A Fresh Look at Impulse Response as a Form of NDT for Concrete Bridge Decks

presented by

Daniel Clem
Graduate Student
&
Thomas Schumacher
Assistant Professor

March 20, 2012
Background:

- Originally developed for deep pile foundations
- Currently most commonly used in aircraft manufacturing
- Since the 1980s applied to concrete plate like structures (ASTM C1740)
 - Poorly consolidated sections
 - Voids in supports
 - Delaminations caused by corrosion in reinforcing steel
Principle:
- Impulse signal is recorded and transformed to frequency domain
- Response signal is recorded and transformed to frequency domain
- Dividing these response frequency by the impulse frequency gives ‘Mobility’

\[\text{Mobility}(\omega) = \frac{\text{Response}(\omega)}{\text{Impulse}(\omega)} \]

Source: ASTM C1740-10

A FRESH LOOK AT IMPULSE RESPONSE
Case Study:

• Steel-concrete composite deck girder bridge in NJ

• Six, Two-span cont. deck slabs, each 36 ft long

• Two lanes
• Total length = 216’
• Road width = 30’
• Age: 25 years

• Severe deterioration/ delamination of the concrete deck, steel reinforcement corroded

• IR performed on a 2’ x 2’ grid on 5 of 6 deck slabs
Testing System:

• PCB Instrumented Hammer

• Accelerometer
 – Used for flat response at low frequencies

• DAQ system

• Post Processing System
ASTM C1740-10 Parameters:

- **Average Mobility**
 - Average mobility value from 100 to 800 Hz

- **Dynamic Stiffness**
 - Inverse of the slope of the mobility from 0 to 40 Hz

Source: ASTM C1740-10
ASTM C1740-10 Parameters:

- Mobility Slope
 - Slope of mobility from 100 to 800 Hz

Source: ASTM C1740-10
ASTM C1740-10 Parameters:

- Peak-Mean Mobility Ratio
 - Ratio of the peak mobility from 0 to 100 Hz, and the ‘Average Mobility’

![Graph showing mobility vs frequency with labels Void below slab and Good support. Source: ASTM C1740-10]
Current Standard:

- Inconsistent definition of parameters
- Mobility in frequency domain is not uniquely defined
- Idealized Mobility plot is difficult to observe
- Qualitative and relative

![Graph: Mobility vs Frequency](image)

ASTM C1740-10

Concrete Bridge Deck Test (2011)
New Approach:

- Same testing procedure; different post-processing
- Transform Mobility spectrum back into time domain
- Use mobility time signal to find parameters that theoretically characterize the concrete
New Parameters:

- Maximum Mobility Amplitude
 - Large values indicate low stiffness, possibly due to delaminations
- Exponential Rate of Decay
 - Large values of α suggest high damping, possibly due to delaminations
Maximum Mobility Amplitude Results (Example: deck 4):
Exponential Rate of Decay Results (Example: deck 4):
Continuing Research:
• Continue evaluating new approach and parameters

• Testing other effects:
 • Proximity of impact to accelerometer
 • Magnitude of impact
 • Repeatability
 • Slow Dynamics

• Verification of results during deck repair in August 2012

• Combining with other methods (ultrasonic) to confirm results and locate depth of delaminations
Questions?