Neural Tracking of Implicit vs Explicit Phonotactic Learning

Enes Avcu, Ryan Rhodes and Arild Hestvik

University of Delaware

The Question

Do implicit and explicit learning lead to different neural commitments?

Implicit and Explicit Learning

- Implicit learning
- Oue-based
- Effortless
- Unconscious
- Gradual
- No feedback
- Only positive examples

- Explicit learning
- Rule-based
- Effortful
- Conscious
- Abrupt
- Feedback
- Both positive and negative examples

Neural Commitment

 Language exposure produces neural commitment.

- Causes physical change in neural tissue
- Affects future processing and learning

Neural Commitment

• Will neural commitment be detectable after very brief exposure in a laboratory setting?

Phonotactic Pattern Learning

sasi sosu

sise surple

The pattern

- Sibilant harmony
 - Attested in Chumash and Navajo

- Non-local pattern
 - The agreeing segments can be non-adjacent

shtoyonowonowash – 'it stood upright'

Our Study

- Artificial Grammar Learning Paradigm
- Between subject design
 - Two groups: one group gets implicit training, the other group gets explicit training
 - Both get the exact same test
- Categorization task
- Measure brain responses

Experimental Design

Implicit Group (N=24)	Explicit Group (N=21)
	Explicit Rule Telling and Familiarization with Feedback
Training Phase- exposure to the artificial pattern (Listen and Repeat)	Training Phase- exposure to the artificial pattern (Listen and Repeat)
Testing Phase- Oddball Paradigm (EEG) (300 Trials*1Block)	Testing Phase- Oddball Paradigm (EEG) (300 Trials*4Blocks)

- Oddball paradigm
 - Ungrammatical words appear infrequently among frequently appearing grammatical words.
- Categorization task
 - Categorize each word as part of the language or not by button press

sisa sasu <mark>seso</mark>

Stimuli

CV.CV, with sibilants ([s, ∫]), [a, ε, ɔ, i, u].

- 100 words:
 - half agreeing [saso], [ʃeʃi]
 - half disagreeing [saʃi], [ʃeso]
- Naturally recorded
- Strictly controlled duration, each word 400 ms (and violation and 200 ms)

Results

Do implicit and explicit learning lead to different neural commitments?

Two measures – behavior and brain response

Behavioral Results

Sensitivity index (d-prime)

Behavioral Results

Both groups learned the pattern, but explicit group performed better.

EEG Results

P3 and LPC

Categorization task – oddball design

- P3 index of categorization
 - Peaks 300ms after stimulus onset before the button press
 - P3 difference wave reflect processing difference grammatical and ungrammatical

EEG results - P3

- Implicit group P3
 - Peaks 300ms after violation point
 - \circ F(1,23)=11.43, p<.003, 1-β=0.875

• F(1,20)=3.48, p=.077

- LPC anomaly detection in rule-governed sequences
 - Peaks 600ms after stimulus onset
 - Ungrammatical words elicit higher positivity

 Native speakers', L2 learners' and lab learners' processing of phonological violations elicit LPC.

- Implicit group LPC
 - Peaks 600ms after violation point.
 - t(23)=2.281, p=.032, 1- β =0.715

t(20)=1.263, p=.221

Summary of the results

- Implicit group
- Learned the pattern
 - Moderate behavioral sensitivity
- Brain response to violation: P3 and LPC

- Explicit group
- Learned the pattern
 - High behavioral sensitivity
- No brain response to violation, despite the presence of a robust AEP and Readiness Potential.

- The P3 difference wave reflects stimulus evaluation prior to motor response selection.
- P3 shows how your brain quickly computes the phonotactic difference between grammatical and ungrammatical words.
- The LPC shows that violations of non-adjacent phonotactic constraints influence later stages of cognitive processing.

- These results support the distinction between implicit and explicit models.
- Implicit and explicit learning lead to different types of neural commitments.
 - Implicit learning leads to a measurable neural learning response typical of the categorization systems.
 - Explicit learning leaves the brain silent.

Conclusion

 Implicit and explicit learning converge on similar knowledge states, but with different underlying neural mechanisms.

Collaborators

