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An exponential modeling algorithm is developed for protein structure

completion by X-ray crystallography and tested on experimental data from a

59-residue protein. An initial noisy difference Fourier map of missing residues of

up to half of the protein is transformed by the algorithm into one that allows

easy identi®cation of the continuous tube of electron density associated with

that polypeptide chain. The method incorporates the paradigm of phase

hypothesis generation and cross validation within an automated scheme.

1. Introduction

Determination of the phases of measured Bragg re¯ections is

the fundamental theoretical problem of X-ray crystallography.

In protein crystallography, the three most commonly used

techniques for obtaining an initial estimate of these phases are

(a) the isomorphous replacement method (Green et al., 1954;

Blow & Crick, 1959), which requires the preparation of related

structures in which heavy atoms are attached to the original

protein; (b) the multiple-wavelength anomalous-dispersion

(MAD) method (Hendrickson, 1991; Leahy et al., 1992), which

depends on the presence of suf®ciently strong anomalously

scattering atoms within the protein; and (c) the molecular

replacement method (Rossmann & Blow, 1962), which

requires the identi®cation of a known structure similar to the

one whose structure is being sought. Initial phases obtained by

any of these methods must be re®ned for a successful structure

determination. When an interpretable electron-density map is

obtained, an initial atomic model may be built and re®ned

against the observed data.

During this procedure, the necessity for structure comple-

tion may arise in several ways: for instance, a partial model of

the protein molecule may have been constructed during model

building and re®nement, or molecular replacement may have

been carried out with a `probe' similar to only a fragment of

the target molecule. In the latter case, suppose that a molecule

or molecular fragment of known structure may be identi®ed

similar to the unknown one to be determined. The ®rst step in

using this information to solve the unknown structure is to

perform a rotation and translation search to orient the known

`probe' to match that of its counterparts in the structure to be

determined. The next step is the recovery of the missing part

of the unknown structure and the re®nement of the phases. If

the known part is a substantial portion of the total, the

difference Fourier method (Cochran, 1951) enables the

missing part of the structure to be determined with reasonable

accuracy.

In the case of structure re®nement, omit maps based on the

difference Fourier synthesis may be calculated from partial

structures obtained by the omission of parts of the model

suspected of being in error (see e.g. Drenth, 1994). Read

(1986, 1997) has described weights for the structure-factor

amplitudes for Fourier syntheses which reduce model bias in

the case of an incomplete or partially incorrect structure and

Hodel et al. (1992) have shown that model bias in omit maps

may be reduced by the re®nement of the partial structure.

Another method of automated structure completion and

re®nement, comparable to the iterative least-squares mini-

mization/difference Fourier synthesis approach used in small-

molecule crystallography, has been proposed by Lamzin &

Wilson (1993). This procedure requires data of high quality

and a partial structure of approximately 75% of the total

molecule. A variation of this approach has also been used by

Fitzgerald (1994) to automatically ®t non-peptide (ligand)

electron density in protein±ligand complexes.

An alternative idea for structure completion that has been

proposed recently (SzoÈ ke, 1993; Maalouf et al., 1993; Somoza

et al., 1995) exploits the analogy with holography (Gabor,

1948; Collier et al., 1971). The X-ray diffraction pattern is

likened to a hologram formed by interfering a known reference

wave from the known part of the structure with an unknown

object wave from the unknown part of the structure. The aim

of holographic reconstruction is to determine the object wave

from a knowledge of the reference wave and the experimental

data. From a full knowledge of the object wave, the electron

density of the unknown part of the structure may be deter-

mined by Fourier transformation. SzoÈ ke and co-workers have

proposed an algorithm for determining that unknown electron

density, provided the X-ray diffraction data are supplemented

by some other constraints, chief of which are the positivity of

the electron density and some prior knowledge of the mol-

ecular envelope (or conversely the solvent regions).

In practical applications of their method, Maalouf et al.

(1993) and Somoza et al. (1995) have used a conjugate-
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gradient algorithm to minimize an appropriately de®ned cost

function quantifying the ®t of a theoretical model to the data

subject to the constraints. Any kind of gradient search algor-

ithm requires the starting point of the (presumably multi-

peaked) cost function to lie within a basin of convergence of

the global minimum in the multidimensional search space.

Limitations of the data set, the sudden cut-off of the data at

the outer limits of experimentally accessible Bragg re¯ections,

other missing re¯ections, and experimental errors can give rise

to ill-conditioned solutions for the unknown electron density.

Indeed, SzoÈ ke (1993) has argued that the ill-conditioning

problem in X-ray crystallography is intrinsic and related also

to the fact that the data are available only at discrete points in

reciprocal space (the Bragg points). In order to overcome

some of these problems, SzoÈ ke proposed representing the

electron density as a linear superposition of Gaussian func-

tions at each of a set of grid points. This introduces an extra set

of parameters associated with the choice of the width of the

Gaussians. In their realistic ®rst tests of their algorithm to

recover protein fragments forming a substantial fraction of the

whole unit cell, Somoza et al. (1995) took as their cost function

to be minimized at each iteration a combination of a linearized

holographic discrepancy function (feden), a function (fspace) that

minimizes the discrepancy to a `target' density taken from

a smeared-out version of a model of the protein, solved

previously by standard crystallographic methods, and another

function (fnull) that minimizes the projection of the recovered

electron density onto `the null space of the encoding operator'.

The three component cost functions are then summed in the

ratio of further parameters, termed Lagrange multipliers. Each

of the three component cost functions contained further

parameters (termed `weights') whose values were estimated

by other complicated arguments, or else by `strengths of

belief'. Although in a later paper, through a test on synthetic

data for the thaumatin molecule, SzoÈ ke et al. (1997) suggested

that use of a quadratic discrepancy function (Saldin et al.,

1993) may eliminate the need for the fnull cost function, even

this algorithm requires the estimation of several parameters,

such as a Lagrange multiplier and those de®ning the Gaussian

basis functions.

In the present paper, we develop an alternative method for

structure completion inspired by the principles of Bayesian

statistics (see e.g. Sivia, 1996) which provide a prescription for

making optimal objective inferences from limited data and

other prior knowledge. The method combines features of

SzoÈ ke's holographic method with those of another technique

that has made a major mark in modern crystallographic

phasing, namely the maximum-entropy method (Jaynes, 1957).

In particular, we adapt the exponential modeling algorithm

proposed by Collins (1982) to address the structure comple-

tion problem. We show that this enables high-quality structure

completion from a knowledge of as little as 50% of the total

structure. As such, the method is most likely to be of use for

molecular replacement. A preliminary report of our method

has been published previously (Saldin et al., 1997), where we

describe an application to the problem of structure completion

from synthetic (i.e. calculated) diffraction data for the protein

bovine pancreatic trypsin inhibitor (BPTI) (also considered

by Maalouf et al., 1993). In the present paper, we apply

our scheme to previously published experimental data for a

59-residue protein.

For the structure completions we have attempted, it was not

possible to clearly identify the chain of missing residues from

either a Sim-weighted difference Fourier map (Sim, 1959,

1960) or a difference Fourier map calculated with phases and

weights of the entire protein from a standard density modi®-

cation program (Cowtan & Main, 1998) that starts from such

experimental phases as from multiple isomorphous replace-

ment (MIR). Nevertheless, our exponential modeling algor-

ithm was able to improve either of these starting maps to the

point where the outline of this part of the polypeptide chain

was found to stand out distinctly from the surrounding back-

ground noise.

A similar algorithm has been developed for the analogous

problem of ®nding the electron density of a surface from a

knowledge of the bulk structure in surface X-ray diffraction

(SXRD) (Saldin et al., 2000).

We begin in x2 by a mathematical statement of the structure

completion problem. In x3, we describe several different

difference Fourier methods for structure completion. x4
describes applications of difference Fourier methods to

structure completion from experimental data from crystallized

�-dendrotoxin from green mamba (Dendroapsis angusticeps)

venom (Protein Data Bank entry 1DTX) (Skarzynski, 1992).

We develop our exponential modeling algorithm in x5, and x6
describes its application to the same experimental data. x7
contains a discussion and x8 our conclusions.

2. The structure completion problem

Suppose that the unit cell of a crystal is divided into a set of

voxels centered on a uniform grid of points. Let the number of

electrons from the known part of the structure in the voxel

centered on the position ri be ni. Then the contribution from

the known part of the structure (also termed the partial

structure) to the structure factor of the Bragg re¯ection g will

be given by the discrete Fourier transform

Rg �
P

i

ni exp �ig � ri�: �1�

The quantities Rg may be regarded as the Fourier coef®cients

of a holographic reference wave. If the corresponding Fourier

coef®cients from the unknown part of the electron distribution

in the unit cell are represented by Og (which may be regarded

as the coef®cients of an object wave), the total intensity of the

Bragg re¯ection may be written

Ig � jFgj2; �2�
where the structure factor Fg may be written as the sum

Fg � Rg � Og: �3�
The recovery of the unknown coef®cients Og from a set of

measured intensities Ig and the known coef®cients Rg is the

classic problem of holography. It is this analogy that has been
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explored by SzoÈ ke and co-workers. Of course, once the

complete set of object wave components Og is recovered, the

electron distribution fuig, de®ned on the same voxel grid, may

be found by an inverse Fourier transform.

If both the amplitudes and phases of the structure factors

fFgg are known, the unknown electron distribution may be

recovered directly from the formula

ui � �1=N�P
g

fFg ÿ Rgg exp �ÿig � ri�; �4�

where N is the number of voxels per unit cell. The spatial

resolution of the electron distribution is determined by the

maximum magnitude of the reciprocal-lattice vector of the

non-zero structure factors in the sum (4). The problem, of

course, is that although the amplitudes of fFgg are directly

measurable from the experimental data their phases are not.

The class of techniques termed difference Fourier methods

which have been developed to address this problem are

discussed next.

3. Difference Fourier syntheses

3.1. Unweighted

If the unknown part of the structure is not too large a

proportion of the whole, a reasonable estimate of it may be

obtained by the unweighted difference Fourier method

(Cochran, 1951), which approximates the phases of the

structure factors by those of the known part of the structure,

i.e. it estimates the electron distribution of the unknown part

by

u
�UDF�
i � �1=N�P

g

fjFgj exp �i'�R�g � ÿ Rgg exp �ÿig � ri�; �5�

where

'�R�g � arg�Rg�; �6�
the phase of Rg, which is known since it is derived from a

calculation of Rg from the known part of the structure.

3.2. Weighted

As pointed out by Read (1986), in general a better estimate

of the electron distribution may be obtained from the

expression

u
��A�
i � �1=N�P

g

fmgjFgj exp �i'�R�g � ÿ DgRgg exp �ÿig � ri�;

�7�
where mg is a ®gure of merit that represents the average effect

of possible deviations of the phase of Fg from 'R
g and Dg takes

account of all possible sources of uncertainty in the coordi-

nates of the partial structure. The SIGMAA computer

program (Read, 1986) calculates both of these quantities from

a set of structure factors fRgg of the partial structure and

experimental amplitudes jFgj of the entire structure.

In the limit where the partial structure may be considered

perfectly known, Dg � 1 and mg � w�Sim�
g , a weighting factor

previously derived by Sim (1959, 1960). Then Read's formula

(7) reduces to the Sim-weighted difference Fourier (SWDF)

expression:

u
�SWDF�
i � �1=N�P

g

fw�Sim�
g jFgj exp �i'�R�g � ÿ Rgg exp �ÿig � ri�;

�8�
where

w�Sim�
g � I1�X�=I0�X� �9�

for non-centric re¯ections,

w�Sim�
g � tanh�X=2� �10�

for centric ones, and

X � 2jFgjjRgj
.Pn

i�1

f 2
i : �11�

In the expressions above, I0�X� and I1�X� are modi®ed Bessel

functions of order zero and one, and the fi s are the scattering

factors of the missing atoms.

In all of the above formulae (5), (7) and (8), the phase

assigned to the structure factor Fg of the whole protein is that

of the partial structure. An alternative approach is to assign

to the phases of the entire protein values determined by a

procedure termed density modi®cation. This will be discussed

next.

3.3. Density-modified difference Fourier

Measured structure factors from protein crystals generally

contain contributions from a disordered water solvent, in

addition to those from the protein molecule. An established

method of re®ning initial phases in protein crystallography

(obtained from e.g. MIR or MAD experiments) is the

combination of solvent-¯attening and histogram-matching

techniques, known as the density-modi®cation (DM) method

(Cowtan & Main, 1998). This procedure may be conveniently

implemented by e.g. the CCP4 routine dm (Collaborative

Computational Project, Number 4, 1994). The output of this

routine includes an improved set of phases f'�DM�
g g and an

associated set of weighting coef®cients, w�DM�
g , for the structure

factors of the entire protein from which one may calculate an

improved estimate of the electron distribution fuDM
i g of the

entire contents of the unit cell (including solvent) by

uDM
i � �1=N�P

g

w�DM�
g jFgj exp �i'�DM�

g � exp �ÿig � ri�: �12�

This suggests the alternative form of difference Fourier

synthesis which we may term a density-modi®ed difference

Fourier (DMDF), de®ned by

u
�DMDF�
i � �1=N�P

g

fw�DM�
g jFgj exp �i'�DM�

g � ÿ Rgg exp �ÿig � ri�;

�13�
which subtracts the electron distribution of the known part

from an estimate of that of the entire unit cell.

The above and all succeeding formulae that involve a

difference between an experimental structure factor, Fg, and a
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calculated one, Rg, do of course require that the experimental

structure factors are placed on the same absolute scale as the

theoretical ones. This may be accomplished by the well

established techniques of Wilson scaling (see e.g. Drenth,

1994).

In the next section, we attempt to recover the electron

distribution of deleted residues of the protein �-dendrotoxin

using a knowledge of just parts of that structure and the

published experimental data, using both the SWDF, appro-

priate for the case of a model (effectively error-free) partial

structure, which assigns the phases of the partial structure to

the structure factors of the entire protein, and the DMDF,

which estimates the corresponding phases (and their asso-

ciated weights) from a density-modi®cation program that

starts with experimental phases. The results will be compared

to the known electron distribution of those residues. This will

illustrate the limitations of difference Fourier methods when

an attempt is being made to recover a large portion of the

protein as in the molecular replacement method.

4. Structure completion of a-dendrotoxin by difference
Fourier syntheses

�-dendrotoxin from green mamba venom (Protein Data Bank

entry 1DTX) is a 59-residue protein which crystallizes into

P212121 space-group symmetry with unit-cell parameters

a � 73:58, b � 38:73 and c � 23:19 AÊ . Skarzynski (1992) has

collected experimental data to approximately 2.5 AÊ resolution

with the maximum Miller indices of jhmaxj � 31, jkmaxj � 16

and jlmaxj � 10. Structure-factor amplitudes and MIR phases

as distributed with the CCP4 package (Collaborative

Computational Project, Number 4, 1994) were the input to the

calculations reported in this paper. From the given data in the

positive octant of reciprocal space, application of the appro-

priate symmetry relations extended the data to all eight

octants.

All Fourier transforms of the present work were performed

with the fast-Fourier-transform package CFFT99 developed

for the CRAY supercomputer, which requires the length of the

transforms to be powers of 2, 3 or 5. For this reason, we

expanded our reciprocal-space arrays to dimensions of

64 � 32 � 24, covering all eight octants and initializing to zero

all the structure factors with unassigned values. The corre-

sponding real-space grid spacings in the directions of the unit

vectors a, b and c were 1.15, 1.21 and 0.97 AÊ , respectively.

For �-dendrotoxin, which is a solved structure (Skarzynski,

1992), one can estimate the accuracy of this procedure for

recovering the electron distribution of the entire protein by

computing a correlation coef®cient C between a DM map

fuDM
i g calculated from (12) and the electron distribution

calculated from the atomic model in the Protein Data Bank

(which we shall henceforth term the `exact' map). We

employed a linear correlation coef®cient C (Press et al., 1992)

as a statistical measure of the agreement between the two

maps. For two distributions fuig and fvig (i � 1; 2; . . . ;N),

sampled in real space, C is just the cosine of the angle between

two N-dimensional vectors U and V with components ui ÿ hui
and vi ÿ hvi, respectively, i.e.

C � U � V=jUjjVj: �14�
The relatively high resulting value, C � 0:65, is a con®rmation

of the value of the density modi®cation method in

constructing a ®rst electron distribution map of the molecule.

We tested this by taking Rg to be the Fourier coef®cients of

the diffracted wave from successively smaller fragments of the

molecule by deleting from the known structure model an

increasing number of residues, starting from residue 1. Then

we reconstructed the electron distribution fu�DMDF�
i g from (13)

for each of these sets of deleted residues. The results are

shown in Fig. 1, where the line labelled DMDF�exp� shows the

resulting correlation coef®cient C, between fu�DMDF�
i g and the

`exact' electron distribution of the deleted residues from the

known structure.

Also shown in Fig. 1 is the line labelled SWDF�exp�, which

plots the correlation, C, between the reconstruction by the

SWDF formula (8) of the same reconstructed fragments and

those of the corresponding `exact' densities.

One feature of these results is in marked contrast to our

earlier results on structure completion with synthetic data for

BPTI (Saldin et al., 1997). With synthetic data, the correlation

coef®cient is highest for smaller recovered fragments. This is

easily understood since in this case the only uncertainties are

the phases of the total structure factors and since the starting

guesses of the phases are those of the known part of the

structure. Obviously these guesses are best for larger known

parts, i.e. where the fragment to be recovered by structure

completion is small. Indeed, in our earlier work, we found

Figure 1
Linear correlation coef®cients comparing the `exact' electron distribution
of various sets of missing residues with the distribution recovered by the
Sim-weighted difference Fourier (SWDF) and the density-modi®ed
difference Fourier (DMDF) methods. The superscript (exp) indicates
that the calculation used experimental diffraction amplitudes, while
(model) indicates that the amplitudes used were those calculated from
Skarzynski's model of the �-dendrotoxin molecule from the green
mamba venom (Protein Data Bank entry 1DTX).
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higher values of C for smaller recovered fragments. The line

DMDF�exp� of Fig. 1 displays exactly the opposite trend, with

higher C's for larger recovered fragments. The line SWDF�exp�

also shows C increasing from smaller through larger recovered

fragments, although in this case it seems to reach a maximum

for the recovery of 30 residues and declines when an attempt is

made to reconstruct a greater number. Indeed, in the limit of

the recovery of just residue 1, C was found to be only 0.08 with

the use of the DMDF equation (13), and just 0.01 with the Sim

formula (8)!

A little re¯ection makes clear the reason for this difference

between the results from synthetic and experimental data. In

the case of the latter, there is one extra source of potential

uncertainty, namely experimental errors in measurements of

the structure-factor amplitudes jFgj. A glance at either the

DMDF expression (13) or the SWDF formula (8) reveals that

the fractional error in the recovered distributions, fu�DMDF�
i g or

fu�SWDF�
i g, will increase for smaller fragments recovered since

the magnitudes of the differences of the structure factors on

the right-hand sides (RHS's) of these equations are smallest in

such cases.

It is easy to con®rm this supposition by repeating the

calculations of DMDF�exp� and SWDF�exp�, but with the `exact'

structure-factor amplitudes from the known model of the

entire protein in place of the experimental values, jFgj, in (13)

and (7), respectively. The results are also shown in Fig. 1,

where the line labeled DMDF�model� represents the corre-

sponding DMDF calculation, and the one labeled SWDF�model�

the corresponding SWDF calculation. As expected, the

correlation coef®cients of DMDF�model�, in which the `exact'

amplitudes are used, are consistently higher than those of

DMDF�exp�, which uses experimental amplitudes. Likewise, the

line SWDF�model� is consistently higher than SWDF�exp�.
More interesting is the observation that the expected trend

of higher correlations from smaller recovered fragments

obtained in our model calculations for the synthetic BPTI data

is reproduced here in the SWDF calculations represented by

the line SWDF�model�. This indicates that the only causes of the

reversal of the naõÈvely expected trend in SWDF�exp� are the

experimental errors in the measured Bragg amplitudes.

However, the trend of increasing C with the number of

recovered residues in DMDF�exp� is not reversed in the line

DMDF�model� from DMDF structure completion. The reason is

that although the structure-factor amplitudes jFgj may now be

exact for DMDF�model�, unlike the SWDF case, experimental

errors are still present in the RHS of (13) via the density-

modi®ed phases 'DM
g . This still results in a greater percentage

error in the smaller recovered fragments.

Fig. 2 illustrates the `exact' electron distribution map of

residues 1±18 of �-dendrotoxin from the atomic coordinates of

this structure in the Protein Data Bank. Also shown is a ball-

and-stick representation of these residues. The extra electrons

in this ®gure not enclosing the ball-and-stick model are due to

other symmetry-related portions of the same residues in the

unit cell (which contains four molecules of the protein).

Fig. 3 shows the electron distribution of these residues as

reconstructed from the SWDF formula (8). Its degree of

agreement with the `exact' electron distribution of the same

residues is characterized by a value of C � 0:41. Fig. 4 illus-

trates the corresponding distribution recovered by the DMDF

formula (13), whose agreement with the `exact' map is char-

acterized by C � 0:43. Considerable noise is present on both

of these maps making the identi®cation of the molecular

envelope of the missing residues dif®cult.

In the next section, we develop an exponential modeling

algorithm, which, starting from either of these difference

Fourier maps, is able to improve these estimates of the elec-

tron distributions to such an extent that they enable a fairly

unambiguous identi®cation of the envelope of the missing

residues.

5. Structure completion by exponential modeling

The problem of obtaining stable and meaningful solutions

from incomplete and noisy data has been addressed in a

variety of ®elds by means of the principles of Bayesian

statistics (Sivia, 1996) and the maximum-entropy method in

particular (Jaynes, 1957; Gull & Daniell, 1978). In X-ray

crystallography, this idea has been used to develop an expo-

nential modeling algorithm (Collins, 1982; Collins & Mahar,

1983) for improving the resolution of a pre-existing electron

density map of a protein. A similar exponential modeling

scheme is used by Bricogne (1984, 1988, 1991) and Gilmore

Acta Cryst. (2001). A57, 163±175 Shneerson et al. � Exponential modeling algorithm 167
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Figure 2
A view of an isosurface of an unclipped three-dimensional electron-
density map of residues 1±18 of �-dendrotoxin calculated from a Fourier
transform of the experimental amplitudes and the `exact' phases
calculated from the atomic model of �-dendrotoxin (Skarzynski, 1992).
The wire-mesh surface corresponds to an electron density of 2.9 times the
standard deviation above the mean. The isosurfaces not enclosing the
ball-and-stick ®gure represent reconstructed electron density from parts
of symmetry-related molecules in the crystal. It should be noted that
these are also reproduced in the exponential modeling map of Fig. 6.
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(1996) as part of an iterative process of phase extension in

which a knowledge of the phases of some low-resolution

structure factors is extended to those of higher-resolution

shells as implemented by the BUSTER computer program

(Bricogne, 1993). The potential use of maximum-entropy

reconstruction has also been discussed in a recent paper by

SzoÈ ke (1998). Carter & Xiang (1997) have reviewed an

algorithm they term maximum-entropy solvent ¯attening

(MESF) that incorporates solvent ¯attening into a maximum-

entropy phase-extension algorithm.

In this paper, we adapt Collins's (1982) exponential

modeling algorithm to the protein structure completion

problem and demonstrate its ef®cacy by an application to

published experimental data. The input to the algorithm

consists only of the experimental structure-factor amplitudes

and an initial estimate of phases and weights of the re¯ections.

These may be obtained, for example, from multiple isomor-

phous replacement followed by the standard density modi®-

cation procedure that combines solvent ¯attening with

electron-density histogram matching (Cowtan & Main, 1998).

Our program combines this initial phasing of the entire

molecule with information on as little as half of the structure

to recover the remaining molecular electron distribution to

high accuracy. In a sense, the procedure may be thought of as a

combination of the holographic ideas of SzoÈ ke with Collins's

exponential modeling approach. This is to be contrasted with

the scheme of Xiang et al. (1993), which combines solvent

¯attening with Bricogne's (1993) Bayesian scheme for

progressively phasing re¯ections of higher resolution by a

combination of exponential modeling and cross validation by

means of a global log-likelihood gain. Our method combines a

somewhat different exponential modeling scheme with cross

validation by the use of BruÈ nger's (1992, 1993, 1997) free R

factor.

The starting point of the theory is the fact that, in Boltz-

mann's expression for the entropy, S, of a distribution fujg,
namely

S�fujg� � k ln
�fujg�; �15�

where k is Boltzmann's constant, the number of microstates

per macrostate, 
, is proportional to the probability (P) of the

distribution. Consequently,

P�fujg� / exp S�fujg�: �16�

Thus the most probable distribution fujg corresponds to that

which maximizes S. A convenient form for the entropy, which

is equivalent to Boltzmann's expression above, is Gibbs's form

(Landau & Lifshitz, 1980):

S�fujg� � ÿP
j

uj ln �uj=�eqj��; �17�

where e is the base of the natural logarithms and fqjg the best

prior guess of the optimum distribution fujg (which we could

term the measure of the distribution). By differentiating S with

respect to ui (where i is a particular one of the set of indices

fjg), it is easy to show that the distribution fujg that maximizes

S is the trivial one that is identical to fqjg.

Figure 3
Same as Fig. 2, except that the electron density shown is that
reconstructed by Sim's weighted difference Fourier prescription. The
isosurface represented by the wire mesh is that corresponding to a density
of 1.3 times the standard deviation of the electron-density map above the
mean density. Also shown is a ball-and-stick ®gure representing the
residues 1±18.

Figure 4
Same as Fig. 2, except that the electron density shown is that recovered by
density-modi®ed difference Fourier synthesis. The isosurface represented
by the wire mesh is that corresponding to an electron density of 1.1 times
the standard deviation of the density above the mean.
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For our problem of ®nding the most probable electron

distribution fujg consistent with the experimental data, we

need to constrain the distribution by the method of Lagrange

multipliers. In the case of the structure completion problem,

we identify fujg with our best guess of the distribution fu�n�
j g of

the unknown part of a unit cell at step n of an iterative

algorithm. We identify the measure fqjg with our estimate

fu�nÿ1�
j g of the electron distribution at the previous iteration.

We seek to maximize the functional

Q�fu�n�
j g� � ÿ

X
j

u
�n�
j ln

u
�n�
j

eu
�nÿ1�
j

" #
ÿ �0

2

X
g

jO�n�
g ÿ T�nÿ1�

g j2
�2
g

;

�18�
where the ®rst term on the RHS is Gibbs's expression for the

entropy of the distribution fu�n�
j g with respect to that, fu�nÿ1�

j g,
from the previous iteration. The second term on the RHS

constrains the calculated structure factors

O�n�
g �P

j

u
�n�
j exp �ig � rj� �19�

from the unknown part of the structure to be consistent with

the experimental data, represented by a set of target structure

factors

T�nÿ1�
g � fjFgj exp �i'�nÿ1�

g � ÿ Rgg; �20�
where �g is the estimated uncertainty in the measured struc-

ture-factor amplitude jFgj,
'�nÿ1�
g � arg�Rg � O�nÿ1�

g � if n � 2; �21�
and �0 is a Lagrange multiplier.

Several different types of constraints have been proposed

for maximum-entropy applications to X-ray crystallography.

An excellent review of different forms are found in a paper

by Wilkins (1983a). He makes a distinction between hard

constraints in which the electron distribution is constrained by

the amplitudes and/or known phases of individual re¯ections,

and weak constraints in which the constraints are a single

function with contributions from all the Bragg re¯ections. In

(18), we use the form of weak constraint proposed by Collins

(1982). This has the advantages that (a) experimental errors in

individual structure factors are less likely to lead to spurious

detail in reconstructed electron distributions, and (b) the

number of Lagrange multipliers to be determined is much

smaller (in this case only one, if normalization is performed

separately). In contrast, the hard constraints employed by

Bricogne (1984) requires the determination of N � 1

Lagrange multipliers where N is the number of constraining

re¯ections.

Q may be maximized by requiring that

@Q

@u
�n�
i

� 0 8 i: �22�

The differentiation of the entropy term in (18) is straight-

forward enough; that of the constraint term may be performed

by writing jO�n�
g ÿ T�nÿ1�

g j2 as fO�n�
g ÿ T�nÿ1�

g g times its complex

conjugate and noting that O�n�
g depends on u

�n�
i , but not T�nÿ1�

g .

After some algebra and making use of the inverse transform of

(19), namely

ui � �1=N�P
g

O�n�
g exp �ÿig � ri� � �1=N�P

g

O�n��
g exp �ig � ri�

�23�
(the last equality follows from Friedel's law, Og � O�

ÿg, and

replacing the dummy index ÿg by g under the summation over

g); this leads to the `single voxel' equations

ln �u�n�
i =u

�nÿ1�
i � � ÿ�fu�n�

i ÿ t
�nÿ1�
i g; �24�

where � � �0N=h�2
gi if we replace the individual variances �2

g

by their mean value, and

t
�nÿ1�
i � �1=N�P

g

T�nÿ1�
g exp �ÿig � ri� �25�

is a target function consisting of the inverse Fourier transform

of T�nÿ1�
g . For more general constraints, Wilkins (1983a,b) had

earlier derived analogous `single pixel' equations by ignoring

the off-diagonal terms of a Hessian matrix in a Taylor-series

expansion of the constraint functions. We stress that, for the

particular form of constraints in (18), the only approximation

in the derivation of the single voxel equations is the replace-

ment of the individual variances �2
g by their mean. Hence,

u
�n�
i � u

�nÿ1�
i exp �ÿ�fu�n�

i ÿ t
�nÿ1�
i g�: �26�

This is an implicit relation for u
�n�
i in terms of u

�nÿ1�
i and t

�nÿ1�
i . It

can be written as an explicit equation for u
�n�
i by substituting

u
�nÿ1�
i for u

�n�
i on the RHS. This substitution would be justi®ed

only if � were chosen small enough that

j�u
�n�
i j � ju�n�

i ÿ t
�nÿ1�
i j; �27�

where

�u
�n�
i � u

�n�
i ÿ u

�nÿ1�
i : �28�

Note that if � were small enough it would be possible also to

truncate the series expansion of the exponential on the RHS

of (26) to approximate this equation by

�u
�n�
i � ÿ�u

�nÿ1�
i fu�n�

i ÿ t
�nÿ1�
i g �29�

from which it follows that condition (27) is equivalent to the

requirement that j�u
�nÿ1�
i j � 1 or, alternatively, � � 1=u

�nÿ1�
i

8 i. This can be ensured by choosing

� � 1=u�nÿ1�
max ; �30�

where u�nÿ1�
max is the maximum value of the distribution fu�nÿ1�

i g.
It should be noted that a � chosen according to this

prescription would almost certainly also justify the truncation

of the series expansion of the exponential in (26) that leads to

(29) (since u
�nÿ1�
i , u

�n�
i and t

�nÿ1�
i are all similar in magnitude by

construction), so the argument is self-consistent. Thus we may

replace (26) by the following explicit recursion relation:

u
�n�
i � u

�nÿ1�
i exp �ÿ�fu�nÿ1�

i ÿ t
�nÿ1�
i g� �31�

so long as � satis®es (30). The algorithm is initiated by de®ning

a starting distribution fu�0�
i g for the sought electron distribu-

tion, and also ft�0�i g for the `target' function. These distributions
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need to be different, otherwise the argument of the expo-

nential in (31) will be zero and the sought distribution fuig will

not be updated. Our procedure for constructing these initial

distributions from a standard crystallographic computer

program applied to the experimental data is described in the

next section. The initial electron distribution fu�0�
i g is designed

to resemble a fuzzy molecular envelope using experimental

data alone. That distribution is updated at each iteration only

from (31) and from a re-normalization to the expected total

number of electrons.

The construction of fu�0�
i g produces a positive-de®nite

distribution. The exponential in (31) ensures that the recur-

sion relation can never produce negative values at any voxel at

any subsequent iteration. This process of exponential modeling

(Collins & Mahar, 1983; Carter & Xiang, 1997) automatically

satis®es the physical constraint of positivity of the electron

distribution.

It is our experience that, provided the parameter � is chosen

consistent with (27), the algorithm invariably improves the

initial phase estimates '�0�g during the course of the ®rst several

iterations (as monitored by a correlation coef®cient between

the distribution fu�n�
i g and the corresponding electron distri-

bution of the solved structure). This is consistent with the

results of Collins (1982) in his work on the phase re®nement of

an entire protein. During this phase of the iterations, the

electron distribution fuig approaches that of the target func-

tion ftig, which in turn is constrained by the reciprocal-space

values of its Fourier coef®cients Tg (20). At the same time, the

algorithm does not allow the distribution to rapidly stray too

far away from the shape of its initial molecular envelope fu�0�
i g.

It is this competition between reciprocal-space constraints and

bias towards the shape of the molecular envelope that gives

the algorithm its remarkable phasing and map improvement

capabilities. It should be noted that there is no strict molecular

envelope constraint and the algorithm is able to correct errors

in that estimate if so dictated by the reciprocal-space

constraints.

Nevertheless, if the iterations are allowed to proceed too

far, the electron map may lose memory of the initial molecular

envelope. Therefore, it is important to halt the iterations at an

optimal point. Fortunately, as we describe in the next section,

even in the case of an unknown missing molecular fragment, it

is possible to determine this point from the minimum of the

cross-validation measure termed by BruÈ nger (1992) a free R

factor.

We shall next describe an application of this algorithm to

the structure-completion problem from the experimental data

of �-dendrotoxin.

6. Structure completion of a-dendrotoxin by
exponential modeling

In order to initialize the algorithm (31), starting distributions

fu�0�
i g and ft�0�i g must be set up. In our earlier work with

synthetic data (Saldin et al., 1997), we equated the target

function t
�0�
i to the RHS of (5), namely the unweighted

difference Fourier estimate. Better starting distributions ft�0�i g
are either the SWDF map (8) or the DMDF one (13). When

attempts were made to recover the deleted residues 1±18 of

�-dendrotoxin, we found that, if we started with a SWDF map

(with correlation coef®cient with the `exact' map of C � 0:41),

the algorithm improved this map considerably, as character-

ized by a value of C � 0:61. For the same problem, starting

instead with the DMDF map (with C � 0:43) gave rise to an

even better ®nal map (with C � 0:70). Therefore, in the

following, we will describe in detail only work in which ft�0�i g is

equated to the better DMDF starting distribution (13).

Generally, in protein crystallography the structure factor of

forward-scattered X-rays, corresponding to the g � 0 reci-

procal-lattice vector is not measured. However, its value is

simply the total number of electrons in the unit cell. These

consist both of protein electrons as well as those of its water

solvent, whose density is usually estimated at �0.32 elec-

trons AÊ ÿ3. Thus, the value of F0 is just the sum of the number

Nprotein of protein electrons and Nsolvent of those of the solvent.

In a difference Fourier formula, the corresponding structure

factor R0 of the partial structure is equal to the number Npartial

of electrons in that partial structure. Thus, strictly, a difference

Fourier formula like (8) or (13) should have a g � 0 Fourier

coef®cient equal to Nprotein � Nsolvent ÿ Npartial and should

recover not only the electron distribution of the missing

residues but also that of the solvent. Since the focus of

structure completion work is the recovery of the missing

residues rather than that of the solvent, it makes sense to

simply drop the term Nsolvent and take the g � 0 Fourier

coef®cient of a difference Fourier formula equal to

Nprotein ÿ Npartial. The quantity Nprotein is generally known from

prior biochemical analysis; Npartial is known by hypothesis. The

effect of this choice of the g � 0 Fourier coef®cient is to

subtract an electron density equal to the solvent density times

the ratio (solvent volume)=(total volume) of the unit cell from

all the recovered electron density. This increases the (protein

density)=(solvent density) ratio in the difference Fourier map,

a desirable feature when attempting to recover the molecular

envelope of the missing residues. Since, in our exponential

modeling algorithm, the target function t
�n�
i is also constructed

from a difference Fourier formula, the same choice of the

g � 0 Fourier coef®cient is appropriate for its construction

also.

In order to monitor the improvement in the phasing of the

re¯ections, we set aside a randomly chosen subset (we chose

7.5%) of the structure factors, which were not used in the

phasing algorithm. Following BruÈ nger (1992, 1993, 1997), this

subset is known as the test set, T. The remaining re¯ections

form the working set W. Thus we took

t
�0�
i � �1=N� P

g2W

�w�DM�
g jFgj exp fi'�DM�

g g ÿ Rg� exp �ÿig � ri�:

�32�

As for the initial distribution, fu�0�
i g, we take this to be a low-

pass ®ltered version of ft�0�i g, by de®ning
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u
�0�
i � �1=N� P

g2W

�w�DM�
g jFgj exp�i'�DM�

g � ÿ Rg� exp�ÿig � ri�

� exp�ÿ 1
2 �g��2�; �33�

where � is the real-space resolution and g is the magnitude of

the reciprocal-lattice vector g. This imposes a Gaussian

envelope in reciprocal space. As suggested by Collins (1982),

negative and small positive electron densities were eliminated

by replacing all values of u
�0�
i < u�0�

max=100 by u�0�
max=100, where

u�0�
max is the maximum value of the distribution fu�0�

i g.
We began with a value � � 10 AÊ . Subsequent evaluations of

the target function t
�nÿ1�
i from (25) were also from Fourier

transforms of target amplitudes T�nÿ1�
g with g 2 W. Thus the

entire phasing algorithm used information from just 92.5% of

randomly chosen structure factors from the entire measured

set. Owing to the exponentiation in (31), structure factors O�n�
g

evaluated from (19) will include re¯ections g 2 T 8 n> 0. We

de®ne a free R factor at iteration n by

R
�n�
free �

P
g2T jjFgj ÿ jRg � O�n�

g jjP
g2T jFgj

; �34�

which measures the agreement between the calculated struc-

ture-factor amplitudes jRg � O�n�
g j belonging to the test set

with the corresponding measured quantities jFgj belonging to

the same set. As BruÈ nger (1992, 1993, 1997) has pointed out,

this free R factor has the remarkable property of being able to

monitor the quality of the phasing of the working set of

re¯ections W, even in the case of an unknown structure.

Our experience bears this out: for the recovery of deleted

residues 1±18 (30% of the structure), Table 1 shows the

variation of R
�n�
free with iteration number n. R

�n�
free is seen to reach

a minimum when n � 10 and to rise after that. The validity of

R
�n�
free as a monitor of the quality of the electron distribution

may be judged by a comparison with the simultaneous varia-

tion with n of the correlation coef®cient CW between the

electron distribution fu�n�
i g calculated from re¯ections of just

the working set W and that of residues 1±18 of the published

structure (Skarzynski, 1992). It will be noted that CW increases

until the same iteration number 10, after which it decreases.

This indicated that, not only is the best electron distribution

obtained after 10 iterations, but also that this best map may be

identi®ed by the minimum in the free R factor, whose calcu-

lation does not require any prior knowledge of the true

structure. Let us de®ne the iteration number that gave the best

map in this cycle as m. In this case therefore, m � 10. The

corresponding column in Table 1 is highlighted in bold-face

type.

We also found that this map may be improved further by a

new cycle of iterations of the phasing algorithm. The initial

map of this new cycle is de®ned by

u
�0�
i � �1=N� P

g2W

�jFgj exp�i'�m�
g � ÿ Rg� exp�ÿig � ri�

� exp�ÿ 1
2 �g��2�; �35�

where the phase of Fg is taken as that of the best map from the

previous iteration, i.e. '�m�
g , and the map effectively convolved

with a Gaussian of reduced width of � � 5 AÊ . When the

iterations were resumed, the quality of the map improved

further, again monitored by R
�n�
free and C. The former quantity is

approximately constant for 3 iterations and rises thereafter.

For both sets of iteration cycles, the optimal stopping point is

seen to be the last iteration before a rise in R
�n�
free. That optimal

column is also distinguished by bold characters.

Thus the algorithm was not only able to increase the

correlation with the `exact' electron distribution of the solved

structure but also the cross-validation technique of BruÈ nger

(1992, 1993, 1997) gives an accurate independent indication

of the best map and provides a criterion for halting the

iterations when this best map is obtained. A slight disad-

vantage of this procedure is the fact that the map is calcu-

lated with just the W set of re¯ections that constitute less

than all the available diffraction data. Therefore, we used the

algorithm to evaluate also an electron distribution using the

full set of the available re¯ections for the same number of

iterations as the optimum for the W set. We found that the

maximum correlation CF of the full set of Bragg re¯ections

between the new reconstructed electron distribution and that

of the model distribution was also reached at the same

iteration numbers for each of the iteration cycles, as illus-

trated in the ®nal rows of Table 1. Thus, it appears that

BruÈ nger's free R factor can be used to determine the optimum

number of iterations per resolution cycle and then a calcula-

tion of the best map can be re-performed using all the avail-

able Bragg re¯ections, terminating each cycle at the optimum

number of iterations determined by the free R factor. By this

means, a further improvement of the ®nal electron distribution

was found, as quanti®ed by a value of CF � 0:70, as may be

seen from Table 1.

The above procedure was repeated to recover residues 1±30

(50% of the structure), after they had been deleted from the

partial structure of Fourier coef®cients Rg. As indicated in

Table 2, the minimum in R
�n�
free occurred at iteration number

n � 12, which also corresponded to a maximum of the

corresponding correlation coef®cient CW during the ®rst

cycles with � � 10 AÊ . Again using (35) to re-start a new set

of iterations with � � 5 AÊ , Rfree remained approximately

constant for a further 3 iterations before rising. Once again it

is seen that the last iteration before the rise in Rfree corre-

sponds to the maximum of both CW and CF . The value of CF,

characterizing the quality of the best reconstructed map of

residues 1±30, is also seen to be 0.70.

In our test calculation with the recovery of residues 1±18 of

�-dendrotoxin (30% of the structure), exponential modeling

was able to recover a map of those residues (Fig. 5) of much

higher quality (of correlation with the `exact' structure

C � 0:70) than those from the SWDF synthesis (C � 0:41) or

from the DMDF phases and weights in (13) (for which

C � 0:43). Comparison of Fig. 5 with the `exact' map of Fig. 2

shows striking agreement and a clear identi®cation of the

continuous tube of electron density associated with the poly-

peptide chain.

Even when the recovery was attempted of half of the

structure (residues 1±30), the corresponding correlation

coef®cient was found to be of the same value (C � 0:70),
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again considerably in excess of that of the SWDF map

(C � 0:42) or the DMDF map (C � 0:50)

In the case of each of the electron distributions illustrated in

our paper, the isosurface contour level was chosen to be the

highest that displays a more-or-less continuous tube of elec-

tron density around the recovered residues. On comparing

Figs. 2, 3, 4 and 5, it is seen that, as expected, the better the

reconstruction of the amino acid chain, the higher is this

contour level in relation to the mean density.

Further insight into the quality of the reconstructed elec-

tron maps of residues 1±18 may be obtained by examining

Fig. 6, which depicts the varia-

tion of the correlation coef®-

cient for a number of resolution

shells characterized by their

mean values of fsin���=�00g2

(where � is half the angle of

scattering and �00 the wave-

length of the X-rays) for the

Sim-weighted and density-

modi®ed difference Fourier

maps, and the map recovered by

the exponential modeling algor-

ithm. The last-named map has a

signi®cantly higher correlation

with the `exact' map than either

of the other two. Also very interesting is the fact that, although

the SWDF map is superior to the corresponding density-

modi®ed one over most of the resolution range, consistent

with the appearances of the maps of Figs. 3 and 4, the DMDF

map is better in the low-resolution region up to a value of the

abscissa of about 0.01. This superiority of the map that uses

the density-modi®ed phases and weights in the low-resolution

regime is not surprising since the density-modi®cation process

(Cowtan & Main, 1998) involves the determination of a low-

resolution molecular envelope. This is also the reason for our

choice of initial low-pass ®ltered electron distribution fu�0�
i g to

be of the form (33) rather than from the SWDF map (8).

7. Discussion

Our algorithm for structure completion is similar to one

proposed by Collins (1982) for improving the resolution of an

initial map of the electron density of an entire protein based

on experimental phases, such as those obtained by the MIR

technique. Apart from addressing the different problem of

structure completion, the new feature of our scheme is the

provision for cross validation, which determines the optimal

stopping point for the recursion relation.

The framework for the derivation of the algorithm is the

maximum-entropy formalism of Jaynes (1957). The center-

piece of this method as applied to protein crystallography is

the de®nition of a functional, Q (18), of the electron distri-

bution that consists of a weighted sum of two terms: (a) the

entropy S of the electron distribution fuig relative to a measure

fqig that represents an a prori estimate of fuig and (b) another

functional that constrains the electron density to the experi-

mentally observed amplitudes of Bragg re¯ections and to

initial phase estimates. Collins employs the weak constraint of

a �2 statistic that results in the relative weights of these two

functional contributions to Q being controlled by a single

Lagrange multiplier �0. The particular form of �2 chosen by

Collins, which makes this functional the logarithm of a like-

lihood function (Sivia, 1996), also makes it a quadratic func-

tional of fuig. Functional differentiation of Q with respect to

the electron distribution yields an equation (26) to be satis®ed

by that distribution. The quadratic nature of �2 with respect to

fuig results in an implicit equation for fuig. Solving that

Table 1
Recovery of residues 1±18.

Resolution of starting map, fu�0�
i g: � � 10 AÊ

n 1 2 3 4 5 6 7 8 9 10 11 12 13
R
�n�
free 32.08 17.99 10.61 6.73 4.40 2.73 1.54 0.89 0.61 0.51 0.52 0.54 0.57

CW 0.21 0.28 0.35 0.42 0.47 0.52 0.57 0.60 0.61 0.61 0.60 0.59 0.58
CF 0.20 0.27 0.35 0.42 0.48 0.53 0.57 0.60 0.63 0.64 0.64 0.63 0.63

Resolution of re-start map, fu�0�
i g: � � 5 AÊ

n 1 2 3 4 5 6
R
�n�
free 0.41 0.40 0.40 0.41 0.43 0.44

CW 0.66 0.67 0.67 0.67 0.66 0.65
CF 0.68 0.69 0.70 0.70 0.70 0.70

Figure 5
Same as Fig. 2 except that the electron density of residues 1±18 was
reconstructed by the exponential modeling algorithm described in the
text. The wire-mesh isosurface corresponds to an electron density of 2.0
times the standard deviation of the density above the mean. This
electron-density distribution is seen to give a much clearer indication of
the three-dimensional con®guration of the deleted residues 1±18 than
that of Figs. 2 or 3. Much of the electron density not enclosing the ball-
and-stick ®gure represents parts of symmetry-related molecules in the
crystal. Note the striking similarity with the `exact' map of Fig. 2.
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equation for fuig for a ®xed fqig while evaluating �0 by some

auxiliary constraint equation would yield the conventional

maximum-entropy distribution for fuig.
This is essentially the method followed by Bricogne (1984),

except that he employed hard constraints for the individual

Bragg re¯ections (which give rise to N � 1 Lagrange multi-

pliers, where N is the number of measured re¯ections) which

were linear in the electron distribution. A similar functional

differentiation then yields explicit equations for the maximum-

entropy electron distribution, with the Lagrange multipliers

determined by N � 1 auxiliary constraint equations.

At this point, the Collins algorithm (and ours) departs from

the conventional maximum-entropy treatment. Instead of

being treated as a constant, the

measure fqig in the relative

entropy S is continually updated

during the iterations to ®nd fuig.
For this reason, we refrain from

using the term maximum

entropy to describe the algor-

ithm but rather use instead the

term subsequently coined by

Collins & Mahar (1983), expo-

nential modeling. For the

problem we address in this

paper, we found this procedure

actually more effective at

leading to an improved electron

distribution than a conventional maximum-entropy solution in

which fqig is kept ®xed at its initial estimate.

One reason for the effectiveness of the method becomes

apparent on examination of the recursion relation (31). In this

expression, ft�nÿ1�
i g is the Fourier transform of the reciprocal-

space estimate of the unknown electron distribution with the

best estimate of the phases of the measured structure-factor

amplitudes from the previous iteration. If the estimate u
�nÿ1�
i

of the sought distribution at the previous iteration is less than

the corresponding value t
�nÿ1�
i of this target function, the esti-

mate of ui at iteration n will be greater than that at the

previous iteration and vice versa. Thus the sought distribution

tends towards a compromise between the initial real-space

estimate represented by fu�0�
i g and consistency with reciprocal-

space constraints contained in ftig. This is what gives the

algorithm its phasing or equivalently its electron map

improvement capabilities.

It should also be noted that, in our scheme, the quantity �
plays the role of a relaxation parameter that ensures the

proper operation of the recursion relation (31). If every

iteration yields a distribution fu�n�
i g that more accurately

represents the electron distribution sought, this will also yield

better phase estimates f'�n�g g of the measured Bragg re¯ec-

tions. The complementary improvements in real and reci-

procal space act as a kind of feedback loop. This is a feature

shared with the density-modi®cation method (Cowtan &

Main, 1998), the MESF algorithm of Xiang et al. (1993) and

even the Gerchberg±Saxton algorithm (Gerchberg & Saxton,

1972) of image processing. A representative amplitude±phase

diagram indicating the relationships amongst the different

structure factors is illustrated in Fig. 7.

Our method also bears some formal analogy to Bricogne's

(1993) Bayesian methods for phase extension, where guessed

values of the phases of an initial subset H of re¯ections is used

in a (different) exponential modeling algorithm to estimate

the amplitudes of a neighboring subset K of Bragg re¯ections.

In Bricogne's method, the quality of the initial phase guesses is

monitored by a quantity termed a log-likelihood gain, which

compares the degree of agreement between the predicted and

measured amplitudes of the K subset. In our scheme, we start

with approximate phase estimates of all measured re¯ections

but then randomly choose just 92.5% of them as input to our

Acta Cryst. (2001). A57, 163±175 Shneerson et al. � Exponential modeling algorithm 173

research papers

Table 2
Recovery of residues 1±30.

Resolution of starting map, fu�0�
i g: � � 10 AÊ

n 1 2 3 4 5 6 7 8 9 10 11 12 13
R
�n�
free 105.99 54.03 29.48 17.78 11.53 7.23 4.19 2.33 1.30 0.76 0.54 0.50 0.53

CW 0.15 0.20 0.27 0.34 0.39 0.44 0.49 0.54 0.57 0.60 0.61 0.61 0.60
CF 0.15 0.20 0.27 0.34 0.40 0.45 0.50 0.55 0.59 0.62 0.64 0.65 0.65

Resolution of re-start map fu�0�
i g: � � 5 AÊ

n 1 2 3 4 5 6
R
�n�
free 0.49 0.49 0.49 0.50 0.52 0.53

CW 0.65 0.66 0.66 0.66 0.66 0.66
CF 0.68 0.69 0.70 0.70 0.70 0.70

Figure 6
Linear correlation coef®cients comparing the `exact' electron density of
residues 1±18 of �-dendrotoxin with that of the same residues recovered
by our exponential modeling algorithm (EM), the Sim-weighted
difference Fourier method (SWDF) and the density-modi®ed difference
Fourier method (DMDF) as a function of resolution shell. The quality of
the exponential modeling reconstruction is clearly superior to that of
either of the other two methods over the entire resolution range. The
DMDF maps are better than the SWDF ones at low resolution but less
good at high resolution.
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exponential modeling algorithm. The remaining 7.5% plays

essentially the same cross-validation role as Bricogne's K

subset. In our case, the step analogous to Bricogne's phase

hypothesis generation is performed automatically by our

algorithm, and our cross-validating free R factor merely

determines the iteration number of the most appropriate

stopping point. Since we have found from experience that, if

all the experimental data are then included in the algorithm,

an even better map is found after the same number of itera-

tions, we recommend using all the data at this ®nal step (thus

using the cross-validation procedure only to determine the

optimal iteration number for the full data set).

8. Conclusions

We have proposed an exponential modeling algorithm to

address the problem of structure completion in protein X-ray

crystallography, particularly where the unknown part of the

structure may be a signi®cant proportion of the whole protein,

as may be encountered in the method of molecular replace-

ment, for example.

We have demonstrated the effectiveness of our algorithm

with a test where we attempted to recover the electron

distribution of a signi®cant portion of a 59-residue protein,

�-dendrotoxin, from experimental structure factors and a

knowledge of as little as half of the structure. Neither a Sim-

weighted nor a density-modi®ed difference Fourier map was

able to clearly identify the chain of the missing residues. In

contrast, our algorithm was able to improve these maps to the

point where a continuous tube of electron density repre-

senting the shape of the corresponding polypeptide chain

stood out clearly from surrounding noise. Strong con®rmation

of these observations was found in the more objective measure

of a coef®cient of correlation with the known electron distri-

bution of the missing residues.

The algorithm may also be thought of as one that

progressively improves the phase estimates of the measured

Bragg re¯ections by alternate cycles between real and reci-

procal space. Each new real-space distribution gives rise to a

new set of phases on Fourier transformation. At each reci-

procal-space step, the amplitudes associated with those new

phases are constrained by the measured (and scaled) experi-

mental values and an estimate of the total number of electrons

in the missing part of the protein. The method naturally

incorporates the necessary positivity constraint on the elec-

tron density. It improves the phases of experimental Bragg

re¯ections by the steps of phase hypothesis generation

(performed automatically according to a prescription)

followed by cross validation by means of a free R factor.
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