On the number of k-gons in finite projective planes

Vladislav Taranchuk

11/29/2020

Abstract

Introduction

Over the years, many questions have surfaced regarding counting the number of certain substructures within a projective plane. In this paper we contribute to an open question in the area. We omit the standard definitions related to finite geometries and graph theory. For all undefined notions we refer the reader to Casse [5] for the notions in finite geometry, and to Bollobas [3] for all graph theoretic notions. We will also need the following definitions and notation.

Let Π denote a projective plane of order n with $N=n^{2}+n+1$ and $N_{(k)}=k!\binom{N}{k}$. Then N represents the number of points and the number of lines in Π. If A and B are points of Π, we write $A B$ for the line containing them. We write S_{k} for the group of all permutations acting on $\{1,2, \ldots, k\}$, the symmetric group.

Define a quasi k-gon to be a sequence $\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ of k distinct points of Π with $k \geq 3$, together with a set \mathcal{L} of all distinct lines of the form $P_{i} P_{i+1}$ for $1 \leq i \leq k$. In this paper, all addition and subtraction in the indices is done modulo k. We will also allow ourselves to write $\mathcal{L}=\left\{P_{i} P_{i+1}: 1 \leq i \leq k\right\}$ with the understanding that different values of i can produce the same element in \mathcal{L}, By use of set notation in \mathcal{L}, we mean that $\{a, a, b\}=\{a, b\}$

It follows immediately that a quasi k-gon is uniquely determined by the sequence $\left(P_{1}, \ldots, P_{k}\right)$, so we denote it by $Q G_{k}$ and write $Q G_{k}=\left(P_{1}, \ldots, P_{k}\right)$. If all lines of quasi k-gon are distinct, we call it a k-gon and denote it by G_{k} to distinguish a k-gon from a quasi k-gon. We will denote the set of points of $Q G_{k}$ by $\mathcal{P}_{Q G_{k}}$ and the set of lines associated to $Q G_{k}$ by $\mathcal{L}_{Q G_{k}}$.

The point-line incidence graph Γ_{Π} of Π, also known as the Levi graph of Π, is the bipartite graph with the set of points of Π to be one vertex part and the set of lines of Π to be the other vertex part. A point P is adjacent to a line ℓ in Γ_{Π} if P lies on ℓ in Π. We write $P \sim \ell$ to denote adjacency of a point and line in Γ_{Π}.

Let $c_{k}(\Pi)$ denote the number of distinct k-gons in Π and $c_{2 k}\left(\Gamma_{\Pi}\right)$ denote the number of cycles of length $2 k$ in Γ_{Π}. The connection between finite geometries and graph theory is of significant interest as there are many cases in which finite geometries were used to produce some of the best known results for various extremal type problems in graph theory.

Let $\operatorname{ex}(n, H, \mathcal{F})$ denote the maximum number of copies of a graph H in an n-vertex graph containing no graphs in \mathcal{F} as a subgraph. When $H=K_{2}$ (just an edge), then
a simplified notation is used for $\operatorname{ex}\left(n, K_{2}, \mathcal{F}\right)$, namely $\operatorname{ex}(n, \mathcal{F})$, and we call $\operatorname{ex}(n, \mathcal{F})$ the Turán number of \mathcal{F}. The problem of determining $\operatorname{ex}(n, \mathcal{F})$ is usually referred to as a Turán type problem. For the extensive literature related to Turán type problems, see Bollobas [4], Füredi [9], Füredi and Simonovits [10], Verstraëte [17], Mubayi and Verstraëte [22], Lazebnik, Sun, and Wang [21].

Some of the earliest attention $\operatorname{ex}(n, H, \mathcal{F})$ received was from Erdös [7] who stated a conjecture regarding the extremal graph of ex $\left(n, C_{5}, C_{3}\right)$. This conjecture was resolved by Hatami, Hladkýi, Král, Norine, and Razborov [16] and independently by Grzesik [14], building on the work of Györi [15]. The more recent wave of interest in $\operatorname{ex}(n, H, \mathcal{F})$ was initiated by Alon and Shikelman [2]. In relation to the work done in this note, we note that for a projective plane Π of order n, we have

$$
c_{2 k}\left(\Gamma_{\Pi}\right) \leq \operatorname{ex}\left(2 N, C_{2 k}, \mathcal{C}_{4}\right)
$$

There have been several new results regarding the growth rate of $\operatorname{ex}(n, H, \mathcal{F})$ where $\mathcal{F}=\mathcal{C}_{2 m}$ or $\mathcal{F}=C_{2 m}$, with resolution up the leading term in certain cases. We refer the reader to the papers [11], [12], and [23] for the most up to date reading regarding $\operatorname{ex}\left(n, H, \mathcal{C}_{2 m}\right)$ and ex $\left(n, H, C_{2 m}\right)$.

Counting k-gons in the projective plane is of interest in it's own right as well. An important consequence of answering such questions is that they may allow us to classify (up to isomorphism) and characterize projective planes as extremal objects. One can easily show that that the number of closed walks of length $2 k$ in the Levi graph of any projective plane Π of order n is dependent only on n, and not on the actual plane. Let Π be a projective plane of order n and Γ_{Π} its Levi graph. Let A be the adjacency matrix of Γ_{Π}, as A is a symmetric- $(0,1)$ matrix, all its eigenvalues are real. Let $\lambda_{1} \geq \lambda_{2} \cdots \geq \lambda_{2 N}$ be the eigenvalues of A. It is easy to show, by considering eigenvalues of A^{2}, the eigenvalues of A are given by $\lambda_{1}=n+1$ and $\lambda_{2 N}=-(n+1)$ each with multiplicity one, and all other eigenvalues are equal to $\pm \sqrt{n}$ each with multiplicity $N-1$. It follows, see(Biggs Algebraic graph theory), that the number of closed walks of length $2 k$ in Γ_{Π} is given by

$$
\operatorname{Trace}\left(A^{2 k}\right)=\sum_{i=1}^{2 N} \lambda_{i}^{2 k}=2(n+1)^{2 k}+2(N-1) n^{k}
$$

This may lead one to ask, what other structures appear in a finite projective plane Π and does the number of these structures in Π depend only the order of the plane? For example: Define a k-arc in a projective plane Π to be a set of k points of Π, no three of which are collinear. For $k \leq 6$, Glynn [13] showed that the number of k-arcs in a plane of order n does not depend on the plane. Furthermore, in [13], Glynn computes an exact formula for the number of 7 -arcs in any finite projective plane, and using this formula deduces that there do not exist projective planes of order 6 , as evaluating the formula at 6 yields a negative value. Glynn's work counting k-arcs was recently extended by Kaplan, Kimport, Lawrence, Peilen and Weinreich [18] who determined an explicit formula for the number of 9 -arcs in an arbitrary projective plane. It is worth mentioning that for $k=7,8,9$ the formula for the number of k-arcs depends on more than just the order of the plane.

In [19] Lazebnik, Mellinger, and Vega demonstrate that it is possible to embed a k-gon of every possible size into any affine or projective plane. This was further extended by Aceves, Heywood, Klahr, and Vega [1] who showed that one can embed a k-gon of every possible size in the projective space $P G(d, q)$. Moreover, in a different paper Lazebnik, Mellinger, and Vega [20] motivated the study of counting k-gons with the following two questions:

1. Assuming n is large compared to k, which partial planes with N points contain the largest number of k-gons? Equivalently, which C_{4}-free bipartite graphs with partitions of size N contain the greatest number of $2 k$-cycles?
2. Do all projective planes of order n contain the same number of k-gons?

Fiorini and Lazebnik [8] show that projective planes have the largest number of triangles(3gons) amongst all partial planes. This work is extended by De Winter, Lazebnik, and Verstraëte [6] who show that the same holds when $k=4$. In [20], progress towards question 2 is made as the exact value of $c_{k}(\Pi)$ is determined for $k=3,4,5,6$ showing that in these cases $c_{k}(\Pi)$ is dependent only on the order of Π. This work was further extended by Voropaev[24] again demonstrating $c_{k}(\Pi)$ is dependent only on the order of Π up to $k=10$. Determining explicit formulas for larger k may very well have interesting consequences just like in the example of formula for the number of 7 -arcs in a projective plane.

In this paper, we make some progress towards resolving question 2 as we determine the leading term in the asymptotic of the number of k-gons in an arbitrary projective plane. The magnitude of the leading term for the number of k-gons is shown to be the same as that of the number of closed walks of length $2 k$ in the Levi graph of a finite projective plane, but with different leading coefficients.

Here we list our main results.
Main Theorem. Let Π be a projective plane of order n and Γ_{Π} it's point-lince incidence graph. Then for fixed k and $n \rightarrow \infty$ we have that asymptotically

$$
c_{2 k}\left(\Gamma_{\Pi}\right) \sim \frac{1}{2 k} n^{2 k}=\frac{1}{2^{k+1} k}\left|\Gamma_{\Pi}\right|^{k} .
$$

Corollary. Let n be a prime power and $v=2\left(n^{2}+n+1\right)$, then as $v \rightarrow \infty$

$$
\operatorname{ex}\left(v, C_{2 k}, \mathcal{C}_{4}\right) \geq\left(\frac{1}{2^{k+1} k}-o(1)\right) v^{k}
$$

Proof of Main Theorem

Let Π be a projective plane and Γ_{Π} be its Levi graph. Let $Q G_{k}=\left(P_{1}, \ldots, P_{k}\right)$ be a quasi k-gon. Define the subgraph $\Gamma_{Q G_{k}}$ of Γ_{Π} corresponding to $Q G_{k}$ as follows: The set of vertices $V\left(\Gamma_{Q G_{k}}\right)$ is given by $\mathcal{P}_{Q G_{k}} \cup \mathcal{L}_{Q G_{k}}$. The edges $E\left(\Gamma_{Q G_{k}}\right)$ are obtained by joining a vertex P_{i} to all vertices in the set $\left\{P_{i-1} P_{i}, P_{i} P_{i+1}\right\}$ for $1 \leq i \leq k$. If $P_{i-1} P_{i}=P_{i} P_{i+1}$ then P_{i} has only one neighbor. It is clear that in the case that all lines are distinct, meaning $Q G_{k}$ is actually a k-gon, the corresponding graph $\Gamma_{Q G_{k}}$ is a cycle of length $2 k$.

Let $Q G_{7}$ be a quasi 7 -gon given by the following figure. We use $Q G_{7}$ to demonstrate the corresponding graph $\Gamma_{Q G_{7}}$.
$Q G_{7}$

$\Gamma_{Q G_{7}}$

Let us take a moment to comment on the above figure. Here $Q G_{7}=\left(P_{1}, P_{2}, \ldots, P_{7}\right)$, with the corresponding set of lines $\left\{P_{i} P_{i+1}: 1 \leq i \leq k\right\}$. We assume that $P_{1} P_{2}, P_{2} P_{3}, P_{3} P_{4}$, $P_{4} P_{5}, P_{5} P_{6}$ are all distinct lines. Observe that P_{4} lies on the line $P_{1} P_{2}$, however, $P_{4} \nsim$ $P_{1} P_{2}$ in $\Gamma_{Q G_{7}}$. By definition of $\Gamma_{Q G_{7}}$, we have only that $P_{4} \sim P_{3} P_{4}$ and $P_{4} \sim P_{4} P_{5}$. Furthermore, note that $P_{5} P_{6}=P_{6} P_{7}=P_{7} P_{1}$ and therefore P_{6} and P_{7} each only have one neighbor, namely $P_{5} P_{6}$.

The symmetric group S_{k} acts on quasi k-gons in Π in the following way: If $Q G_{k}=$ $\left(P_{1}, \ldots, P_{k}\right)$ and $\sigma \in S_{k}$, then $\sigma\left(Q G_{k}\right):=\left(P_{\sigma(1)}, \ldots, P_{\sigma(k)}\right)$. Hence

$$
\mathcal{P}_{\sigma\left(Q G_{k}\right)}=\left\{P_{\sigma(1)}, \ldots, P_{\sigma(k)}\right\}=\left\{P_{1}, \ldots, P_{k}\right\}=\mathcal{P}_{Q G_{k}}
$$

and the lines of $\sigma\left(Q G_{k}\right)$ are

$$
\mathcal{L}_{\sigma\left(Q G_{k}\right)}=\left\{P_{\sigma(i)} P_{\sigma(i+1)}: 1 \leq i \leq k\right\} .
$$

Note that in general, $\mathcal{L}_{Q G_{k}}$ is not necessarily equal to $\mathcal{L}_{\sigma\left(Q G_{k}\right)}$.
We call two quasi k-gons $Q G_{k}=\left(P_{1}, \ldots, P_{k}\right)$ and $Q G_{k}^{\prime}=\left(P_{1}^{\prime}, \ldots, P_{k}^{\prime}\right)$ equivalent, and write $Q G_{k} \equiv Q G_{k}^{\prime}$, if $\Gamma_{Q G_{k}}=\Gamma_{Q G_{k}^{\prime}}$, that is, they have the same vertex and edge set. It is obvious that equivalence of quasi k-gons is an equivalence relation and that
$Q G_{k} \equiv Q G_{k}^{\prime}$ if and only if there exists $\sigma \in S_{k}$ such that $\sigma\left(Q G_{k}\right)=Q G_{k}^{\prime}$. Therefore $S\left(Q G_{k}\right):=\left\{\sigma \in S_{k}: Q G_{k} \equiv \sigma\left(Q G_{k}\right)\right\}$ forms a subgroup of S_{k}.

Remark: Given a quasi k-gon $Q G_{k}$ and permutation $\sigma \in S_{k}$ we stress the following points: We do not think of $Q G_{k}$ as a partial plane in Π defined by the points and lines of $Q G_{k}$. Therefore, if $Q G_{k} \equiv \sigma\left(Q G_{k}\right)$, then σ should not be thought of as a collineation on this partial plane. As an example, we refer to the figure above of $Q G_{7}$ and consider $\sigma=(1234567)$. In the lemma that follows, we demonstrate that $Q G_{7} \equiv \sigma\left(Q G_{7}\right)$, however, observe that while $P_{5}, P_{6}, P_{7}, P_{1}$ lie on one line in $\Pi, P_{\sigma(5)}=P_{6}, P_{\sigma(6)}=P_{7}, P_{\sigma(7)}=P_{1}$ and $P_{\sigma}(1)=P_{2}$ are not collinear in Π.

Lemma. Let Π be a projective plane and $Q G_{k}=\left(P_{1}, \ldots, P_{k}\right)$ in Π. Then $S\left(Q G_{k}\right)$ contains a quasi Dihedral group D_{k} as a subgroup.

Proof. Let $\sigma=(12 \ldots k)$, so that $\sigma\left(Q G_{k}\right)=\left(P_{\sigma(1)}, \ldots, P_{\sigma(k)}\right)=\left(P_{2}, \ldots, P_{k}, P_{1}\right)$. We wish to show that $\sigma\left(Q G_{k}\right) \equiv Q G_{k}$. Note that the vertex set $V\left(\Gamma_{\sigma\left(Q G_{k}\right)}\right)=\mathcal{P}_{\sigma\left(Q G_{k}\right)} \cup \mathcal{L}_{\sigma\left(Q G_{k}\right)}=$ $\mathcal{P}_{Q G_{k}} \cup \mathcal{L}_{\sigma\left(Q G_{k}\right)}$. Here

$$
\begin{aligned}
\mathcal{L}_{\sigma\left(Q G_{k}\right)} & =\left\{P_{\sigma(i)} P_{\sigma(i+1)}: 1 \leq i \leq k\right\}=\left\{P_{i+1} P_{i+2}: 1 \leq i \leq k\right\} \\
& =\left\{P_{i} P_{i+1}: 1 \leq i \leq k\right\}=\mathcal{L}_{Q G_{k}} .
\end{aligned}
$$

Thus we have $V\left(\Gamma_{\sigma\left(Q G_{k}\right)}\right)=V\left(\Gamma_{Q G_{k}}\right)$. The edge set $E\left(\Gamma_{\sigma\left(Q G_{k}\right)}\right)$ is given by joining $P_{\sigma(i)}=P_{i+1}$ to all distinct lines in $\left\{P_{\sigma(i-1)} P_{\sigma(i)}, P_{\sigma(i)} P_{\sigma(i+1)}\right\}=\left\{P_{i} P_{i+1}, P_{i+1} P_{i+2}\right\}$ where $1 \leq i \leq k$. These are exactly the same edges that appear in $\Gamma_{Q G_{k}}$. Thus, $\sigma \in S\left(Q G_{k}\right)$ and has order k.

Now consider the permutation ρ of $\{1,2, \ldots, k\}$, such that $\rho(i)=k+1-i$. That is, $\rho\left(Q G_{k}\right)=\left(P_{k}, P_{k-1}, \ldots, P_{1}\right)$. Set $j=k+1-i$, then $\rho(i)=j$ and $\rho(i+1)=j-1$. Observe that $V\left(\Gamma_{\rho\left(Q G_{k}\right)}\right)=\mathcal{P}_{Q G_{k}} \cup \mathcal{L}_{\rho\left(Q G_{k}\right)}$ where

$$
\begin{aligned}
\mathcal{L}_{\rho\left(Q G_{k}\right)} & =\left\{P_{\rho(i)} P_{\rho(i+1)}: 1 \leq i \leq k\right\}=\left\{P_{j} P_{j-1}: 1 \leq j \leq k\right\} \\
& =\left\{P_{j-1} P_{j}: 1 \leq j \leq k\right\}=\mathcal{L}_{Q G_{k}}
\end{aligned}
$$

Therefore $V\left(\Gamma_{\rho\left(Q G_{k}\right)}\right)=V\left(\Gamma_{Q G_{k}}\right)$. The edge set $E\left(\Gamma_{\rho\left(Q G_{k}\right)}\right)$ is given by joining $P_{\rho(i)}=P_{j}$ to all distinct lines in $\left\{P_{\rho(i-1)} P_{\rho(i)}, P_{\rho(i)} P_{\rho(i+1)}\right\}=\left\{P_{j+1} P_{j}, P_{j} P_{j-1}\right\}$ for $1 \leq j \leq k$. These are exactly the same edges that appear in $\Gamma_{Q G_{k}}$. Thus, $\rho \in S\left(Q G_{k}\right)$ and has order 2.

Clearly, the action of ρ cannot be obtained by taking powers of σ. Therefore $\langle\sigma, \rho\rangle \cong$ D_{k} forms a subgroup of the group of symmetries of any quasi k-gon $Q G_{k}$ in Π.

Corollary. Let Π be a projective plane, and $G_{k}=\left(P_{1}, \ldots, P_{k}\right)$ be a k-gon in Π. Then the group of symmetries of G_{k} is precisely the Dihedral group D_{k}.

Proof. Let D_{k} represent the subgroup of $S\left(G_{k}\right)$ described above. If $\tau \in S_{k}$ is a permutation satisfying $\tau(i+1)=\tau(i) \pm 1(\bmod k)$, for all $i, 1 \leq i \leq k$. Then in fact, we must have that either:

1. $\tau(i+1)=\tau(i)+1$ for all $1 \leq i \leq k$.
2. $\tau(i+1)=\tau(i)-1$ for all $1 \leq i \leq k$.

Any permutation satisfying either condition must in fact be an element of D_{k}.
Suppose then that $\tau \in S_{k} \backslash D_{k}$, which implies that there exists an $i, 1 \leq i \leq k$ for which $\tau(i+1) \neq \tau(i) \pm 1$. For this i, let $\tau(i)=\ell$ and $\tau(i+1)=j$. We note that the line $P_{\ell} P_{j}$ is a vertex in $\Gamma_{\tau\left(G_{k}\right)}$. If $P_{\ell} P_{j} \neq P_{i} P_{i+1}$ for all $1 \leq i \leq k$, then this line corresponds to a vertex that is not in $\Gamma_{G_{k}}$ and so $\tau \notin S\left(G_{k}\right)$.

So suppose that $P_{\ell} P_{j}=P_{m} P_{m+1}$ for some $m, 1 \leq m \leq k$. If $\ell \neq m$ and $\ell \neq m+1$ then in $\Gamma_{\tau\left(G_{k}\right)}$ we have $P_{\ell} \sim P_{m} P_{m+1}$. This edge is not in $\Gamma_{G_{k}}$ as the lines of G_{k} are distinct and $P_{\ell-1} P_{\ell} \sim P_{\ell} \sim P_{\ell} P_{\ell+1}$ in $\Gamma_{G_{k}}$. Thus $\tau \notin S\left(G_{k}\right)$. The same exact argument can be followed with $j \neq m$ and $j \neq m+1$.

It is easy to see that if $P_{\ell} P_{j}=P_{m} P_{m+1}$ for some $1 \leq m \leq k$, then we have either that $\ell \neq m$ and $\ell \neq m+1$ or $j \neq m$ and $j \neq m+1$. Suppose not, then we must have either $\ell=m$ and $j=m+1$ or $\ell=m+1$ and $j=m$. Both of these options are contradictions since we assumed $j \neq m \pm 1$. Thus $S\left(G_{k}\right)=D_{k}$.

We now provide an example showing that it is possible to to have $S\left(Q G_{k}\right)$ be strictly larger than the quasi dihedral group discussed above. We refer to our previous example of $Q G_{7}$, and we consider the permutation $\sigma=(67)$.
$Q G_{7}$

$$
\sigma\left(Q G_{7}\right)
$$

The reader should convince themselves that both $Q G_{7}$ and $\sigma\left(Q G_{7}\right)$ have the same corresponding graph, namely the graph $\Gamma_{Q G_{7}}$ which we have drawn in the previous figure.

Theorem 1. Let Π be a finite projective plane of order n and Γ_{Π} its Levi graph. Then

$$
c_{2 k}\left(\Gamma_{\Pi}\right)<\frac{1}{2 k} N_{(k)}
$$

Proof. Recall that if G_{k} is a k-gon in Π, then $\Gamma_{G_{k}}$ is a cycle of length $2 k$ in Γ_{Π}. Then it is clear that $c_{2 k}\left(\Gamma_{\Pi}\right)$ is given by the number of non-equivalent k-gons in Π. Obviously the number of non-equivalent k-gons is less than the number of non-equivalent quasi
k-gons. Let $Q_{k}=\left\{Q G_{k} \in \Pi\right\}$ denote the set of all quasi k-gons in Π. Recall that \equiv is an equivalence relation on Q_{k}. Then let C_{1}, \ldots, C_{t} be the set of all equivalence classes of Q_{k}, where t is then the number of all non-equivalent quasi k-gons in Π. Clearly

$$
N_{(k)}=\left|Q_{k}\right|=\sum_{i=1}^{t}\left|C_{i}\right|
$$

We wish to use the above equation to place a bound on t. Note that $\left|C_{i}\right|=S\left(Q G_{k}\right)$ for any $Q G_{k} \in C_{i}$. Furthermore, as a consequence of our lemma, we know that $2 k$ divides $S\left(Q G_{k}\right)$ for all $Q G_{k}$. Therefore

$$
c_{2 k}\left(\Gamma_{\Pi}\right)<t=\sum_{i=1}^{t} 1<\sum_{i=1}^{t} \frac{\left|C_{i}\right|}{2 k}=\frac{1}{2 k} N_{(k)} .
$$

Theorem 2. Let Π be a finite projective plane of order n and Γ_{Π} be the point-line incidence graph of Γ_{Π}. Then

$$
c_{2 k}\left(\Gamma_{\Pi}\right)>\frac{1}{2 k} N_{(k)}-\frac{1}{2 k}\binom{k-1}{2} N_{(k-1)}(n-1)
$$

Proof. We wish to show that the number of quasi k-gons that are not k-gons is at most

$$
\begin{equation*}
k!\binom{k-1}{2}\binom{n^{2}+n+1}{k-1}(n-1) \tag{1}
\end{equation*}
$$

To do this we construct a set of quasi k-gons of the given size and show that any quasi k-gon that is not a k-gon is captured in this construction. The construction is as follows. Choose any $k-1$ points of Π, call them $\left\{P_{1}, \ldots, P_{k-1}\right\}$. There are $\binom{n^{2}+n+1}{k-1}$ ways to do this. Now consider the collection of all possible lines of the form $P_{i} P_{j}$ from this collection of points. There are at most $\binom{k-1}{2}$ distinct lines in this collection. Note that there are at most $(n-1)$ other points that lie on any $P_{i} P_{j}$ that are distinct from $\left\{P_{1}, \ldots, P_{k-1}\right\}$. Now choose P_{k} to be any one point on any of the lines $P_{i} P_{j}$ that is distinct from $\left\{P_{1}, \ldots, P_{k-1}\right\}$. There are at most $\binom{k-1}{2}(n-1)$ choices for P_{k}. Thus we have constructed a set of k points, and there are at most

$$
\binom{k-1}{2}\binom{n^{2}+n+1}{k-1}(n-1)
$$

many such sets. Now every set above can be ordered k ! ways, and thus produce k ! quasi k-gons per set. Thus we have a set of quasi k-gons of size

$$
k!\binom{k-1}{2}\binom{n^{2}+n+1}{k-1}(n-1)
$$

We claim that if $Q G_{k}=\left(P_{1}, \ldots, P_{k}\right)$ is any quasi k-gon that is not a k-gon, then $Q G_{k}$ is accounted for in the above construction. Since $Q G_{k}$ is not a k-gon, then this implies that the number of distinct lines in $Q G_{k}$ is at most $k-1$. This means we must have
$P_{\ell} P_{\ell+1}=P_{m} P_{m+1}$ for some $1 \leq \ell<m \leq k$. Note this implies that $P_{\ell}, P_{\ell+1}, P_{m}, P_{m+1}$ all lie on the same line. Furthermore, at least three of the points $P_{\ell}, P_{\ell+1}, P_{m}, P_{m+1}$ must be distinct since $\ell \neq m$. Now, we must have one at least one of the two following cases hold:

1. $m+1 \neq \ell(\bmod k)$
2. $\ell+1 \neq m(\bmod k)$

If both cases held, this would imply $k=2$ for which we recall that a quasi k-gon had $k \geq 3$ by definition.

Regardless of whether case 1 , case 2 , or both cases hold, the following proof goes in exactly the same manner. Therefore, without loss of generality, suppose $m+1 \neq \ell(\bmod k)$ then consider the subset $\mathcal{P}^{\prime}=\left\{P_{1}^{\prime}, \ldots, P_{k-1}^{\prime}\right\} \subset\left\{P_{1}, \ldots, P_{k}\right\}$ that does not include P_{m+1}. Note that this means $P_{\ell}, P_{\ell+1} \in \mathcal{P}^{\prime}$. This means in our construction above, we begin by choosing the set \mathcal{P}^{\prime} of $k-1$ points and note that $P_{\ell} P_{\ell+1}$ is one of the distinct lines obtained in the following step of the construction. Therefore, we may choose any point on $P_{\ell} P_{\ell+1}$ distinct from \mathcal{P}^{\prime} as the k th point to add to \mathcal{P}^{\prime}. More specifically, we may choose P_{m+1} as our k th point. Set $P_{k}^{\prime}=P_{m+1}$ and then choose $\tau \in S_{k}$ that gives $P_{\tau(i)}^{\prime}=P_{i}$ so that the quasi k-gon $\left(P_{\tau(1)}^{\prime}, \ldots, P_{\tau(k)}^{\prime}\right)=\left(P_{1}, \ldots, P_{k}\right)$. Thus $Q G_{k}$ is captured in the above construction. Furthermore, if $Q G_{k}$ is a quasi k-gon, captured in the above construction, then all quasi k-gons equivalent to $Q G_{k}$ must also be captured in the construction.

Recall that each quasi k-gon has D_{k} as a subgroup of the group of symmetries, and so we may divide out by all such symmetries as we did in the case of the upper bound. By deleting the quasi k-gons obtained from our construction, from the count in the upper bound, we are left with only k-gons that have each been counted at most once. Therefore

$$
C_{2 k}\left(\Gamma_{\Pi}\right)>\frac{k!}{2 k}\binom{n^{2}+n+1}{k}-\frac{k!}{2 k}\binom{k-1}{2}\binom{n^{2}+n+1}{k-1}(n-1) .
$$

Corollary. Let Π be a projective plane of order n and Γ_{Π} it's point-lince incidence graph. Then for fixed k and $n \rightarrow \infty$ we have that asymptotically

$$
c_{2 k}\left(\Gamma_{\Pi}\right) \sim \frac{1}{2 k} n^{2 k}=\frac{1}{2^{k+1} k} N^{k} .
$$

Corollary. Let n be a prime power and $v=2\left(n^{2}+n+1\right)$, then

$$
\operatorname{ex}\left(v, C_{2 k}, \mathcal{C}_{4}\right) \geq\left(\frac{1}{2^{k+1} k}-o(1)\right) v^{k}
$$

Concluding Remarks

Acknowledgments

The author would like to thank Dr. Felix Lazebnik for posing the problem his valuable comments that improved the exposition of this paper, and Dr. Eric Moorhouse for several useful remarks.

References

[1] E. Aceves, D. Heywood, A. Klahr and O. Vega, Cycles in projective spaces, Journal of Geometry, 105, (2014), 111-117.
[2] N. Alon and C. Shikhelman, Many T copies in H-free graphs, Electronic Notes in Discrete Mathematics, 49, (2015), 683-689.
[3] B. Bollobás, Modern Graph Theory, Springer Science and Business Media, (1998).
[4] B. Bollobás, Extremal Graph Theory, Academic Press London, (1978).
[5] R. Casse, Projective Geometry: An Introduction, Oxford University Press, (2006).
[6] S. De Winter, F. Lazebnik and J. Verstraëte, An Extremal Characterization of Projective Planes, Electronic Journal of Combinatorics, 15(1), (2008), 1-13.
[7] P. Erdös, On some problems in graph theory, combinatorial analysis and combinatorial number theory, Graph Theory and Combinatorics, (1983), 1-17.
[8] G. Fiorinin and F. Lazebnik, On a bound for the number of $C_{8}^{\prime} s$ in 4-cycle free bipartite graph, Congressus Numerantium , 99, (1994), 191-197.
[9] Z. Füredi, Turán type problems, Survey's in Combinatorics, Cambridge University Press, (1991).
[10] Z. Füredi and M. Simonovits The history of degenerate(bipartite) extremal graph problems, Erdoös Cenetnnial, Bolyai Society Mathematical Studies, 25, (2013), pp169264.
[11] D. Gerbner and C. Palmer, Counting copies of a fixed subgraph in F-free graphs, European Journal of Combinatorics, 82, (2019).
[12] D. Gerbner, E. Györi, A. Methuku and M. Vizer, Generalized Turán Problems for Even Cycles, Acta Mathematica Universitatis Cominanæ, 88(3), (2019), 723-728
[13] D. G. Glynn, Rings of Geometries II, Journal of Combinatorial Theory Series A, 49(1), (1988), 26-66.
[14] A. Grzesik, On the maximum number of five-cycles in a triangle free graph, Journal of Combinatorial Theory Series B, 102(5), (2012), 1061-1066.
[15] E. Györi, On the number of C_{5} 's in a triangle-free graph, Combinatorica, 9, (1989), 101-102.
[16] H. Hatami, J. Hladký, D. Král, S. Norine and A. Razborov, On the number of pentagons in triangle-free graphs, Journal of Combinatorial Theory Series A, 120(3), (2013), 722-732.
[17] J. Verstraëte, A survey of Turán problems for expansions, In: Recent Trends in Combinatorics, (2016), 83-116.
[18] N. Kaplan, S. Kimport, R. Lawrence, L. Peilen and M. Weinreich, Counting arcs in projective planes via Glynn's algorithm, Journal of Geometry, 108, (2017), 1013-1029.
[19] F. Lazebnik, K. Mellinger and O. Vega, Embedding Cycles in Finite Planes, Electronic Journal of Combinatorics, 20(3), 2013.
[20] F. Lazebnik, K. Mellinger and O. Vega, On the Number of k-Gons in Finite Projective Planes, Note di Matematica, 29, (2009), 135-152.
[21] F. Lazebnik, S. Sun and Y. Wang, Some Families of Graphs, Hypergraphs and Digraphs Defined by Systems of Equations: A Survey., Lecture Notes of Seminario Interdisciplinare di Matematica, 14, (2017), 105-142.
[22] D. Mubayi and J. Verstraëte, A survey of Turán problems for expansions, In: Recent Trends in Combinatorics, (2016), 117-143.
[23] J. Solymosi and C. Wong, Cycles in graphs of fixed girth with large size, European Journal of Combinatorics, 62, (2017), 124-131.
[24] A. N. Voropaev, Counting k-gons in finite projective planes, Siberian Electronic Mathematical Reports, 10, (2013), 241-270.

