A function \(f \) that is periodic on the interval \([-\pi, \pi]\) can be represented by the Fourier series

\[
 f(t) = \frac{a_0}{2} + \sum_{j=1}^{\infty} [a_j \cos(jt) + b_j \sin(jt)]
\]

In practice, the infinite series is approximated by a partial sum:

\[
 f(t) \approx \frac{a_0}{2} + \sum_{j=1}^{m} [a_j \cos(jt) + b_j \sin(jt)]
\]

To calculate the \(n = 2m + 1 \) coefficients \(a_0, a_1, \ldots, a_m \) and \(b_1, b_2, \ldots, b_m \) we need \(n \) values of \(f \). These are usually taken to be values of \(f \) at equally spaced \(t \) values such as

\[
 t_1 = 0, t_2 = \frac{2\pi}{n}, t_2 = \frac{4\pi}{n}, \ldots, t_n = \frac{2(n-1)\pi}{n}.
\]

Let \(x_k = f(t_k), \ k = 1, 2, 3, \ldots, n \) and let \(x \) denote the array \(x = [x_1, x_2, x_3, \ldots, x_n] \). The MATLAB command \(z = \text{fft}(x) \) will generate an array \(z \) containing \(n \) complex numbers. The arrays of coefficients \(a_j \) and \(b_j \) can be recovered from the array \(z \) as follows:

\[
 a = \text{real}(2\cdot z(1:m+1)/\text{length}(z));
 b = -\text{imag}(2\cdot z(2:m+1)/\text{length}(z));
\]

Here are three examples. You can download the script files containing these commands from the course webpage.

Example 1.

\[
 \begin{align*}
 n &= \text{input('Enter number of data points: ')}; \\
 t &= (2\pi/n)\cdot(0:n-1); \\
 x &= 1+\cos(t)+2\cdot\sin(2t); \\
 z &= \text{fft}(x); \ %\text{fft} \ is \ the \ fast \ Fourier \ transform \ algorithm \n \end{align*}
\]

\%Note that if \(n \) is odd \(z(n) \) is the complex conjugate of \(z(2) \), \(z(n-1) \) is the \%complex conjugate of \(z(3) \), etc

\[
 \begin{align*}
 m &= \text{round((n-1)/2)}; \\
 a &= \text{real}(2\cdot z(1:m+1)/n); \ %\text{Recover \ frequency \ content \ of \ signal} \\
 b &= -\text{imag}(2\cdot z(2:m+1)/n);
 \end{align*}
\]

Example 2.

\[
 \begin{align*}
 n &= \text{input('Enter number of data points: ')}; \\
 t &= (2\pi/n)\cdot(0:n-1);
 \end{align*}
\]
x = cos(t)+2*sin(2*t)-sin(3*t);
x = x+0.1*(-1+2*rand(1, length(x)));
z = fft(x);
m = round((n-1)/2);
a = real(2*z(1:m+1)/n); %Recover frequency content of signal
b = -imag(2*z(2:m+1)/n);

Example 3.
load handel; % Load an audio signal built into MATLAB
%Array y contains the data. Fs equals the number of samples per second, % usually 8192
n = length(y);
plot((1:n)/Fs,y)
xlabel('Time (s)');
ylabel('Amplitude');
sound(y); %Play the audio signal
z = fft(y);
m=round((n-1)/2);
z_half = z(1:m+1);
figure;
plot(Fs*(0:m)/n, abs(z_half));
xlabel('Frequency (Hz)');
ylabel('Amplitude');
f_cutoff = 2500; %Hz
z_half(round(n*f_cutoff/Fs):end) = 0; %This zeros out the coefficients of terms % corresponding to frequencies of f_cutoff Hz or more
figure;
plot(Fs*(0:m)/n, abs(z_half));
xlabel('Frequency (Hz)');
ylabel('Amplitude');
pause;
z2 = [z_half; conj(z_half(end:-1:2))]; %Reconstruct the full fft
y2 = ifft(z2); %ifft is the inverse fft algorithm
sound(y2); %Play the filtered audio signal
Practice Problems

1. Issue the command `load train`
 Play the audio signal. Filter the frequencies above 2000 Hz and play the filtered signal.