Analyzing Pedestrian and Bicyclist Crashes at the Corridor Level: Structural Equation Modeling Approach

Farah J. Al-Mahameed¹, Xiao Qin¹, Robert J. Schneider², and Mohammad Razaur Rahman Shaon¹

Abstract
Pedestrian and bicycle crashes have been increasing at an alarming pace in recent years. Between 2009 and 2016, annual U.S. pedestrian fatalities increased 46%, and bicyclist fatalities increased 34%. Crashes involving pedestrians and bicyclists, or vulnerable road users (VRUs), are negatively correlated with roadway factors, and positively correlated with environmental and socioeconomic factors. However, specific variables representing these factors are often correlated, making it difficult to accurately characterize relationships between individual variables and pedestrian and bicyclist safety. This study used the structural equation model technique to overcome this problem. Pedestrian and bicyclist crash frequency and more than 60 explanatory variables for 200 highway corridors in Wisconsin were collected. The interrelationships between observed “manifest” variables and unobserved “latent” variables were tested. The results suggest that the most important latent variables influencing the crash frequency of VRUs are bicycle/pedestrian-oriented roadway design (e.g., paved shoulders, sidewalks, and bike lanes), exposure (e.g., walking and biking activity, and employment density), and low social status (e.g., educational level, and wage percentage). The benefits of this study may help community planners, transportation researchers, and policymakers with a better understanding of the intricate interrelationship of the influential factors contributing to VRUs road crashes.

Pedestrians and bicyclists are commonly referred to as vulnerable road users (VRUs) because they often suffer the most in road traffic crashes. In addition to not being protected by the body of a vehicle, they are unable to take advantage of many safety features integrated into vehicles such as airbags and seat belts. According to the Fatality Analysis Reporting System, pedestrian fatalities involving motor vehicles increased by 46% (4,109–5,987) and bicyclist fatalities increased by 34% (628–840) between 2009 and 2016 (1). VRUs accounted for more than 18% of the 37,461 total U.S. fatalities in 2016, up from a low of 13% in 2003 (2).

Walking and bicycling are inexpensive modes of transportation that provide physical activity, use space efficiently, and produce little pollution. However, personal safety is often seen as a barrier to using these sustainable travel modes (3). To improve the safety of VRUs, it is important to understand how the characteristics of local environments are associated with pedestrian and bicyclist crashes. Many researchers have explored variables that contribute to pedestrian and bicyclist crashes (4–9). Previous studies have identified many variables, or categories of variables, that are related to VRU injuries and fatalities, such as roadway geometry, vehicle characteristics, socioeconomic characteristics, and environmental conditions.

The statistical methods previously used are aimed to construct models that represent the direct relationships between explanatory and dependent variables. However, the causes of crashes often involve intricate relationships among multiple variables, which may not be adequately captured. The interrelationships among explanatory variables may be better understood by applying the structural equation modeling (SEM) technique, as SEM is generally viewed as a combination of factor analysis and path analysis. This highly flexible model structure is capable of representing the complex interrelationships among exogenous and endogenous variables through the inclusion of “unobserved” or latent variables.

¹Civil and Environmental Engineering Department, University of Wisconsin-Milwaukee, Milwaukee, WI
²School of Architecture & Urban Planning, University of Wisconsin-Milwaukee, Milwaukee, WI

Corresponding Author:
Address correspondence to Xiao Qin: qinx@uwm.edu
Specifically, SEM can handle correlations between explanatory variables that represent similar concepts and have overlapped impacts on the dependent variable(s).

This study applies SEM by integrating exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) which is a special case of SEM to establish the relationship between pedestrian and bicyclist crashes and explanatory variables. Specifically, the study explores research questions such as: What are the most important latent variables associated with the frequency of crashes involving VRUs? Among the key latent variables, what combinations of measurable variables provide the most significant representation of these key latent variables? The analysis uses pedestrian and bicyclist crash data from a unique, detailed dataset describing 200 1-mi corridors along the Wisconsin State Highway System.

**Literature Review**

Previous studies have shed light on dominant factors related to pedestrian and bicycle crashes. Many have examined roadway geometric characteristics such as number of lanes, median type, speed limits, and speed ratio (i.e., the ratio of speed from crash data over the posted speed limit). Morency et al. confirmed the association between wider roads and higher pedestrian-related crash frequency, as a wider road may encourage drivers to speed and jeopardize pedestrians. Designated right-turn lanes and nearby driveway crossings were associated with higher pedestrian crash risk, whereas median crossing refuges were associated with lower pedestrian crash risk at intersections (10). Quiet streets, gentle slopes, and absence of streetcar tracks are some design features associated with lower bicyclist crash risk (11). Moreover, cycle tracks (11, 12), traffic diverters, and local streets tend to separate cyclists from the moving traffic, leading to fewer crashes (11). Roads with more traffic signals, street parking signs, and automobile trips are associated with more frequent bicycle crashes. Roadways with a speed limit of 35 mph and intersection density are positively related to the likelihood of pedestrian and bicyclist crashes (11). In addition, Cai et al. stated that traffic analysis zones (TAZs) with longer sidewalk lengths, more pedestrians, and more employment are more susceptible to have pedestrian crashes, whereas TAZs with longer sidewalk lengths, more employment, and higher population density are more likely to have bicyclist crashes (11). Road speed limit was also found to affect bicycle crash frequency, as Siddiqui and colleagues stated that highways with a speed limit greater than 35 mph are more likely to have bicyclist crashes (24). Density of signalized intersections, arterial and local road proportion, and sidewalk length, are positively correlated with pedestrian and/or bicyclist–motor-vehicle crashes (14). While controlling for exposure variables, several studies have identified specific pedestrian facilities to be negatively associated with pedestrian crashes, including median refuge islands and rectangular rapid flashing beacons (4).

Some studies have explored how behaviors are related to pedestrian and bicyclist crashes. Helmet usage, travel programs such as routes to school, wearing reflective clothing, and education related to safety among bicyclists have been associated with fewer bicyclist fatalities. Pedestrians and bicyclists crossing a red-light signal or using mobile devices, and motor-vehicle drivers turning right on red without waiting for other road users to cross are some of the most important safety behaviors studied (15). Vehicle speed impact on pedestrian fatality risk reported that car speed positively and strongly affects fatality risk among pedestrians. Above 20 mph, small increases in speed produce relatively large increases in pedestrian injury severity (16, 17).

Other studies have identified exposure as an important variable associated with pedestrian and bicyclist crashes. There are a variety of exposure measures in the literature (i.e., using census journey to work data as an exposure proxy variable (18)), but this concept is commonly represented using pedestrian, bicyclist, and automobile counts (19, 20). Several studies showed the relationship between the number of pedestrian and bicyclist crashes and pedestrian and bicyclist activity levels. Results confirm that the relationship is not linear (commonly referred as “safety in numbers” effect): pedestrian or bicycle crash risk (e.g., crashes per crossing or per trip) decreases with the increase in walking or cycling (19–23). One challenge for using this important variable in safety analyses is that few jurisdictions have sufficient pedestrian or bicyclist count data, resulting in the use of proxy variables to represent exposure.

Regarding economic, demographic, and social characteristics, Table 1 summarizes factors stated in some previous studies.

However, new research is needed to unravel the true underpinning for pedestrian and bicycle crashes because these minor race groups have relatively low car ownership, live in high-density low-income areas, and tend to walk/bike more (29).

Although SEM is common in the academic literature, a relatively small number of traffic safety studies have applied this technique. A study used SEM to examine motor-vehicle crash severity in relation to accessibility, human, vehicle, and roadway-related factors (30) which were treated as latent factors. SEM was used to study the frequency of crashes on Korean highways in which several exogenous latent variables were defined, such as driver, road, and environmental factors (31). Schorr and Hamdar used SEM to develop a safety propensity index for both signalized and unsignalized intersection (32).
The authors argued that this singular valued index offers an effective method for quantifying and ranking intersection safety as compared with the use of multiple criteria (e.g., number of vehicles involved, total injuries, total fatalities). Wang and Qin used SEM to test single-vehicle crash severity influenced by driver characteristics, highway geometry and roadway conditions, roadside objects, and environmental factors. The authors wanted to understand how the observed variables affect the crash consequence in a direct or indirect manner through collision force, vehicle operating speed before the collision, and severity index, which are unobserved or unmeasurable in most safety studies (33). Although the application of the SEM approach in pedestrian and bicyclist crash modeling is rare, other studies have utilized it to model road user traveling behavior and mobility.

Data

This study follows Cai and colleagues’ recommendation to further study the common unobserved factors affecting pedestrian and bicyclist crashes (34). In contrast to previous studies that primarily focused on predicting pedestrian and bicyclist crashes at specific locations (e.g., intersections), this study focuses on a sample of 200 1-mi-long highway corridors in Wisconsin. Figure 1 illustrates the corridor selection process. The corridors are in the areas with at least 100 residents per square mile, generally including cities, suburbs, and villages but excluding rural areas in Wisconsin. Although the spatial diversity is desirable, the focus was on urbanized areas as these areas tend to have higher volumes of pedestrians and bicyclists and more pedestrian and bicyclist crashes. Among the 200 study corridors, most are located in the Southeast Wisconsin area; 115 had at least one reported pedestrian crash and 67 had at least one reported bicycle crash.

The study examined the frequency of pedestrian and bicyclist crashes reported to police between 2011 and 2015 in each study corridor. These data were gathered from the Wisconsin Department of Transportation (WisDOT) WisTransPortal Database and only included crash records with latitude and longitude coordinates. Explanatory variables were collected from multiple databases including the WisDOT highway inventory, U.S. Environmental Protection Agency’s (EPA’s) Smart Location Database (SLD), U.S. Census Topologically Integrated Geographic Encoding and Referencing (TIGER/Line) dataset, and Google Maps and Google Street View imagery. Explanatory variables included exposure-related variables (e.g., annualized average daily traffic (AADT)), roadway segment characteristics (e.g., motor-vehicle AADT, average number of through lanes, and posted speed limit), roadway intersection characteristics (e.g., number of residential/nonresidential driveways, number of signalized/un-signalized intersections,

Table 1. Summary of Economic, Demographic, and Social Characteristics Influencing Pedestrian and Bicycle Crash Frequency

<table>
<thead>
<tr>
<th>Author name</th>
<th>Economic, demographic, and social characteristics</th>
<th>Emphasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siddiqui et al. (24)</td>
<td>Total population, proportion of uneducated population, land use (presence of restaurants and bars), and park coverage</td>
<td>Pedestrians</td>
</tr>
<tr>
<td>Nashad et al. (25)</td>
<td>Number of dwelling units, population density, total employment and percentage of households with zero or one owner ship</td>
<td>Pedestrians and bicyclists</td>
</tr>
<tr>
<td>Lee and Abdel-Aty (26)</td>
<td>Vehicle-miles traveled (VMT), middle-aged (25–64) and male drivers, neighborhoods with large retail and residential land uses, high vehicular traffic movements, high employment and population density, low-income, and high minority environmental justice areas and races</td>
<td>Pedestrians</td>
</tr>
<tr>
<td>Loukaitou-Sideris et al. (27)</td>
<td>Hotel room density, number of people walking/biking, population density, school enrollment density, proportion of industrial employment, low-income, and high minority environmental justice areas and races</td>
<td>Pedestrians and bicyclists</td>
</tr>
<tr>
<td>Nordback et al. (28)</td>
<td>Age &lt;18 years old, neighborhoods with large retail and residential land uses, high vehicular traffic movements, and high employment and population density</td>
<td>Bicyclists</td>
</tr>
<tr>
<td>Schneider et al. (22)</td>
<td>Percentage of households without access to private vehicles</td>
<td>Pedestrians and bicyclists</td>
</tr>
<tr>
<td>Morency et al. (10)</td>
<td>Neighborhoods with large retail and residential land uses, high vehicular traffic movements, and high employment and population density</td>
<td>Pedestrians</td>
</tr>
</tbody>
</table>

Figure 1. Corridor selection process.
number of right-turn/left-turn lanes on state highway approaches to all intersections), and socioeconomic data from surrounding census tracts. None of the study corridors had pedestrian or bicyclist counts, so proxy variables were used to represent pedestrian and bicyclist exposure, such as the percentage of workers who regularly walked or bicycled to work, population density, and job density in the surrounding neighborhoods (based on census block groups). Table 2 shows summary statistics and description of the dataset.

### Theoretical Framework of SEM

The primary interest of using SEM lies in the test of its theoretical construct which is specified by latent variables and their relationships. As shown in Figure 2 (31), an SEM model can be depicted in a path diagram consisting of boxes and circles, which are connected by arrows. Observed variables are usually represented by square or rectangular boxes (e.g., Two-Way Left-Turn Lane (TWLTL)), whereas unobserved or latent variables are represented by circles.
are usually represented by circles or eclipses (e.g., Low Social Status). A directional arrow (or path) in the model usually indicates a statistical dependence, in which the variable at the tail of the arrow causes the variable at the point. A double-headed arrow does not represent such a statistical dependence, but an indication of correlation between variables.

Through the x-measurement model for exogenous variables, a y-measurement model for endogenous variables, and the structural model between latent variables, SEM is able to differentiate between direct, indirect, and total effects between variables. By combining the structural model with measurement models, SEM expresses the regression effects of exogenous “independent” variables on the endogenous “dependent” ones, as well as, expressing autocorrelation “effects between endogenous variables.” For more details see Schumacker and Lomax (35).

The formulation of SEM in Equation 1 suggests a structure between the covariances between observed variables (36):

\[
\begin{bmatrix}
  y \\
  x
\end{bmatrix} = \begin{bmatrix}
  A_y & 0 \\
  0 & A_x
\end{bmatrix} \begin{bmatrix}
  \eta \\
  \xi
\end{bmatrix} + \begin{bmatrix}
  \varepsilon \\
  \delta
\end{bmatrix} \tag{1}
\]

The model goodness of fit can be measured by the comparative fit index (CFI) (37) in Equation 2 and the root mean square error of approximation (RMSEA) (38) in Equation 3.

\[
CFI = 1 - \frac{\tau_{\text{est.model}}}{\tau_{\text{indep.model}}} \tag{2}
\]

where,

\[
\tau_{\text{indep.model}} = \chi^2_{\text{indep.model}} - \text{df}_{\text{indep.model}}
\]

\[
\tau_{\text{est.model}} = \chi^2_{\text{est.model}} - \text{df}_{\text{est.model}}
\]

\[
\text{Estimated RMSEA} = \sqrt{\frac{\tau_{\text{est.model}}}{N\text{df}_{\text{model}}}} \tag{3}
\]

where, \(\tau_i\): degree of misspecification of the model

\(\chi^2\): chi-square statistic

\(\text{df}\): degree of freedom

\(N\): sample size

CFI is calculated using \(\chi^2\) statistics for two models—the target and the baseline models—and measures how better the model fits with a comparison to the baseline model. The baseline model includes means and variances of the observed variables in addition to the covariances of the observed exogenous variables. Both indices (RMSEA and CFI) assume that the target model is approximately correct, but CFI carries another assumption that the baseline model is also correct. CFI is based on the assumption that all latent variables are uncorrelated and performs well even when the sample size is small (39). Values for CFI range between 0 and 1, with a value closer to 1 indicating a better fit. RMSEA—which is a function of a chi-square and degree of freedom—measures the difference between the observed and predicted values of chi-square given a specific df.

<table>
<thead>
<tr>
<th>Table 3. SEM Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Model</strong></td>
</tr>
<tr>
<td><strong>Measurement</strong></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td><strong>Structural</strong></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
predicted values (40). A value of less than 0.08 indicates a good fit model.

SEM Model Specification, Estimation, and Evaluation

Exploratory Factor Analysis

A hypothesized model assessed the relative factors affecting pedestrian and bicyclist crash risk (Figure 3) and indicated that exposure, roadway, and socioeconomic should be used as latent variables that connect exogenous and endogenous variables. The behavioral-related latent is not included as the dataset lacks behavioral input variables. The three latent variables (oval shape) are predictors of the number of crashes that involve either pedestrians or bicyclists (square shape) taking place on the study segments. The latent variables are allowed to correlate. A substantive theoretical model does not exist, so the EFA is used to obtain the empirical factor model and explore the structural portion of SEM. EFA assumes that every observed variable is an indication or a measurement of a latent variable (Figure 3a). EFA is usually performed as a precursor to CFA (41), which confirms theoretically valid relationships (Figure 3b).

Researchers vary in relation to sample size recommendations for factor analysis. A sample size of 200 and the sample-to-variable ratio of 3:1 kept this study within the acceptable ranges for applying factor analysis (39). To test the ability to apply factor analysis using the data, the Kaiser–Meyer–Olkin (KMO) measure of sampling adequacy was applied. It is hypothesized that the correlation matrix is an identity matrix, so Bartlett’s Test of Sphericity was run to test this hypothesis (40). Bartlett’s test of sphericity resulted in a $P$-value of 0.02 ($<0.5$ is recommended), and a KMO index value of 0.8091 ($>0.6$ is recommended); both are considered meritorious (42).

The strength of the linear relationship between two variables is crucial. Many variables in the study dataset were highly correlated (i.e., the correlation between the percentage of high wage and total vehicles of two or more is 0.79), and these variables were not used together in the same model. A threshold of 0.5 was accepted as a correlation coefficient between the set of variables chosen for the analysis (39, 40).

The number of latent variables can be evaluated using the visual tool called the Scree test. The Scree test showed a clear drop between the third and fourth components, meaning the most suitable number of factors lies between three and four factors. In addition, goodness of fit indices in the three-factor EFA model show acceptable values (RMSEA = 0.000; CFI = 1.064).

The estimation method for factor loading coefficients, which measure the strength between observed and latent variables, relies on data quality. The maximum likelihood (ML) or principal axis factoring method is recommended, depending on whether the data are normally or significantly non-normally distributed (43). The ML estimation method was chosen after variables were standardized through the “scale () function” and the rotation method is variance maximizing (varimax) rotation. EFA was conducted using the first part of the sample size of 100 corridors. Table 4 shows the results of the EFA. Despite the cross-loading that appeared in (High_Spd_Lmt) variable, the observed variables that are highly correlated with factors show distinctive characteristics. (High_Spd_Lmt), (Bikelane), (Pav_Shoulder), (Sidewalk), and (Unsignalized) are highly correlated with F1 which can be called pedestrian and bicycle-oriented roadway. (Walk), (Bike), (Employ_Density), and
(log_AADT) are highly correlated with F2 which can be called exposure. (Edu_Less_H), (Total_Veh0), (Low_Wage), and (Poverty) are highly correlated with F3 which can be called low social status. Therefore, three factors—exposure, social status, and pedestrian and bicycle-oriented roadway—were constructed from the observed variables in the data collection.

Confirmatory Factor Analysis

The CFA model was analyzed using the remaining observations (N = 100). CFA is often used to evaluate a prior theory or hypothesis such as the number of factors, types of factors, whether or not the factors are correlated, and which observed variable are indicators of which factor. Now, given the EFA results, CFA helps cross-validate the structure as well as the factor loadings as EFA is purely data driven. Prior knowledge informs that the presence of ped/bike-friendly facilities, percentage of the working population, AADT, walking/biking, and gross employment density are considered to be related to pedestrian and bicyclist exposure. However, the high score of factor loading in the EFA suggested that high speed limit is also a strong indicator of exposure and thus, the high speed limit was used as an indicator for the latent factor exposure in CFA. By contrast, EFA indicated paved shoulder has a low correlation with pedestrian and bicycle-oriented roadway for any of the three factors but it was kept in CFA because of the prior knowledge.

The EFA result suggests that a CFA is fitted based on three latent variables in the x-measurement model (Figure 3). The fourth latent variable was added following the similar concepts presented in other research work (32, 33). The fourth latent variable in the y-measurement model (Figure 3) is the endogenous latent variable, so-called “Crash Index,” which is measured by pedestrian crashes and bicyclist crashes. Figure 4 illustrates the resulting SEM with all latent variables. All variables were significant at the 5% level, and non-significant variables were removed from the final SEM (e.g., Mid_Block and Sidepath).

The overall fit of the model and the significance of some model parameters were evaluated. Both the RMSEA and CFI indices are within the cut-off values of (0.064) and (0.930), respectively. Therefore, the model does fit despite the result of the chi-square test.

Findings and Discussion

The SEM technique enhances safety studies with its ability to build a structure among variables (e.g., pedestrian and bicyclist safety studies at intersections). The ability to include multiple endogenous measures (e.g., pedestrian crashes, bicyclist crashes) is a benefit because it results in a more informative framework. SEM also provides guidance with safety-related data collection, and highlights pertinent variables that can be gathered to represent important latent variables. Several models were tested to identify a statistically significant model.

The final SEM displays standardized parameters for all coefficients. The structural model which can be viewed as a standard regression equation using standardized parameters includes latent exogenous variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pedestrian and bicycle-oriented roadway (F1)</th>
<th>Exposure (F2)</th>
<th>Low social status (F3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High_Spd_Lmt</td>
<td>-0.55</td>
<td>-0.64</td>
<td>-0.28</td>
</tr>
<tr>
<td>Bikelane</td>
<td>0.41</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>Pav_Shoulder</td>
<td>0.38</td>
<td>-0.11</td>
<td>-0.06</td>
</tr>
<tr>
<td>Sidewalk</td>
<td>0.63</td>
<td>0.04</td>
<td>0.17</td>
</tr>
<tr>
<td>Sidepath</td>
<td>-0.06</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Unsignalized</td>
<td>-0.74</td>
<td>0.14</td>
<td>0.09</td>
</tr>
<tr>
<td>Mid_Block</td>
<td>0.03</td>
<td>0.02</td>
<td>0.22</td>
</tr>
<tr>
<td>TWLTL</td>
<td>-0.25</td>
<td>0.12</td>
<td>0.22</td>
</tr>
<tr>
<td>Walk</td>
<td>0.10</td>
<td>0.69</td>
<td>-0.02</td>
</tr>
<tr>
<td>Bike</td>
<td>0.12</td>
<td>0.65</td>
<td>0.17</td>
</tr>
<tr>
<td>Employ_Density</td>
<td>0.14</td>
<td>0.54</td>
<td>0.26</td>
</tr>
<tr>
<td>log_AADT</td>
<td>0.16</td>
<td>0.48</td>
<td>0.11</td>
</tr>
<tr>
<td>Edu_Less_H</td>
<td>-0.09</td>
<td>0.02</td>
<td>0.78</td>
</tr>
<tr>
<td>Total_Veh0</td>
<td>0.1</td>
<td>0.16</td>
<td>0.86</td>
</tr>
<tr>
<td>Low_Wage</td>
<td>0.15</td>
<td>0.27</td>
<td>0.71</td>
</tr>
<tr>
<td>Poverty</td>
<td>0.14</td>
<td>0.32</td>
<td>0.90</td>
</tr>
</tbody>
</table>

*aFactor loadings in boldface are above (0.4).
bicycle/pedestrian-oriented roadway, exposure, and low social status, and latent endogenous variable crash index. The regression coefficients show that the crash index is strongly and positively influenced by exposure latent variable (coefficient = 0.51), moderately and negatively affected by bicycle/pedestrian-oriented roadway (coefficient = -0.35), and weakly and positively affected by the low social status (coefficient = 0.19). Regarding the measurement models, the x-measurement model implies that sidewalk coverage along the corridor, bike lane, and paved shoulder coverage are good features of a bicycle/pedestrian-oriented roadway. Bike lanes, paved shoulders, and sidewalks may lead to higher exposure for pedestrians and bicyclists, but they also provide designated space for these VRUs and may decrease the likelihood of crashes. The y-measurement model implies pedestrian and bicycle crash count is strong and positive measures of the crash index.

The low social status latent variable was positively and highly influenced by many variables (e.g., low educational level, and low wage). The results show a positive effect between lower educational level and crash frequency: well-educated residents may have had more driver education training and may be more aware of road safety and the consequences of crashes. People who live in lower-income neighborhoods may travel more by walking and bicycling because of limited resources for automobile travel. Lower rates of car ownership may be positively related to crash frequency through increased pedestrian and bicyclist exposure. It is also possible that areas with higher-income residents may have environments that are more conducive to biking and walking (e.g., more high-quality pedestrian and bicycle infrastructure).

Looking at the exposure latent variable, it can be seen that walking or biking as a transportation mode, as well as employment density and AADT, positively affect pedestrian and bicyclist exposure to traffic, thus leading to more crashes. The high speed variable had dual citizenship, meaning that it was correlated to both the bicycle/pedestrian-oriented roadway variable and the exposure variable in a negative fashion. It is plausible that the locations with a high posted speed limit often indicate fewer pedestrian or bicycle activities, as the roadway design is more vehicle centric. As speed increases, pedestrian and bicycle crashes may be more likely because drivers may not detect pedestrians and bicyclists on the sides of the road, and longer stopping distances are needed to avoid collisions.

These results contain similar conclusions from previous studies. Exceeding the speed limit showed an increase in the probability of being involved in a crash (32, 33). In fact, it was significant in bicycle/pedestrian-oriented roadway (-0.13) and exposure latent variables (-0.55). This underscores the value of SEM, as it is able to clarify complex relationships between variables. A
unique conclusion is derived from the correlation between two exogenous latent variables, showing the high positive correlation between low social status and exposure. Owning zero vehicles (shows a low social status) will increase the individual’s exposure and therefore increase his/her crash index, leading to more crash involvement. In addition, the presence of paved shoulders tends to decrease the crash index (indirectly) by improving the road design for pedestrians and bicyclists. Paved shoulders provide additional space for pedestrians and bicyclists outside of travel lanes, even the elevation between the shoulder and the roadway, and reduce the presence of gravel or sand that may contribute to bicyclist crashes.

Conclusion

Safety of VRUs is a critical issue affecting the efficiency of our built highways. A reduction in crashes among this particular group of roadway users has always been the top priority of traffic safety researchers and policymakers. Several studies have addressed the issue of pedestrian and bicyclist crash frequency (44–46), and many have used standard regression models (e.g., log-linear, multinomial logistic regression, negative binomial). Standard regression models can explain the direct impact of the surrounding factors on pedestrian and bicyclist crash frequencies and injury severities, but they might not explain the underlying complex relationships between variables.

The study applies SEM to develop a conjectured structure that provides a clear portrait between a many highway corridor specific variables and VRU crashes. The structure is featured by the relationship between three exogenous latent variables representing bicyclist and pedestrian-oriented roadway design, exposure, and surrounding social status, and one endogenous variable representing a single value VRU safety quantification for both pedestrian and bicyclist crashes. The relationship between latent and observed variables can also be conveniently established by using the measurement model. Combining both the structural and measurement models in a single modeling process enables the effective distinction between direct, indirect, and synergic effects between variables, and thus more accurately capture the physical underpinning for VRU crashes.

The notable findings from this highway corridor-based VRU study are as follows: the model suggests that bicycle/pedestrian-oriented roadway, exposure, and low social status are strongly related to VRU crash frequency. SEM helps to explain the potentially conflicting information such that an observed variable may affect more than one latent variable in different ways (i.e., High_Spd_Limit), and the results show that high speed limit negatively influences pedestrian and bicyclist exposure to traffic. It is noted that some significant variables in the models were not significant in previous research.

Several limitations existed in this study. The study was limited by not having direct pedestrian and bicyclist volume counts; there may be other land-use variables beyond those considered in this study that contribute to increased pedestrian and bicycle exposure. Future studies should try to use more refined pedestrian and bicyclist exposure data. Pedestrian and bicyclist counts will be helpful to improve the accuracy of latent variable exposure. In addition, crashes were not analyzed if they were not reported to police, or not geocoded in the crash database. The 10-year time period provides more crash data for analysis, but it also increases the chance that a particular corridor had different characteristics when the earliest crashes occurred. The database contained crashes with motor vehicles only, as they appeared to be the most severe, but they have been found to represent only a fraction of total pedestrian and bicycle crashes. Although the sample size of 200 corridors is adequate, more sites are desirable to improve the model fit and significance of the input variables. Further work should also use behavioral data to ensure that these factors are well studied and reduce the potential for omitted variable bias.

Acknowledgments

This work was sponsored by Wisconsin Department of Transportation (WisDOT). The authors thank the students who provided data collection assistance.

Author Contributions

The authors confirm contribution to the paper as follows: study conception and design: XQ, FJA-M; data collection: FJA-M, MRRS; analysis and interpretation of results: FJA-M, XQ, RJS; draft manuscript preparation: FJA-M, XQ, RJS. All authors reviewed the results and approved the final version of the manuscript.

References


The Standing Committee on Safety Data, Analysis and Evaluation (ANB20) peer-reviewed this paper (19-03034).