
Assignment #8, Page 1

Synoptic Meteorology I: Assignment #8

Due: 11 December 2018

Learning Objective: to learn how to use Python tools to obtain observed upper-air data and create

a skew-T/ln-p diagram from those data after minimal processing.

Unidata’s metpy and siphon packages provide routines by which observed upper-air data (from the

University of Wyoming) can be downloaded in a Python-friendly format, then used to plot a skew-

T diagram. This assignment steps you through the code used to both acquire and plot the data, then

asks you to create a plot of your own, print it, and analyze it to determine selected parameters.

(Note: I recommend placing all of the relevant commands in a Python script rather than type them

one-by-one directly into the Python command window. Save it to your Desktop or home directory

before running the code so the image it produces will be saved to your Desktop or home directory.

It will help you understand the code if you add comments between individual code blocks; each

comment line in a Python script is prefaced with a #.)

As is usual, we need to first load the necessary modules and functions. There are five modules that

we draw modules and functions from for this task: metpy, matplotlib, numpy, datetime, and siphon,

with a total of seven import statements.

from metpy.plots import SkewT

from metpy.units import units

import metpy.calc as mpcalc

import matplotlib.pyplot as plt

import numpy as np

from datetime import datetime

from siphon.simplewebservice.wyoming import WyomingUpperAir

You’ll note that in the first two and last two cases, we import the needed functions using statements

of the form “from ______ import ______.” This allows us to import only a single function – which

we can then refer to without any prefixes – from the associated module.

Next, we define two variables that are used to specify the date, time, and location of our sounding.

For example, the following code would obtain the 5 August 2018 0000 UTC Green Bay, WI (GRB)

sounding:

date = datetime(2018, 8, 5, 0)

station = 'GRB'

The first line represents the only use of the datetime module in this script. Together, these lines

provide all of the information that the siphon WyomingUpperAir function needs to obtain our data.

When it does so, it returns it as a pandas dataframe, which is a powerful tool for working with any

dataset (atmospheric datasets included!).

df = WyomingUpperAir.request_data(date, station)

Assignment #8, Page 2

A pandas dataframe can be thought of as akin to a spreadsheet, with different variables in different

columns and different pressure levels in different rows. Feel free to print the dataframe out to the

screen to get a glimpse of the data. However, we need to parse the individual variables for metpy

to have the data it needs to create the skew-T diagram. Fortunately, pandas provides us with a way

of doing so: we simply need to give it the column key and call the values attribute. While we do

so, we can also use metpy’s units function to append units to the data:

pressure = df['pressure'].values * units('hPa')

temperature = df['temperature'].values * units('degC')

dewpoint = df['dewpoint'].values * units('degC')

u = df['u_wind'].values * units('knot')

v = df['v_wind'].values * units('knot')

Note how the column keys correspond to those in the dataframe df. If we didn’t have the ability

to examine the dataframe to see these keys for ourselves, we could use print(df.columns)

to print the column keys to the screen.

Next, we set up the parameters for our skew-T diagram. This involves determining the dimensions

of the figure, creating the Python plotting object that serves as the building block for the skew-T,

setting the x- and y-axis values, and telling Python to plot tick marks on both the x- and y-axes.

fig = plt.figure(figsize=(12, 12))

skew = SkewT(fig)

skew.ax.set_xlim(-60.,40.)

skew.ax.set_ylim(1000.,100.)

skew.ax.tick_params(axis='both',labelsize=14)

The above code creates a 12” x 12” figure. The isotherms range from -60°C to +40°C at the lowest

pressure level, which is set to 1000 hPa. The skew-T diagram is truncated at the top at 100 hPa.

Although metpy is capable of drawing isotherms, adiabats, and mixing ratio lines without any user

inputs, the spacing between adjacent lines tends to be smaller than desired. Fortunately, for all but

the isotherms, it is easy to tell metpy how frequently to draw the dry adiabats, saturated adiabats,

and mixing ratio lines. We also want to give metpy the range of vertical levels over which to draw

the mixing ratio lines. For these tasks, we define four numpy arrays:

dads = np.arange(-60., 240., 2.)*units.degC

mads = np.arange(-60., 60., 2.)*units.degC

mrats = np.concatenate((np.arange(0.00001,0.0001,0.00001),

 np.arange(0.0001, 0.001,0.0001),

 np.arange(0.001,0.050,0.001))).reshape(-1, 1)

mrps = np.linspace(600.,1000.)*units.hPa

For dads (dry adiabats) and mads (moist adiabats), the arrays define surface temperatures from

which to draw adiabats upward. In the examples given here, the numpy arange function is used

to creates arrays from -60°C to 238°C (dry adiabats) and -60°C to 58°C (moist adiabats) with a

2°C interval for both arrays. Here, note that arange treats the last number (240°C or 60°C) as

Assignment #8, Page 3

exclusive, or not included, when evaluating the function. We use a large value on the high end of

the range for the dry adiabats so that they fill the entire plot with dry adiabats (they arc up and to

the left, but lines are drawn on the plot relative to the x-axis values at the bottom of the plot).

For mrats (mixing ratio lines, specified in kg kg-1), the numpy concatenate function is used

to merge three arrays together. The numpy reshape function is then used to change the resulting

array from one with one row and many columns to one with one column and many rows. No units

are appended to this variable because these values are in kg kg-1, and thus are dimensionless. For

mrps (range of pressure levels over which to draw mixing ratio lines), the numpy linspace

function is used. The linspace default is to return a 50-element array, with values evenly spaced

between the start (here, 600 hPa) and end (here, 1000 hPa) values provided to the function.

Now that we have established our plot parameters, we can reference the skew variable to plot the

desired fields:

skew.plot(pressure, temperature, 'r', linewidth=4)

skew.plot(pressure, dewpoint, 'g', linewidth=4)

skew.plot_barbs(pressure, u, v)

skew.plot_dry_adiabats(dads, linestyles='solid', linewidth=1)

skew.plot_moist_adiabats(mads, linestyles='solid', linewidth=1)

skew.plot_mixing_lines(mrats, mrps, linewidth=1)

The metpy skew instance has functions named plot to plot vertical profiles of specific quantities,

here for temperature and dew point temperature. The first argument is the vertical coordinate (here,

pressure), the second argument is the variable to plot, and the remaining arguments are matplotlib

keyword arguments. Here, only two such arguments are given: one to control the line color (‘r’ =

red, ‘g’ = green) and another to control the line width in pixels. There are also separate functions

to plot wind barbs, dry and moist adiabats, and mixing lines. The dry and moist adiabat plotting

functions include another keyword argument, linestyles, that controls whether the plotted

lines are solid, dashed, dotted, and so on.

We just need to add some labels, print the file to an image, and close things out and we’re all set:

skew.ax.set_xlabel("Temperature (°C)", fontsize=16)

skew.ax.set_ylabel("Pressure (hPa)", fontsize=16)

title = station + " " + str(date)

fig.suptitle(title, fontsize=18)

plt.savefig("skew.png", bbox_inches='tight')

plt.close(fig)

The first two commands label the x- and y-axes using the fontsize keyword argument to control

the font size used to plot these labels. The third line creates a new string variable called title to

append the station ID and observation time and date into a single string. This variable is then used

to title the plot. The figure is then saved to a file called skew.png in the same directory as the script.

The bbox_inches='tight' keyword argument is used to reduce the white space around the

figure. Finally, the figure instance that the skew-T diagram is drawn into is closed.

Assignment #8, Page 4

For this assignment, you are to create a skew-T for the time/date and location listed below. Use an

8.5” x 11” figure size, a dashed line style for the mixing ratio lines, and add your name to the figure

title. Once this image has been created, print it. For an air parcel lifted from the surface, identify

the potential temperature, wet bulb temperature, and equivalent potential temperature. Darken the

process lines used to find each, preferably with a different color for each quantity. Turn your final

skew-T diagram in by the start of class on the assignment due date.

Sounding Locations and Times

• Sara: 4 May 1999, 0000 UTC, Norman, OK (OUN)

• Devon: 19 May 2013, 1200 UTC. Norman, OK (OUN)

• Austin: 29 September 2012, 1200 UTC, Minneapolis/St. Paul, MN (MPX)

• Hannah: 14 January 2004, 1200 UTC, Wilmington, OH (ILN)

• Alex: 29 May 2008, 0000 UTC, Denver, CO (DNR)

• Giorgio: 27 October 2010, 0000 UTC, Green Bay, WI (GRB)

• Ashley: 11 May 2008, 0000 UTC, Birmingham, AL (BMX)

