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This paper examines the sets of feasible allocations in a large class of economic
environments in which commitment is impossible (following Myerson [8], the
standard definition of feasibility is adapted to take account of the lack of commit-
ment). The environments feature either memory or money. Memory is defined as
knowledge on the part of an agent of the full histories of all agents with whom he
has had direct or indirect contact in the past. Money is defined as an object that
does not enter utility or production functions, and is available in fixed supply. The
main proposition is that any allocation that is feasible in an environment with
money is also feasible in the same environment with memory. Depending on the
environment, the converse may or may not be true. Hence, from a technological
point of view, money is equivalent to a primitive form of memory. Journal of
Economic Literature Classification Numbers: E40, C73, D82. � 1998 Academic Press

I. INTRODUCTION

At its heart, economic thinking about fiat money is paradoxical. Fiat
money consists of intrinsically useless objects that do not enter utility or
production functions. But at the same time, these barren tokens allow
societies to achieve allocations that would otherwise not be achievable. The
purpose of this paper is to uncover what permits these barren tokens to
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play this role. I show that any allocation that is achievable using money
alone could be achieved instead by allowing agents costless access to a
historical record of past actions that I term memory; I conclude that the
role of money is to serve as a (typically imperfect) form of memory.

More precisely, the paper examines a large class of economic environ-
ments that includes the setups underlying the overlapping generations,
turnpike and random matching models. In all of these environments,
agents are unable to commit themselves to a particular allocation of resources;
the environments feature either memory or money (but not both together).
Following Myerson [8], I define a notion of incentive-feasibility that
simultaneously respects the usual physical re-allocation restrictions and the
participation restrictions implied by the absence of commitment. The main
proposition is that any allocation that is incentive-feasible in an environ-
ment with money is also incentive-feasible in the same environment with
memory. I show that, depending on the environment, the converse may or
may not be true. Hence, in these environments, money is equivalent to a
primitive form of memory.

The logic behind this proposition is simple. Given the presence of a
historical record, it is possible to construct strategies for agents in any
environment with memory that correspond to what happens in an environ-
ment with money. In the monetary environment, when an agent gives up
resources today, he receives money which can be used to purchase resources
next period. Analogously, in an environment with memory, an imaginary
balance sheet is kept for each agent. When an individual gives consumption
to someone else, his balance rises, and his capacity for receiving future
transfers goes up. When he gets consumption from someone else, his
balance falls, and his capacity for receiving future transfers declines. In the
monetary environment, money is merely a physical way of maintaining this
balance sheet.

Others (Ostroy [10], Lucas [7], Townsend [12�14], Aiyagari and
Wallace [2]) have noted that, as emphasized in this paper, fiat money
helps to keep track of past actions. The contribution of this paper over this
past work is to emphasize both the singularity and the generality of
money's recordkeeping role. I show that the expansion in allocations that
money allows is completely subsumed by the expansion in allocations that
is made possible by just one type of technological innovation: memory.
Moreover, I show that this result is true in an extremely broad class of
environments.1
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1 As I do in this paper, Huggett and Krasa [5] use a mechanism design approach to assess
when fiat money is ``essential'' in overlapping generations and turnpike environments.
Throughout, they assume that there is no ``memory'' available to society, and so their focus
is considerably different from mine.



In the next section, I describe the class of environments under study,
and show that it nests the standard overlapping generations, turnpike, and
random matching models. In Section III, I define memory, money, and
incentive-feasible allocations. In Section IV, I prove the main result that
the set of incentive-feasible allocations with money is a (possibly improper)
subset of the incentive-feasible allocations with memory. Finally, in
Section V, I conclude.

II. A CLASS OF PHYSICAL ENVIRONMENTS

In this section, I describe a class of physical environments, and then
show that the models underlying the major paradigms of monetary theory
belong to this class.

1. General Discussion

In this subsection, I describe a class of physical environments. In each
environment, time is discrete, with a finite number K of perishable goods
at each date. There is a set of agents indexed by |, where | lies in
0�[0, 1]. Different agents can live for different lengths of time. Let
0t �0 denote the indices of agents who are alive at the beginning
of period t. I assume that 0t either has positive Lebesgue measure, is a
countably infinite subset of [0, 1], or a finite subset of [0, 1].

In period t, a generic agent | has a momentary utility function
u|: RK � [u

�
, u� ]. All agents have the same discount factor ;. Hence, the

generic agent |, in period t, preferences over streams of consumption that
are representable by the utility function

u|(ct)+Et :
T(|)

r=1

;ru|(ct+r)

where ct+r is some element of RK. Here, T(|) is the number of years left
in agent |'s life and may be infinity; Et represents an expectation condi-
tional on information available to the agent in period t.

At each date, a generic agent | has a nonnegative endowment y|
t # RK

and a technology Y |
t �RK with which to produce more goods. I assume

that 0 # Y |
t , and that agent | can freely dispose of any goods; hence, if

y # Y |
t , then y$ # Y |

t for any y$� y. The characteristics of each agent |
(that is, endowments, preferences, technologies, and birth and death dates)
are common knowledge among all agents.

The state of the world is defined by a stochastic process st which deter-
mines a date t partition of the agents who are alive at t. I term an element
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of this partition a match; for technical reasons, it is convenient to assume
that each match contains a finite number of agents. The partition deter-
mined by st represents both the physical and informational separation of
agents: Thus, no transfers of many goods can take place among agents who
are in different matches, and agents at t do not know what happens in
other matches at date t. Similarly, the state st is not common knowledge.
Rather, at time t, a given agent observes only the indices of all agents in
his current and past matches. I assume that st is independent of the past
in the sense that Pr(st | st&1 , st&2 , ..., s1) is the same for all past histories
(st&1 , ..., s1) (but note that st may be deterministic and�or nonstationary).

Given the physical separation across matches, the following is a natural
definition of feasible allocations.

Definition 1. For every match of J agents at date t, an allocation
specifies a K-dimensional vector c j

t for each agent j ; an allocation is
feasible if, in every match, every component of c j

t is nonnegative and
(�J

j=1 c j
t &�J

j=1 y j
t ) # �J

j=1 Y j
t .

The definition of feasibility respects the restriction that there is no way to
transfer goods from one match to another.

I make two assumptions about the matching process. First, for any agent
|, define his autarkic utility within period t to be:

u|
aut, t #max

c�0
u|(c) s.t. (c& y|

t ) # Y |
t .

Then, I assume that the matching process satisfies:

(A1) In any match, there exists no feasible allocation (c j
t )

J
j=1 of

resources within the match that Pareto dominates autarky in the sense that
u j (c j

t )�u j
aut, t for all j, with u j (c j

t )>u j
aut, t for some j.

As we shall see, this restriction serves to highlight the role of money and
memory by essentially eliminating all nonautarkic allocations when they
are absent.

I also assume that the matching process has the following feature that
ensures a severe informational separation among the agents. Let Pt(|) be
the agents who are in agent |'s match in period t (including | himself),
and then define Qt(|) recursively as

Q1(|)=P1(|)

Qt(|)= .
& # Pt(|)

Qt&1(&).
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(If | is not alive in period t, then Pt(|) is empty.) Thus, Qt(|) consists of
agent | and his trading partners in period t, all of their trading partners
in period (t&1), all of those people's trading partners in period (t&2), and
so on. I assume that the matching process satisfies:

(A2) If & # Pt(|), then with probability one, Qt&1(|) & Qt&1(&)=<.

Assumption (A2) means that agent | has no information about agent &'s
past matches other than that provided by money or memory, because there
is no possibility of any direct or indirect contact between the two agents
before the current match. Thus, assumption (A2) serves to make as stark
as possible the role of money and memory as sources of information about
the past.

From now on, I use the term ``environment'' to refer to an environment
as discussed above, in which the matching process satisfies assumptions
(A1) and (A2).

2. Examples of Environments

This subsection shows that the class of physical environments studied in
this paper embeds the standard paradigms of modern monetary theory.

a. Overlapping Generations

Consider an overlapping generations economy in which every agent lives
two periods. There are J agents in each cohort. Agents are each endowed
with y1 units of a perfectly divisible good when young and y2 units of the
good when they are old; the good is not storable. (Here, technologies are
equal to [ y | y�0]). The young agents have preferences over current
consumption (cy) and future consumption (co) that are representable by
the utility function

u(cy)+u(co)

where u is strictly increasing. The old agents prefer more consumption to less.
Label the agents in each cohort by numbers from 1 to J. Then think of

the matching process as separating the 2J agents alive at each date by
partitioning them into pairs consisting of the old agent j and the young
agent j. The set Qt&1 (young agent j) is empty, so (A2) is trivially satisfied.
Also, it is clear that because there is only one good, (A1) is satisfied.

b. Turnpike

As in Townsend [11], consider a world with an infinite number of trad-
ing posts located at the integer points along the real line. In period one and
in every period thereafter, at each trading post there are J ``stayers'' and J
``movers.'' At the end of period t, the movers move 2t&1 trading posts to
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the right; the stayers stay at their current trading posts. (The unorthodox
size of the shifts is in order to make the matching process consistent with
(A2).) The agents in each cohort at each trading post are indexed using the
natural numbers from 1 to J.

In period t, stayers are endowed with one unit of consumption if t is odd
and zero units of consumption if t is even; the movers are endowed with
zero units of consumption if t is odd and one unit of consumption if t is
even. (As above, technologies are equal to [ y | y�0].) Consumption is
perishable. In period t, each type of agent has preferences over current and
future consumption representable by the function

:
�

s=0

;su(ct+s), 0<;<1

where u is strictly increasing, strictly concave, and bounded from above
and below.

Suppose the matching process pairs stayer j with mover j at each trading
post. Consider the mover j who started life at trading post 0; in period t,
he arrives at trading post 2t&1&1. It is tedious but simple to show that for
this agent, Qt contains all stayers and movers labelled j who began life at
posts [0, 1, ..., 2t&1&1]. At the same time, the set Qt for mover j at trading
post (2t&1) contains all stayers and movers labelled j who began life at
posts [2t&1, ..., 2t&1]. Hence, the matching process satisfies (A2). Because
there is only one good at each post, the process also satisfies (A1).

c. Random Matching

The following is a simplified version of the environment underlying Trejos
and Wright [15]. Consider an environment in which 0=[0, 1]; there are
three types of agents and there is a measure 1�3 of each type. There are also
three types of nondurable, indivisible, nonstorable goods. In each period, a
type i agent can produce some nonnegative amount of good i less than or
equal to y� . Type i agents have momentary utility u(ci+1)& yi , where ci+1

is consumption of good (i+1) and yi is production of good i. (The utility
function u is assumed to be strictly increasing and strictly concave.) The
agents live forever and discount utility using the discount factor ;.

In the more general notation developed above, we can think of there being
four goods: the three perishable goods and time. The endowment vector for
each agent has the form y|

t =(0, 0, 0, y� ). A type 1 agent has technology

Y1
t [( y1 , y2 , y3 , y4) # R4 | y1�& y4 , y2�0, y3�0].

Note that the technology satisfies free disposal. The upper bound on
production in any allocation is a consequence of a nonnegativity constraint
on the agent's allocation of time.

237MONEY IS MEMORY



In this environment, the matching process randomly divides the agents
into pairs; a given individual is equally likely to be matched with any of the
three types of agents. Note that because Qt(|) is a set of measure zero for
all t and |, condition (A2) is trivially satisfied. Also, the structure of agent
preferences and technologies guarantees that condition (A1) is satisfied as
well.

III. INCENTIVE-FEASIBLE ALLOCATIONS

In this section, I augment the above physical environments first with
money and then, instead, with memory. Having done so, I define no-com-
mitment trading mechanisms, and prove a ``revelation principle'' that shows
that any equilibrium outcome of any no-commitment mechanism is an
equilibrium outcome of a particular direct mechanism. I use this result to
describe a notion of incentive-feasibility for three types of environments:
ones without money or memory, ones with money, and ones with memory.

1. Money and Memory

First, suppose there is another good that is durable that does not enter
preferences or production; call this good money. The per capita supply of
money is fixed at M over time. At the end of any period, because of the
physical properties of money, any agent's holdings of this durable good are
restricted to lie in the finite2 set 1/[0, �); I assume that 1 contains [0].
Any agent born after date 1 begins life with zero units of money.

The initial stock of money can be distributed across agents in 01 (that
is, agents alive at the beginning of period 1) in two different ways. The first
method specifies a function m0 : 01 � 1 such that the per capita3 level of
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2 The finiteness of 1 is technical convenient, but I do not believe that it is essential in what
follows. (In any event, money is generally discrete and it is natural to think there are upper
bounds to how much of it can be stored from one period to the next.)

3 The term ``per-capita'' will have different meanings depending on the size of 0t . In
particular, let xt(|) be some real-valued characteristic associated with each agent | in 0t .
Then, the per capita level of this characteristic, Xt , is given as follows:

If 0t is finite, Xt=[�| # 0t
xt(|)]�|0t |.

If 0t=[|1 , |2 , |3 , ...], Xt=limJ � � J&1 �J
j=1 xt(| j).

If 0t is a subset of [0, 1] with positive Lebesgue measure, then

Xt=|
0t

xt(|) d|.

Using per-capita in these different ways is standard. (Note that the last definition implicitly
assumes that xt is Lebesgue integrable as a function of |.)



m0(|) is M. Here, the initial level of moneyholdings for each agent is a
deterministic function of his identity.

The second method only works if 01 is countably infinite or a set of
positive Lebesgue measure. Define + to be any measure over 1 such that
E(+)=M; for each person in 01 , their initial moneyholdings are drawn
independently from +. The measure + is common knowledge among all
agents (not just those alive at the beginning of period 1). Note that
both of these methods of distributing money across agents in period 1
imply that an agent has independent (possibly degenerate) priors over his
compatriots' initial moneyholdings.

Just as with the K perishable goods, allocations of money must obey the
physical trading restrictions imposed by the matching process.

Definition 2. For every match of J agents at date t, a money allocation
specifies a scalar m j

t for each agent j; a money allocation is feasible if, in
every match, m j

t # 1 and �J
j=1 m j

t&1��J
j=1 m j

t .

Note that allocations of money also must obey the individual feasibility
restriction that individual moneyholdings lie in 1.

Now suppose that instead of adding money, we add memory to the
class of physical environments as follows. There is a historical record
(spreadsheet) that, for each agent |, reports |'s past trading partners at
each previous date, and the actions of | and his partners in those matches.
Access to the record works as follows: at any date, agent | can costlessly
and instantaneously observe the entries in the record for any individual in
Qt(|). However, it is important to note that access is limited in the sense
that agent | is unable to observe the entries in the record for any of his
potential future trading partners. The reason for this limitation will become
clear later.

2. No-Commitment Trading Mechanisms

In this subsection, I first give a precise but general description of trading
mechanisms (essentially, methods of interactions among the agents that
lead to feasible allocations of resources in each match). I then define
no-commitment trading mechanisms4 that can be used by societies that do
not have any technology of enforcement.

Trading mechanisms have two components. The first component
specifies a sequential choice of actions by the various agents in a match.
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commitment trading mechanisms in Huggett and Krasa [5]. Others have used the term
``sequential individually rational'' to refer to this class of mechanisms (Aiyagari and Wallace
[2]; Green and Oh [4]).



More precisely, suppose agent |'s match in period t contains J agents who
begin the period with a vector mt&1 of moneyholdings. Within the period,
there are 6 subperiods or stages. Each agent | has an action set
A?(t, |, Pt(|), mt&1) for each stage ?; in each stage, agents choose actions
simultaneously and separately. The actions chosen in stage ? are common
knowledge among the agents in future stages.

The second component of a mechanism is an outcome function
f (a; t, Pt(|), mt&1) that, for each vector a of agent actions within the
previous 6 stages, specifies an element of the set of feasible allocations.
Agents then receive consumption, produce output, and transfer money
according to this allocation.

Note that this notion of trading mechanism allows for a wide range of
modes of interactions and, in particular, includes the exchange procedures
used in the standard monetary models. In the Trejos�Wright [15] random
matching model, virtually any kind of finite stage bargaining protocol
(including take-it-or-leave-it offers on the part of the consumer) is a
trading mechanism. In the overlapping generations and turnpike models,
given that a competitive equilibrium exists, there is a trading mechanism
that mimics competitive exchange within each match (even though there
are only a finite number of agents). This mechanism has only one stage; the
agents' action sets equal their budget sets as calculated using a competitive
equilibrium price vector. The outcome function then gives them whatever
element of those budget sets that they choose. (Note that the competitive
equilibrium price vector, and therefore any budget set, is completely deter-
mined by t and | because these are the sole determinants of endowments,
technology and preferences of agents within the match.)

Having defined a trading mechanism in this general fashion, we need to
have a notion of equilibrium to know what outcomes can occur when
agents follow the rules of play described by the mechanism. Following
Abreu, Pearce and Stacchetti [1], I restrict attention to perfect public
equilibria (see also Fudenberg and Tirole ([3], pp. 187�188)) in which
agents use strategies that do not depend on their private information.
I make this restriction for two reasons. First, in most analyses of monetary
random matching models, researchers have focused on a subset of perfect
public equilibria. Second, because of the restriction (A2) on the matching
process and because of the independence of st from past information, an
agent |'s best response correspondence in a particular match is always
independent of his private information. (This second fact is of course not
true if agents have private information about their preferences or
technologies.)

To use this equilibrium concept, it is important to distinguish between
the public information and private information for each agent. This distinction
varies across the three types of environments (no memory or money, with
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money, and with memory). For example, in an environment without
money or memory, the public information in a match consists only of the
indices of the agents in the match and any actions taken at previous stages
within the match. An agent's private information consists of the indices of
all agents in his past matches, and the past actions of all agents in his past
matches.

In an environment with money, the public information consists of the
moneyholdings of the agents, their indices, and any actions taken at
previous stages within the match. An individual's private information
consists of past reports he has sent and received, the indices and past
actions of all agents in his past matches and all moneyholdings of all agents
in his past matches. Finally, in an environment with memory, the public
information available to agent | consists of all actions taken by all agents
in Qt(|) in this match and all past matches.

Given these varying notions of information across the various environ-
ments, I formally define strategies, equilibria, and equilibrium allocations
as follows.

Definition 3. An agent's strategy in any environment is a mapping
from all of his possible information sets into actions. A (pure strategy)
perfect public equilibrium (PPE) is a collection of individual strategies such
that

(i) At every information set, an individual's strategy specifies an
action that is weakly optimal given that all agents follow their strategies at
their current and future information sets.

(ii) If an individual has two information sets that only differ in his
private information, his strategy specifies the same action at those two
information sets.

A PPE allocation is one that occurs when all individuals always play the
strategies in a PPE.

It is easy to see that in any environment, the first-best allocation specifies
a split of resources that depends only on the technologies, momentary
utility functions, and indices of the agents within each match. Hence, it is
simple to construct a mechanism that uniquely implements this allocation,
even in environments without money or memory. The mechanism has a
single stage, agents' action sets are singletons, and the outcome function
maps this unique vector of actions into the desired allocation.

This simple result tells us that societies need to keep track of the past
only if they face some additional friction that interferes with the allocation
of resources. The additional friction that I consider is lack of commitment:
Any agent is allowed to refuse at any point in time to go along with a
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proposed allocation and instead simply produce a consumption vector for
himself. This means that the society can only use no-commitment trading
mechanisms.

Definition 4. A no-commitment trading mechanism is one such that in
any match, for every agent | in the match, and for all (c|, m|) such that
c| # [ y|

t ]+Y |
t and 0�m|�m|

t&1 , there exists an action sequence a|

such that the allocation f (a| , a&| ; t, Pt(|), mt&1) gives (c|, m|) to agent
| for all a&| .

Here, a&| refers to a vector of action sequences by all other agents
except |. Thus, in a no-commitment trading mechanism, an agent |
always has the ability to choose a sequence of actions that guarantee him
a given autarkic consumption vector. Note that there is always an autarkic
PPE allocation of a no-commitment mechanism. Also, the class of no-com-
mitment trading mechanisms includes the competitive exchange mechanism
and the bargaining protocols mentioned above.

3. Incentive-Feasible Allocations

The class of no-commitment trading mechanisms is enormous. For-
tunately, in this subsection, I show that we can essentially focus on just one
no-commitment trading mechanism: the direct mechanism.

Definition 5. The direct mechanism is a trading mechanism in which:

(i) 6=1

(ii) A1(t, |, Pt(|), mt&1)=[(a|
1 , a|

2 ) | a|
1 is a feasible element of

(�& # Pt (|) Y &
t _1) and a|

2 # [c|
t �0 | (c|

t & y|
t ) # Y |

t ]_[m|
t | 0�m|

t �m|
t&1]

(iii) f (a; t, Pt(|), mt&1)=a|
1 if a|

1 is the same for all | in Pt(|)
=a|

2 otherwise.

In words, the direct mechanism says that if all agents choose the same
allocation of resources, then that allocation is implemented; if they choose
different allocations, then autarky is implemented.

Given this definition of the direct mechanism, the following proposition
is then a version of the revelation principle (Myerson [8, 9]).

Proposition 1. A PPE allocation of any no-commitment trading mecha-
nism is a PPE allocation of the direct no-commitment mechanism.

Proof. In what follows, I consider any PPE allocation of some no-com-
mitment trading mechanism.
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(i) No Money or Memory
For any trading mechanism, the PPE equilibrium specifies a feasible

allocation of resources c(t, Pt(|)) in each match as a function of time and
of the indices of agents involved in the match. In the direct mechanism,
I claim that the following is a PPE:

In any match, all agents in the match choose the same feasible allocation
c(t, Pt(|)); agent | chooses some element of [ y|

t ]+Y |
t that delivers

momentary utility equal to u|
aut, t .

Suppose some agent chooses a different action in some match. Then,
he gets momentary utility less than or equal to u|

aut, t . His future utility is
unaffected, because his change will not be reflected in public information in
future matches. But c(t, Pt(|)) delivers at least as much momentary utility
as u|

aut, t , because it is a PPE of a no-commitment trading mechanism.

(ii) Money
Using any trading mechanism, an agent's continuation utility (after any

match) in a PPE depends only on time, his index, and on his
moneyholdings. A PPE in any mechanism specifies an equilibrium alloca-
tion c(t, Pt(|), mt&1) as a function of time, agent indices, and money-
holdings. In the direct mechanism, I claim that the following is a PPE.

In any match, all agents in the match choose the same feasible allocation
c(t, Pt(|), mt&1); agent | chooses some element of [ y|

t ]+Y |
t that

delivers momentary utility equal to u|
aut, t .

Suppose some agent | chooses a different action in some match. Then,
he gets momentary utility less than or equal to u|

aut, t , and the continuation
utility associated with having m|

t&1 units of money. The latter is the same
as in the original PPE, because, along the equilibrium path, agents are
getting the same allocation of resources. But agent | could have achieved
this combination of momentary and future utility in any no-commitment
trading mechanism by choosing the right sequence of actions.

(iii) Memory
Consider a PPE in some trading mechanism and agent strategies in the

direct mechanism that work as follows. Suppose allocations in every
previous match involving agents in Qt(|) are the same as they would be
if agents used the equilibrium strategies from this PPE. Then, agents
choose the equilibrium allocation that the original PPE specifies for the
match. If not, they choose autarky. This collection of strategies guarantees
that if any individual deviates, he gets autarky currently and forever; this
is clearly no better than his utility level in the original PPE. K

In an environment without a technology of enforcement, it is only
possible to implement allocations that are equilibria of no-commitment
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trading mechanisms. Proposition 1 then justifies the following definition
of incentive-feasible allocations (see Myerson [8] for a similar use of
language).

Definition 6. An incentive-feasible allocation of the K perishable goods
is one that occurs when all agents always play the strategies of a perfect
public equilibrium in the direct no-commitment mechanism.

Let me sum up. In a no-commitment trading mechanism, an agent is
always free to choose a consumption vector that he is able to produce on
his own. The perfect public equilibrium concept provides a rigorous notion
of what outcomes are possible given that agents play according to the rules
of a given trading mechanism. Proposition 1 then shows that the set of
PPE allocations for any mechanism is a subset of PPE allocations for
the direct mechanism; hence, I term incentive-feasible the set of PPE
allocations when agents use the direct mechanism, and I think of incentive-
feasible allocations as being an exhaustive description of the allocations
that the members of a society can achieve in the absence of commitment.

IV. MONEY IS NO BETTER THAN MEMORY

In this section, I present the main result of the paper, I discuss some
related examples, and examine the robustness of the main proposition.

1. Main Result

Without commitment, either money or memory is necessary to allow
society to achieve allocations that are better than autarky. Because agents
cannot keep track of the past, without commitment, only nonautarkic
allocations that offer static gains to trade are incentive-feasible. If the
matching process satisfies (A1), no such allocations exist.

It is certainly possible to write down examples of environments such that
neither money nor memory expand the set of incentive-feasible allocations.
For example, in a finite horizon environment, only autarky is incentive-
feasible, regardless of whether money or memory is present. However, there
are certainly (well-known) examples of environments in which either
money or memory does expand the set of allocations. The main proposi-
tion shows that the set of incentive-feasible allocations in an environment
with memory is always a superset of the set of incentive-feasible allocations
in the same environment with money.
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Proposition 2. Any incentive-feasible allocation in an environment with
money is an incentive-feasible allocation (of the K perishable goods) in the
same environment with memory.

Proof. Consider an incentive-feasible allocation in an environment with
money. It is the outcome of some PPE when agents use the direct
mechanism. In that equilibrium, an agent's action in any match is a function
of the identities of the other agents in the match, and the moneyholdings
of all the agents in the match.

Now consider the same environment with memory. For now, suppose
that at each date t, every agent | is characterized by a summary statistic
Zt(|). Later, I will argue that this summary statistic is redundant, given
the information available in the historical record. Define Z0(|)#m0(|)
for all | in 01 , so that in the environment with memory, every agent alive
at the beginning of period one has a summary statistic equal to his
moneyholdings.

Define a match's history to be the past actions of all agents in Qt(|).
The following describes a response function for agents who play the direct
mechanism in the environment with memory.

In a match, each individual chooses the same split of the K perishable
goods as he would in the money PPE, given the identities of the agents in
his match, and treating the summary statistics of the agents in the match
as equivalent to their moneyholdings. After the match, individual summary
statistics are updated to be equal to the moneyholdings that would occur
after the match in the allocation in the environment with money.

Given this definition of response functions, I claim that the following is
an equilibrium collection of strategies. Recall that in the direct mechanism,
an action is a choice of a feasible allocation and an autarkic consumption
vector. Agents use the above response functions in determining the choice
of the feasible allocation if the match's history is consistent with all agents
in Qt(|) having always used the above response functions in the past. If
the match's history is inconsistent with all agents in Qt(|) having always
used the above response functions in the past, then all agents choose an
allocation that delivers current utility u|

aut, t to each agent | in the match.
It is clear that the allocation in the environment with money is the

outcome of agents' playing these strategies in the environment with
memory. The question remains whether these strategies are actually an
equilibrium. Note first that the summary statistics are complicated
functions of the history of past actions of all agents in Qt(|) and the initial
moneyholdings of the agents in 00 . It follows that agents don't actually
have to see the summary statistics; the strategies are informationally
feasible, assuming that in each match agents have memory. Next, I need to
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show that at any information set, all agents receive at least as much utility
from the PPE allocation in the environment with money as from any
autarkic allocation. But this is trivial, because agents could always choose
moneyholdings equal to zero and an autarkic consumption vector, and
because agents have the same information about future matches in the
environment with memory as they do in the environment with money. K

2. Examples

Proposition 2 says only that the set of incentive-feasible allocations in
an environment with money is included in the set of incentive-feasible
allocations with memory. Is the inclusion strict? The following examples
show that the answer to this question is negative in the overlapping generations
setting set forth in Section II.2, and positive in the random matching
environment described in that same subsection.

Example 1. The Equivalence of Money and Memory in an OG
Environment.

Consider the overlapping generations environment described in
Section II.2.a. Suppose each of the initial old agents have 1 token of money.
I claim that an allocation is incentive-feasible in this environment with
money if and only if it gives (c y

jt , co
j, t+1) to each agent j where

u(c y
jt , co

j, t+1)�u( y1 , y2)

c y
jt�0, co

jt� y2 (1)

c y
jt+co

jt� y1+ y2 .

To see this, suppose that agents use the following collection of strategies in
the direct mechanism:

If old agent j has 1 unit of money, young agent j and old agent j write
down the above allocation.

If old agent j has = units of money (=<1), young agent j and old agent j
write down autarky.

Note that given the conditions on the allocation, these strategies specify
best responses. This shows that any allocation in (1) is incentive-feasible.
But since any agent can always choose autarky, there are no other incentive-
feasible allocations.

In the overlapping generations environment with memory, the set of
incentive-feasible allocations is exactly the same as in the environment with
money. Consider any allocation in (1); the following strategies implement
it. If all previous agents labelled j have gone along with the allocation, then

246 NARAYANA R. KOCHERLAKOTA



the current pair also go along with it. If any agent j has failed to go along
with the allocation in the past, then the current pair fails to along with it.
Again, because of the restrictions built into (1), these strategies specify best
responses in every match, so any allocation in (1) is incentive-feasible in
the environment with memory. Thus, in the overlapping generations
setting, an even stronger result than Proposition 2 is true: money is
technologically equivalent to memory.

This stronger result is also true in the turnpike environment described in
Section II.2.b.

Example 2. The Superiority of Memory in Random Matching
Environments.

Consider instead the Trejos�Wright [15] random matching environment
described in Section II.2.c. In that setting, if full commitment were possible,
the efficient allocation would involve type (i+1) agents giving type i agents
y* units of output whenever they are paired, where y* satisfies u$( y*)=1.
Using a standard folk theorem argument, it is clear that if ; is sufficiently
large, this allocation is incentive-feasible in an environment with memory
(see Aiyagari and Wallace [2]).

However, the allocation delivers the same ex ante utility after every
match. Such an allocation cannot be incentive-feasible in the same environ-
ment with money: agents who produce must be offered an increase in
future utility relative to those who were similarly situated prior to the
meetings but who did not produce.5 Hence, in the Trejos�Wright [15]
model, memory dominates money (at least for large enough values of ;).

3. Robustness of the Main Result

It is useful to understand how robust Proposition 2 is. First, note that its
proof does not rely on the restriction (A1) that there are no static gains to
trade. The only use of this restriction is to make the role of money and
memory more dramatic when there is no commitment.

The two other major restrictions on the matching process are (A2) and
the independence of st from its past. Note that the very definition of perfect
public equilibria uses these properties heavily. For this reason, a major
reworking of the theory is probably necessary to understand the relative
roles of memory and money in environments in which these restrictions on
the matching process are not satisfied.

Williamson and Wright [16] and Huggett and Krasa [5] discuss
aspects of monetary exchange in environments in which agents are asym-
metrically informed about goods quality. I conjecture that Proposition 2

247MONEY IS MEMORY

5 I thank Neil Wallace for this argument.



in this paper can be extended to environments in which asymmetries of
information are transitory��that is, environments in which only perishable
goods can be lemons, or in which agents have privately observable
endowment and�or preference shocks that are i.i.d. over time. Intuitively,
the transience of the information differences means that agents' beliefs
about this information are not altered by having memory (seeing the past
actions of their current trading partners) as opposed to money. However,
with persistent asymmetries of information, as when agents can produce
durable lemons, I believe that it is only possible to prove a version of
Proposition 2 by changing the definition of memory.6

Throughout the paper, money is modelled as intrinsically useless.
Suppose money were instead a perfectly durable good that entered
preferences separably from the K perishable goods and provided some
small amount of utility when consumed. Then, it is possible to extend
Proposition 2 so that any incentive-feasible allocation of perishable goods
in an environment with money is also incentive-feasible in the same
environment with memory.

Proposition 2 defines memory as being the past actions of all agents in
Qt(|). It is tempting to think that this much memory isn't necessary: what
happens if agents know only the past transfers of resources made and
received by all agents in their current match (i.e., Pt(|))? It is important
to note that in the environment with memory, each individual's imaginary
balance sheet does not just depend on his own transfers; in particular, the
maker of a transfer of resources does not see an increase in his balance if
the receiver's balance was zero. For this reason, the entry on any person's
balance sheet is a function not just of his actions, but also those of his
trading partners, their trading partners, and so on. Thus, if it is to replicate
the benefits of money, memory must include the past actions of all agents
in Qt(|), not just in Pt(|).

On the other hand, the proof of Proposition 2 also relies on memory's
being limited : Agent | only has access to the histories of agents in Qt(|),
and not to the histories of all agents. The following example shows that
with the latter, more expansive, version of memory, some incentive-feasible
allocations in the environment with money may no longer be incentive-
feasible in the environment with memory.

Example 3. The environment is an overlapping generations setup in
which agents all live four periods. In each cohort, there is a continuum of
agents, indexed by [0, 1]. (Four cohorts are alive in period one.) Except
for one cohort, all agents have the same utility function

& y1& y2& y3+u(c4)
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where yi is the amount of output produced in period i of life and c4 is the
amount of consumption in the last period of life. (Agents can only produce
output in the first three periods of life.) One cohort, born at date t, is
exceptional. Agents in that cohort have a utility function of the form

& y1+u(c2)

so they like consumption in their second period of life; they can only
produce output in the first period of life.

The matching process works as follows. In each period, the youngest
cohort is matched randomly with the old cohort. The two middle cohorts
are matched deterministically: The agents labelled | are matched with one
another. Note that this process satisfies (A1) and (A2).

The set of individually feasible moneyholdings is 1#[0, 1]. Suppose the
agents in each cohort are indexed by the set [0, 1]. Then, the agents
indexed by | # [0, 1�2] in the three initial oldest cohorts are each endowed
with one unit of money. The initial youngest cohort is endowed with zero
units of money.

Suppose y* and y** satisfy the inequalities

& y*+u( y*)�0

&y*+u( y**)�2�0

&y*+u( y*)�0.5[&y**+u( y*)]

&y**+u( y*)�0.

(For example, if u(x)=x1�4, then y*=0.15 and y**=0.05 satisfy these
inequalities.) Then, the following is an incentive-feasible allocation in this
environment with money. In every period, if an agent in the oldest cohort
has a unit of money, the young agent in his match gives him y* units of
output for that unit of money. In period (t+1), in any match in which the
agent born in period t has money and the agent born in period (t&1) does
not, the agent born in period (t&1) will produce y** units of output in
exchange for the unit of money.

The first inequality guarantees that all agents, except those born in
period t or in period (t&1), follow the equilibrium strategies when young.
The second inequality guarantees that an agent born in period t follows the
equilibrium strategy when young; his future utility is divided by two
because he has a probability of 1�2 of meeting someone next period who
already has money and so will not accept his money. The third inequality
guarantees that in period (t&1), agents born in period (t&1) will buy
the money from those old agents who have it rather than wait to buy
money from the agent born in period t��if he has it! The final inequality
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guarantees that in period (t+1), agents born in period (t&1) without
money will accept it from agents born in period t who have it.

Now suppose the typical agent | has memory of the past events in
the lives of all agents, not just those agents in Qt(|). Then, the above
allocation is no longer incentive-feasible. Given this kind of memory, in
period t, the youngest cohort sees the results of all matches in period
(t&1). This means that instead of all of the youngest cohort thinking that
there is a probability 1�2 of their trading partner next period not producing,
half of the youngest cohort knows that they will be matched with someone
who will not produce next period. As a consequence, half of the youngest
cohort in period t refuses to produce y* units of output for the oldest
cohort. K

V. CONCLUSIONS

In this paper, I ask the question, ``Is there a simple, easily described,
technology that is equivalent to money?'' I answer this question by
showing that in a large class of environments, the set of allocations that are
incentive-feasible with memory are a superset of those that are incentive-
feasible with money. Hence, the paper has the following message: Money
is technologically equivalent to a primitive version of memory.

But this message is clearly not the last word. The words ``primitive
version'' are too vague, and must be made more precise. More technically,
this paper proves that the set of incentive-feasible allocations with memory
provides an upper bound for the set of incentive-feasible allocations with
money. Can we find a simply described technology that generates a smaller
upper bound? More ambitiously, can we find the smallest such upper
bound?

Despite this limitation of the analysis, I believe that this paper represents
an advance over the usual justifications for the existence of money: Money
is a store of value, money is a medium of exchange and�or money is a unit
of account. These phrases are certainly useful descriptions of money's role
in equilibrium. However, they are misleading when taken as descriptions of
the technological function of money. After all, money does not allow
society to transfer resources over time. Money does not reduce the cost of
transferring resources from one person to another. There its no immediate
technological reason why money should be a better numeraire than other
goods. An important conclusion of this paper is that ``Money is memory''
is a much more revealing and accurate description of money's effect on
economic primitives (preferences, information, and technology) than these
other, more common, descriptions.
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In this paper, money and memory are studied in isolation from one
another. In the real world, money and memory co-exist. Kocherlakota and
Wallace [6] examine a particular setting in which society has access to
both money and memory that is updated only infrequently. We show that
if money is restricted in this way, it may be optimal for such a society to
use both memory and money in allocating resources among agents.
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