
Models and Opportunities for Networked Live Coding

Sang Won Lee
Computer Science and Engineering

University of Michigan
2260 Hayward Ave

Ann Arbor, MI 48109-2121
snaglee@umich.edu

Georg Essl
Electrical Engineering & Computer Science and

Music
University of Michigan

2260 Hayward Ave
Ann Arbor, MI 48109-2121

gessl@umich.edu

ABSTRACT
Since the inception of live coding, networked live coding
has been present and is increasingly being used in practice.
In this paper, we review existing works on networked live
coding, associate such works with the dimensions of network
music, and point out new opportunities in the field.

Keywords
live coding, network music, collaborative music making

1. INTRODUCTION
Since its inception, the presence of live coding ensemble has,
in practice, posed challenges pertaining to facilitating col-
laboration and coordinating shared programming practices.
In response to such challenges, researchers and practition-
ers have developed a number of live coding environments
that contain networking capability. The goal of this paper
is to look at existing works of networked live coding, to re-
view responses to the aforementioned challenges and to find
new opportunities that build upon the tradition of network
music.

2. WHAT IS SHARED IN NETWORKED LIVE
CODING?

Modern computers all but invite the use of networks in col-
laborative music-making contexts. The same can be said for
collaborative live coding. Networked communication and
data sharing can facilitate collaboration among live coders.
While collaborative live coding does not necessarily mean
that computers need to be connected over a network, the po-
tential of networked live coding has been present from live
coding’s inception of live coding [8]. Realizing networked
live coding requires detailed consideration of the networked
system. There are a multitude of design choices that per-
tain to what kind of data is shared and how the system
maintains that shared data across different network topolo-
gies and how it will facilitate collaboration among musicians
over the network. Our purpose here is to review the types
of shared data that are used in existing works while also
advancing the needs induced by the data-sharing process
in live coding practice. In particular we will review time
sharing (synchronization), code sharing (text/program rep-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Live Coding and Collaboration Symposium ’14, Sep. 25 – July 26, 2014,
University of Birmingham, UK.
Copyright remains with the author(s).

resentation), program state sharing (run-time states, vari-
ables, objects, memory), access control, and communication
facilitation (chat). We hope this classification provides an
overview for live coding researchers creating a collaborative
live coding environment and that it sheds light on collabo-
rative aspects supported by the system.
Time sharing: In any form of multi-performer music, what
is important is playing together, that is to say being syn-
chronized. This is certainly also true for live coding per-
formance. Hence, in a networked live coding setting, it
is important to consider how to facilitate synchronization.
One crucial precondition to this is having one synchronized
clock between machines. Many networked live coding envi-
ronments enable clock synchronization or implement ways
to synchronize timing of musical events [6, 8, 10, 14, 26, 31,
36]. The method of clock synchronization varies depending
on the architecture of the network and the distributed na-
ture of the ensemble and well-known methods can be found
in [9, 26]
Code sharing: Some live coders share actual code frag-
ments among members of ensemble during the performance.
Live coding environments on a web browser such as Gibber
[27] or Sketchpad [1] offer a Google doc-like shared editor.
In LOLC, commands are typed into an instant messaging-
style interface that shows both commands and chat mes-
sages so that you can see your code, others’ codes and chat
messages [16]. Sharing code text is essential not only in
facilitating collaboration but also in improving the sense of
collaboration. In a previous work of ours [14], we had a
shared program state but no shared code text. Through an
unofficial self assessment, we discovered that programmers
frequently look over a colleague’s shoulder and read the code
of others, not to understand the code but to see where he
or she is currently working on. For the same reason that
live coding is projected on screen to communicate with an
audience [23], participants had a more engaging experience
monitoring the progress of collaborators. This lead us to
add a shared text editor using Google Realtime API [11] to
our environment.
Program-state-sharing: Instead of sharing code text,
some live coding environments enable sharing dynamic ob-
jects or variables in the program state. The ways in which
sharing objects is implemented are diverse: re-rendering ob-
jects by evaluating code fragments in both the local machine
and the remote machines [6, 30, 20], transmitting sound
objects as serializable data [10], synchronizing the value of
variables using tuple space [31], or being shared inherently
due to one centralized program state for multiple live coders
[14]. One may think that sharing code text is good enough
as one has access to the code that can reproduce the same
objects in a local machine. For a live coder, however, read-
ing, interpreting, and evaluating the code fragment are ad-
ditional cognitive loads. Furthermore, the code text in the



editor is not a complete representation of the program state
and there almost always exists a discrepancy between the
code text (State of Code) and the program state (State of
World) [32]. In other words, the code associated with a
certain sound (or any outcome from the live coding) at the
moment may not even exist in the text editor any more be-
cause it may have been modified. Conversely, not all the
code in the editor is available in the program state until it
is evaluated.
Access-control: Regarding shared code text and state
synchronization, it should be noted that the nature of col-
laboration will vary depending on the level of permission
(e.g., read/write/execute) given each live coder to the shared
data. One can design a system to allow all types of permis-
sion for all participants, which enables open collaboration.
This would be like the early networked music piece The
Hub’s Borrowing and Stealing [7]. In [10], the environment
supports the sharing of musical patterns with read/execute
permission so that shared objects are not mutable by other
live coders. This is intended to encourage borrowing to play
the pattern and to then create a new pattern based on the
borrowed one. Or a live coding environment can select a
more conservative strategy where a live coder can choose to
share a certain set of variables in the selective manner [14]
and choose to evaluate a certain code fragment remotely to
obtain a dislocated sound [30]. Giving permission for all
types of interaction to all live coders imposes possible risk
of code/state corruption while collaborating. For example,
in [20], the author addressed the fact that a shared text edi-
tor can present problems such as unexpected code deletions
and collisions and this reflects the risk on his design deci-
sion to have read-only permission for collaborators so as to
safeguard the code against corruption.
Communication-facilitation: Enabling chat is an effec-
tive strategy to facilitate communication between live coders
as well as to engage an audience in the communication loop
when projected on screen [1, 10, 14, 20, 24, 27]. Lastly,
we want to point out that sharing actual low-level outcome
(such as raw audio) has been less explored. Later in this pa-
per, we suggest a few cases where sharing raw data between
computers enables new types of collaboration.
Potential expansions of shared data: Numerous expan-
sions of the above paradigms are conceivable. In particular,
contextual and situated information could be incorporated
into performance. This information could come from the
performer’s computers as well as from devices the audience
posseses. Some of these ideas have been realized in the con-
text of locative music performances [33].

3. CENTRALIZED AND DECENTRALIZED
MODEL

In order to understand the differences in characteristics be-
tween networked performances, it is helpful to investigate
taxonomies that clarify the respective properties of different
network configurations. One important taxonomy for this
purpose was proposed by Weinberg [35], who described a
number of topologies of interconnected music ensembles de-
pending on the architecture of the network among musicians
(centralized/decentralized) and the nature of interconnectiv-
ity (synchronous/sequential), depicted in Figure 1. In this
section, we borrow the concept of centralized / decentralized
model to understand existing works of networked collabo-
ration in live coding and to associate various design choices
of live coding systems with two models.

In the centralized approach, one central machine handles
all computations. As a consequence only one machine gen-
erates music regardless of the number of connected musi-

Figure 1: Various Topologies of Network Music En-
semble. Adapted after [35].

cians. In the live coding context, we can say only one pro-
gram state exists. In the meantime, the decentralized ap-
proach implies that there are multiple machines that gener-
ate sound. Similarly, multiple program states are available.
This number of states could be as many as the number
of live coders in the ensemble. Similar ideas were also in-
troduced by Wang in the context of live coding. Rather
than using a centralized/decentralized dichotomy, he used
the more network-centric server-client / peer-to-peer dis-
tinction [34]. As a platform for networked co-live coding
he also realized a collaborative audio programming space,
Co-Audicle.

There are advantages and disadvantages in both the cen-
tralized and decentralized models, especially with respect
to sharing dynamic objects and clock synchronization men-
tioned in the previous section.
Centralized (server-client) approach: Each live coder
uses a computer (client) as a ”dumb terminal” that holds
code text to be sent to a central server. Since there is only
one program state, there is no need for state/clock syn-
chronization. However, each individual may face conflicts,
collisions, and interruptions of some kind. This is because
only one state space exists, leaving open the risk one in-
advertently modifies the state space that might have been
created by someone else. In [34], any code evaluation is en-
capsulated in a shred so the conflict cannot occur while the
system does not support inter-shred state synchronization.
In [14], our solution to the issue is to give each individual
live coder his/her own namespace and to create a shared
namespace separately that everyone has access to. In addi-
tion, the environment provides a summarized view of each
namespace based on data polled from the server so that live
coders can monitor live values of variables, functions and
expressions in their own namespace as well as others at a
certain time.
Decentralized approach: This approach is more frequently
used in networked live coding. In this approach, one can
make many design choices about which content (clock, state,
code text, etc.) to share, as mentioned in Section 2. The
simplest way to share data on the decentralized network is
to broadcast (or push) the code fragment to (either all or a
part of) connected nodes whenever it is evaluated. The use
of an algorithm as transmitted data empowers a machine
to re-render dynamic objects and a live coder to alter the
algorithm, although it is based on the premise that all the
members of the ensemble use the same live coding environ-
ment. Powerbooks Unplugged [29] is a typical decentralized
ensemble where each machine has its own state, code is
shared over a local area network whenever evaluated and
a live coder, by evaluating the code remotely, can generate



sound dislocated from the local machine.
A more sophisticated way to share data in the decentral-

ized network is to synchronize the program states and tim-
ing of certain events. Ogborn recently introduced EspGrid,
which supports the decentralized structure for synchroniza-
tion of beats and related temporal parameters [24]. The
system requires no central server and is tolerant to inhomo-
geneity of audio programming languages [26].
Decentralized programming with central timing: De-
centralized live coding are often combined with the central-
ized approach. Impromptu Spaces exemplifies the state syn-
chronization in a distributed manner with centralized time
synchronization [31]. With Spaces, variables can be read
and modified with full access (read/write) from multiple
machines, utilizing tuple space. In addition, the system im-
plements the server-client structure in which one controls
timing (e.g., metronome) while the other processes use the
primitives locally to synchronize a series of events. LOLC
also utilizes the server-client structure and the server is re-
sponsible for the clock synchronization and sharing musical
patterns [10]. Notice that the two examples above require
one dedicated server machine but still belong to the decen-
tralized model since each client holds a program state that
generates music.

4. DISPARATE COLLABORATION IN NET-
WORKED LIVE CODING

According to Weinberg’s classification, most examples we
have reviewed fall into the synchronous collaboration. In
contrast, the sequential relationship indicates non-real time
interaction where collaboration occurs in a certain order be-
tween participants. For instance, in the report of Dagstuhl
Seminar [5], McLean introduced Mexican Roulette where
live coders take turns and write music at a computer.

Differing from the notion of the sequential relationship
originally suggested, it can be expanded to a real-time sit-
uation. Imagine a laptop performer processing the acoustic
sounds of a musical instrument; here the laptop performer
forms a sequential relationship with the instrumental per-
former and mediates, in real time, the acoustic outcome.
The similar mode of collaboration can be applied in a live
coding context, enabling a novel musical aesthetic. For ex-
ample, one of the live coders only works on a low-level sound
synthesis algorithm and, at the same time, the other live
coder uses the algorithm to generate musical events. Alter-
natively, raw audio data generated by a live coder can be
transmitted to another so that the streamed audio becomes
the basic material for the latter to transform and process
the sound thereafter. Pea Stew by BEER is a good exam-
ple where live coders sent raw audio signal to each other
and created networked audio feedback [36]. The authors
recognized that this interconnected relationship “presents
challenges somewhat different” from those in traditional live
coding performances and describe the piece as “several per-
formers simultaneously playing a single instrument.”

The sequential (and real-time) relationship provides a
new aesthetic by connecting live coding musicians with in-
strumental performers. Live coding musicians can medi-
ate the sonic outcome of an acoustic instrument, either by
providing a musical medium for instrument performers to
perform with or by processing an acoustic outcome of musi-
cal instruments with algorithms (note that the order of se-
quence is reversed). We have been part of the development
of musical systems that support this type of divergent col-
laboration. In a recent extension of LOLC, laptop musicians
generated real-time music notation on the fly by typing tex-
tual commands and instrumental musicians sight-read the

Figure 2: a Classification Space for Network Music.
Adapted after [3].

generated notation for collaborative improvisation [16]. In
[13], an instrument performer played a mobile music instru-
ment while the mobile music instrument application was be-
ing live coded on the fly by on-stage programmers. In both
works, note that the outcome of live coding is not generative
music but media that instrumental performers play with. In
addition, the sonic result of the performance can be drasti-
cally different from typical live coding music where one can
demonstrate the immediate expressivity. Although it was
a solo performance, a similar concept of a live-coded mu-
sical instrument was present where a performer live-coded
sound synthesis and changed the mapping of a digital music
instrument on the fly [2].

Lastly, there have been attempts to reconcile live cod-
ing performance with musical instruments in a synchronous
manner [5, 19, 25]. However, networking has not been in-
corporated in this context.

5. REMOTE COLLABORATION IN LIVE
CODING

One may think network music is a music performance by
an ensemble at multiple geo-locations connected online in
real time dealing with latency. However, other types of ap-
proaches exist. In [3], Barbosa suggested two dimensions to
classify network music based on time (synchronous/asynchronous)
and location (local/remote), depicted in Figure 2. Most net-
worked live coding performances fall into local/synchronous
setups where live coders are co-located and play in real time.
Remote/synchronous collaboration has been attempted a
few times in practice and seems relatively less explored com-
pared to the ones in the co-located setup. For example, the
launch report of Live Coding Research Network states that
Sorensen performed live coding performance remotely [22].
Although the technical specification of the performance is
unclear from the report, it is likely that the remote per-
former did not need, as does a typical telepresence perfor-
mance, to transfer audio data from a site to the remote
site. Rather code text can be transmitted online and be
evaluated in a remote machine. In [17], the live coder col-
laborated remotely with other performers (non-live coders)
in a bidirectional manner, used screen sharing to live-code
on a remote laptop, and used a conference call to listen to
the ensemble at the local site. Gibber [27] reported that the
live coding environment on a web browser allows remote
code execution with the remote collaborative code editing.
We could not, however, find an example in which the envi-
ronment had been used with the context. OSCthulhu is a



data synchronization system possibly for remote live coding
performance with the strategy of evaluating code remotely
[21]. For all the examples above, the sound outcome from a
local machine and remote machine may not be exactly the
same for many reasons (e.g., packet loss, latency).

While it is beneficial to skip the audio streaming, to send
only symbolic data (rather than audio streaming data) and
to re-render sound remotely, there still remains the same
concern about network latency to have audio feedback of
the composite sonic result for the remote live coder. There
can be algorithmic detours to minimize the divergence be-
tween the local and the remote outcome, such as i) quan-
tization of the events in a minimum unit of beat, measure
or hyper-measure, ii) synchronization of randomness within
the distributed ensemble, and iii) adding latency in the local
program state given a synchronized clock so that one can
hear the realistic result by mixing the audio streamed from
the remote site with the audio delayed on purpose from the
local machine.

6. OPPORTUNITIES IN NETWORKED LIVE
CODING

In reviewing networked live coding, we heavily leverage two
classification methods of network music [3, 35] so as to find
new opportunities in the field. We realize that there exist a
few missing links between collaborative live coding and new
trends in network music.
Asynchronicity and Notation: First, we have not dis-
cussed a system that will support asynchronous collabora-
tion in live coding. However, the very notion of live cod-
ing breathes the potential to intentionally or accidentally
go asynchronous, at least in traditional music performance.
Hence it seems potentially exciting to envision such live cod-
ing systems. However, this leads to a need to bring back re-
newed notions of traditional forms of facilitation that keep
music performers ”together.” A prime example of such a
facilitation are scores and notation. In order to see asyn-
chronous live coding be strengthened in the near future, we
do believe it essential that there be a music notation sys-
tem for the live coding piece is going to be essential. Live
coding notation shall serve different purposes from on-stage
visualization or static code text logs. We also doubt that
the recording of a computer screen is the ideal form since it
will contain performance-specific events (such as typos and
bugs). Recently, Magnusson introduced The Code Score in
his recent live coding environment, Threnoscope [18]. The
graphical music score serves as a notation system for live
coding composition, which lays out temporal patterns of
code snippets in a piano-roll-like interface. The live cod-
ing community needs to start a discussion on this issue in
order to disseminate live coding music to a wider commu-
nity of artists. We may learn from the response of the lap-
top orchestra community to similar concerns in context of
archiving a music piece [4].
Scalability: Secondly, it will pose many questions and of-
fer new opportunities when networked live coding is scaled.
Most cases of networked live coding we have reviewed here
are on a small scale. Conventions and existing technologies
in live coding may become unpractical when scaled. For
example, it is not trivial to project screens if there are only
five performers on stage [36]. In this sense, [26] is a note-
worthy work where the author unfolds years of practice of
live coding on the laptop orchestra scale. We are interested
in scaling up even further. One can imagine that networked
live coding could become a crowd-scale performance. How
can collaborative coding be structured when one expects
hundreds or more participants to operate jointly?

Diversification in Performance Practice: Lastly, the
distributed nature will be more prominent. There will emerge
new live coding performances that are hard to distinguish
only by the centralized/decentralized model. A number of
live coding environments enable disjunction between the
client machines that hold code text and the machine that
generates sound. For instance, the centralized model is im-
plemented with the dislocation of code (n clients’ machines)
from the sound generation (one central server), which forms
an n:1 relationship. Possibly, a live coder can control a
number of machines and orchestrate code distribution in
aesthetically interesting ways (1 :n). A truly distributed
network of live coders, machines, performers, and audience
(n:m:l :k) will create novel music performances such as a
mixed live coding ensemble, mobile live coding, audience
participation along with recent works in cloud computing
[12], live coded instruments on mobile devices [13, 28] and
code distribution techniques over a network [15].

7. CONCLUSIONS
In this paper we have reviewed networked live coding in the
context of existing taxonomies of networked music perfor-
mance, as well as discussed important aspects of the sharing
process. Using the taxonomy, we suggested a few under-
developed areas of networked live coding performances, urg-
ing a particular need to investigate issues of live coding no-
tation systems, of concerns of scalability, as well as concerns
regarding diversification of performance practices and their
technical realization. In the end we may well see a combi-
nation of all of these factors, diverse, notated live coding
performances on a very large scale, with many important
research challenges to be met along the way.

8. REFERENCES
[1] Sketchpad. http://sketchpad.cc/. Accessed:

2014-07.

[2] M. Baalman. Gewording, 2014. Music Performance,
the International Conference on New Interfaces for
Musical Expression (NIME).

[3] Á. Barbosa. Displaced soundscapes: A survey of
network systems for music and sonic art creation.
Leonardo Music Journal, 13:53–59, 2003.

[4] S. D. Beck and C. Branton. Lela - laptop
ensemble/library archive. In Proceedings of the
Symposium on Laptop Ensembles and Orchestras,
pages 27–30, 2012.

[5] A. Blackwell, A. McLean, J. Noble, and J. Rohrhuber.
Collaboration and learning through live coding
(Dagstuhl Seminar 13382). Dagstuhl Reports,
3(9):130–168, 2014.

[6] A. R. Brown and A. C. Sorensen. aa-cell in practice:
An approach to musical live coding. In Proceedings of
the International Computer Music Conference, pages
292–299. International Computer Music Association,
2007.

[7] C. Brown and J. Bischoff. Indigenous to the net: early
network music bands in the san francisco bay area.
Available at crossfade. walkerart. org/brownbischoff,
2002.

[8] N. Collins, A. McLean, J. Rohrhuber, and A. Ward.
Live coding in laptop performance. Organised Sound,
8(03):321–330, 2003.

[9] R. B. Dannenberg, S. Cavaco, E. Ang, I. Avramovic,
B. Aygun, J. Baek, E. Barndollar, D. Duterte,
J. Grafton, R. Hunter, et al. The carnegie mellon
laptop orchestra. 2007.



[10] J. Freeman and A. Troyer. Collaborative textual
improvisation in a laptop ensemble. Computer Music
Journal, 35(2):8–21, 2011.

[11] Google. Google drive realtime api.
https://developers.google.com/drive/realtime/.
Accessed: 2014-07.

[12] A. Hindle. Cloudorch: A portable soundcard in the
cloud. In Proceedings of New Interfaces for Musical
Expression (NIME), London, United Kingdom, 2014.

[13] S. W. Lee and G. Essl. Live coding the mobile music
instrument. In Proceedings of New Interfaces for
Musical Expression (NIME), Daejeon, South Korea,
2013.

[14] S. W. Lee and G. Essl. Communication, control, and
state sharing in collaborative live coding. In
Proceedings of New Interfaces for Musical Expression
(NIME), London, United Kingdom, 2014.

[15] S. W. Lee, G. Essl, and Z. M. Mao. Distributing
mobile music applications for audience participation
using mobile ad-hoc network (manet). In Proceedings
of New Interfaces for Musical Expression (NIME),
London, United Kingdom, 2014.

[16] S. W. Lee and J. Freeman. Real-time music notation
in mixed laptop–acoustic ensembles. Computer Music
Journal, 37(4):24–36, 2013.

[17] lemuriformes’s blog.
http://www.steim.org/projectblog/2011/04/15/

residency-lemuriformes/. Accessed: 2014-07.

[18] T. Magnusson. Improvising with the threnoscope:
Integrating code, hardware, gui, network, and graphic
scores.

[19] T. Magnusson and A. Sa. Fermata, 2014. Music
Performance, the International Conference on New
Interfaces for Musical Expression (NIME).

[20] C. McKinney. Quick live coding collaboration in the
web browser. In Proceedings of New Interfaces for
Musical Expression (NIME), London, United
Kingdom, 2014.

[21] C. McKinney and C. McKinney. Oscthulhu: Applying
video game state-based synchronization to network
computer music. Ann Arbor, MI: MPublishing,
University of Michigan Library, 2012.

[22] A. Mclean. Live coding research network launch
report.
http://www.livecodenetwork.org/launch-report/.
Accessed: 2014-07.

[23] A. McLean, D. Griffiths, N. Collins, and G. Wiggins.
Visualisation of live code. Proceedings of Electronic
Visualisation and the Arts 2010, 2010.

[24] D. Ogborn. Espgrid: A protocol for participatory
electronic ensemble performance. In Audio
Engineering Society Convention 133. Audio
Engineering Society, 2012.

[25] D. Ogborn, 2014. Music Performance, Live Coding
and the Body Symposium.

[26] D. Ogborn. Live coding in a scalable, participatory
laptop orchestra. Computer Music Journal,
38(1):17–30, 2014.

[27] C. Roberts and J. Kuchera-Morin. Gibber: Live
coding audio in the browser. In Proceedings of the
International Computer Music Conference (ICMC),
Ljubljana, Slovenia, 2012.

[28] C. Roberts, M. Wright, J. Kuchera-Morin, and
T. Höllerer. Rapid creation and publication of digital
musical instruments. In Proceedings of New Interfaces
for Musical Expression (NIME), London, United

Kingdom, 2014.

[29] J. Rohrhuber, A. de Campo, R. Wieser, J.-K. van
Kampen, E. Ho, and H. Hölzl. Purloined letters and
distributed persons. In Music in the Global Village
Conference (Budapest), 2007.

[30] J. Rohruber and A. d. Campo. The republic quark.
https:

//github.com/supercollider-quarks/Republic,
2011.

[31] A. C. Sorensen. A distributed memory for networked
livecoding performance. In Proceedings of the
International Computer Music Conference, pages
530–533, 2010.

[32] B. Swift, A. C. Sorensen, H. Gardner, and J. Hosking.
Visual code annotations for cyberphysical
programming. In 1st International Workshop on Live
Programming (LIVE). IEEE, 2013.

[33] A. Tanaka and P. Gemeinboeck. A framework for
spatial interaction in locative media. In NIME ’06:
Proceedings of the 2006 conference on New Interfaces
for Musical Expression, pages 26–30, June 2006.

[34] G. Wang, A. Misra, P. Davidson, and P. R. Cook.
Coaudicle: A collaborative audio programming space.
In In Proceedings of the International Computer
Music Conference. Citeseer, 2005.

[35] G. Weinberg. Interconnected musical networks:
Toward a theoretical framework. Computer Music
Journal, 29(2):23–39, 2005.

[36] S. Wilson, N. Lorway, R. Coull, K. Vasilakos, and
T. Moyers. Free as in beer: Some explorations into
structured improvisation using networked live-coding
systems. Computer Music Journal, 38(1):54–64, 2014.


