The Role of Native Language in Statistical Learning Success

Krystal Mendez, An Nguyen, Violet Kozloff, Zhenghan Qi

Introduction

Statistical learning is the ability to extract repeated patterns of regularities and transitional probabilities. We examined whether native language experiences (English vs. Hebrew), perceived familiarity with one's native learns an artificial language that is composed of Hebrew syllables.

The aim of this study was to confirm these hypotheses:

1. English native speakers will perform relatively worse than Hebrew native speakers in learning the artificial language, but equally well in the non-linguistic statistical learning task.
2. There will be a positive correlation between the perceived English likeness of the artificial language and the learning success of an artificial language.
3. People with better verbal knowledge and reading experiences will show greater success in both statistical learning task.

Method

32 adults participated in the study (mean age 21.9 years old, 26 females and 6 males). All were between the ages of 18 and 40, receiving payment for their participation. They were all native English speakers with no learning, hearing, or language impairments.

Experiment Procedure:

- Linguistic ASL
- Non-linguistic ASL
- Author task
- Perceived English likeness
- Picture-Vocabulary task

Results

Table 3: Correlation matrix showing all individual difference measures in native English speakers (p-value marked in asterisks)

	Linguistic ASL	Non-Linguistic ASL	Author	Vocab	English likeness
Linguistic ASL	1	$* *$	$* *$	$* *$	$* *$
Non-linguistic ASL	0.488	1		$*$	
Author	0.486	0.277	1	$* *$	
Vocab	0.462	0.043	0.491	1	
English likeness	0.577	0.117	0.155	0.093	1

*p < 0.05;** p<0.01; *** p $\quad .001$
Table 4: Multiple linear regression model predicting Linguistic ASL performance

	Coefficients	Standard Error	t Stat	P-value	
Intercept	13.58186125	16.20041531	0.838365	0.410098	
Vocab	0.286127524	0.155241692	1.84311	0.077698	
Author	0.376361066	0.232744313	1.617058	0.118936	
Rating of English likeness of the ASL	5.333741243	1.637855687	3.256539	0.003348	
	df	Ss	MS	F	Significance F
Regression	3	2285.086027	761.6953	8.152496	0.000646494
Residual	24	2242.342544	93.43094		
Total	27	4527.428571			

Figure 1: Scatter plots of A) vocabulary task scores, B) author task scores, and the C) rating of English likeness of the linguistic task versus the Linguistic ASL scores

Table 5: Multiple linear regression model predicting Non-linguistic ASL performance

	Coefficients	Standard Error	t Stat	P-value	
Intercept	68.08948625	18.60988889	3.65878	0.001307	
Vocab	-0.115239837	0.181510002	-0.6349	0.531762	
Author	0.408883704	0.270554497	1.51128	0.144336	
Rating of English likeness of the ASL	1.46247008	2.102891871	0.695457	0.493737	
	df	ss	MS	F	Significance F
Regression	3	314.0084569	104.6695	0.893618	0.459346258
Residual	23	2693.991543	117.1301		
Total	26	3008			

References

1. Arnon, i. (2018, , May 7). Do current statistical learning capture stable individual differences in
children? An investigation of task reliability across modalities. https://doi.org/10.31234/osfio/9pa8t 2. Remberg, A. and daffran, I. ((20101). Statisticical learning and language acquisisition. Wiey Interdisicipinary R Reviews: Cognitive Science, 1(6), pp.906-914
2. Saffran, J., Aslin, R., \& Newport, E. .(1996). Statistical Learning by 8 -Month-OId Infants. Science,
274(52994), 1926 -1928. doi: $10.1126 /$ /cience. 274.5294 .1926

Acknowledgements

Thanks to the members of the Language Acquisition and Brain Laboratory for their support in data collection and analysis. I would also like to acknowledge Dr. Inbal Arnon for generously sharing her stimuli for this project.

This poster was supported by the Delaware INBRE program, with a grant from the National Institute of General Medicine Sciences - NIGMS (8 P20 GM10344616) from the National Institutes of Health.

