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Diffraction from the individual molecules of a molecular beam, aligned parallel

to a single axis by a strong electric field or other means, has been proposed as a

means of structure determination of individual molecules. As in fiber diffraction,

all the information extractable is contained in a diffraction pattern from

incidence of the diffracting beam normal to the molecular alignment axis. The

limited size of the object results in continuous diffraction patterns characterized

by neither Bragg spots nor layer lines. Equations relating the scattered

amplitudes to the molecular electron density may be conveniently formulated in

terms of cylindrical harmonics. For simulated diffraction patterns from short C

nanotubes aligned along their axes, iterative solution of the equation for the

zeroth-order cylindrical harmonic and its inverse with appropriate constraints in

real and reciprocal space enables the phasing of the measured amplitudes, and

hence a reconstruction of the azimuthal projection of the molecule.

1. Introduction

Perhaps the most famous diffraction pattern of all is the

‘St Andrews cross’ pattern (Lucas & Lambin, 2005), which was

the key to the solution of the structure of deoxyribonucleic

acid (DNA) (Watson & Crick, 1953). This diffraction pattern

was obtained by the scattering of X-rays by fibers of DNA,

which may be regarded as bundles of DNA molecules with

aligned molecular axes, but random orientations about this

axis, and random displacements along this axis. Such a

diffraction pattern may be regarded as arising from an average

of diffraction patterns due to all possible azimuthal orienta-

tions of a single constituent molecule. Unlike most crystal-

lographic work, where data from a large number of diffraction

patterns from various orientations of the sample have to be

combined to reconstruct the object in three dimensions (see

e.g. Drenth, 1994; Shneerson et al., 2008; Fung et al., 2009), the

essential elements of the three-dimensional structure of DNA

were deduced from this single diffraction pattern.

The aim of the present paper is to show that, for particles

with a high degree of rotational symmetry about the alignment

axis, the azimuthal projection of an isolated molecule may also

be deduced from a single diffraction pattern consisting of an

incoherent sum of diffraction patterns of random orientations

about a single axis. This is relevant to the use of laser align-

ment of molecules in diffraction experiments as proposed by

Spence et al. (2005), and recently demonstrated for electron

diffraction (Reckenthaeler et al., 2009). If a single linearly

polarized laser is used for molecular alignment, the molecules

may differ in azimuthal angle about the alignment axis. The

same would be true of a symmetric rotor, such as carbontri-

fluorobromine, CF3Br, regardless of the state of laser polar-

ization (Larsen et al., 2000; Ho & Santra, 2008; Ho et al., 2009).

The resulting composite diffraction pattern will then be

similar in character to a fiber diffraction pattern. However,

unlike the helices mostly studied in fiber diffraction, the

individual molecules will not have the periodicity afforded by

the helical pitch P. Consequently, such diffraction patterns will

not manifest layer lines, and would be expected to be diffuse in

all directions. This will allow an iterative phasing algorithm,

which alternately modifies the magnitudes of the azimuthally

projected electron density in real space and the phases of

scattered amplitudes in reciprocal space (Oszlányi & Süto��,
2004, 2005), to reconstruct the azimuthally projected electron

density of the particle in the case of a particle of a high degree

of rotational symmetry about the alignment axis.

2. Diffraction from identical molecules of random
azimuthal orientation

In this section we derive from first principles the relationship

between the electron density of each particle and the

composite diffraction pattern produced by the incoherent

superposition of diffraction patterns of multiple copies of the

particle, differing only in their azimuthal orientations. This is

distinct from parallel derivations in the field of fiber diffrac-

tion (Cochran et al., 1952; Franklin & Gosling, 1953a,b; Waser,

1955; Franklin & Klug, 1955; Klug et al., 1958) which all
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assume objects periodic along the direction of the fiber axis,

which give rise to layer lines. Nevertheless, in order to draw

analogies with the field of fiber diffraction, reciprocal space is

specified by the three cylindrical coordinates (R,  , �), where
R is the coordinate perpendicular to the molecular alignment

axis (analogous to the fiber axis in fiber diffraction), � is that
parallel to this axis, and  is an angular coordinate about the

alignment axis (e.g. Cochran et al., 1952; Millane & Dorset,

2001), and we make comparisons with the corresponding

expressions in fiber diffraction in notes enclosed in square

brackets.

A structure factor of a molecule is a function of the posi-

tions of its constituent atoms and of a scattering vector q in

reciprocal space. Suppressing, for the moment, its dependence

on the atomic coordinates, it could be expressed in terms of

cylindrical reciprocal-space coordinates (R,  , �) as

FðR;  ; �Þ ¼ P
m

GmðR; �Þ expðim Þ: ð1Þ

The structure factor of a molecule rotated relative to this by an

azimuthal angle  j may be written

FjðR;  ; �Þ ¼
P
m

GmðR; �Þ exp im  �  j

� �� �
: ð2Þ

Then, the scattered intensity from particle j is

IjðR;  ; �Þ ¼ jFjðR;  ; �Þj2 ¼
P
m

jGmðR; �Þj2

þ P
m;m0

GmðR; �ÞG�
m0 ðR; �Þ

� exp iðm�m0Þ  �  j

� �� �
: ð3Þ

The first summation above represents the diagonal terms from

taking the square modulus of (1), which do not depend on the

azimuthal angles  , and the second (double) summation

represents those from the off-diagonal terms, which do.

The total scattered intensity from the ensemble of mole-

cules is
P

j IjðR;  ; �Þ. Owing to the randomness of the

azimuthal origins  j of the different molecules, the off-

diagonal terms in (3) will average to zero. Since the diagonal

terms in (3) do not depend on  , neither will the total scat-

tered intensity from the ensemble, which may be written

IðR; �Þ ¼ I0ðR; �Þ ¼ N
P
m

jGmðR; �Þj2; ð4Þ

which has no dependence on the azimuthal angle  (in the

above equation, N is the number of molecules in the

ensemble). In other words, the scattered intensity of the

molecular ensemble is cylindrically symmetric in reciprocal

space. [Note that the corresponding intensity IlðRÞ of the layer
line l in fiber diffraction is written (Millane & Dorset, 2001)

IlðRÞ ¼
P
n

jGnlðRÞj2; ð5Þ

where GnlðRÞ is defined by

FlðR;  Þ ¼
P
n

GnlðRÞ expfin½ þ ð�=2Þ�g; ð6Þ

which may be compared with our equation (1). Given that m

and n are dummy indices in (4) and (5), the essential differ-

ence between the usual fiber diffraction equations (5) and (6)

and our equations (4) and (1) is that the discrete layer-line

index l in the former equations is replaced by the continuous

coordinate � parallel to the alignment axis in (4) and (1).]

Although the cylindrical symmetry of the intensity distri-

bution implies that just a single cylindrical harmonic of

intensity (that corresponding to m = 0) in the expansion

IðR;  ; �Þ ¼ P
m

ImðR; �Þ expðim Þ ð7Þ

suffices to describe the three-dimensional intensity distribu-

tion, a full description of the same distribution requires many

(in principle all) coefficients of the corresponding cylindrical

harmonic expansion of the scattered amplitudes (although, as

we shall see later, at least for molecules with a high degree of

rotational symmetry about the alignment axis, this may be a

highly truncated series). In order to extract structural infor-

mation from the diffraction intensities I0ðR; �Þ of (7), which
may be measured, it is necessary to relate this quantity to the

electron density of the scattering molecule. The molecular

structure factor may be written

FðqÞ ¼ ð2�Þ�2=3 R
f ðrÞ expðiq � rÞ d3r: ð8Þ

where f ðrÞ is the molecular electron density and q is a scat-

tering vector. We may represent the electron density by an

expansion in cylindrical harmonics,

f ðr; ’; zÞ ¼ P
m

gmðr; zÞ expðim’Þ; ð9Þ

where r = ðr; ’; zÞ, a set of cylindrical coordinates in real space.
[We use the symbols f and g here for consistency with the field

of fiber diffraction (e.g. Millane & Dorset, 2001). Note,

however, since f is usually assumed periodic in z in that

field, our more general quantity gmðr; zÞ is replaced byP
l gmlðrÞ expð2�ilz=cÞ, where l is another integer and c is the

repeat distance along z. Consequently, (9) is replaced by

f ðr; ’; zÞ ¼ P
ml

gmlðrÞ exp½iðm’� 2�lz=cÞ� ð10Þ

in fiber diffraction theory.] In our case of a completely non-

periodic though finite object, we may substitute (1) and (9)

into (8), and deduce that
P
m

GmðR; �Þ expðim Þ

¼ ð2�Þ�3=2 RRR
r dr dz d’

P
m gmðr; zÞ expðim’Þ

� expfi½�zþ Rr cos ð’�  Þ�g: ð11Þ
Making use of the identity (e.g. Cochran et al., 1952)R

d’ expðim’Þ exp½iRr cos ð’�  Þ� ¼ 2�imJmðRrÞ expðim Þ
ð12Þ

to perform the integral over ’, the right-hand side of (11)

could be re-written

ð2�Þ�1=2 RR
r dr dz

P
m

gmðr; zÞ expðim ÞimJmðRrÞ expði�zÞ;
ð13Þ
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and equating the coefficients of expðim Þ in the left-hand

sides of (11) and (13) leads to the equation

GmðR; �Þ ¼ ð2�Þ�1=2 RR
rgmðr; zÞimJmðRrÞ expði�zÞ dr dz ð14Þ

relating the coefficients of the cylindrical harmonic expansions

of the molecular electron density and its scattered X-ray

amplitude.

From the orthogonality relationsZ
JmðRr0Þ JmðRrÞR dR ¼ �ðr0 � rÞ

r0
; ð15Þ

valid for all m, andR
exp i� z0 � zð Þ½ � d� ¼ 2�� z� z0ð Þ; ð16Þ

it may be seen that the inverse relation to (14) is

gmðr; zÞ ¼ ð2�Þ�1=2
RR

RGmðR; �Þi�mJmðRrÞ expð�i�zÞ dR d�:

ð17Þ
Equation (14) is a combination of a Fourier transform in one

dimension and a Hankel transform in the other. We term this a

Fourier–Hankel transform. Equation (17) represents its

inverse. These coupled two-dimensional equations relate the

coefficients GmðR; �Þ of a cylindrical harmonic expansion of

the scattered amplitude and those gmðr; zÞ of the electron

density of the scatterer. These equations are analogous to the

Fourier transform and its inverse, which relate an electron

density and scattered amplitude in a usual scattering problem.

In a case where the magnitude of GmðR; �Þ is known, but not
its phase, and where the spatial extent of gmðr; zÞ is finite, it
would be expected that a two-dimensional iterative phasing

algorithm with appropriate constraints in reciprocal and real

space (e.g. Fienup, 1978, 1982; Elser, 2003; Oszlányi & Süto��,
2004, 2005; Marchesini et al., 2003) will allow the simultaneous

determination of the unknown phases and of gmðr; zÞ.
Algorithms which iteratively apply a support constraint due

to the finite diameter of a molecule to recover its electron

density have been used in fiber diffraction (Makowski et al.,

1980; Yamashita et al., 1998). More powerful would be an

algorithm which simultaneously applies support constraints in

the direction of z as well as r by oversampling (Miao et al.,

1999) the diffraction intensities in the directions of diffraction

pattern coordinates R and �. Although it is not possible to

oversample a typical fiber diffraction pattern in the � direction
due to the presence of discrete layer lines, this limitation is

non-existent in the present case of diffraction from molecules

aperiodic in all directions, where the absence of layer lines

gives rise to diffuse intensities in all directions and enables the

use of a full two-dimensional iterative phasing algorithm of the

sort referred to above.

In practice, a more stable solution was found if these

equations were reformulated in terms of an areal electron

density

~ggmðr; zÞ ¼ rgmðr; zÞ ð18Þ
and a corresponding quantity

~GGmðR; �Þ ¼ RGmðR; �Þ: ð19Þ

The areal electron density, so defined, is an azimuthally

projected electron density per unit area in a plane passing

though the symmetry axis z. With these substitutions, equa-

tions (14) and (17) may be reformulated as

~GGmðR; �Þ ¼ ð2�Þ�1=2R
RR

~ggmðr; zÞi mJmðRrÞ expði�zÞ dr dz ð20Þ
and

~ggmðr; zÞ ¼ ð2�Þ�1=2
r
RR

~GGmðR; �Þi�mJmðRrÞ expð�i�zÞ dR d�;

ð21Þ
respectively. Note that the integrals along r and R are no

longer strictly Hankel transforms due to the absences of the

terms r and R, respectively, in the integrands. We term the

resulting one-dimensional integrals modified Hankel trans-

forms. In practice, the Fourier transforms may be replaced by

a discrete fast Fourier transform (Cooley & Tukey, 1965) and

the modified Hankel transforms by their discrete equivalent.

[We used aMATLAB routine from Leutenegger (2006), based

on an earlier Fortran program from Anderson (1979), which

uses adaptive digital filtering. This is a flexible routine which

allows the calculation of a traditional Hankel transform as well

as what we term a modified Hankel transform by the provision

of the Bessel function kernel calculated and stored in advance

for speed.]

In order to test the idea, we first simulated diffraction

patterns that were the average of those from random orien-

tations of a test molecule about a single alignment axis.

3. Simulation of diffraction pattern from molecules
with random orientations about an alignment axis

In terms of a system of cylindrical coordinates, the coordinates

of atom k of a molecule may be specified by ðrk; ’k; zkÞ. If fkðqÞ
is the form factor of atom k, the structure factor of the

molecule may also be written

FðqÞ ¼ FðR;  ; �Þ ¼ P
k

fk exp iq � rkð Þ

¼ P
k

fk exp i �zk þ Rrk cos ’k �  ð Þ� �� �
: ð22Þ

Equating the right-hand sides of (1) and (22), multiplying both

sides by expð�im Þ, integrating with respect to  , and making

use of the identity (12) shows that

GmðR; �Þ ¼
P
k

fk exp i �zk �m’kð Þ� �
imJmðRrkÞ: ð23Þ

Equations (23) and (4) allow the calculation of the diffraction

pattern I0ðR; �Þ from a collection of identical molecules

differing only in angle of rotation about the z axis. The non-

zero terms in the sum (4) will depend on the degree of rota-

tional symmetry about this axis.

3.1. Application to a short single-wall C nanotube

For our test case, we took a short single-wall C nanotube

(SWNT) with caps on both ends, as illustrated in Fig. 1. This is

a molecule with five-fold rotational symmetry about the axis of
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the nanotube. However, its projection along this axis has a ten-

fold axis of symmetry, as illustrated in Fig. 1(b).

The diffraction pattern from a collection of such molecules

with random azimuthal orientations about the z axis, as

calculated from equations (23) and (4) with atomic scattering

factors calculated from the Cromer–Mann coefficients

(Cromer & Mann, 1968), is shown in Fig. 2(a).

The electron density of an SWNT projected along the z axis

is tenfold rotationally symmetric, and projection of the

cylindrical harmonic expansion of its areal electron density

(18) will be characterized by quantum numbers of modulo 10

only, i.e. m = 0; 10; 20 . . . : A consequence of (20) is that the

coefficients ~GmGmðR; 0Þ of the cylindrical harmonic expansion of

the scattered areal amplitude in the equatorial plane � = 0 will

also be characterized by the same quantum numbers. It will be

noted also that the maximum value of the argument of the

Bessel function on the right-hand side of (20) will be rmaxRmax,

(= x, say), where rmax is the maximum radial coordinate of any

atom of the molecule relative to the molecular rotation axis,

and Rmax is the maximum value of the coordinate R of the

diffraction pattern. For an SWNT, rmax is about 3 Å and, for

the simulated diffraction pattern of Fig. 3, Rmax is 2 Å
�1. Thus,

x ð¼ rmaxRmaxÞ is about 6. Cochran et al. (1952) noted that

JmðxÞ was negligible for values of x less than about m.

Consequently, it would be expected that the contributions of

ImðR; 0Þ = jGmðR; 0Þj2 to the diffraction pattern intensity

IðR; 0Þ would be negligible for x less than aboutm. Given that,

in this case, x is about 6, and that the lowest permissible value

of m (apart from 0) is 10, it can be concluded that I0ðR; 0Þ is
the overwhelmingly dominant contributor to IðR; 0Þ for

R<Rmax, as is indeed borne out in Fig. 1(c). The arguments

above suggest that the intensities of the composite diffraction

pattern of SWNTs differing only in azimuthal orientation

about the cylinder axis (at least up to R = Rmax) might be

approximated by a cylindrical harmonic expansion of the

scattered amplitudes which contains just the term m = 0, i.e.

that jG0ðR; �Þj might be approximated by the square root of

the intensities IðR; �Þ, of the measured diffraction pattern. Of

course, the phases of G0ðR; �Þ are not determined by such a

procedure. However, these phases may be determined by

iteratively solving (20) and (21) to convergence applying

appropriate constraints in real and reciprocal space (Miao et

al., 1999; for a review, see Spence, 2006).

3.2. Tests of the two-dimensional phasing algorithm

The iterations were initiated by assigning in equation (21)

random phases (consistent with Friedel’s rule for a real
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Figure 1
Schematic views of a short single-wall C nanotube, whose C—C bonds are
of length �1.4 Å, viewed (a) perpendicular to and (b) parallel to the
molecular alignment axis. Panel (c) depicts the total diffraction pattern
intensity as a function of the reciprocal-space coordinate R for � = 0, as
well as the magnitudes of the contributions from the m = 0, 10 and 20
cylindrical harmonics. Rmax (= 2 Å�1) indicates the maximum value of R
corresponding to the edge of the simulated diffraction pattern in Fig. 3(a).
The present figure shows that, up to R = Rmax (corresponding to 2�=Rmax

’ 3 Å resolution), there is negligible error in modeling IðR; 0Þ by just the
m = 0 component.

Figure 2
(a) Simulation of the diffraction pattern expected from a sum of those of
a short SWNT of all azimuthal orientations about its axis (assumed
perpendicular to the incident X-rays). The reciprocal-space coordinate
parallel to the SWNTaxis is denoted by �, while R is that perpendicular to
�. The simulation assumes a flat Ewald sphere. The maximum values of R
and j�j are 2 Å�1, corresponding to a real-space resolution of about 3 Å.
(b) Azimuthal projection of the electron density of the SWNTon a plane
perpendicular to the tube axis, as reconstructed from the diffraction
pattern in (a) by the algorithm described in the paper.

Figure 3
Variation of the R factor, equation (24), monitoring the degree of
agreement between the simulated diffraction pattern and its current
estimate from the iterative reconstruction algorithm, as a function of
iteration number.
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projected areal electron density) to j ~GG0ðR; �Þj {whose magni-

tude was taken to be R½I0ðR; �Þ�1=2}. Evaluation of (21) gave an
initial estimate of the areal electron density ~��0ðr; zÞ. The

standard deviation, �, of this distribution was evaluated, and

the distribution subsequently modified according to the charge

flipping prescription of Oszlányi & Süto�� (2008), namely, the

signs of the densities whose values were below �� in magni-

tude were flipped (where � was taken to be 0.7), i.e. the

positive densities were made negative, and the negative

densities positive if their values were below this threshold.

Application of the inverse transform (20) then produced a

calculated estimate of the (complex) amplitudes ~GG0ðR; �Þ. For
the largest 80% of the amplitudes, their magnitudes were

replaced by their known ‘experimental’ values, while retaining

the calculated phases. For the smallest 20%, their magnitudes

were accepted unaltered, but their phases were ‘shifted’ by �/2
radians (Oszlányi & Süto��, 2005). This sequence of steps was

then iterated, and convergence was monitored by means of the

reliability factor (R factor)

Rf ¼
P
j;k

���j ~GGðexpÞ
0 ðRj; �kÞj=

P
j0;k0

j ~GGðexpÞ
0 ðRj0 ; �k0 Þj

� j ~GG0ðRj; �kÞj=
P
j0;k0

j ~GG0ðRj0 ; �k0 Þj
��� ð24Þ

between the current estimate of j ~GG0ðRj; �kÞj at pixels (j; k) and
their corresponding ‘experimental’ values j ~GGðexpÞ

0 ðRj; �kÞj esti-
mated from the simulated IðRj; �kÞ, as suggested by Oszlányi &

Süto�� (2008). The calculated R factor as a function of iteration

number in our simulations is shown in Fig. 3. The R factor falls

with increasing iteration number until about 20 iterations, and

then remains approximately constant, suggesting convergence.

It should be noted that this algorithm makes no assumptions

about the size of the object, as no ‘support’ constraint was

assumed.

The final image resulting from the iterative phasing algo-

rithm is shown in Fig. 2(b) (any remaining negative values in

the final image were set to zero). The azimuthal projection of

the SWNT onto a plane perpendicular to the tube axis is

clearly visible in this image.

The charge flipping algorithm has been applied here to a

non-periodic object, unlike the crystalline objects for which it

was developed, which do not provide oversampling and which

therefore require atomic resolution data. Another application

of the flipping algorithm has been described by Wu et al.

(2004), who showed it to be equivalent to the output-output

algorithm of Fienup (1982) with feedback parameter � = 2.

4. Discussion

These results apply to diffraction from many molecules with

single-axis alignment and no periodicity along that axis. We

assume no coherent interference between different molecules,

and random azimuthal orientations. As such, the treatment is

applicable directly to laser alignment schemes (Spence et al.,

2005; Reckenthaeler et al., 2009), and other sample prepara-

tion methods (such as flow alignment, alignment in gels,

alignment in electric and magnetic fields etc.) which impose

single-axis alignment. If plane-wave laser alignment is used,

the minimum energy orientation is degenerate, and molecules

may be erect or inverted in the laser beam. This degeneracy

must be combined with the enantiomorphous ambiguity which

results from Friedel symmetry in the diffraction pattern. The

results are discussed elsewhere (Spence et al., 2005; Elser &

Millane, 2008), where it is shown that these ambiguities do not

prevent solution of the phase problem. If elliptical laser light is

used for alignment, the direction (but not the sense) of all

three Cartesian axes of the polarizability may be fixed, and

similar considerations apply. Simulations of the effects of

imperfect alignment on resolution have been published else-

where (Spence et al., 2005). For the case of the simulations

reported here, an obvious conservative estimate of tolerable

misalignment (in radians) is the ratio of the size �R of a

diffraction pattern pixel to the resolution, Rmax. In the case of

our simulation for a C nanotube, this ratio is 1/25 radians,

or 2.3	.

5. Conclusions

The theory of fiber diffraction is generally applied to fibers of

elongated molecules, often of helical structure, with a repeat

distance P along the helical axis. This gives rise to a periodicity

along this direction, whose most visible manifestation on fiber

diffraction patterns, e.g. the famous ‘St Andrews cross’ pattern

of DNA, are ‘layer lines’ separated in reciprocal space by 1/P.

The composite diffraction pattern from an incoherent

superposition of those from a set of isolated molecules is

devoid of translational periodicity even if all molecules are

aligned parallel to a single molecular axis. The resulting lack of

translational periodicity results in their diffraction patterns

being completely diffuse with no Bragg spots or layer lines.

The average of the diffraction patterns from all azimuthal

orientations of the individual molecules is likewise diffuse, or

continuous.

At least for molecules with a high degree of rotational

symmetry about the alignment axis, we have shown that it is

possible to deduce the azimuthal projection of the electron

density of each molecule from such composite diffraction

patterns. In such a case, the square root of the measured

intensity is a good approximation to the magnitude of the

azimuthally averaged scattered amplitude. This in turn is

related to the azimuthally averaged electron density by a two-

dimensional transform, which is a Fourier transform in the

molecular alignment direction, and a Hankel transform in the

direction perpendicular to this. If we term this a Fourier–

Hankel transform, an inverse Fourier–Hankel transform

relates the azimuthally averaged electron density to the

azimuthally averaged amplitude.

Since the phases of the scattered amplitudes cannot be

deduced directly from measured intensities, they need to be

found by iterations of the Fourier–Hankel transform and its

inverse, applying a constraint of the known magnitudes of the

amplitudes in reciprocal space and some sort of density

modification in real space analogous to methods in use for a

scattered amplitude and electron density related by a multi-
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dimensional Fourier transform and its inverse. However, to

our knowledge, the application of such an iterative phasing

algorithm to Fourier–Hankel transforms is new, and a signif-

icant extension of such phasing and inverse methods.
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