Areas of Surfaces of Revolution
Surface Area

Let f be a smooth, nonnegative function on an interval $[a, b]$.

Problem:
Find the area of the surface generated by revolving the curve $y = f(x)$ about the x-axis.
Let f be a nonnegative, smooth function on $[a, b]$,

and

$P = \{a = x_0, x_1, x_2, \ldots, x_{n-1}, x_n = b\}$

be a partition of $[a, b]$.

A slice of the surface generated by revolving the curve about the x-axis is like a **frustum** (the portion of a solid that lies between two parallel planes cutting it) of a cone.
Surface Area

The lateral area of the frustum can be obtained from the formula

\[\pi \left(f(x_{k-1}) + f(x_k) \right) \cdot l \]

where \(l \) is the slant height (that is, \(l \) is the distance between the points \((x_{k-1}, f(x_{k-1}))\) and \((x_k, f(x_k))\)).
Surface Area

\[S_k \approx \pi \left(f(x_{k-1}) + f(x_k) \right) \cdot l \]
\[= \pi \left(f(x_{k-1}) + f(x_k) \right) \sqrt{(\Delta x_k)^2 + \left(f(x_k) - f(x_{k-1}) \right)^2} \]

By the Mean-Value Theorem, there is a point \(c_k \) between \(x_{k-1} \) and \(x_k \) such that
\[\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} = f'(c_k) \]

or
\[f(x_k) - f(x_{k-1}) = f'(c_k) \Delta x_k \]

This gives us
\[S_k \approx \pi \left(f(x_{k-1}) + f(x_k) \right) \sqrt{(\Delta x_k)^2 + \left(f'(c_k) \Delta x_k \right)^2} \]
\[= \pi \left(f(x_{k-1}) + f(x_k) \right) \sqrt{1 + (f'(c_k))^2} \cdot \Delta x_k \]
Now

\[\frac{1}{2} \left(f(x_{k-1}) + f(x_k) \right) \]

is between \(f(x_{k-1}) \) and \(f(x_k) \).

By the Intermediate Value Theorem, we know that there exists a \(d_k \) in \([x_{k-1}, x_k]\) such that

\[\frac{1}{2} \left(f(x_{k-1}) + f(x_k) \right) = f(d_k) \]
Surface Area

\[S_k \approx \pi \left(f(x_{k-1}) + f(x_k) \right) \sqrt{1 + \left(f'(c_k) \right)^2} \cdot \Delta x_k \]
\[= 2\pi f(d_k) \sqrt{1 + \left(f'(c_k) \right)^2} \cdot \Delta x_k \]

That means that the total surface area, \(S \), is approximately

\[S = \sum_{k=1}^{n} S_k \approx \sum_{k=1}^{n} 2\pi f(d_k) \sqrt{1 + \left(f'(c_k) \right)^2} \cdot \Delta x_k \]
Surface Area

We expect that

\[S = \lim_{\|P\| \to 0} \sum_{k=1}^{n} 2\pi f(d_k)\sqrt{1 + (f'(c_k))^2} \cdot \Delta x_k \]

If \(c_k = d_k \), then this would be the definite integral

\[\int_{a}^{b} 2\pi f(x)\sqrt{1 + (f'(x))^2} \, dx \]

It can be proved (not by us now) that the limit is indeed the definite integral even if \(c_k \neq d_k \).
Surface Area Definition

Let \(f \) be a nonnegative, smooth function on \([a, b]\). Then the surface area \(S \) generated by revolving the portion of the curve \(y = f(x) \) between \(x = a \) and \(x = b \) about the \(x \)-axis is

\[
S = \int_a^b 2\pi f(x) \sqrt{1 + (f'(x))^2} \, dx
\]

Let \(x = g(y) \) be a nonnegative, smooth function on \([c, d]\). Then the surface area \(S \) generated by revolving the portion of the curve \(x = g(y) \) between \(y = c \) and \(y = d \) about the \(y \)-axis is

\[
S = \int_c^d 2\pi g(y) \sqrt{1 + (g'(y))^2} \, dy
\]
Example 1

Find the surface area generated by revolving the curve

\[y = \sqrt{1 - x^2}, \quad 0 \leq x \leq \frac{1}{2} \]

about the x-axis.

Solution:
The graph of the curve is the upper semi-circle of radius 1 centered at the origin.
Example 1 (continued)

\[y = \sqrt{1 - x^2} \]
\[\frac{dy}{dx} = \frac{-x}{\sqrt{1 - x^2}} \]

\[S = \int_{a}^{b} 2\pi f(x) \sqrt{1 + (f'(x))^2} \, dx \]

\[= \int_{0}^{1/2} 2\pi \sqrt{1 - x^2} \sqrt{1 + \left(\frac{-x}{\sqrt{1 - x^2}} \right)^2} \, dx \]

\[= \int_{0}^{1/2} 2\pi \sqrt{1 - x^2} \sqrt{1 + \frac{x^2}{1 - x^2}} \, dx \]

\[= \int_{0}^{1/2} 2\pi \sqrt{1 - x^2} \frac{1}{\sqrt{1 - x^2}} \, dx \]

\[= \int_{0}^{1/2} 2\pi \, dx \]

\[= \cdots = \pi \]

J. Gonzalez-Zugasti, University of Massachusetts - Lowell
Example 2

Find the surface area generated by revolving the curve

\[y = \sqrt[3]{3x}, \quad 0 \leq y \leq 2 \]

about the \(y \)-axis.

Solution:

\[y = \sqrt[3]{3x} \Rightarrow x = \frac{1}{3}y^3 \]

\[\frac{dx}{dy} = y^2 \]
Example 2 (continued)

\[S = \int_{c}^{d} 2\pi g(y)\sqrt{1 + (g'(y))^2} \, dy \]

\[= \int_{0}^{2} 2\pi \left(\frac{1}{3} y^3 \right) \sqrt{1 + (y^2)^2} \, dy \]

\[= \int_{0}^{2} \frac{2\pi}{3} y^3 \sqrt{1 + y^4} \, dy \]

\[
\begin{align*}
 u &= 1 + y^4 \\
 du &= 4y^3 \, dy \Rightarrow \frac{1}{4} \, du = y^3 \, dy \\
 y = 2 &\Rightarrow u = 17 \\
 y = 0 &\Rightarrow u = 1
\end{align*}
\]
Example 2 (continued)

\[S = \int_0^2 \frac{2\pi}{3} y^3 \sqrt{1 + y^4} \, dy \]

\[= \int_1^{17} \frac{2\pi}{3} \sqrt{u} \cdot \frac{1}{4} \, du \]

\[= \cdots = \frac{\pi}{9} (17\sqrt{17} - 1) \]
Archimedes' Bakery

CHOCOLATE CAKE $2.50
COOKIES (DOZEN) $4.00
COBBLER $5.00
MUFFIN $1.25

3.1415926535987932384626433
83279502884197169399375058
20947944592307816046256207
089662203482534211706798214...

Nobody's ordering it.
With all due respect, sir - I suggest we give it an easier-to-pronounce name.

http://thecomicninja.wordpress.com/tag/math/