solving the optimal refinancing
problem.

Once the refinancing function had been computed, we performed numerical sim-
ulations to conclude that there are three types of curves for the refinancing function,
though only two involve refinancing at a finite time. Despite the fact that we are assum-
ing an infinite time horizon, the optimal refinancing time is often within the duration
of a standard mortgage contract.

The reverting rate α, the long-term rate μ and the volatility σ play significant
roles on shaping the refinancing curve and so the “optimal refinancing” time, while
the current interest rate, r0, and the difference between the current interest rate and
mortgage rate, κ , have little influence. These results were then verified with further
analytical work. This work showed parameter ranges where the refinancing decision
could be made without detailed calculations, and others where detailed calculations
are required.

Further researchwill build on the current work by relaxingmany of the assumptions
made in this manuscript. We have already discussed in Sect. 2 how a one-time refi-
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Fig. 9 Probability of positive rt for each of the three graph types in Fig. 2

nancing cost may be implemented. Multiple refinancing opportunities would involve
additional terms in the NPV function, but similar techniques to those used herein
should be able to provide insight. A more significant complication would be a non-
constant difference between the stochastic mortgage rates and the stochastic interest
rates, though variations in κ are typically slight. Asymptotic techniques could allow
further study of the equations for finite T .

A more considerable area of further research would be the use of a more realistic
model than the Vasicek one. As verified in the Appendix, in our problem the Vasicek
model yields positive interest rates with high probability. However, to guarantee pos-
itive interest rates, a more complicated model (for instance, CIR) must be used.

By defining the optimal refinancing time as that which minimizes the expected
value of the NPV function (5), we have established a theoretical definition that can
be analyzed in many different contexts. Using an infinite time horizon simplifies the
problem enough that it can be examined analytically, not just numerically. Thus the
work in this manuscript provides a firm foundation which can be expanded to handle
the other topics discussed above.

Appendix

As discussed above, the Vasicek model does have the drawback that it is possible for
rt to become negative. To gain additional faith in our analysis, we ran 1000 interest-
rate simulations using (1) and the parameters in Sect. 4. From those simuations, we
estimated the probability that rt would remain positive; the results are shown in Figs. 9,
10, 11, 12 and 13.

In Fig. 9, we see that only curves of Type 1 (optimal refinancing time in the future)
have a non-negligible chance of having negative interest rates. Even in this case,
however, over the life of a 30-year mortgage, the chance of having a negative interest
rate was less than 11%. As expected, in Fig. 10, we see that the probability of having
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Fig. 10 Probability of positive rt for the values of r0 in Fig. 3
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Fig. 11 Probability of positive rt for the values of μ in Fig. 5

a negative interest rate increases as the initial rate r0 decreases, with an extreme case
still having a probability of a positive interest rate greater than 85%.

In Fig. 11, we see that as expected, the larger the long-term rate μ, the higher the
probability of having a positive interest rate. However, since the transition to the long-
term rate begins with r0 = 0.03 < μ, the effect of varying μ is muted. Much clearer
are the results in Fig. 12, which show that higher levels of the variance lead to a higher
probability of the interest rate becoming negative. But again, such probabilities are
less than 15%.

In Fig. 13, we see that as the reversion rate α increases, the probability of having
a negative interest rate decreases, as wandering rates are more quickly diverted to the
(positive) long-term rate.
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Fig. 12 Probability of positive rt for the values of σ in Fig. 6
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Fig. 13 Probability of positive rt for the values of α in Fig. 7
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