Lecture 10

Chapter 8

Rotational Dynamics

PHYS. 1410 Lecture 10 A.D anylou
Department of Physics and Applied Physics

Today we are going to discuss:

Chapter 8:

> Uniform Circular Motion: Section 8.2
> Circular Orbits: Section 8.3
$>$ Reasoning about Circular Motion: Section 8.4

ConcepTest

Heartdroben Nasgutio

A) The magnitude of the mosquito's acceleration is

A mosquito runs head-on into a truck. Which is true during the collision?
larger than that of the truck.
B) The magnitude of the truck's acceleration is larger than that of the mosquito.
C) The magnitude of the mosquito's acceleration is the same as that of the truck.
D) The truck accelerates but the mosquito does not.
E) The mosquito accelerates but the truck does not.

Newton's 2nd law:

Newton's 3rd law:
$F_{M T}=F_{T M}=F$

Don't confuse cause and effect! The same force can have very different effects.
The same idea can be applied to an interaction of an apple and the Earth in the slide at the end of the presentation. But you don't have to read it. Only if you want.

Tension in a rope

Tension is the same at any point of the rope if the rope is massless
(Read this proof if you want)
If a flexible cord pulls an object, the cord is said to be under TENSION
Let's assume that the cord is a described object and apply $\mathrm{N} 2^{\text {nd }}$ law
$\sum \vec{F}=m \vec{a} \Rightarrow T_{2}-T_{1}=m_{n}^{0}=0 \Rightarrow \boldsymbol{T}_{2}=\boldsymbol{T}_{\mathbf{1}}=\boldsymbol{T} \quad \stackrel{\boldsymbol{T}_{1}}{\mathrm{~A}} \boldsymbol{m} \xrightarrow[\boldsymbol{T}_{2}]{\stackrel{\rightharpoonup}{F}}$
Often in problems the mass of the string or rope is much less than the masses of the objects that it connects. $m=0$
massless string approximation: Tension is the same at any point of the rope
If we apply a force to one end of the cord, the same force will be on the other end

For problems in this book, you can assume that any strings or ropes are massless unless it explicitly states otherwise.

Example F Two Buckets
Example. Twa Buckets
One $1.0-\mathrm{kg}$ paint bucket is hanging by a massless cord from another $2.0-\mathrm{kg}$ paint bucket, also hanging by a massless cord, as shown in the figure.
If the two buckets are pulled upward with an acceleration of $2.0 \mathrm{~m} / \mathrm{s}^{2}$ by the upper cord, calculate the tension in each cord.

Given: $m_{1}=2.0 \mathrm{~kg} ; m_{2}=1.0 \mathrm{~kg} ; a=2.0 \mathrm{~m} / \mathrm{s}^{2}$ Let's apply N. ind low for each bucket:

$$
\begin{aligned}
& m_{2} \Rightarrow \sum_{1} F_{2}=m_{2} a \Rightarrow T_{1}-m_{2} g=m_{2} a \Rightarrow T_{1}=m_{2}(a+g) \\
& m_{1} \Rightarrow \sum_{1} F_{1}=m_{1} a \Rightarrow T_{2}--T_{1}-m_{1} g=m_{1} a \\
& T_{2}=m_{1} a+m_{1} g+T_{1}=m_{1}(a+g)+m_{2}(a+g) \\
& T_{2}=\left(m_{1}+m_{2}\right)(a+g)=(2.0 \mathrm{mg}+1.0 \mathrm{ag}) \cdot\left(2.0 \mathrm{~m} / \mathrm{s}^{2}+9.8 \mathrm{~m}_{\mathrm{s}}\right)=35.4 \mathrm{~N} \\
& T_{1}=m_{2}(a+g)=1.0 \mathrm{~kg}\left(2.0 \mathrm{~m} / \mathrm{s} 2+9.8 \mathrm{~cm} / \mathrm{s}^{2}\right)=11.8 \mathrm{~N}
\end{aligned}
$$

Lecture 11

Chapter 8

Rotational Dynamics

PHYS. 1410 Lecture 10 A.D anylou
Department of Physics and Applied Physics

The best coordinate system

for a Uniform Circular Motion

When describing circular motion, it is convenient to define a moving rt-coordinate system.

The r-axis (radial) points from the particle toward the center of the circle.

The t-axis (tangential) is tangent to the circle, pointing in the ccw direction.

The origin "moves" along with a certain particle moving in a circular path.

If there is an acceleration, there must be a force

The figure shows a particle in uniform circular motion.
If there is an centripetal (radial) acceleration, there must be a radial force (called centripetal) according to N. $2^{\text {nd }}$ law.

$$
\sum F_{r}=m a_{r} \quad \sum F_{r}=\frac{m v^{2}}{r}
$$

The net force points in the radial direction, toward the center of the circle.

This centripetal force is not a new force. This can be any one of the forces we have already encountered: tension, gravity, normal force, friction, ...

Examples

Bike going in a circle: the wall exerts an inward force (normal force) on a bike to make it move in a circle.
$\sum F=m a_{r}{ }^{a_{r}=\frac{v^{2}}{R}} R N=\frac{m v^{2}}{R}$
v-velocity of the motorbike
R- radius of the circle
Normal force provides the centripetal acceleration
https://www.youtube.com/watch?v=9H4jUptw4Vk

A hammer going in a circle: the cord exerts an inward force (tension) on a hammer to make it move in a circle.

$$
\sum F=m a_{r} \quad \Rightarrow \quad T=\frac{m v^{2}}{R}
$$

Tension provides the centripetal acceleration

Car going in a circle:
the road exerts an inward force (friction)
on a car to make it move in a circle.

Friction provides the centripetal acceleration

ConcepTest

A Ping-Pong ball is shot into a circular tube that is lying flat (horizontal) on a tabletop. When the Ping-Pong ball leaves the track, which path will it follow?

Once the ball leaves the tube, there is no longer a force to keep it going in a circle. Therefore, it simply continues in a straight line, as Newton's First Law requires!

Follow-up: What physical force provides the centripetal acceleration?

Example GLop the Loop

Demo success

Demafail
a) To make the loop-the-loop at a constant speed, what minimum speed does the car need?
b) Find an apparent weight at the bottom.
a) Draw a free body diagram for a car at the top N. and law for a radial direction:

$$
\begin{aligned}
& \sum_{1} F_{r}=m a_{r} \leftarrow a_{r}=\frac{v^{2}}{R} \\
& N+m g=m \frac{v^{2}}{R} \Rightarrow \| v=\sqrt{\frac{R}{m}(N+m g)}
\end{aligned}
$$

the entical speed occurs when we are ready m start falling down, ie. Losing contact with the wall $(N=0)$.
to

$$
v_{\min }=\sqrt{\frac{R}{m}(N+m g)}=\sqrt{g \cdot r}
$$

b) Apparent weight -? (i.e N-?) at the bottom.

$$
\sum_{1} F_{r}=m a_{r} \Rightarrow N-m g=m \cdot \frac{v^{2}}{R} \Rightarrow\left\|N=m g+m \frac{v^{2}}{R}\right\|
$$

Thus, $N>$ mg, You would feel heavier (similar to a case when a person is in an elevator)
http://phys23p.sl.psu.edu/phys anim/mech/
PHYS. 1410 Lecture 10 A. Danulau
Department of Physics and Applied Physics

ConcepTest

You're on a Ferris wheel moving in a vertical circle. When the Ferris wheel is at rest, the normal force N exerted by your seat is equal to your weight mg . How does N change at the top of the Ferris wheel when you are in motion?
A) N remains equal to mg
B) N is smaller than $m g$
C) N is larger than mg
D) none of the above
$m g-N=m \frac{v^{2}}{R}$

$$
m g-m \frac{v^{2}}{R}=N
$$

You are in circular motion, so there has to be a centripetal force pointing inward. At the top, the only two forces are $m g$ (down) and N (up), so N must be smaller than mg .

Follow-up: Where is N larger than mg ? Bottom

$$
N-m g=m \frac{v^{2}}{R} \quad N=m g+m \frac{v^{2}}{R}
$$

Example Car on a circular flat road

What is the maximum speed with which a $1200-\mathrm{kg}$ car can round a turn of radius 80 m on flat road if the coefficient of static friction between tires and road is 0.65 ? Is the result independent of the mass of the car?
(130) The radial force required to keep the car in the curved path is supplied by the force of static friction between the tires and the road.
 The max static friction force is

$$
f_{s}=\mu_{s}=\mu_{s} N \mu_{s} \mu g
$$

${ }^{F}$ In this case the car would be on a verge of skidding. Let's find the speed corresponding to this centripetal force (f_{s}) and that would be the max speed.
(1) N. and law in the redirection

$$
\begin{gathered}
\sum_{r} F_{r}=m Q_{r} \Rightarrow f_{s}^{m a x}=m \frac{v_{\text {max }}^{2}}{R} \\
\mu_{s} \cdot m x \cdot g=\frac{v_{\text {max }}^{2}}{R} \Rightarrow\left\|v_{\text {max }}=\sqrt{\mu_{s} \cdot g R}\right\|=\sqrt{0.65 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot 80 \mu}=22.6 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

It's independent of the car's mass.

ConcepTest

Going in Circles

A skier goes over a small round hill with radius R. Because she is in circular motion, there has to be a centripetal force. At the top of the hill, what is F_{c} of the skier equal to?
A) $F_{c}=N+m g$
B) $F_{c}=m g-N$
C) $F_{c}=T+N-m g$
D) $F_{c}=N$
E) $F_{c}=m g$
F_{c} points toward the center of the circle (i.e., downward in this case). The weight vector points down and the normal force (exerted by the hill) points up. The magnitude of the net force, therefore, is $F_{c}=m g-N$.

PHYS. 1410 Lecture 10 A. Danulow
Department of Physics and Applied Physics

ConcepTest

You drive your car too fast around a curve and the car starts to skid. What is the correct description of this situation?
A) car's engine is not strong enough to keep the car from being pushed out
B) friction between tires and road is not strong enough to keep car in a circle
C) car is too heavy to make the turn
D) a deer caused you to skid
E) none of the above

The friction force between tires and road provides the centripetal force that keeps the car moving in a circle. If this force is too small, the car continues in a straight line!

Follow-up: What could be done to the road or car to prevent skidding?

