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Abstract A thorough analysis of a proxy El Nino/

Southern Oscillation (ENSO) record indicates that a

bifurcation occurred in the ENSO system sometime around

5,000 years B.P. As a result of this bifurcation the attractor

became higher dimensional and a new mechanism of

instability was introduced. As a consequence of these

changes the system switched from a dynamics where the

normal condition (La Nina) was dominant to a dynamics

characterized by more frequent and stronger El Nino

events.

Keywords ENSO � Climate variability � Chaos �
Bifurcation

1 Introduction

It goes without saying that the El Nino/Southern oscillation

(ENSO) phenomenon is one of the major players in cli-

mate. Its effects are worldwide and often devastating. Its

properties and dynamics have been studied extensively

using both models and observations. However, while

models may point to interesting insights about ENSO

variability over long timescales (see for example, Clement

et al. 1998), observations are too limited to address this

issue and thus to confirm model results. As such ENSO

variability over millennia timescales is not well under-

stood. Recently, proxy ENSO records have been

constructed (Rodbell et al. 1999; Moy et al. 2002) thus

providing an opportunity to study this variability. Here we

employ the proxy ENSO data of Moy et al. 2002. This

record (Fig. 1) is based on the distribution of inorganic

clastic laminae in a core retrieved from Lake Laguna

Pallcacocha in Ecuador. The laminae are deposited during

ENSO-driven episodes of alluvial deposition in the Laguna

Pallcacocha drainage basin. These laminae are mixed with

dark-coloured organic-rich silt. The surface of the core

sections was scanned and the intensity of the red colour

was used to generate the proxy record. Then an age model

was applied to create a yearly time series of events from

11,000 calendar years B.P. to today. According to the

record, from 11,000 B.P. to about 5,000 B.P. the normal state

(La Nina; low red colour intensity) is dominant, whereas in

the last 5,000 years a switch to more frequent and strong El

Nino events (high red colour intensity) has taken place. In a

wavelet analysis of this data (Fig. 2; Moy et al. 2002) this

shift is indicated by the collapse of two pre-5,000 years B.P.

narrow bands above and below a period of 2,048 years into

one broader band centered at period 2,048 years. Moy et al.

2002 suggest that this shift was due to changes in boreal

summer insolation, a suggestion supported by a modeling

study using the Zebiak and Cane ENSO model (Clement

et al. 1998). Moy et al. 2002 interpreted this change as a

shift from one periodic to another periodic state. However,

as we will show here the nature of this shift is much more

complex.

2 Data analysis and results

Because the shift occurred some time 5,000 years BP we

split the record into two parts; the first is the period

11,000–5,000 B.P. and second the period 5,000-present. The

present analysis consists of three different approaches to
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study nonlinear dynamics from observables embedded in

some appropriate delay space. This embedding is achieved

by considering a scalar time series x(t) and its successive

time shifts using an appropriate delay parameter s (Packard

et al. 1980; Ruelle 1981; Takens 1981). The first shift

defines a 2-D embedding space [with coordinates x(t),

x(t ? s)], the second shift defines a 3-D space [with

coordinates x(t), x(t ? s), x(t ? 2s)), and so on. At any

embedding dimension n in our delay space, we have a

cloud of points. Within this cloud we may find the number

of pairs of points, N(r,n), that are separated by a distance

less than r. If we find that this number scales with r

according to

Nðr; nÞ / rd2 ð2Þ

then the scaling exponent d2 is the correlation dimension

of the cloud of points for that n. Since the above equation

is a power law, the value of d2 is estimated by the slope

of the plot log N(r,n) versus log r. We then repeat this

procedure and we check if d2 reaches a saturation value

D2 as n increases. If this happens it would indicate that

we have ‘‘locked’’ into the underlying attractor whose

correlation dimension is D2. Figure 3 shows the results

when the Grassberger and Procaccia 1983a, b algorithm is

used to estimate the correlation dimension for a delay

s = 6 and embedding dimensions 2–9. More specifically

(and more appropriately) it shows the slope, dlog N(r,n)/

dlog r, versus log r plot [Tsonis 1992; Tsonis and Elsner

1995]. The idea is that if scaling exists, then dlog N(r,n)/

dlog r is constant and independent of r; this constant

manifesting itself as a plateau. From theory we know that

a volume element in state space under the action of a

chaotic flow will at first be pulled along the direction of

greatest instability. This stretching, however, cannot

occupy more and more volume (because the attractor is

confined in a finite area in state space). The mechanism

that prevents this is folding. Thus, the attractor has to fold

onto itself. Successive iterations of this process result in

the asymptotic attractor with folds within folds ad infi-

nitum (i.e. a fractal object). It has by now been

established that the proper s is the one that emulates these

properties of the attractor closely and that the effect of an

increasing s is also to pull nearby points apart (Tsonis

2007). Thus, the proper s should be the one that results in

the widest and best defined plateau. This can be easily

assessed in a common procedure where the slope versus

log r plot is produced by simultaneously varying the

embedding dimension and delay parameter. Since the

stretching and folding is a physical property, it may not

relate well to statistical measures such as the autocorre-

lation function or mutual information, which were

commonly used in the past to define s. From our proce-

dure we find that the best choice is s = 6.
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Fig. 1 The Moy et al. 2002 proxy ENSO record. Visual inspection of

this record indicates that from 11,000 B.P. to about 5,000 B.P. the

normal state (La Nina; low red colour intensity) is dominant, whereas

in the last 5,000 years a switch to more frequent and strong El Nino

events (high red colour intensity) has taken place

Fig. 2 A wavelet analysis of

the record in Fig. 1 (from Moy

et al. 2002). A major feature of

this analysis is the collapse of

two pre-5,000 years B.P. narrow

bands above and below a period

of 2,048 years into one broader

band centered at period

2,048 years (Figure courtesy of

Dr. Christopher Moy)
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The signature of the curves in Fig. 3 is exactly what we

should observe from nonlinear dynamical systems. Assume

that our attractor is a set of points in a two-dimensional

space having a correlation dimension D2 B 2. How does

the slope versus log r plot would look like? For an

embedding dimension of two, for scales smaller than the

diameter of the attractor, the plot will show a plateau at

slope = D2. However, since the attractor has a finite

diameter, for distances greater than this diameter N(r,n)

will reach a saturation value and will not change further

with r. Because of that, the dlog N(r,n)/dlog r function (i.e.

the slope) will tend to zero for very large r’s. Now what

will happen if we embed the data in three dimensions? In

this case we distribute the points of the attractor into a

much larger volume. The effect of this is that the density of

points per unit volume decreases. Now, a pair in two

dimensions separated by a distance r is separated by a

longer distance. This ‘‘depopulation’’ results in poor sta-

tistics over small scales and manifests itself as fluctuations

about the plateau. On the other end because we have

embedded the attractor in a higher dimension than needed,

the larger scales will appear higher dimensional than they

actually are (much like when we curl a sheet of paper; the

smaller scales remain planar but in large scales the sheet of

paper appears three dimensional). Thus, when we embed

the data in higher than needed dimensions, the local slope

plot will show large fluctuations at very small scales, a

plateau at intermediate scales at the level slope = D2, a

tendency for higher slope values at large scales (mani-

festing itself as a ‘‘hump’’), and finally an approach to zero

values for very large scales. The results in Fig. 3 are very

consistent with this expected behavior and indicate a

dimension of about 3 for the data in the first period (as

indicated by the convergence at a common plateau at about

slope&3 for embedding dimensions greater than two) and

a dimension slightly over 4 for the data in the second

period. These estimates comply with sample size require-

ments in the calculation of correlation dimensions.

According to the Tsonis criterion the number of points

necessary for the estimation of a correlation dimension D is

10(2?0.4D). This has been verified with systems of known

dimensions (Nerenberg and Essex 1990; Tsonis 1992;

Tsonis et al. 1993, 1994). We thus conclude that the two

periods are characterized by two different attractors. Fur-

ther support for this is provided by surrogate data analysis.

Figure 4 is similar to Fig. 3 but for surrogate data gener-

ated by inverting the observed spectra and randomizing the

phases. Such procedures (Theiler et al. 1992; Schreiber and

Schmitz 1996) preserve the autocorrelation function and

power spectra of the original data set but not the dynamics

and have been established as the proper way to test alleged

dynamics. In this figure we do not observe any of the

expected from dynamics structure nor do we observe any

convergence at a common plateau. As the embedding

dimension increases the plateau rises. This is the signature

of random data not of dynamics. Random data fill any
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Fig. 3 Estimation of the correlation dimension for the two chosen

periods. This figure indicates that the data in the first period are

characterized by an attractor of dimension 3 and the data in the

second period by an attractor of dimension slightly above 4 (see text

for details)
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Fig. 4 Same as Fig. 3 but for random surrogate data. The conver-

gence observed in Fig. 3 is absent here as expected from random data
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embedding space uniformly thus their dimension is the

dimension of the embedding space. Note that in the case of

random data since no attractor exists, the estimated

dimension may be progressively underestimated at high

embedding dimensions but this may not be the case with

data possessing low-dimensional attractors (Tsonis 1992;

Tsonis et al. 1994).

Next we turn to the estimation of the Lyapunov expo-

nents. The Lyapunov exponents measure the rate at which

nearby trajectories converge or diverge. An n-dimensional

attractor has n Lyapunov exponents. One is zero and the

rest are positive or negative. Positive Lyapunov exponents

indicate divergence of nearby trajectories (or stretching and

folding), which is a property of chaotic attractors. Negative

exponents indicate convergence of nearby trajectories and

signify the fact that attractors usually have dimensions

lower than the complete state space. For example the

famous Lorenz (1963) system has a three dimensional state

space but the attractor has a dimension slightly above two.

This means that any set of initial conditions in a three

dimensional cube must collapse onto a lower-dimensional

attractor; hence there must be some ‘‘squeezing’’ of the

original cube or a negative Lyapunov exponent. Once the

data are embedded in the proper space we monitor the

motion in that space of a point and also of points in its

close neighborhood for some time called the decomposi-

tion length [Abarbanel et al. 1991; Brown et al. 1991].

From this monitoring one can estimate the Jacobian, which

provides information about the Lyapunov exponents for a

point (i.e. the local Lyapunov exponents). By repeating this

procedure for many points we can obtain an average pic-

ture which will be related to the average Lyapunov

exponents of the system. An embedding dimension of at

least 2D2 is recommended for this procedure. Thus, we

embed the data in the first period in a 7-dimensional space

and of the second period in a 9-dimensional space using

s = 6. Figure 4 shows the local Lyapunov exponents for

1,000 positions along the trajectory for a decomposition

length of 200. We find that in the first period there is one

positive, one zero and five negative Lyapunov exponents

(in Fig. 5 only the first negative exponent is shown). For

the second period we find two positive, one zero and six

negative exponents. The presence of positive exponents

indicates that the dynamics are chaotic. This is consistent

with model results as well as of analysis of modern ENSO

records (Elsner and Tsonis 1993; Tziperman et al.1994;

Tsonis and Elsner 1996). It thus appears as if the bifurca-

tion is not from one periodic attractor to another periodic

attractor but from a chaotic attractor to a bigger chaotic

attractor (this bifurcation is often referred to as explosive

bifurcation). The variation of the local Lyapunov expo-

nents with location is indicative of non-uniform chaotic

attractors. Depending on the region in the attractor the

divergence or convergence rate may be greater or smaller.

The average values of the exponents suggest that indeed

the dimension is low. According to Frederickson et al.

1983 these average values correspond to an information

dimension (a measure close to the correlation dimension)

of slightly above 3 and 4, respectively. Thus these results

are consistent with the dimension estimates reported above.

Moreover, they suggest that indeed some time about

5,000 years B.P. a bifurcation (change in the attractor) must

have occurred as in the second period we now have two

mechanisms of instability (corresponding to two positive

Lyapunov exponents) rather than one. The inverse of the

sum of the positive Lyapunov exponents defines the Kol-

mogorov entropy, a measure of predictability. Accordingly,

predictability in the second period is lower than in the first

period. This is consistent with latest results reporting that

during El Nino events predictability decreases (Tsonis and

Swanson 2008). It is worth noting here that the fact that we

recover two positive Lyapunov exponents rules out the

possibility that the underlying process is a random frac-

tional Brownian motion (fBm). Such sequences may fool

the procedure in producing a positive Lyapunov exponent
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Fig. 5 Local Lyapunov exponents at 1,000 positions along the

trajectory for the period 11,000–5,000 B.P. (top) and for the period

5,000 B.P.-present (bottom). The presence of positive exponents

indicates that the dynamics are chaotic. Note that in the first period

there is one positive exponent but in the second there are two positive

exponents. This indicates that in the second period a new mechanism

of instability has been introduced
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but they can never produce two positive Lyapunov

exponents.

The above conclusions are further supported by non-

linear prediction. In nonlinear prediction once we have an

appropriate embedding we can consider a terminal point

and its close neighborhood. Then we can find the (local)

linear mapping of the motion of its neighbors and extrap-

olate it to get a projection of the terminal point into the

future (Farmer and Sidorowich 1987). The performance of

nonlinear prediction is evaluated by estimating the corre-

lation between predicted and actual values as a function of

the prediction time step. Figure 6 shows the correlation

between predicted and actual values as a function of pre-

diction time using the nonlinear prediction algorithm of

Wales 1991, which is based on the Farmer and Sidorowich

1987 local linear approximation approach. We see a decay

of predictability with time; a feature consistent with chaotic

dynamics (Sugihara and May 1990). We also observe that

for short time steps predictability is better during the first

period, which is consistent with the Kolmogorov entropy

values calculated from the Lyapunov exponents. Note that

this decay is not a power law, which according to the

Tsonis–Elsner test (Tsonis and Elsner 1992) also rules out

the possibility that what we are dealing here are random

fractional Brownian motions, which are known to produce

a small finite dimension when they are passed through the

Grassberger–Procaccia algorithm for dimension estimation

(Osborne and Provenzale 1989).

3 Conclusions

We have presented a variety of very consistent results

from three different methods all of which point to the

fact that the shift in the behavior of ENSO observed

around 5,000 years B.P. is indeed a bifurcation. This

bifurcation led to new dynamics. The attractor increased

in size (it become higher dimensional), a new dominant

mechanism of instability (a second positive Lyapunov

exponent) was introduced, and the system changed from

a dynamics where the normal condition (La Nina) was

dominant to a dynamics characterized by more frequent

and stronger El Nino events. As speculated by Moy et al.

2002 this may have been caused by changes in boreal

summer insolation during that time. Such changes may

have acted as an external parameter, which after reaching

a critical value caused the system to bifurcate. Modeling

suggests (Clement et al. 1998) that what could play the

role of this parameter are easterly wind anomalies, which

amplify during an increase in insolation (in early Holo-

cene) and lead the system toward the La Nina state. On

the other hand it is plausible that the new mechanism of

instability in the second period could have been intro-

duced from the slow changes in ocean dynamics, which

are known to be affected during interglacial event. Our

results thus provide new insights and challenges in the

ongoing endeavor to understand the dynamics of this

important mode of variability of the climate system at

long timescales. At the same time they highlight the

importance of proxy paleoclimate records as they con-

tinue providing important clues about climate variability

at very long timescales.
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