Statistical Learning in a Noisy Environment is Associated with Vocabulary

20

Reaction Time Slope (ms/trial)

-20

Violet Kozloff¹, An Nguyen¹, Joanne Arciuli², Zhenghan Qi¹ ¹University of Delaware; ²University of Sydney

Introduction

Background

Classic statistical learning (SL) paradigms have shown robust learning in both linguistic and non-linguistic domains^{1,2}, however recent findings have indicated that individuals vary in their sensitivity to statistical information across domains³. Additionally, SL in a naturalistic environment frequently encounters interruptions by random noise.

Research Questions

- 1. Can adults learn visual statistical information embedded in a noisy environment?
- Do adults learn better when the statistical information and interrupting random noise are different types (letter vs. image) or the same type?
- 3. Is individuals' statistical learning performance related to their vocabulary?

Materials and Methods

Participants

	Group	Ν	Age	Sex (M:F)	Vocab. Score	Structured	Randon
;	Same	27	19.96	2:25	112	Image	Image
						Letter	Letter
C		28	20.04	7:20	111	Image	Letter
	Different				111	Letter	Image

Groups are matched for age, sex, and vocabulary.

Procedure

- We examine visual SL in interleaved structured and random sequences. The structured stream was made of four triplets repeated 24 times each. The random stream contained 12 randomly-ordered stimuli.
- Each stream was spliced into 6 blocks, which were interspersed to form a continuous stream.
- · Participants performed a target detection cover task
- NIH toolbox Picture Vocabulary task after the SL tasks

same different same different

Inegative RT slope) in the Image task than the Letter task: F(1,42) = 4.52, p = 0.04

3. Greater difference between Structured and Random conditions in the Image task than the Letter task: F(1,42) = 6.17, p = 0.02

Letter Image Task

Mean Reaction Time

Offline Learning

Test Phase Accuracy

Task

Letter

Image

Different Group performed marginally better than Same Group: F(1,51)=3.37, p=0.072

Online Learning and Vocabulary

Only in the <u>Different Group</u>, greater sensitivity to structured <u>letter sequences</u> is uniquely correlated with vocabulary score (r = -0.39, p = 0.04).

Conclusion

- Adults are capable of learning statistical information scattered in a noisy environment.
- Results indicates potentially different cognitive resources supporting the statistical learning of images and letters.
- Marginal group differences on accuracy between same and different conditions
- Letter SL explains more variability in vocabulary than image SL, hinting at linguistic-specific constraints on vocabulary learning.

References

- 1. Saffran et al., Science, 1996.
- 2. Saffran et al., Cognition, 1999.
- B. Siegelman & Frost, J Mem Lang, 2015.

SYDNEY