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implicity and regularity are associated with predictabil-

ity. For example, because the orbit of Earth is simple and

regular we can always predict when astronomical win-
ter will come. On the other hand, complexity and irregularity
are almost synonymous with unpredictability. The atmo-
sphere, for example, being so complex and irregular is rather
unpredictable.

Those who try to explain the world we live in have always
hoped that within the complexity and irregularity observed
in nature, simplicity would be found behind everything, and
that ultimately unpredictable events will become predictable.
The fact that complexity and irregularity exist in nature is ob-
vious; we only need to look around us to realize that practi-
cally everythingis random in appearance. Or is it? Clouds, like
many other structures in nature come in an infinite number
of shapes. Every cloud is different, yet everyone can recog-
nize a cloud. Clouds must then possess unique features that
distinguish them from other structures. The question remains:
is the irregularity of things like clouds completely random, or
is there some order underlying this irregularity?

Over the past two decades physicists, biologists, mathema-
ticians, and scientists from many other disciplines have de-
veloped the science of dynamical systems—chaos, fractals,
cellular automata—in order to represent and study complex-
ity in nature. In this tutorial we consider all the evidence and
understanding that has been gained from the use of these new
tools in providing original insights about physical processes.

FRACTALS

Fractal sets, unlike Euclidean objects, possess no characteris-
tic sizes or length scales [1]. They display detailed structure
on all length scales, so that when magnified each small por-
tion reproduces a large portion of the set. This property is
called self-similarity or scaling (scale invariance) and is closely
connected to the intuitive notion of dimension. Mathemati-
cally, scaling is expressed by a power law of the form C(r)e< 1,

where rrepresents the scale, C(r) is a statistic at a scale r, and
A is related linearly to the fractal dimension, D, which takes
on noninteger values. Fractals can be exact or random. Exact
fractals are produced by recursive algorithms for example, the
Koch snowflake shown in Figure 1 or the famed Sierpinski
carpet. Exact fractals possess exact self-similarity. Random
fractals are products of recursive algorithms plus noise, and
do not possess exact self-similarity. In this case, when a small
part is magnified it does not reproduce exactly a larger part,
but reproduces the statistical properties of a larger part. In
this case ( C(r) ) e< r* where the brackets indicate averages. In
both cases scaling extends to infinitely small scales. The above
formulation provides a general way to calculate fractal dimen-
sions. Define the statistic Cand determine its value at various
scales, r. Plot the logarithm of C(r) versus the logarithm of r. If
the resulting curve is linear over a wide range of scales (scal-
ing), then the slope of that linear part is an estimate of the
fractal dimension. In the case of the Koch snowflake, C(r) can
be the length of the boundary measured with a yardstick of
length r. Alternatively, C(r) can be the number of squares of
size rneeded to cover the boundary (box-counting).

In cases where the scaling is not uniform (i.e., when shapes
are statistically invariant under transformations that scale dif-
ferent coordinates by different amounts), then we do not have
self-similarity but self-affinity. As in the case of self-similarity,
self-affinity can be exact or statistical. Statistical self-affinity is
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Fractals [1] are sets that are not topological. For to-
pological sets the Hausdorff-Besicovitch dimension
is an integer (0 for points, 1 for any curve, 2 for sur-
faces etc.). For fractal sets the Hausdorff-Besicovitch
dimension is not an integer but is a real number.
Because of that fractals have properties that are be-
yond topology. The Koch curve or snowflake begins
with an equilateral triangle with sides of length one;
then at the middle of each side a new equilateral tri-
angle with sides of length one-third is added; and so
on. The length of the constructed boundary is 3x4/
3x4/3x4/3x........ = o, However, that boundary occu-
pies no area at all and it encloses a finite area which
is smaller than the area of the circle drawn around
the original equilateral triangle. The Hausdorff-Besi-
covitch dimension of the boundary is 1.2618 (higher
than the topological dimension of a curve). Often the
Hausdorff-Besicovitch dimension is referred to as the
fractal dimension. Such mathematical curiosities, ab-
stract as they seem, have found a place in the study
of nonlinear dynamical systems.

often the case with noisy time
series. Mathematically this is ex-
pressed by Ax(AAt) = MAx(AL)

for all A > 0 where x(t) is the time
series and the symbol =“denotes
identity in statistical distribu-
tions. This relation dictates that
the distribution of increments of
x over some time scale AAf is
identical to the distribution of
increments of x over a lag equal
to At multiplied by A. Therefore,
if time is magnified by a factor
A, x is magnified by a factor
M (0 < H < 1). The quantity H
characterizes self-affinity in a
fashion similar to that by which
D measures self-similarity. The
value H = 0.5 corresponds to the
trace of a Brownian motion (see

Figure 2), whereas any value
H # 0.5 defines a fractional
Brownian motion (fBm) having
infinite long-run correlations
(either positive if H > 0.5 or
negative if H < 0.5). Note that
Brownian motions exhibit spec-
tra of the form S(f)e<f “and that
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The trace of a pure Brownian motion. The amplitude indicates the distance from the origin as a function of the
time step.

their trails have a dimension
08 1 D =1/H with a = 2H + 1. These
propertieslie at the heart of com-
puter methods for the generation
of random fractal sets of any de-
| sired dimension D [2].
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