The SAT Critical Reading scores in 2014 the US are normally distributed with mean $\mu_{\mathrm{Y}}=497$ and standard deviation $\sigma_{\mathrm{Y}}=115$.

1. 95% of the scores fall between?

Answer: We know that 95\% of the scores fall between -1.96 Z-score and +1.96 Zscore. So to answer this answer, we need to compute the SAT score corresponding to -1.96 Z-score and the SAT score to the +1.96 Z-score.
$\mathrm{Y}=\mu_{\mathrm{Y}}+\mathrm{Z}_{\mathrm{i}}{ }^{*} \sigma_{\mathrm{Y}}$, so the lower end is $497+(-1.96)^{*} 115=271.6$, and the upper end is $497+1.96 * 115=772.4$

So 95% of the scores fall between 271.6 and 772.4 .
2. What percent of students have a score higher than 612 ?

Answer: We need to compute the Z-score for 612 to know the percentage of students with a score higher than 612.
$Z_{612}=(612-497) / 115=1$.
There are two ways of getting the \% of students with a score higher than 612.
Option 1: Use the proportions under the normal curve. In the the normal curve figure provided, we can see that proportion higher than the Z-score of 1 is $0.1359+0.0214+0.0013=0.1586$, that is, 15.86%.

Option 1: Use the cumulative percentage under the normal curve. In the normal curve figure provided, we can see that the cumulative percentage for the Z-score of 1 is 84.1%, so the percentage for Z-scores larger than 1 is $1-84.1 \%=15.9 \%$.

