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Abstract

Introduction

Over the years, many questions have surfaced regarding counting the number of certain
substructures within a projective plane. In this paper we contribute to an open question
in the area. We omit the standard definitions related to finite geometries and graph
theory. For all undefined notions we refer the reader to Casse [5] for the notions in
finite geometry, and to Bollobas [3] for all graph theoretic notions. We will also need the
following definitions and notation.

Let Π denote a projective plane of order n with N = n2 + n + 1 and N(k) = k!
(
N
k

)
.

Then N represents the number of points and the number of lines in Π. If A and B are
points of Π, we write AB for the line containing them. We write Sk for the group of all
permutations acting on {1, 2, . . . , k}, the symmetric group.

Define a quasi k-gon to be a sequence (P1, P2, . . . , Pk) of k distinct points of Π with
k ≥ 3, together with a set L of all distinct lines of the form PiPi+1 for 1 ≤ i ≤ k. In
this paper, all addition and subtraction in the indices is done modulo k. We will also
allow ourselves to write L = {PiPi+1 : 1 ≤ i ≤ k} with the understanding that different
values of i can produce the same element in L, By use of set notation in L, we mean that
{a, a, b} = {a, b}

It follows immediately that a quasi k-gon is uniquely determined by the sequence
(P1, . . . , Pk), so we denote it by QGk and write QGk = (P1, . . . , Pk). If all lines of quasi
k-gon are distinct, we call it a k-gon and denote it by Gk to distinguish a k-gon from
a quasi k-gon. We will denote the set of points of QGk by PQGk

and the set of lines
associated to QGk by LQGk

.
The point-line incidence graph ΓΠ of Π, also known as the Levi graph of Π, is the

bipartite graph with the set of points of Π to be one vertex part and the set of lines of
Π to be the other vertex part. A point P is adjacent to a line ` in ΓΠ if P lies on ` in Π.
We write P ∼ ` to denote adjacency of a point and line in ΓΠ.

Let ck(Π) denote the number of distinct k-gons in Π and c2k(ΓΠ) denote the number
of cycles of length 2k in ΓΠ. The connection between finite geometries and graph theory
is of significant interest as there are many cases in which finite geometries were used
to produce some of the best known results for various extremal type problems in graph
theory.

Let ex(n,H,F) denote the maximum number of copies of a graph H in an n-vertex
graph containing no graphs in F as a subgraph. When H = K2(just an edge), then
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a simplified notation is used for ex(n,K2,F), namely ex(n,F), and we call ex(n,F)
the Turán number of F . The problem of determining ex(n,F) is usually referred to
as a Turán type problem. For the extensive literature related to Turán type problems,
see Bollobas [4] , Füredi [9], Füredi and Simonovits [10], Verstraëte [17], Mubayi and
Verstraëte [22], Lazebnik, Sun, and Wang [21].

Some of the earliest attention ex(n,H,F) received was from Erdös [7] who stated a
conjecture regarding the extremal graph of ex(n,C5, C3). This conjecture was resolved
by Hatami, Hladkýi, Král, Norine, and Razborov [16] and independently by Grzesik [14],
building on the work of Györi [15]. The more recent wave of interest in ex(n,H,F) was
initiated by Alon and Shikelman [2]. In relation to the work done in this note, we note
that for a projective plane Π of order n, we have

c2k(ΓΠ) ≤ ex(2N,C2k, C4).

There have been several new results regarding the growth rate of ex(n,H,F) where
F = C2m or F = C2m, with resolution up the leading term in certain cases. We refer
the reader to the papers [11], [12], and [23] for the most up to date reading regarding
ex(n,H, C2m) and ex(n,H,C2m).

Counting k-gons in the projective plane is of interest in it’s own right as well. An im-
portant consequence of answering such questions is that they may allow us to classify(up
to isomorphism) and characterize projective planes as extremal objects. One can easily
show that that the number of closed walks of length 2k in the Levi graph of any projec-
tive plane Π of order n is dependent only on n, and not on the actual plane. Let Π be a
projective plane of order n and ΓΠ its Levi graph. Let A be the adjacency matrix of ΓΠ,
as A is a symmetric-(0, 1) matrix, all its eigenvalues are real. Let λ1 ≥ λ2 · · · ≥ λ2N be
the eigenvalues of A. It is easy to show, by considering eigenvalues of A2, the eigenvalues
of A are given by λ1 = n + 1 and λ2N = −(n + 1) each with multiplicity one, and all
other eigenvalues are equal to ±

√
n each with multiplicity N − 1. It follows, see(Biggs

Algebraic graph theory), that the number of closed walks of length 2k in ΓΠ is given by

Trace(A2k) =
2N∑
i=1

λ2k
i = 2(n+ 1)2k + 2(N − 1)nk.

This may lead one to ask, what other structures appear in a finite projective plane Π
and does the number of these structures in Π depend only the order of the plane? For
example: Define a k-arc in a projective plane Π to be a set of k points of Π, no three
of which are collinear. For k ≤ 6, Glynn [13] showed that the number of k-arcs in a
plane of order n does not depend on the plane. Furthermore, in [13], Glynn computes
an exact formula for the number of 7-arcs in any finite projective plane, and using this
formula deduces that there do not exist projective planes of order 6, as evaluating the
formula at 6 yields a negative value. Glynn’s work counting k-arcs was recently extended
by Kaplan, Kimport, Lawrence, Peilen and Weinreich [18] who determined an explicit
formula for the number of 9-arcs in an arbitrary projective plane. It is worth mentioning
that for k = 7, 8, 9 the formula for the number of k-arcs depends on more than just the
order of the plane.
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In [19] Lazebnik, Mellinger, and Vega demonstrate that it is possible to embed a k-gon
of every possible size into any affine or projective plane. This was further extended by
Aceves, Heywood, Klahr, and Vega [1] who showed that one can embed a k-gon of every
possible size in the projective space PG(d, q). Moreover, in a different paper Lazebnik,
Mellinger, and Vega [20] motivated the study of counting k-gons with the following two
questions:

1. Assuming n is large compared to k, which partial planes with N points contain
the largest number of k-gons? Equivalently, which C4-free bipartite graphs with
partitions of size N contain the greatest number of 2k-cycles?

2. Do all projective planes of order n contain the same number of k-gons?

Fiorini and Lazebnik [8] show that projective planes have the largest number of triangles(3-
gons) amongst all partial planes. This work is extended by De Winter, Lazebnik, and
Verstraëte [6] who show that the same holds when k = 4. In [20], progress towards
question 2 is made as the exact value of ck(Π) is determined for k = 3, 4, 5, 6 showing
that in these cases ck(Π) is dependent only on the order of Π. This work was further
extended by Voropaev[24] again demonstrating ck(Π) is dependent only on the order of
Π up to k = 10. Determining explicit formulas for larger k may very well have interesting
consequences just like in the example of formula for the number of 7-arcs in a projective
plane.

In this paper, we make some progress towards resolving question 2 as we determine
the leading term in the asymptotic of the number of k-gons in an arbitrary projective
plane. The magnitude of the leading term for the number of k-gons is shown to be the
same as that of the number of closed walks of length 2k in the Levi graph of a finite
projective plane, but with different leading coefficients.

Here we list our main results.

Main Theorem. Let Π be a projective plane of order n and ΓΠ it’s point-lince incidence
graph. Then for fixed k and n→∞ we have that asymptotically

c2k(ΓΠ) ∼ 1

2k
n2k =

1

2k+1k
|ΓΠ|k.

Corollary. Let n be a prime power and v = 2(n2 + n+ 1), then as v →∞

ex(v, C2k, C4) ≥
(

1

2k+1k
− o(1)

)
vk.
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Proof of Main Theorem

Let Π be a projective plane and ΓΠ be its Levi graph. Let QGk = (P1, . . . , Pk) be a quasi
k-gon. Define the subgraph ΓQGk

of ΓΠ corresponding to QGk as follows: The set of
vertices V (ΓQGk

) is given by PQGk
∪LQGk

. The edges E(ΓQGk
) are obtained by joining a

vertex Pi to all vertices in the set {Pi−1Pi, PiPi+1} for 1 ≤ i ≤ k. If Pi−1Pi = PiPi+1 then
Pi has only one neighbor. It is clear that in the case that all lines are distinct, meaning
QGk is actually a k-gon, the corresponding graph ΓQGk

is a cycle of length 2k.
Let QG7 be a quasi 7-gon given by the following figure. We use QG7 to demonstrate

the corresponding graph ΓQG7 .

P5 P3

P1 P4 P2

QG7 ΓQG7

P6

P7

P1

P2

P3

P4

P5

P6

P7

P1P2

P2P3

P3P4

P4P5

P5P6

Let us take a moment to comment on the above figure. Here QG7 = (P1, P2, . . . , P7), with
the corresponding set of lines {PiPi+1 : 1 ≤ i ≤ k}. We assume that P1P2, P2P3, P3P4,
P4P5, P5P6 are all distinct lines. Observe that P4 lies on the line P1P2, however, P4 6∼
P1P2 in ΓQG7 . By definition of ΓQG7 , we have only that P4 ∼ P3P4 and P4 ∼ P4P5.
Furthermore, note that P5P6 = P6P7 = P7P1 and therefore P6 and P7 each only have one
neighbor, namely P5P6.

The symmetric group Sk acts on quasi k-gons in Π in the following way: If QGk =
(P1, . . . , Pk) and σ ∈ Sk, then σ(QGk) := (Pσ(1), . . . , Pσ(k)). Hence

Pσ(QGk) = {Pσ(1), . . . , Pσ(k)} = {P1, . . . , Pk} = PQGk

and the lines of σ(QGk) are

Lσ(QGk) = {Pσ(i)Pσ(i+1) : 1 ≤ i ≤ k}.

Note that in general, LQGk
is not necessarily equal to Lσ(QGk).

We call two quasi k-gons QGk = (P1, . . . , Pk) and QG′k = (P ′1, . . . , P
′
k) equivalent,

and write QGk ≡ QG′k, if ΓQGk
= ΓQG′

k
, that is, they have the same vertex and edge

set. It is obvious that equivalence of quasi k-gons is an equivalence relation and that
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QGk ≡ QG′k if and only if there exists σ ∈ Sk such that σ(QGk) = QG′k. Therefore
S(QGk) := {σ ∈ Sk : QGk ≡ σ(QGk)} forms a subgroup of Sk.

Remark: Given a quasi k-gon QGk and permutation σ ∈ Sk we stress the following
points: We do not think of QGk as a partial plane in Π defined by the points and lines
of QGk. Therefore, if QGk ≡ σ(QGk), then σ should not be thought of as a collineation
on this partial plane. As an example, we refer to the figure above of QG7 and consider
σ = (1234567). In the lemma that follows, we demonstrate that QG7 ≡ σ(QG7), however,
observe that while P5, P6, P7, P1 lie on one line in Π, Pσ(5) = P6, Pσ(6) = P7, Pσ(7) = P1

and Pσ(1) = P2 are not collinear in Π.

Lemma. Let Π be a projective plane and QGk = (P1, . . . , Pk) in Π. Then S(QGk)
contains a quasi Dihedral group Dk as a subgroup.

Proof. Let σ = (12 . . . k), so that σ(QGk) = (Pσ(1), . . . , Pσ(k)) = (P2, . . . , Pk, P1). We wish
to show that σ(QGk) ≡ QGk. Note that the vertex set V (Γσ(QGk)) = Pσ(QGk)∪Lσ(QGk) =
PQGk

∪ Lσ(QGk). Here

Lσ(QGk) = {Pσ(i)Pσ(i+1) : 1 ≤ i ≤ k} = {Pi+1Pi+2 : 1 ≤ i ≤ k}

= {PiPi+1 : 1 ≤ i ≤ k} = LQGk
.

Thus we have V (Γσ(QGk)) = V (ΓQGk
). The edge set E(Γσ(QGk)) is given by joining

Pσ(i) = Pi+1 to all distinct lines in {Pσ(i−1)Pσ(i), Pσ(i)Pσ(i+1)} = {PiPi+1, Pi+1Pi+2} where
1 ≤ i ≤ k. These are exactly the same edges that appear in ΓQGk

. Thus, σ ∈ S(QGk)
and has order k.

Now consider the permutation ρ of {1, 2, . . . , k}, such that ρ(i) = k + 1 − i. That
is, ρ(QGk) = (Pk, Pk−1, . . . , P1). Set j = k + 1 − i, then ρ(i) = j and ρ(i + 1) = j − 1.
Observe that V (Γρ(QGk)) = PQGk

∪ Lρ(QGk) where

Lρ(QGk) = {Pρ(i)Pρ(i+1) : 1 ≤ i ≤ k} = {PjPj−1 : 1 ≤ j ≤ k}

= {Pj−1Pj : 1 ≤ j ≤ k} = LQGk
.

Therefore V (Γρ(QGk)) = V (ΓQGk
). The edge set E(Γρ(QGk)) is given by joining Pρ(i) = Pj

to all distinct lines in {Pρ(i−1)Pρ(i), Pρ(i)Pρ(i+1)} = {Pj+1Pj, PjPj−1} for 1 ≤ j ≤ k. These
are exactly the same edges that appear in ΓQGk

. Thus, ρ ∈ S(QGk) and has order 2.
Clearly, the action of ρ cannot be obtained by taking powers of σ. Therefore 〈σ, ρ〉 ∼=

Dk forms a subgroup of the group of symmetries of any quasi k-gon QGk in Π.

Corollary. Let Π be a projective plane, and Gk = (P1, . . . , Pk) be a k-gon in Π. Then
the group of symmetries of Gk is precisely the Dihedral group Dk.

Proof. Let Dk represent the subgroup of S(Gk) described above. If τ ∈ Sk is a permu-
tation satisfying τ(i+ 1) = τ(i)± 1 (mod k), for all i, 1 ≤ i ≤ k. Then in fact, we must
have that either:

1. τ(i+ 1) = τ(i) + 1 for all 1 ≤ i ≤ k.
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2. τ(i+ 1) = τ(i)− 1 for all 1 ≤ i ≤ k.

Any permutation satisfying either condition must in fact be an element of Dk.
Suppose then that τ ∈ Sk \ Dk, which implies that there exists an i, 1 ≤ i ≤ k for

which τ(i+ 1) 6= τ(i)± 1. For this i, let τ(i) = ` and τ(i+ 1) = j. We note that the line
P`Pj is a vertex in Γτ(Gk). If P`Pj 6= PiPi+1 for all 1 ≤ i ≤ k, then this line corresponds
to a vertex that is not in ΓGk

and so τ 6∈ S(Gk).
So suppose that P`Pj = PmPm+1 for some m, 1 ≤ m ≤ k. If ` 6= m and ` 6= m + 1

then in Γτ(Gk) we have P` ∼ PmPm+1. This edge is not in ΓGk
as the lines of Gk are

distinct and P`−1P` ∼ P` ∼ P`P`+1 in ΓGk
. Thus τ 6∈ S(Gk). The same exact argument

can be followed with j 6= m and j 6= m+ 1.
It is easy to see that if P`Pj = PmPm+1 for some 1 ≤ m ≤ k, then we have either that

` 6= m and ` 6= m + 1 or j 6= m and j 6= m + 1. Suppose not, then we must have either
` = m and j = m+ 1 or ` = m+ 1 and j = m. Both of these options are contradictions
since we assumed j 6= m± 1. Thus S(Gk) = Dk.

We now provide an example showing that it is possible to to have S(QGk) be strictly
larger than the quasi dihedral group discussed above. We refer to our previous example
of QG7, and we consider the permutation σ = (67).

P5 P3

P1 P4 P2

QG7 σ(QG7)

P6

P7

P5 P3

P1 P4 P2

P7

P6

The reader should convince themselves that both QG7 and σ(QG7) have the same cor-
responding graph, namely the graph ΓQG7 which we have drawn in the previous figure.

Theorem 1. Let Π be a finite projective plane of order n and ΓΠ its Levi graph. Then

c2k(ΓΠ) <
1

2k
N(k)

Proof. Recall that if Gk is a k-gon in Π, then ΓGk
is a cycle of length 2k in ΓΠ. Then

it is clear that c2k(ΓΠ) is given by the number of non-equivalent k-gons in Π. Obviously
the number of non-equivalent k-gons is less than the number of non-equivalent quasi
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k-gons. Let Qk = {QGk ∈ Π} denote the set of all quasi k-gons in Π. Recall that ≡ is
an equivalence relation on Qk. Then let C1, . . . , Ct be the set of all equivalence classes of
Qk, where t is then the number of all non-equivalent quasi k-gons in Π. Clearly

N(k) = |Qk| =
t∑
i=1

|Ci|.

We wish to use the above equation to place a bound on t. Note that |Ci| = S(QGk) for
any QGk ∈ Ci. Furthermore, as a consequence of our lemma, we know that 2k divides
S(QGk) for all QGk. Therefore

c2k(ΓΠ) < t =
t∑
i=1

1 <
t∑
i=1

|Ci|
2k

=
1

2k
N(k).

Theorem 2. Let Π be a finite projective plane of order n and ΓΠ be the point-line
incidence graph of ΓΠ. Then

c2k(ΓΠ) >
1

2k
N(k) −

1

2k

(
k − 1

2

)
N(k−1)(n− 1)

Proof. We wish to show that the number of quasi k-gons that are not k-gons is at most

k!

(
k − 1

2

)(
n2 + n+ 1

k − 1

)
(n− 1). (1)

To do this we construct a set of quasi k-gons of the given size and show that any quasi
k-gon that is not a k-gon is captured in this construction. The construction is as follows.
Choose any k − 1 points of Π, call them {P1, . . . , Pk−1}. There are

(
n2+n+1
k−1

)
ways to do

this. Now consider the collection of all possible lines of the form PiPj from this collection
of points. There are at most

(
k−1

2

)
distinct lines in this collection. Note that there are at

most (n−1) other points that lie on any PiPj that are distinct from {P1, . . . , Pk−1}. Now
choose Pk to be any one point on any of the lines PiPj that is distinct from {P1, . . . , Pk−1}.
There are at most

(
k−1

2

)
(n−1) choices for Pk. Thus we have constructed a set of k points,

and there are at most (
k − 1

2

)(
n2 + n+ 1

k − 1

)
(n− 1)

many such sets. Now every set above can be ordered k! ways, and thus produce k! quasi
k-gons per set. Thus we have a set of quasi k-gons of size

k!

(
k − 1

2

)(
n2 + n+ 1

k − 1

)
(n− 1).

We claim that if QGk = (P1, . . . , Pk) is any quasi k-gon that is not a k-gon, then QGk

is accounted for in the above construction. Since QGk is not a k-gon, then this implies
that the number of distinct lines in QGk is at most k − 1. This means we must have
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P`P`+1 = PmPm+1 for some 1 ≤ ` < m ≤ k. Note this implies that P`, P`+1, Pm, Pm+1 all
lie on the same line. Furthermore, at least three of the points P`, P`+1, Pm, Pm+1 must
be distinct since ` 6= m. Now, we must have one at least one of the two following cases
hold:

1. m+ 1 6= `(mod k)

2. `+ 1 6= m(mod k)

If both cases held, this would imply k = 2 for which we recall that a quasi k-gon had
k ≥ 3 by definition.

Regardless of whether case 1, case 2, or both cases hold, the following proof goes in
exactly the same manner. Therefore, without loss of generality, supposem+1 6= `(mod k)
then consider the subset P ′ = {P ′1, . . . , P ′k−1} ⊂ {P1, . . . , Pk} that does not include Pm+1.
Note that this means P`, P`+1 ∈ P ′. This means in our construction above, we begin
by choosing the set P ′ of k − 1 points and note that P`P`+1 is one of the distinct lines
obtained in the following step of the construction. Therefore, we may choose any point on
P`P`+1 distinct from P ′ as the kth point to add to P ′. More specifically, we may choose
Pm+1 as our kth point. Set P ′k = Pm+1 and then choose τ ∈ Sk that gives P ′τ(i) = Pi so

that the quasi k-gon (P ′τ(1), . . . , P
′
τ(k)) = (P1, . . . , Pk). Thus QGk is captured in the above

construction. Furthermore, if QGk is a quasi k-gon, captured in the above construction,
then all quasi k-gons equivalent to QGk must also be captured in the construction.

Recall that each quasi k-gon has Dk as a subgroup of the group of symmetries, and so
we may divide out by all such symmetries as we did in the case of the upper bound. By
deleting the quasi k-gons obtained from our construction, from the count in the upper
bound, we are left with only k-gons that have each been counted at most once. Therefore

C2k(ΓΠ) >
k!

2k

(
n2 + n+ 1

k

)
− k!

2k

(
k − 1

2

)(
n2 + n+ 1

k − 1

)
(n− 1).

Corollary. Let Π be a projective plane of order n and ΓΠ it’s point-lince incidence graph.
Then for fixed k and n→∞ we have that asymptotically

c2k(ΓΠ) ∼ 1

2k
n2k =

1

2k+1k
Nk.

Corollary. Let n be a prime power and v = 2(n2 + n+ 1), then

ex(v, C2k, C4) ≥
(

1

2k+1k
− o(1)

)
vk.
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