Section 6.2

After viewing the lecture videos and reading the textbook, you should be able to answer the following questions:

1. The Shell Method about the y-axis: $V = \int_a^b 2\pi \cdot r(x) \cdot h(x) \, dx$

Find the volume of the solid generated by rotating the region bound by the curves $y = f(x)$ and $y = g(x)$ over the interval $[a, b]$ about:

a) the y-axis.

b) the line $x = M$, where $M \geq b$.

c) the line $x = N$, where $N \leq a$.
2. The Shell Method about the \(x \)-axis:
\[
V = \int_c^d 2\pi \cdot r(y) \cdot h(y) \, dy
\]

Find the volume of the solid generated by rotating the region bound by the curves \(x = u(y) \) and \(x = v(y) \) over the interval \([c, d]\) about:

a) the \(x \)-axis.

b) the line \(y = L \), where \(L \geq d \).

c) the line \(y = K \), where \(K \leq c \).

NOTE: For the shell method, your “cuts” (the line drawn through the region at either a random value of \(x \) or at a random value of \(y \)) are parallel to the line about which you are rotating.

- You integrate with respect to \(x \) if your cuts are perpendicular to the \(x \)-axis (that is, if your cuts are vertical).
- You integrate with respect to \(y \) if your cuts are perpendicular to the \(y \)-axis (that is, if your cuts are horizontal).