
Math 751 115 Fall 2010

B.  Various Forms of Compactness

In addition to the formulation of compactness presented above in terms of open
covers, there are other useful versions.  We will introduce several alternative notions of
compactness and explore conditions under which they are equivalent.

Recall that a point x of a topological space X is a limit point or accumulation point
of a subset A of X if every neighborhood of x intersects A – { x }.

Definition.  A topological space X is limit point compact or accumulation point
compact if every infinite subset of X has a limit point in X.

Definition.  Let x : N → X and y : N → X be sequences in a topological space X.
y is a subsequence of x if there is a strictly increasing function n : N → N such that y =
xºn.  In other words,  { yi } is a subsequence of { xi } is there are positive integers n(1) <
n(2) < n(3) < … such that yi = xn(i) for i ∈ N.  Recall that the sequence y : N → X
converges to a point z ∈ X if for every neighborhood U of z in X, there is a positive
integer n such that y(i) ∈ U for every i ≥ n.

Definition.  A topological space X is sequentially compact if every sequence in X
has a converging subsequence.

Definition.  A topological space X is countably compact if every countable open
cover of X has a finite subcover.

Definition.  A topological space X is Lindelöf if every open cover of X has a
countable subcover.

The relations between the various forms of compactness just defined are
illustrated by the following figure.
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We now prove the relations indicated in the figure.  The first assertion is obvious.

Theorem III.20.  Every compact space is countably compact. 

Theorem III.21.  Every countably compact Lindelöf space is compact.

Exercise.  Prove Theorem III.21.

Theorem III.22.  Every limit point compact T1 space is countably compact.

Proof.  Let X be T1 space which is not countably compact.  We will prove that X
is not limit point compact.

X has a countable open cover { Un : n ∈ N } which has no finite subcover.
Consequently, for each n ∈  N, the set   X – 

€ 

 ∪i=1
n Ui ( )  is non-empty, and we can choose

a point an from this set.  Let A = { an : n ∈ N }.

We assert that A is an infinite set.  Indeed, if A were a finite set, then A would be
covered by some finite subset of the open cover { Un : n ∈ N } of X.  Then there would
be an n ∈ N such that A ⊂ 

€ 

∪i=1
n Ui .  But this is impossible because an ∈ A and an ∉

€ 

∪i=1
n Ui .

Next we assert that the set A has no limit points in X.  For consider a point x ∈ X.
We will find a neighborhood V of x in X that is disjoint from A – { x }.  Since { Un : n ∈ N }
covers X, then x ∈ Un for some n ∈ N.  Let F = A ∩ ( Un – { x } ).  Then A ∩ Un ⊂
F ∪ { x }.   Since ai ∉ Un for i ≥ n, then F ⊂ { ai : 1 ≤ i < n }.  Thus, F is a finite set.  Since
X is a T1 space, then F is a closed set.  Clearly, x ∉ F.  Let V = Un – F.  Then V is a
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neighborhood of x in X.  Furthermore,
V ∩ ( A – { x } )  =  ( Un – F ) ∩ ( A – { x } )  =  ( Un ∩ A ) – ( F ∪ { x } )  =  ∅.

It follows that x is not a limit point of A.  We conclude that A has no limit points.

Since X contains an infinite set with no limit points, then X is not limit point
compact. 

Theorem III.23.  Every countably compact space is limit point compact.

Proof.  Let X be a space which is not limit point compact.  We will prove that X is
not countably compact.

Since X is not limit point compact, then there is an infinite subset A of X that has
no limit points.  We assert that every subset of A is a closed subset of X.  For suppose
B ⊂ A.  Let x ∈ X – B.  Since A has no limit points, then x has a neighborhood U which
is disjoint from A – { x }.  Since B ⊂ A – { x }, then U ∩ B = ∅.  Thus, every point of
X – B has a neighborhood which is disjoint from B.  This proves B is a closed subset of
X.

Now choose an infinite sequence a1, a2, a3, … of distinct points of A.  For each
positive integer n ∈ N, define Un = X – { ai : i ≥ n }.  For each n ∈ N, since { ai : i ≥ n } is a
subset of A, then it is a closed subset of X.  Hence, each Un is an open subset of X.
Since U1 = X – { ai : i ≥ 1 } and an ∈ Un+1 for each n ∈ N, then { Un : n ∈ N } covers X.
However, since an ∉ Ui for 1 ≤ i ≤ n, then no finite subset of { Un : n ∈ N } covers X.

Thus, { Un : n ∈ N } is a countable open cover of X that has no finite subcover.
This proves X is not countably compact. 

Theorem III.24.  Every sequentially compact space is countably compact.

Problem III.4.  Prove Theorem III.24.

Theorem III.25.  Every countably compact first countable space is sequentially
compact.

Proof.  Let X be a first countable space which is not sequentially compact.  We
will prove that X is not countably compact.

Since X is not sequentially compact, it contains a sequence of points { xn } that
has no converging subsequence.  For each positive integer n ∈ N, set Tn = { xi : i ≥ n }
and define Un = X – cl(Tn).  Each Un is clearly an open subset of X.  We will prove that
{ Un : n ∈ N } covers X but no finite subset of { Un : n ∈ N } covers X.
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Since 

€ 

∪n=1
∞ Un   =  X – 

€ 

 ∩n=1
∞ cl(Tn) ( ), then to prove that { Un : n ∈ N } covers X, it

suffices to prove that 

€ 

∩n=1
∞ cl(Tn) = ∅.  To this end, assume 

€ 

∩n=1
∞ cl(Tn) ≠ ∅  and let y ∈

€ 

∩n=1
∞ cl(Tn).  We will derive a contradiction by showing that some subsequence of { xn }

converges to y.

Since X is first countable, there is a countable basis { Bn : n ∈ N } for X at y.  We
can assume B1 ⊃ B2 ⊃ B3 ⊃ ….  (If not, replace each Bk by B1 ∩ B2 ∩ … ∩ Bk.)

We will now inductively construct a sequence n(1) < n(2) < n(3) < … of positive
integers such that xn(k) ∈ Bn(k) for each k ∈ N.  To begin: since y ∈ cl(T1), then B1 ∩ T1 ≠
∅.  Hence, there is an n(1) ≥ 1 such that xn(1) ∈ B1.  Suppose k ≥ 1 and we have already
found n(1) < n(2) < … < n(k) such that xn(i) ∈ Bn(i) for 1 ≤ i ≤ k.  Since y ∈ cl(Tn(k)+1), then
Bn(k)+1 ∩ Tn(k)+1 ≠ ∅.  Hence, there is an n(k+1) ≥ n(k)+1 such that xn(k+1) ∈ Bn(k)+1.  This
completes our inductive construction of the sequence n(1) < n(2) < n(3) < … with the
property that xn(k) ∈ Bn(k) for each k ∈ N.

We assert that the subsequence { xn(k) } of { xn } converges to y.  To prove this, let
V be a neighborhood of y in X.  Then there is a j ∈ N such that Bj ⊂ V.  Since 1 ≤ n(1) <
n(2) < n(3) < …, then n(k) ≥ k for each k ∈ N.  Hence, for k ∈ N: k ≥ j  ⇒  xn(k) ∈ Bn(k) ⊂ Bk

⊂ Bj ⊂ V.  This proves our assertion: { xn(k) } is a subsequence of { xn } that converges to
y.

Since { xn } was chosen to be a sequence in X that has no converging
subsequences, then we have reached a contradiction.  Hence, our original assumption
that 

€ 

∩n=1
∞ cl(Tn) ≠ ∅ must be false.  Therefore, 

€ 

∩n=1
∞ cl(Tn) = ∅.  Hence, 

€ 

∪n=1
∞ Un  = X.

Thus, { Un : n ∈ N } covers X.

For each n ∈ N, for 1 ≤ i ≤ n, since xn ∈ Ti, then xn ∉ Ui.  Hence,  xn ∉ 

€ 

∪i=1
n Ui .

Therefore, no finite subset of { Un : n ∈ N } covers X.

Thus { Un : n ∈ N } is a countable open cover of X that has no finite subcover.
We conclude that X is not countably compact. 

Problem III.5.  Recall that Ω (Example I.10) is an uncountable well-ordered
space in which every element has countably many predecessors.  Prove that Ω is
sequentially compact but not compact.  Then observe that Theorems III.21, III.23 and
III.24 imply that Ω is countably compact and limit point compact but not Lindelöf.
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Problem III.6.  Let Σ = { 0, 1 }N, the set of all functions from N to { 0, 1 }.  Thus, Σ
may be regarded as the set of all sequences of 0’s and 1’s.  Now consider the set
{ 0, 1 }Σ, the set of all functions from Σ to { 0, 1 }.  ({ 0, 1 }Σ  may be regarded as the set
of all  “Σ-indexed sequences” of 0’s and 1’s.)  For every f ∈ { 0, 1 }Σ and every finite
subset A of Σ, let

N(f,A)  =  { g ∈ { 0, 1 }Σ : g|A = f|A }.

a)  Prove that { N(f,A) : f ∈ { 0, 1 }Σ and A is a finite subset of Σ } is a basis for a topology
on { 0, 1 }Σ.

Endow { 0, 1 }Σ with this topology.  In a subsequent chapter, we will see that { 0, 1 }Σ can
be regarded as an infinite Cartesian product of “Σ-many” copies of the two-point space
{ 0, 1 }.  Furthermore, we will learn that topology on { 0, 1 }Σ that we have just described
is known as the product topology.  In the infinite Cartesian product { 0, 1 }Σ, each factor
{ 0, 1 } has the discrete topology.  { 0, 1 } with the discrete topology is a compact space.
Thus, { 0, 1 }Σ is a Cartesian product of compact spaces with the product topology.  One
of the fundamental theorems about infinite Cartesian products, the Tychonoff Theorem,
tells us that the Cartesian product of compact spaces with the product topology is
compact.  (Also see Additional Problem III.16+.)   It follows that { 0, 1 }Σ with the
topology described above is compact.  Since, { 0, 1 }Σ is compact, it is countably
compact and limit point compact by Theorems III.20 and III.23.
b)  Prove that { 0, 1 }Σ with the topology described above is not sequentially compact.

Hint.  First, prove that if a sequence { fn } in { 0, 1 }Σ converges to an element g of
{ 0, 1 }Σ, then for each σ ∈ Σ, there is an n ∈ N such that fi(σ) = g(σ) for every i ≥ n.
Second, define a sequence { fn } in { 0, 1 }Σ as follows.  For each n ∈ N, define fn ∈
{ 0, 1 }Σ by the formula fn(σ) = σ(n) for each σ ∈ Σ.  Now prove that no subsequence of
{ fn } converges by the following argument.  Let { fni } be a subsequence of { fn }.  Define
an element σ of Σ such that the value of σ(ni) oscillates between 0 and 1 as i increases.
Then argue that this behavior prevents the sequence { fni } from converging to any
element of { 0, 1 }Σ.

Problem III.7.  Regard Ω and { 0, 1 }Σ as disjoint sets, and consider their union
Ω ∪ { 0, 1 }Σ.

a)  Prove that the collection of sets
{ U ∪ V : U is an open subset of Ω and V is an open subset of { 0, 1 }Σ }

is a topology on Ω ∪ { 0, 1 }Σ.  This topology is called the disjoint union topology on
Ω ∪ { 0, 1 }Σ.

Endow Ω ∪ { 0, 1 }Σ with the disjoint union topology.
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b)  Prove that Ω ∪ { 0, 1 }Σ with the disjoint union topology is countably compact but not
compact and not sequentially compact.
Then observe that Ω ∪ { 0, 1 }Σ is limit point compact but not Lindelöf and not first
countable by Theorems III.21, III.23 and III.25.

Problem III.8.  Let the set N of positive integers have the discrete topology, and
let { 0, 1 }* denote the two-point set { 0, 1 } endowed with the indiscrete topology.
Consider the space N × { 0, 1 }* endowed with the product topology.  Prove that
N × { 0, 1 }* is limit point compact, but not compact, not countably compact and not
sequentially compact.  Observe that N × { 0, 1 }* is not T1 by Theorem III.22.

The relevant properties of the spaces Ω, { 0, 1 }Σ, Ω ∪ { 0, 1 }Σ and N × { 0, 1 }*
are summarized in the following table.  These spaces illustrate that the additional
hypotheses of Lindelöf, T1 and first countable that are attached to certain arrows in the
Great Wheel of Compactness can’t be omitted.

Space compact sequentially
compact

countably
compact

limit point
compact

other
properties

Ω no yes yes yes
first

countable, not
Lindelöf

{ 0, 1 }Σ yes no yes yes
not first

countable,
Lindelöf

Ω ∪ { 0, 1 }Σ no no yes yes
not first

countable, not
Lindelöf

N × { 0, 1 }* no no no yes not T1
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We conclude this section with an examination of the Lindelöf property.

Theorem III.26.  Every second countable space is Lindelöf.

Problem III.9.  Prove Theorem III.26.

Theorem III.27.  Every regular Lindelöf space is normal.

Proof.  Let A and B be disjoint closed subsets of a regular Lindelöf space X.

Since X is a regular space, then for each x ∈ A, there is a neighborhood Lx of x in
X such that cl(Lx) ∩ B = ∅.  Then { Lx : x ∈ A } ∪ { X – A } is an open cover of X.  Since
X is a Lindelöf space, then there is a countable subset { Mi : i ∈ N } of { Lx : x ∈ A } such
that { Mi : i ∈ N } ∪ { X – A } covers X.  Hence, { Mi : i ∈ N } is a countable collection of
open subsets of X that covers A such that cl(Mi) ∩ B = ∅ for each i ∈ N.  Similarly there
is a countable collection { Ni : i ∈ N } of open subsets of X that covers B such that
cl(Ni) ∩ A = ∅ for each i ∈ N.

For each k ∈ N, let  Uk  =  Mk – 

€ 

 ∪i=1
k cl(Ni) ( )   and let  Vk  =  Nk – 

€ 

 ∪i=1
k cl(Mi) ( ).

Then Uk and Vk are open subsets of X.  For each k ∈ N, since 

€ 

 ∪i=1
k cl(Ni) ( )  ∩ A = ∅,

then Uk ∩ A = Mk ∩ A.  Hence, { Uk : k ∈ N } covers A.  Similarly, { Vk : k ∈ N } covers B.
We assert that for all j, k ∈ N, Uj ∩ Vk = ∅.  If j ≤ k, then Uj ⊂ Mj ⊂ 

€ 

∪i=1
k cl(Mi); so clearly

Uj ∩ Vk = ∅.  A symmetric argument show that Uj ∩ Vk = ∅ if j ≥ k.

Define  U  = 

€ 

∪k=1
∞ Uk   and  V  =   

€ 

∪k=1
∞ Vk .  It follows that U and V are disjoint

neighborhoods of A and B in X.  This proves X is normal. 

Problem III.10.  Recall that the set { [ a, b ) : a < b } of all closed-open intervals in
the set of real numbers R is a basis for a topology on R, and R endowed with this
topology is denoted Rbad.  Recall that Rbad is not second countable.

a)  Prove that Rbad is Lindelöf.

b)  Is Rbad × Rbad Lindelöf?

c)  Is every subspace of a Lindelöf space Lindelöf?
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C. Compactness in Metric Spaces

Our first goal in this section is to show that in a metric space, the four forms of
compactness – compactness, countable compactness, limit point compactness and
sequential compactness – are equivalent.  Since metric spaces are T1 and first
countable, then the theorems of the previous section imply that in the metric space
setting, the last three of these properties – countable compactness, limit point
compactness and sequential compactness – are equivalent and are implied by
compactness.  (See Theorems III.20, III.22, III.23, III.24 and III.25.)  It remains to show
that in a metric space, these three properties imply compactness.

It is most convenient to prove that for metric spaces, compactness is implied by
sequential compactness.  It suffices to prove that every sequentially compact metric
space is separable.  This is because every separable metric space is second countable,
every second countable space is Lindelöf (Theorem III.26), and every sequentially
compact Lindelöf space is compact (Theorems III.21 and III.24).

Definition.  A metric space (X,ρ) is totally bounded if for every ε > 0, there is a
finite subset F of X such that { N(x,ε) : x ∈ F } covers X.  In other words, X is totally
bounded if and only if for every ε > 0, there is a finite subset F of X such that every point
of X lies within distance ε of some point of F.

Theorem III.28.  Every sequentially compact metric space is totally bounded.

Proof.  Assume that the metric space (X,ρ) is not totally bounded.  We will prove
that X is not sequentially compact.  Since X is not totally bounded, then there is an ε > 0
such that for every finite subset F of X, ∪x ∈ F N(x,ε) ≠ X.  Consequently, one can
inductively choose a sequence of points x1, x2, x3, … in X such that xn+1 ∉ 

€ 

∪i=1
n N(xi,ε)  for

each n ∈ N.  (Verify!)  It follows that ρ(xi,xj) ≥ ε for all i ≠ j.  We assert that the sequence
{ xn } has no converging subsequences.  Indeed, if a subsequence { xn(i) } of {xn }
converged to a point y of X, then there would be a positive integer j such that xn(i) ∈
N(y,ε/2) for every i ≥ j.  But then for i > j, ρ(xn(i),xn(j)) ≤ ρ(xn(i),y) + ρ(y,xn(j)) < ε/2 + ε/2 = ε, a
contradiction.  Thus, as claimed, { xn } has no converging subsequences.  It follows that
X is not sequentially compact. 

Theorem III.29.  Every totally bounded metric space is separable.

Proof.  Let (X,ρ) be a totally bounded metric space.  Then for each positive
integer n, there is a finite subset Fn of X such that { N(x,1/n) : x ∈ Fn } covers X.  Define D
= 

€ 

∪n=1
∞ Fn.  We assert that D is a dense countable subset of X.  Clearly D is countable.

To see that D is dense in X, let U be a non-empty open subset of X and let x ∈ U.  Then
there is a positive integer n such that N(x,1/n) ⊂ U.  There is a y ∈ Fn such that x ∈
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N(y,1/n).  Hence, ρ(x,y) < 1/n.  So y ∈ D ∩ N(x,1/n) ⊂ D ∩ U.  Thus, D ∩ U ≠ ∅.  This
proves D is a dense subset of X.  Hence, X is separable. 

Exercise.  Is every separable metric space totally bounded?

Theorem III.30.  For metric spaces, compactness, countable compactness, limit
point compactness and sequential compactness are equivalent.

Proof.  We simply repeat the chain of reasoning given at the beginning of this
section.

Since metric spaces are T1 and first countable, then countable compactness, limit
point compactness and sequential compactness are equivalent in metric spaces by
Theorems III.22 through III.5.

Every compact metric space is sequentially compact by Theorems III.20 and
III.25.  The converse implication – every sequentially compact metric space is compact
– is obtained by combining the following previously proved results.
• Every sequentially compact metric space is totally bounded (Theorem III.28).
• Every totally bounded metric space is separable (Theorem III.29).
• Every separable metric space is second countable (Theorem I.13.)
• Every second countable space is Lindelöf (Theorem III.26).
• Every sequentially compact Lindelöf space is compact (Theorems III.24 and III.11).
We conclude that every sequentially compact metric space is compact. 

Combining Theorems III.28, III.29 and III.30, we have:

Corollary III.31.  Every compact metric space is totally bounded and separable.

Definition.  A Lebesgue number of an open cover U of a metric space (X,ρ) is a
real number λ > 0 such that every subset of X of diameter ≤ λ is contained in an
element of U.

Exercise.  Verify that { (1/n+2,1/n) : n ∈ N } is an open cover of ( 0, 1 ) that has no
Lebesgue number.

Theorem III.32.  Every open cover of a compact metric space has a Lebesgue
number.

Proof.  Let U be an open cover of a compact metric space (X,ρ).  For each x ∈
X, first choose an element Ux of U such that x ∈ Ux, and then choose εx > 0 so that
N(x,εx) ⊂ Ux.  Since X is compact, there is a finite subset F of X such that
{ N(x,εx/2) : x ∈ F } covers X.  Let λ = min { εx/2 : x ∈ F }.  We assert that λ is a
Lebesgue number of U.  To prove this assertion, let A be a subset of X of diameter ≤ λ.
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Let y ∈ A.  Then there is an x ∈ F such that y ∈ N(x,εx/2).  Hence, for every z ∈ A,

ρ(z,x)  ≤  ρ(z,y) + ρ(y,x)  ≤  diam(A) + εx/2  ≤  λ + εx/2  ≤  2(εx/2)  =  εx.

Hence, if z ∈ A, then z ∈ N(x,εx).  This proves A ⊂ N(x,εx).  Since N(x,εx) ⊂ Ux, then A ⊂
Ux ∈ U.  We conclude that λ is a Lebesgue number of U. 

Definition.  A function f : (X,ρ) → (Y,σ) is uniformly continuous if for every ε > 0,
there is a δ > 0 such that if x, x´ ∈ X and ρ(x,x´) < δ, then σ(f(x),f(x´)) < ε.

Problem III.11.  Let f : (X,ρ) → (Y,σ) be a map between metric spaces.  Use
Lebesgue numbers to prove that if X is compact, then f is uniformly continuous.


