

EFFECTIVE STRESS CONCEPT

NO SEEPAGE H H_A Pore water Solid particle Cross-sectional area = \overline{A}

Saturated Soil Column (Figure 6.1. Das FGE (2005)) Revised 01/2020

Total Stress (σ) at Point A

 $\sigma = H\gamma_w + (H_A - H)\gamma_{sat}$

from Water

from Soil

Where:

 γ_{w} = Unit Weight of Water

- γ_{sat} = Saturated Unit Weight of Soil
- H = Height of water above Soil
- H_A = Depth of Point A below water table

EFFECTIVE STRESS CONCEPT

NO SEEPAGE

Saturated Soil Column (Figure 6.1. Das FGE (2005)) Revised 01/2020

Total Stress (σ**)** can be divided into 2 Parts:

1. Portion carried by water in void spaces. THIS IS THE PORE PRESSURE (*u*).

2. Portion carried by soil solids at points of contact.
 THIS IS THE EFFECTIVE STRESS (σ´).

EFFECTIVE STRESS CONCEPT

NO SEEPAGE

Saturated Soil Column (Figure 6.1. Das FGE (2005)) Revised 01/2020

EFFECTIVE STRESS CONCEPT NO SEEPAGE

Forces acting at Soil Particle Points of Contact at level of Point A (i.e. along Line *a-a*) Figure 6.1. Das FGE (2005)

Effective Stress (σ´) **along Line** *a-a*

$$\sigma' = \frac{P_{1(v)} + P_{2(v)} + P_{3(v)} + \dots + P_{n(v)}}{\overline{A}}$$

Where:

 $P_{1(v)}$ = Vertical Component of P₁

 \overline{A} = Cross-sectional Area of Soil Mass Under Consideration

EFFECTIVE STRESS CONCEPT

NO SEEPAGE Total Stress (σ) along Line *a-a*

Forces acting at Soil Particle Points of Contact at level of Point A (i.e. along Line a-a) Figure 6.1. Das FGE (2005). Where:

 a_s = Cross-section Area of Soil

Contacts = $a_1 + a_2 + a_3 + ... + a_n$

 $\sigma = \sigma' + \frac{u(A - a_s)}{\overline{a}} = \sigma' + u(1 - a'_s)$

- \overline{A} = Cross-sectional Area of Soil Mass Under Consideration
- $a'_s = a_s/A =$ Fraction of unit crosssectional area of soil mass occupied by solid to solid contacts.

EFFECTIVE STRESS CONCEPT

EFFECTIVE STRESS CONCEPT

Revised 01/2020

EFFECTIVE STRESS CONCEPT NO SEEPAGE: EXAMPLE PROBLEM

GIVEN SOIL PROFILE (NTS):

FIND:

Total and Effective Stresses at Pts. A, B, C, & D.

EFFECTIVE STRESS CONCEPT NO SEEPAGE: EXAMPLE PROBLEM FIND:

GIVEN SOIL PROFILE (NTS):

Total and Effective Stresses at Pts. A, B, C, & D.

@ Point A:

$$\sigma_A = \gamma_{CL} \times Z_A = 102 \frac{lb}{ft^3} (5ft)$$

$$\sigma_A = 510 \frac{lb}{ft^2}$$

$$\sigma'_A = \sigma_A - u_A$$

 $u_A = 0$

 ft^2

$$\therefore \sigma'_A = \sigma_A = 510 \frac{lb}{ft^2}$$
 Slide 9 of 28

EFFECTIVE STRESS CONCEPT NO SEEPAGE: EXAMPLE PROBLEM @ Point B:

GIVEN SOIL PROFILE (NTS):

$$\sigma_{B} = \sigma_{A} + (\gamma_{sat,CL}X4ft)$$

$$\sigma_{B} = 510 \frac{lb}{ft^{3}} + 105 \frac{lb}{ft^{3}} (4ft)$$

$$\sigma_{B} = 930 \frac{lb}{ft^{2}}$$

$$\sigma_{B}' = \sigma_{B} - u_{B}$$

$$u_{B} = \gamma_{w} \times 4ft = 62.4 \frac{lb}{ft^{3}} \times 4ft = 250 \frac{lb}{ft^{2}}$$

$$\sigma_{B}' = \sigma_{B} - u_{B} = 930 \frac{lb}{ft^{2}} - 250 \frac{lb}{ft^{2}}$$

$$\sigma_{B}' = 680 \frac{lb}{s^{2}}$$

Revised 01/2020

Slide 10 of 28

CL

SM

CIVE.5300 DRIVEN DEEP FOUNDATIONS Effective Stress Review

EFFECTIVE STRESS CONCEPT NO SEEPAGE: EXAMPLE PROBLEM

5ft

6ft

9ft

12

@ Point C:

 $\sigma_C' = \sigma_C - u_C$

 $\sigma_C' = 996 \frac{lb}{ft^2}$

GIVEN SOIL PROFILE (NTS):

 γ_{sat} = 115 lb/ft³ c

В

D

 $\gamma = 102 \text{ lb/ft}^3$

 $\gamma_{sat} = 105 \text{ lb/ft}^3$

$$\sigma_C = 930 \frac{lb}{ft^3} + 115 \frac{lb}{ft^3} (6ft)$$

$$\sigma_{C} = 1620 \frac{lb}{ft^{2}}$$

$$u_C = \gamma_w \times 10 \, ft = 62.4 \, \frac{lb}{ft^3} \times 10 \, ft = 624 \, \frac{lb}{ft^2}$$

ft
$$\sigma_C' = \sigma_C - u_C = 1620 \frac{lb}{ft^2} - 624 \frac{lb}{ft^2}$$

$$\sigma'_{C} = 1000 \frac{lb}{ft^{2}}$$
 (round to nearest 5 psf)

Slide 11 of 28

EFFECTIVE STRESS CONCEPT NO SEEPAGE: EXAMPLE PROBLEM

<u>@ Point D:</u>

GIVEN SOIL PROFILE (NTS): (5ft CL 9ft $\gamma = 102 \text{ lb/ft}^3$ C $\gamma_{sat} = 105 \text{ lb/ft}^3$ В 6ft U SM γ_{sat} = 115 lb/ft³ c 12ft $\sigma'_D = 1312 \frac{lb}{a^2}$ D $\sigma_D' = 131$

$$\sigma_D = \sigma_B + (\gamma_{sat,SM} \times 12 ft)$$

$$\sigma_D = 930 \frac{lb}{ft^3} + 115 \frac{lb}{ft^3} (12 ft)$$

$$\sigma_D = 2310 \frac{lb}{ft^2}$$
$$\sigma_D' = \sigma_D - u_D$$

$$y_D = \gamma_w \times 16 \, ft = 62.4 \, \frac{lb}{ft^3} \times 16 \, ft = 998 \, \frac{lb}{ft^2}$$

t
$$\sigma'_D = \sigma_D - u_D = 2310 \frac{lb}{ft^2} - 998 \frac{lb}{ft^2}$$

$$0 \frac{lb}{ft^2}$$
 (round to nearest 5 psf)
Slide 12 of 28

EFFECTIVE STRESS CONCEPT NO SEEPAGE: EXAMPLE PROBLEM

EFFECTIVE STRESS CONCEPT UPWARD SEEPAGE

Stresses @ Point A:

$$\sigma_{A} = H_{1}\gamma_{w}$$
$$u_{A} = H_{1}\gamma_{w}$$
$$\sigma_{A}' = \sigma_{A} - u_{A} = 0$$

Stresses @ Point B:

$$\sigma_{B} = H_{1}\gamma_{w} + H_{2}\gamma_{sat}$$

$$u_{B} = (H_{1} + H_{2} + h)\gamma_{w}$$

$$\sigma_{B}' = \sigma_{B} - u_{B}$$

$$\sigma_{B}' = (H_{1}\gamma_{w} + H_{2}\gamma_{sat}) - (H_{1} + H_{2} + h)\gamma_{w}$$

$$\sigma_{B}' = H_{2}(\gamma_{sat} - \gamma_{w}) - h\gamma_{w}$$
Slide 14 of 28

EFFECTIVE STRESS CONCEPT

Revised 01/2020

EFFECTIVE STRESS CONCEPT UPWARD SEEPAGE

CRITICAL HYDRAULIC GRADIENT (*i*_{cr})

$$\sigma_C' = z\gamma' - i_{cr} z\gamma_w = 0$$

NO EFFECTIVE STRESS! Known as Boiling or Quick Condition

For Most Soils: *i_{cr}* ranges from 0.9 to 1.1, with an average of 1

EFFECTIVE STRESS CONCEPT

Slide 17 of 28

EFFECTIVE STRESS CONCEPT

DOWNWARD SEEPAGE

Stresses @ Point A:

 $\sigma_A = H_1 \gamma_w$

Figure 6.4a. Das FGE (2005).

 $\Big|_{\tau}^{\star} \left(\frac{h}{H_2} \right)_z \quad u_A = H_1 \gamma_w$ $\sigma'_{A} = \sigma_{A} - u_{A} = 0$ Stresses @ Point B: $\sigma_B = H_1 \gamma_w + H_2 \gamma_{sat}$ $u_R = (H_1 + H_2 - h)\gamma_w$ $\sigma'_R = \sigma_R - u_R$ $\sigma'_B = (H_1 \gamma_w + H_2 \gamma_{sat}) - (H_1 + H_2 - h) \gamma_w$ $\sigma'_{R} = H_{2}(\gamma_{sat} - \gamma_{w}) + h\gamma_{w}$ $\sigma'_{R} = H_{2}\gamma' + h\gamma_{w}$ Slide 18 of 28

EFFECTIVE STRESS CONCEPT

DOWNWARD SEEPAGE

Revised 01/2020

EFFECTIVE STRESS CONCEPT

DOWNWARD SEEPAGE

Slide 20 of 28

EFFECTIVE STRESS CONCEPT PARTIALLY SATURATED SOIL

Figure 6.6. Das FGE (2005).

$$\sigma' = \sigma - u_a + \chi(u_a - u_w)$$

Where:

- u_a = Pore Air Pressure
- u_w = Pore Water Pressure
- χ = Fraction of unit cross-sectional
 - area of soil occupied by water.
- χ = 0 for dry soil; 1 for saturated soil.

 χ depends on degree of saturation (S). Also influenced by soil structure.

CAPILLARY RISE IN SOILS

Summing Forces in Vertical Direction

Figure 8.19. Principles of Geotechnical Engineering, Das (2006).

 $h_c = \frac{4T\cos\alpha}{d\gamma_w}$

Where:

- T = Surface Tension
- α = Angle of Contact
- d = Capillary Tube Diameter

T, α , γ_w remain constant

$$h_c \propto \frac{1}{d}$$

CAPILLARY RISE IN SOILS

Figure 8.20. Principles of Geotechnical Engineering, Das (2006).

CAPILLARY RISE IN SOILS

CAPILLARY RISE IN SOILS

 Table 8.2 (Das, PGE 2006).
 Approximate Range of Capillary Rise in Soils.

Soil Type -	Range of Capillary Rise	
	m	ft
Coarse Sand	0.1 – 0.2	0.3 – 0.6
Fine Sand	0.3 – 1.2	1 – 4
Silt	0.75 – 7.5	2.5 – 25
Clay	7.5 - 23	25 - 75

EFFECTIVE STRESS IN CAPILLARY ZONE

 $\sigma' = \sigma - u$

Saturated:
$$u = -h\gamma_w$$

Partially Saturated:
$$u = -h \left(\frac{S}{100} \right) \gamma_w$$

Figure 6.1. Das FGE (2005).

SEEPAGE FORCE: UPWARD SEEPAGE

EFFECTIVE STRESS

EFFECTIVE FORCE

NO SEEPAGE:
$$\sigma' = z\gamma'$$
 $P_1' = z\gamma'A$

W/SEEPAGE: $\sigma' = z\gamma' - iz\gamma_w P'_2 = (z\gamma' - iz\gamma_w)A$

DECREASE OF TOTAL FORCE DUE TO SEEPAGE:

$$P_1' - P_2' = i z \gamma_w A$$

SEEPAGE FORCE PER UNIT VOLUME:

$$\frac{P_1' - P_2'}{\text{(Soil Volume)}} = \frac{iz\gamma_w A}{zA} = i\gamma_w$$

SEEPAGE FORCE SUMMARY

NO SEEPAGE

Volume of zγ'A

soil = zA

DOWNWARD SEEPAGE

